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Abstract

Intersecting invariant curves of an area-pre­
serving mapping are computed using an improved al­
gorithIn. The extent of the stochasticity domains
is estimated from the positions of the homoclinic
points.

1. Introduction

Stochastic instability is now believed to be
the most dangerous instability of non-linear oscilla­
tions 1 ) • This instability appears to increase with
the amount of non-linearity. Since in an accelerator
(and storage ring) the amount of non-linearitr in­
creases with the self-fields, and the latter 1ncrease
with beam intensity, it is probable that some of the
present accelerators (and storage rings) operate in
conditions where stochastic instability plays a role.
In order to facilitate eventual diagnostics, this
paper intends to relate the notion of stochastic in­
stability to the more usual notions of non-linear
oscillations.

Stochastic instability is based on two phenomena
in (mathematical) dynamic systems: i) the existence
of solutions, involving in the mean an increase of
energy, of:

cj>(t) + w2 sin ¢(t) = £ f(t) = £ L,an cos n r.lt , (1)
n

where w, r.l, an are real constants, 0 < £ « 1, and
r.l is IIU.lch smaller than the resonance width LlWn of (1)
when only one ~ f 0; and ii) the existence of in­
stability rings in area-preserving mappings. Both
phenomena are completely deterministic. The ad­
jective "stochastic" is used in this context to de­
scribe the qualitative structure of the "trajectories
of motion". This structure is so complicated that
from a casual point of view it appears to be random.
On closer examination, however, several regular fea­
tures can be discerned.

2. Some Properties of Dynamic Systems

Consider a real-valued continuous area-preserving
point mapping y = f(x,y), x = g(x,y), f(O,O) = g(O,O)
= 0, which. can also be written in a discrete form (as
a recurrence):

The invariant points of (2), Le. the roots of the
algebraic equations

Yn+k - Yn = °, xn+k - xn = 0 ,

k = 1, 2, ... (3)

are called cycles (periodic points) of order k. If
k = 1 they are called ~ixed points. Following tJ:1e.
terminology of Poincare*J, the cycles were c1ass1f1ed
by Lattes 2) into saddles, centres, etc. The recur­
rence (2) admits also continuous invariant curves,
possessing a certain number of continuous derivatives,
which. are also called trajectories. Let the point
Xn = Yn = °be a centre Co. It was already known to
Poincare and Birkhoff that in general the phase por­
trait of (2) around Co is as shown in Fig. 1. Co is
first surrounded by a family of ordinary (free of cy­
cles) invariant curves (elliptic zone); then by a
family of invariant curves forming one or more "island
structures", such. as the one bounded by r 1 and r 2
which pass through the saddles SI' S2' S3; and
finally by one or more "rings of. instabil~ty"? suc~

as the one characterized by the 1ntersect1ng 1nvar1­
ant curves r~, r 5 which pass throug~ the s::dd1es.S it ,
S5' S6' According to Birkhoff, :: r1n¥ of 1nstab1l1ty
is always bounded by two closed 1nvar1ant curves such
as r 3 and r 6' The intersections of invariant curves
at points which. are not cycles (of a finite order),
were called by Poincare ''homoc1inic'' points. The
inner invariant curves of an instability ring may be
closed, if they are sufficiently near to the inner
centres, such as C~, C5, C6•

n = 0, ±1, ±2, ••• . (2) Fig. 1 Typical phase portrait of the recurrence
(2) according to Birkhoff.
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b)

+

Quadratic F(x):
(~ = 0.8, x

s
~ 0.96),

(~ = 0.7, X
s

$ 0.89),
(~ = 0.6, X

s
$ 0.73),

(~ = 0.125, X
s

~ 0.51).

Cubic F(x):
(~ 0.75, X

s
~ 0.92),

(~ 0.7, X
s

~ 0.84),
(~ 0.6, X

s
~ 0.81),

(~ 0.2, X
s

~ 0.6).

f[x,y(x)] = y[g{x,y(x)}], y(xo) = Yo' (5)

which reduces to the eigenslope equation at a fixed
point.

Knowing the solution of (5) it is possible to
decide whether one has an island structure, an in­
stability ring, or something more complicated. The
decision is often difficult because both the location
of the saddles and the shape of the invariant curves
are known only with a finite precision. The numeri­
cal computations were carried out for the special but
qualitatively rather general recurrence

where (xo ,Yo) is a given ordinary point. If (xo,Yo)
is on a cycle, or some more complex singularity,
then it is also necessary to prescribe at Xo the
values of some derivatives of y(x) • For a saddle
it is sufficient to prescribe y(xo)' The derivative
y(x) satisfies the recurrence

where F(x) = ~x + (1 - ~)X2 and F(x) =~ + (1 - ~)X3,
o ~ ~ < +1. This special form was chosen because in
the case of the quadratic F(x) some cycles were al­
ready known6

), and because it has a saddle S at
xn = 1, Yn = 0 not depending on ~, -1 < ~ < 1.

The qualitative phase portrait of (7) is given
in Fig. 2. Stochasticity develops first near the
invariant curves passing through the saddle S, and
then spreads inwards as (1 - ~) increases, by de­
veloping on cycles of various orders k > 1. The in­
fluence domains of the various cycles overlap, and
there appears to be no evidence of any bounding
curves like r 3 and r 6 in Fig. 1. There appears to
exist only a lower limit for the complete stochastic
region for a given value of ~ (shown by the curve r
in Fig. 2) 7). It could not be ascertained yet

Fig. 2 Phase portrait of the recurrence (7).

Yet) = f1(x,y,t), x(t) = gl(X,y,t), (4)

with a periodic dependence on t*), determine a unique
recurrence of form (2). The inverse is known not to
be true in general. The practical determination of
f,g from f1,gl is extremely laborious, except when
f,g depend on t by means of Dirac impulses (a not
very realistic case, but used usually in illustra­
tive examples). From the equivalence of (2) and (4)
the phase portrait of Fig. 1 becomes intuitively
evident. In fact, if the solutions of (4) are unique
this uniqueness (non-intersecting trajectories) takes
place in the space (x,y,t). The projection of curves
in (x,y,t) on the phase plane (x,y) can be only ex­
ceptionally non-intersecting.

The relationship between an invariant curve and
a "physical" trajectory is quite clear in the elliptic
zone and in the zone of island structures, but it is
not quite self-evident inside a ring of instability •

It was believed first on physical grounds, using
a number-theoretical argument based on ratios of
oscillation frequencies, that the instability rings
were exceptional (negligibly few intersecting tra­
jectories), i.e. that the homoclinic points were a
rare mathematical curiosity. However, this line of
argument turned out to be misleading, and it is now
known that it is the absence of homoclinic points
which is exceptiona1 3), at least for motions having
large amplitudes.

Birkhoff's (two-dimensional) instability rings
cannot be the source of any "physical" instability,
because these rings are mutually isolated and each
is bmmded by closed trajectories. It was shown by
Arnold4 ) that higher-dimensional "rings" of instabili­
ty may intersect, and that they contain trajectories
which recede from Co' The motion of particles on
such wandering trajectories is now called Arnold
diffusion. Other configurations of intersecting in­
variant curves appear also possible. Following pre­
sent usage, regions in which such curves existwill
be called stochastic. A sufficient criterion of
stochasticity is thus the existence of homoclinic
points.

Before attempting the determination of homo­
clinic points, it is good to recall that a dynamic
system can be described by differential equations,
recurrences, functional equations, etc. Which formu­
lation is chosen depends on circumstances. It is
known, however, since Poincare that differential
equations of the form

3. Estimation of Stochasticity Boundaries

In order to test for the existence of homo­
clinic points in a part G of the (x,y) plane, it is
first necessary to find some cycles of (2) in G,
i.e. to find some roots of (3). This essential
first step does not constitute a trivial problemS),
as it is connnonly believed. If among the cycles one
has succeeded in finding one saddle the next step
becomes possible: the determination of invariant
curves passing through this saddle*), Suppose that
y = y(x) is the equation of a continuous invariant
curve possessing n ~ 1 continuous derivatives. It
is known2) that y(x) is a solution of the non-linear
functional equation
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whether r is defined by a tmique closed invariant
curve, or by the envelope of a family of intersecting
invariant curves. The successive iterations Xn'Yn of
(2), when started. outside of r, eventually may become
much larger than one (apparently Ixnl -+ 00) ••The re-

gion sufficiently outside of r appears to be the re­
gion of stochastic instability first noted in (1).
This instability will be dangerous in accelerators
(or storage rings), when the beam size becomes ap­
preciably larger than the interior of r.

* * *
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