
(7)

(6)

(9)

(11)

(16)

m:l.- DCI

f'\:--

is the number of particles in the
As p is the function periodic by x

where N
bunch.
then

The electric field acting on the particles
may be expressed through the impedance of
external system

~ ·~e
let,f:» =-2.~R L)-(f>}IW1(s-~rn,"",)id~.

M:-OO

Performing the inverse Laplace transforma­
tion and going over to the rest system of
an eqUilibrium particle by means of trans­
formation .t= x+ c..voR-e we obtain

~(Xl-t)=-~~e-~~·l-i1~(ST'dm"'o)'I... (s;)}. (8)
M=- .....

For the evaluation of the complex ampli­
tudes I ...(t) it is necessary to use the
distribution function j(xl~li)= jo (x,p)+ T()(,P,i)
where f.()(.p) is equilibrium distribution,
JCx,p,i) is the perturbation. The perturba-
tion of the linear charge density may be
expressed through J()(,~.i) :

p(x ,i) ::: eN/1(x,p,i) ¥

here

and 311<.

PM(t) =2.~R fP(x, ~)e-j¥dx::: ~jjr(!(x,p,t)e-/Fcl.x.cJ.p. (10 )
-lIR J-

It may be shown that I ... (t) :::ofloC.p_Ct); further
we assume f&~1. Thus

I~(i): ~~~f1f(x,?,i)e.i7/dxdp.

Going over to variables ~,& and taking into
account that ~dt:::d~Q~ we obtain

I ... (-tJ= ~~~ffJ(<f/j/) e
j7f

d<fd~ . (12)

The kinetic equation for JClf11,t) in the
linear ap~oximatio~ma~ be written as

"()f + S?e~ = %. d to . (13)
% ~;r <+<p J

By Laplace transformation upon (13) we haVe
- * ~ 'to ()c:..F(<f,'J.s)-to(~.'5)-t-Qe~ = 'lKb . ~:t 14

where """ r

FCcfl~'s)= !fC'f11/)e-
s-eett; fo(q>.~)= r(\f/~'O).

The periodic by q> solution of eq. (14) with
the account of (8) may be written as

F(<f,~'\)::: f... Fn("J.,:»eJtlf

(2)

(4)
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The conditions of the phase stability,
taking into account the non-linearity of
synchrotron oscillations in quasi-linear
approximation)is considered. In this ap­
proximation for nonmonot~nous distribution
functiqp of synchrotron frequencies,the
appearftbe of phase instability at "good"
(according to the known criteria) tuning
of resonator is possible.

Up to now it is considered that the
spread of synchrotron frequencies in a
bunch leads onl~ to additional damping
(Landau damping and thus improves the
phase stability - 4 • More careful inves­
tigation shows that under certain condi­
tions the spread of synchrotron frequen­
cies may cause the phase instability in
the cases when it must not occur according
to the known criteria!.

The equations of the phase oscillations
at the accelerating voltage Vsir'\ qc.c6~ and
perturbation in the form of longitudinal
electric field ~(X'.t) may be written in a
canonical form with Hamiltonian

H(XI PIt.) ~ r - ~V ~~R)( - eff(x1i)ebx (1)
2..M 2Jl9

where x is linear longitudinal coordinate
in the rest system of an equilibrium part~

cle, p is momentum canonically conjugated
with X M (RL., olw )-1, = .....,o~ is "mass" of
synchrotron motion,wo is angular revolution
frequency of an eqUilibrium particle.

In variables "action-angle" Hamiltonian
of perturbed motion is

H~ Ho(1) + H(Xli) =. Ho(~) - e,f g(x,t) olx ;

here x-::x(lJ>,J), and the equations of motion
are

. ~ %. ~
<f = ~ = Qe(~)+ 'i)~; 1= - ct,t . (3)

Here Qe(~) is angular frequency of unpertur~
ed oscillations. Note, that ror the linear
system X and p are connected with cp and a­
by relations

X:: m. ~;V) epVMQe, .

In our case perturbing field is formed
by a beam itself; the latter may be
considered as a linear current

C>Q • ( t.!o)
L( tit) -= L.lh\(-t)e.J~ We> - R (5)

where .t is a i~~~i tudinal coordinate in
laboratory system,I~~)'are complex ampli­
tudes of harmonics. Performing Laplace
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(26)

(25)
.... ~

The stability of thi~solution is defined
by the location of- delliinator zeros 5. The
stability condition may be obtained with
the help of Nyquist criterion which does
not require the solving dispersion equatkn.
The proof of Nyquist criterion Sp~lying to
similar equations was given in 0tf •

Let us introduce the notations

j(~(~)=eTow·G.,(s)Lk2>l·iZ(s+J4l~ J

K=-....

G (s\=~ /i(_~_)~ ~~ d
n ') [(I1-t)JJ2.) \ 2.R7.MS?c ~2.+I'\?S2l ~.

The function K.,(~) is defined for values 5
with the positive real part

7
and at some

limitations imposed on ~ is analitic
in the right ,half-plane. The straight
line ~=J.Q-+~(o"o) at (5 = const is transformed
in the plane of IC.. (Y» in some contour
which is called Nyquist diagram at f5 - +0.
According to Nyquist criterion the dBmina­
tor of (24) has no zeros in the right half­
plane if Nyquist diagram does not encircle
the point Kn = 1. Nyquist diagram is
defined by equation M.

K.. OQ.):: er...,,·~_~o G,,(ciS(+~)Lkt"-~ ~(~+.j"'-Oo). (27)
t.=- .......

For G"'(dQ;~()) we may obtain with the accura­
cy of high order

G ("Q )- ZQe f( 'i )11"* (28)
'" ~ +6 -[(t\-f)!jlS?o) (2R~M52e 1+JnQc(xo... -Xe dJ.

where

X
- 2(~-90) x _ 2(~-Q,) Q _ Q. (29)

0 .. - S?o ) e -~ 1 Co - 2.6 1

~ is synchrotron frequency of small
oscillations. The dependence of the
synchrotron frequency on amplitude when the
latter is not so large may be written ap­
prOXimately as

() ~-:::; .Q...2.(1_ ae.~) (30)
,,)~ - 4 RL

where a! is the square of the oscillaticns
amplituee a..!.", ~;e.. Hence, we obtain

X :::. 'i-
e - - de -2."""":t<.:"-z..M-S?e-

Note, that the distribution function ~[~

may be changed to variable Xe •

Then the frequency spread may be descri­
bed by the relative width of distribution
function b'~ 2~e •

Let us change the variable in (28)

u.:-~.~ (31)
&- E.R zMS2e

and go to the new distribution function
W(u) so that

271jo('d)d~:: l/I/(u)d.M. (;2)

(21 )A . /I * ~ (m k..)". (_~_ )"'l
WI" ti~" - en! )2. 2,/(!M2e.

Putting in (20) and remaining in the sum
by n only two terms (:!: n ) we wri te the
system as follows

o· T k" "'0 0"" dh.'-J'e..l.c..~' ~ 11-1 ( "'c' (-~- )"~
1,,($)" [lh-I)!J2.~: I"" t.)'.l;. H~"'c..:lo) 2.R.lM~ ~'2.+n't~~lJJ-=

::' 2.71I.....!,q.:( ~~.. + ~.... JcI.:t . (22)
~+JI'1Qe !>-JI'1S'2e.

Let us multiply the left- and right-hand
side of (22) by k..-.t.·2(s.+J· kc..:Jo) and summarize
all the equations by k from -rno to -+ l'Vl o

denoting ~o

Vnl':» -= L 1'Yl"-i.TM(0·~(~+jrtl~o).
""=-""0

Then the system of equtions is reduced to
one equation from which

fY'-I2!(~+'bc~iA:..( J.,:~ + lo.:~ )011.
_ 271 To..o/ I<~_..... J 'J t s+J"S-<. ~-d"'%J (24)

Vh(~) i 2.I'el 0/ .... ~ ~ ~
-r(h-~)~]? .z.k'l.n-~Z(Hd~,,) T-'L- f ge d:t cJ~

l: ~:--M.. ~2.RtM~j ';,1.+l'\t~U

Then,

The symbol L means the summation by m
except h1 =o.

Transforming (11) by Laplace and substi­
tuting k for I'rl we have

I~(~): ~~~ /fF(If/"j-,~)e~~d.<fJ.~ (19)

Putting F(it,~) from (16) and (17) the system
of linear equations for complex amplitudes
of harmonics of a beam current may be
obtained

~ ~(~+j~"'o) '~/nA.... A':' #
IIC.(:;)-t-e.J....,L WI IItI(sL ~+inSt«. of:!:

\'1'1::-.... 1"1=-_
l>O ~ '"

~ f foro .11K" ti.~ (20)=277 Io.." L s,+j nQe J
eeJJ . 1'\=-_

where 10,.1/":~ ~s the average beam current,
k= :!: 1,2,3, •••

The stability of solutions of the
obtained system is defined by the location
of the system determinant zeros in a plane
of complex variables s. Now we introduce
the following simplifying assumptions:

1. It is clear that oscillations may
occur only with frequencies near to n~ ;
since denominators in (20) are of resonant
nature in the sums by n only two terms( :r r\ )

may be retained.
2. The amplitudes of the particles os~

lations in a bunch are small so that the
latter may be considered sinusoidal accor­
ding to (4).

3. Let us limit the sum by. m by the
terms with t'Yt::tmo so that ~;'fll.« i

1< V~
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If impose the requirement that W(lA) ~O then

of IcLu I ~ w(~) (33)
fo(~)= 2.11 W(u)- d:J := 2m8 'ZRt'/M/.Qs .

For definitness hereafter we suppose
the particle energy to be above the trans~

tion, i.e. M<O I 'j < 0 • Then
(.£.)"'-1 cfMI

C. ( '<"\)_ ae.. Qe. /(-~)" -;;;;;;; dM (34)
... ~,)<..+6 - •

271Q..' R~'IM 1-[(I1-oW 1 +Jn·~ ,0, (u",,-u)

When M?'O)'j->O (34) will be of the opposite
sign. Going over to the limit by 6 - +0
and denoting

0<::1 dM/

A.., =::n·(-u
D

...)'" d"W/ a,,=!C-U)" cz;:; ~ (35)
oUA IA"'I"(",, , (.(-uo ...

we obtain ( 0 )"-1 1 -00

q ('$2.)- ~ , l' (ft· 8) (36)
., J - 2?l1:2"S?o2.!M/.t\Lcr- I)I]Z- . n i-d " .

Note that ine5) one means the principal
value of the integral.

Now 8' ,,-1. l'l1.

l(C~)= elo.,,(ae:) .~ (A+·B)~kZ~-~~(.·Q+'k",o)(J7)
".I 231r?~o~/Mln[~H)!r ~ J n~. d d 'J

The system impedance ~ as it is seen from
(37) depends on the frequency Q. • But
as St~nS-to and Q.<<: 000 in the expression for ...1...
we may suppose with a good accuracy n. '::!..no •

Let us designate

ZUItLVO+j nQ.,) =~::.+jX: j ~(-(ilc.l-:>o+jh~:Z"(ilc"'.-JllSl..):: R~-/>(:(38)

where R':/R';:Y':,X;' are real and imaginary
parts of the external system impedance at
the frequencies k:.c.ao±nQ. respectively.

Equalizing the imaginary part f(,., to zero
we obtain the equation Which allow to find

UOl") : 1>10 "".

A.,L.k~"-1(X:..+X~:) + BnLkt'H( R.z,-\(~) = O. (39)
k=l ~:i

The system is stable if at UO\'l found from
(39) the inequal i ty R~ I<n(LAoll )<1is valid or
(putting ~t._~)

(~rl I ~o'2.11R2.IMI

~ fc -;If' .2.::.k"-'! II-(R':-q -s"(X.>X';;) t "" i (40 )
't.n hi. "=i

If ~ k' ..-1 ( R,,:-R~) :t 0 then from (39) and(40)

inequali~y may be obtained which expres­
ses the stability condition as the
following:

I 1.1)"-1 -I ''t I'l'l"

fUI'de 'S--. A 11 +8" L kth - i ( R:'-' - Rr.:.) < 1 (41)
Vqn[cn-t)!J' A.... 1':'1

If the left-hand side of (41) is nega­
tive the system is stable at any current
of the beam; the sign of the left-hand
side is defined by the signs of A~ and of

of the resistance sum of the external sys­
tem. At" =1 (41) has the same form as the
stability condition obtained inl by the
assumption that the frequency of synchro­
tron oscillations does not depend on amp~

tude. But there is a difference: inl

lA ~s a posit1ve quantity which is equal to
the value of distribution function at )(~= )(0.

Here Al'I is expressed through the derivative
of the distribution function and may chaxge
the sign. It is necessary to note that
the reason of the mentioned difference is
the synchrotron frequency dependence on
the oscillations amplitude.

With the essentially positive value A
the absolute stability is determined only
by the properties of external system. If

A" is the quantity that changes the sign
the absolute stability will also depend on
the beam properties.

To illustrate this situation let us
consider some examples.

1. Normalized to unity distribution
function is u

{
e -()C <. u,o, (42)

W(u.)-= 0,' 1..('>0.

Let us consider the stability of oscil­
lations with n =1. If L,k.( R,t-el<.-) :f: 0
eq.(39) may be written as

_ .§..:. L Ic(Xr."'+'Xj(.-) = 6 (43)

A ~ k.(~,/·-R:)

where 6 does not depend on u o • Fig.l
shows schematically A and - ~ against Uo •

-----------,,<-----+-Uo

Fig.l
As it is seen from Fig.1 eq.(43) at any

A has the single root and always A >0 •
In this case eq.(41) and that obtained inl
practically coincide.

2. Now let us consider the distribution
which differs from (42) by the fall near
zero. This distribution may occur, for
example, after the kick exciting the oscil­
lations of the bunch if the damping time
is much more than the deco~erention time.
The dependence of A and - A on Uo for
such distribution is represented
by Pig.2.
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----------,/--~r___+___l~ U 0

Fig. 2

In this caee eq.(43) at any 6 has two roam
and signe of A for these roots are op­
posite. Therefore the system ie always
potentially unstable,~.it is excited by
the beam current above some threshold.
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