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Abstract

The solution of nonlinear finite dif-
ference equations is found, The nonlinear
frequency shift and the resonant instabilir
ty produced by nonlinearity are calculated,
The developed theory is applied to the cal-
culations of the phase motion in microtron.

Transversal and longitudinal motion of pam
ticles in accelerators usually can be des-
cribed by finite difference equations with
constant or slowly changing coefficients.
This method is very convenient if coeffi-
cients of the initial differential equa-
tions, representing the particle motion,
are constant on every separate part of the
trajectory. If the period of oscillations
is much grester than the guide system pe-
riod, the finite difference equations can
be replaced by differentisl equatims witb
constant or slowly changing coefficients.,
In this case wesk constant nonlinearity of
equations produces the frequency shift but
no demping or antidasmping of oscillations
is caused. The typical example is the small
phase oscillations in'ring accelerators,

If the period of oscillations is of the
same order as the guide system period it
is impossible to replace finite difference
equations by differential equations, and
in this case the weak constant nonlineapi-
ty of equations can produce instability.
This paper contains all necessary formulae
describing the influence of nonlinearity
and instability development for the case
of the system of two first order equations
with quadratic and cubical nonlinearity.
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Here K is an arbitrary complex number, the
value £ depends on the coefficientsd, o,,
A,, in such a way thet the system (1) in
the variables W, and W, (we mark by line
the complex conjugate values) has such a
form
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— the eigenvalue of system (1), the coef-

ficients Fgm depend on the values of the

coefficients P« a.ndd’J'K .

The recurrent formula can be reduced to

the equation

W =AW, A TN L B W, W o

As the nonlinear terms are small we have
the solution in the form
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o » ‘the value Wn is propor-
tional to [WJZ and so on. We can see that
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every term of the formula (7) is the sum
of geometric progressions and the denomina-
tor of every progression_equals A s Where
q- is an integer.
It
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the corresponding progression produces a
resonant term,the module of the term is
proportional to the number L , IfK= =g = 0
(for W 3) we have the resonsnt term
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produced by quad.ratic and cubical nonlinea-
rity and existing at an arbitrary value V.
If the value V is small there are no other
resgnant members, but when) = Zz—- , the term
W has an additional resonant member (if
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produced by quag_l_ratic and cubical nonlinea~
rity. When) =7" s the resonsnt member, pro-
duced by quadratic nonlinea.rity, occurs in

(2)
the quadratic term W, and it equals

P, = ”pm'/l ' Wo (11)
while the cubical nonlinearity does not pro-
duce a resonant member, If we examine only
quadratic and cublcal approximations there
are no'l__particular cases over Y = ‘—2‘- and
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Let us examine the properties of the solu-
tions obtained, We shall admit that the
functional determinant of the system (1)
equals unity when nonlinear terms are taken
into account. It is possible to prove that
the expression in formula (9) in square
brackets is_the imaginary value. Therefore
the value 4 is a usual frequency shift _
and it does not cause change of amplitude.
As for the terms T, and T;, the case 1is

somewhat different, Let us admit that there
is the quadratic nonlinearity only arnd V=
=—’2‘-+$ s where IS! « i o Then we can al-
ways admit (byichoosing the iva.].ue K ) that
F20=F'zz=—7~77 Pu:—-z_ and

the solution follows from the formulae (9)
and (10)

(Vs-28)(V =28 = const . qr2)
We can see from this formula that oscilla-
tions are unstable if O > O and the initi-
al amplitude is greater than the threshold
value m .
Ify:g"iﬂg' » We can admit (by the same me-
thod) that F, = A . The solution has a
form

RE.(§ - R.3in30,) = const . @3)
In this,case the threshold amplitude is
about 5 |§| and instability takes place
both when 0> >0 and when 8 0 . The dot~
ted lines are plotted in Fig.l and 2 in ac-
cordance with formulae (12) and (13),(when
8 =(0 ) and the continuous lines correspond
to calculations of initial system (1)by the
elect%&c computer, The agreement of results
is good emough. If V=2 (fig.1), the high
order terms, neglected in our theory, limit
the amplitude increase following from for-
mula (12) and the intense pulsation takes
place.

We applied the developed theory to investi-
gate phase motion in the mictotron and
found out that the instability described
above develops speedily, during 10420 par-
ticle revolutions, This conclusion was af-
firmed by direct numerical calculations and
our oxperimentsl). Fig.3 illustreates the
resonsnt instability (numerical calculati-
ons) when equilibrium phase corresponds to
= &% o The instability leads to large paws
ticle losses, occurring only due to the nme~
linear dependence of the accelerating field
on time (the sinusoidal law of the field

change), when there are no perturbation
factors and the accelerated current can be
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negligible. These losses cause minima on
the accelerated current dependence on the
equilibrium phase value. As a result the
instability of the beam-resonator system
occursl). The consequence is the decrease
(by factor 2) of the stable equilibrium
phase region which is of importance for the
work of both usual microtrons and racetrack
mierotrons on hundreds MeV energy. We must
note that the resonant instability of phase
oscillations in the microtron was independ-
ently discovered in the work2
calculations.

by numerical

The developed theory may be applied not on-
ly to the microtron, but to some other ca-
ses, It is worth to emphasize that in strag
~focusing systems the frequency valuev=%r
corresponds to the centre of stable zone
(in linear approximation) and this point

is the best in many respects. However, the
nonlipear instability takes place in this
point, Using the present theory we can cal-
culate the initial frequency drift suffici-
ent to eliminate the instability.

We described_above the final results of
calculations. The whole work will be pub-
lished in "The Journal of Experimental and
Theoretical Physics" (v. 61, N 10).
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Fig.3 The instability of phase motion in
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