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Abstract

The conditions of the phase stability,
taking into account the non-linearity of
synchrotron oscillations in quasi-linear
approximation,is considered, In this ap-
proximation for nonmonotonous distribution
functi of synchrotron frequencies, the
appearate of phase instability at "good"
(according to the known criteria) tuning
of resonator is possible,

Up to now it is considered that the
spread of synchrotron frequencies in a
bunch leads only to additional damping
(Landau dampingi and thus improves the
phase stabilityl - 4 . More careful inves-
tigation shows that under certain condi-
tions the spread of synchrotron frequen-
cies may cause the phase instability in
the cases when it must not occur according
to the known criterial,

The equations of the phase oscillationse
at the accelerating voltage sin quwst and
perturbation in the form of longitudinal
electric field 4(x¢*)may be written in a
canonical form with Hamiltonian
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where X is linear longitudinal coordinate

in the rest system of an equilibrium parti-

cle, is momentg? canonically conjugated
i ~L

with x , M:(Riwo%) is "masa" of

synchrotron motion, W, is angular revolution

frequency of an equilibrium particle,

In variables "action-angle™ Hamiltonian
of perturbed motion is

H= Ho(3)+F(x4) = H(¥)-e / E(xt)olx;  (2)

here x=x(¢,f), and the equationsof motion
are ~
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Here Sle(¥) is angular frequency of unperturb-
ed oscillations. Note, that for the linear
system X and p are connected with ¢ and §
by relations

x—_—\/%is?m{: , p=\}2MQJ Cong (%)

In our case perturbing field is formed
by a beam itself; the latter may be
considered as a linear current
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L(e) =2 T.)ed (&) (5)
where £ is a léngitudinal coordinate in
laboratory system, ],,(t) are complex ampli-
tudes of harmonics, Performing Laplace

transformation upon (5) we obtain
L(49) = > Ia(swimay-e %, (e)
m=- oo

The electric field acting on the particles
may be expressed through the impedance of
external system
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Performing the inverse Laplace transforma-
tion and going over to the rest system of
an equilibrium particle by means of trans-
formation 4= x+w,Rt  we obtain
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For the evaluation of the complex ampli-

tudes L.(¢) it is necessary to use the

distribution function j(x.pit)=fo (XP)+ I (x,pt)

where f.(xp)is equilibrium distribution,

F(xrpt) is the perturbation. The perturba-

tion of the lineer charge density may be

expressed through F(x.pt) :

P(x,i):eN/?(x,p,ﬁ)dp

ig the number of particles in the
As d is the function periodic by x

plxit)=p paiel® (9
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where N
bunch,
then

and
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It may be shown that [.(¢)=Bcp,) further

we assume A¥1 , Thus

ORI // Flxpt)e! Eotedp. (11)

Going over to variables ¢, and taking into
account that dxdp=dyd¥ we obtain

Lot = S [[F (g e Fepds.

The kinetic equation for §(%4)
linear approximation ma

(12)

in the
be written as

IR L (13)
By Laplace transformation upon (13) we have
s F($, 5.9~ (0.7) "'Qe% = 2“}’_“ . %L; (14)

where = - -
Fo39= [Fo590e %, Lpp=fo59. 5

The periodic by ¢ solution of eq.(14) with
the account of (8) may be written as
(16)
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The symbol z
except m= O,

Transforming (11) by Laplace and substi-
tuting k for m we have

LO- ¥ //F(ws)e*wq,as (19)

Putting F(¢3s) from (16) and (17) the system
of linear equations for complex amplitudes
of harmonics of a beam current may be
obtained
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means the summetion by m

m:z-vo h=-oo
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where Iu ——d“g'/ is the average beam current,
= ‘- 2 3 oo
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The stability of solutions of the
obtained system is defined by the location
of the system determinant zeros in a plane
of complex variables s . Now we introduce
the following simplifying assumptions:

1, It is clear that oscillations may
occur only with frequencies near to nle ;
since denominators in (20) are of resonant
nature in the sums by n only two terms(zh )
may be retained,

2. The smplitudes of the particles oscil-
lations in a bunch are small so that the
latter may be considered sinusoidal accor-
ding to (4).

3. Let us limit the sum by m by the
terms with m=*m, g0 that me\B¥ <y .

Then,
A *:_(’“__‘4".(_7"__)"
mn n = (hl)z' EzMﬁe
Putting in (20) and remainlng in the sum

by n only two terms (¥ n ) we write the
system as follows
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Let us multiply the left- and right-hend
side of (22) by k™iZ(s+jkw) and summarize
all the equations by k from -m, to +m,
denoting Mo

Vn(s)=Zm (25»

Then the system of equtions is reduced to
one equation from which
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The stability of thig solution is defined
by the location of dehinator zeros’ . The
stability condition may be obtained with
the help of Nyquist criterion which does
not require the solving dispersion equatim.
The proof of Nyquist criterion gpglying to
similar equations was given in

Let us introduce the notations

Ku(9)= el Gn (S)Zk”*zmm) (25)
" S 26
G(3) = (“), /( —— 57-+v:§z§d3' (26)

The function K.v) is defined for values s
with the positive real part_and at some
limitations imposed on 2£7  is analitic
in the right -half-plane, The straight
line s=jR+s(c>0) at 6 = const is transformed
in the plane of Ku(s) in some contour
which is called Nyquist diagram at ¢ — 40,
According to Nyquist criterion the ming-
tor of (24) has no zeros in the right half-
plane if Nyquist diagram does not encircle
the point K, = 1, Nyquist diagram is
defined by equation ma

K. (i®) = eImpo(:i'v?oG.,(j Sl*-o')Z':k"‘". Z(s+jkws), 27)
For Gn(i®*s) we may obtain with the accura-

cy of high order
df
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where
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% is synchrotron frequency of small
oscillations, The dependence of the
synchrotron frequency on amplitude when the
latter is not so large may be written ap-
proximately as

~ 2

NAERSA (1" qu
where o' is the square of the oscillatims
amplitude a*- Hence, we obtain

b
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Note, that the distribution function f(&
may be changed to variable xe .

Then the frequency spread may be descri-
bed by the relative width of distribution

Q. = (29)

2.6’

(30)
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Xe=- 2

x 248
function &= 20
Let us change the variable in (28)
® ¥
== 1
§ 2rM%, (31)
and go to the new distribution function
w(u  so that

2ndo(9) el = W(y) o .
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If impose the requirement that W(4) >0 then

®  W(u

o e O

fot)= W | S5 | =

For definitness hereafter we suppose
the particle energy to be above the transi-
tiony, i.es M<0O %4 <0 . Then

&) e f () S
27'52.512’=|N|-[(n-!).|]‘ 1+jn8.Q, (Uon-U)

When M>0,%>0 (34) will be of the opposite
sign. Going over to the limit by 6 — +0
and denoting

W N(—u)" gz” (35)
Ay‘ = \~HUan n —_— n = ——
7[< “ ol (u:u,,‘ ’ 8 / Y=~Uon dA—l
we obtain

G (J.Sl)‘ (_g)nd- %-
" = 2aREE [Mf'n'[@“)!]z

G.»(JSZ+6): . (34)
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(An +iBn) . (36)

Note that in (35) one means the principal
value of the integral.

Now o (_&.)n-lL ™
Ko(i®)= avl®) ¥ (A Bn)zk?-wi_g(jszﬁjkwg(}?)

2n PZS?J“'{M |n [Q"")’.}

The system impedance £ as it is seen from
(37) depends on the frequency & . But

ag 1¥nS, and Sh<<w, in the expression forsL
we may suppose with a good accuracy . ~(l,.

Let us designate

Ka-m,

Z({le0,+j %) = Re4iXe, 3 E(-jkwos] h)= z'(d‘;cw..,;nsz,) =Ra-jX(38)

where Re.R. X2, X. are real and imaginary
parts of the external system impedance at
the frequencies Kkw,2nS% respectively.

Equalizing the imaginary part K. to zero
we obtain the equation which allow to find

Uon ¢ Mo Mg
A"ZanJ(X;_?XK;)*BnZkb\-!(RK:_?K;) = o_ (39)
K=t k=1

The system is stable if at U., found from
(39) the inequality Re Kn(U.n)<iis valid or
(putting SL}=—E¥3L—§

(s)m‘ ; moanlIM‘
IO-V; —3_ th-i + - -
" K A Quo\‘a,. —Bh XL:"’Xm < (40)
Van(r )] 2 KT AR R i) <t
If Zk“'i(p,(:— .‘;)#O then from (39) and(40)

inequaliity may be obtained which expres-
ses the stability condition as the
following:

&yt
L@ ¢ aer
Van[(-ol]'  An
If the left-hand side of (41) is nega-
tive the system is stable at any current

of the beam; the sign of the left-hand
side is defined by the signs of A, and of

Mo
k(Ro-Ra) <t . (41)
k=1

of the resistance sum of the external sys-
teme At n=1 (4#1) has the same form as the
stability condition obtained inl by the
assumption that the frequency of synchro-
tron oscillations does not depend on_ampli-
tude, But there is a difference: in

YA 18 a positive quantity which is equal to
the value of distribution function at xe=Xo.
Here A» is expressed through the derivetive
of the distribution function and may charge
the sign. It is necessary to note that
the reason of the mentioned difference is
the synchrotron frequency dependence on
the oscillations amplitude,

With the essentially positive value A
the absolute stability is determined only
by the properties of external system., If

A~ ig the quantity that changes the sign
the absolute stability will also depend on
the beam properties.

To illustrate this situation let us
consider some examples,

l, Normalized to unity distribution

function is u 0
e’ , —oe <usQ, (42)

W("‘):{o, u=0 .

Let us consider the stability of oscil-
lations with n= 1, If DS k(R<-B)#0
eq.(39) may be written as

2K (43)
> k(R-RM)

where & does not depend on Wo ,
ghows schematically A and - E

-E.
A

Fig.1l
against U, «

Uo

-1

Fig.1
As it is seen from Fig.l eq.(43) at any
A has the single root and always A >0 ,
In this case eq,(41) and that obtained inl
practically coincide,

2, Now let us consider the distribution
which differs from (42) by the fall near
zero, This distribution may occur, for
example, after the kick exciting the oscil=~
lations of the bunch if the damping time
is much more than the decoherention time,
The dependence of A and - % om u, for

such distribution is represented
by PFig.2.
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Fig.2

In this case eq.(43) at any A has two roots
and signs of A for these roots are op~
posite, Therefore the system is always
potentially unstable,ie.it is excited by
the beam current above some threshold,
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