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Abstract

A mechanism is described which leads to a beam
break-up in storage rings and which yields limiting
currents in good agreement with some experiments
made with the A.C.0, storage ring.

1. Introduction

In electron and positron storage rings the ma-
ximum currents are limited by space charge effects.
The limit is usually expressed by the Q-shift, i.e.
the change of the betatron wave number, which was
first investigated in!) and which was experimental-
ly found to be approximately 0.03. But there is no
general theory from which this value can be computed
with sufficient accuracy. In the following investi-
gation it is shown that at certain Q-shifts the
closed orbits become unstable.

2. Description of the mechanism

To investigate the stability of the closed
orbit, we assume that one of the two beams has a
virtuel transverse displacement in the interaction
point., Then the other beam does not pass through the
center of the first beam and sees a transverse force.
It is obvious that this force causes a closed orbit
distortion. Now the question arises, in what direc-
tion the second beam is displaced at the interaction
point. If the force is attractive, as between elec-—
tron and positron beams, the second beam is not
necessarily shifted toward the first beam. Depending
on the betatron wave number Q, it may as well be
moved in the opposite direction. To show this, we
use the formula for the closed orbit distortion?’,
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If the force is given by the displacement z;
of the first beam and if the bunch length is small
as compared to the betatron wave length, one

obtains for the displacement z, of the second beam
at the interaction point:
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For Q not too close to an integer, D is the shift
of the betatron wave number per interaction region

D=AQ . 3

Eq.(2) shows that the second beam is moved in the
opposite direction if cot(nQ) is negative.

It is evident that, inversly, the displaced
second beam leads to a closed orbit distortion of
the first beam which, in the interaction region, is
given by

z] = 2mDcot(nQ)z, “4)

If this last z; is larger than that z; which was
assumed to produce the displacement z,, then the
closed orbit distortion will increase and is un-
stable. With z, = -z;, the limit for stability can
then be written in thr form:

D= - %? tan(7Q) (3

In Eq.(5), Q as well as B are the disturbed values
which contain the action of the space charge as a
rigid thin lens.

3. General formulation of the limiting Q-shift

The last result can be generalized. One can
consider more than one interaction point and gets
several different modes for an unstable closed orbit.
Also, one can consider those oscillations which
yield a diplacement of opposite sign after one
revolution. If the absolute value of the displacement
is increased after one revolution, then the two
beams will oscillate with growing amplitude. Finally
one can consider all modes which lead on an integral
or half-integral stopband.
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A convenient way for computing the limiting
currents is the following. If M, 2) is the transfer
matrix for one of p equal sections between p inter—
action points, we get for the coherent motion of
the first beam (z;,z)) the relation:
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For z,=—2z; one gets
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The limit for stability is now given by the
condition that the eigenvalues AP of the distorted
revolution matrix MP are * 1. This condition yields
the limits

cos (2mQ/p)=cos (7 (2m+1/2%1/2) /p) +

D= Grsin(27Q/p) 8

with
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For m = O one obtains the two limits

D=~ %? tan(mQ/p)

D

z—“ cot(mQ/p) .

These modes have the property that the absolute
value of X becomes larger than | with increasing D,
which leads to a growing oscillation within one
section.

In Eq.(8) Q and B are the undisturbed values. Fig.l
shows the limits for 1, 2, 4 and 6 interaction
points.

4, Comparison with measurements

These limits can in fact be observed in the
A.C.0, storage ring. In this ring the betatron wave
numbers are 2.845 and 0.845 for Qy and Q, , respec-
tively. The limiting Q-shift according to Eq. (8) is
0,020 for 2 as well as for 4 interaction points. The
experimental values®) are 0.028 for 2 and 0.019 for
4 interaction points, independent of energy.

Comparing these values, one has to keep in mind
that the bunch dimensions were measured in the mag-
nets and then transferred to the interaction point
by calculation using undisturbed B-functions. If,
in this computation, one takes into account the
change of the B-function due to the space charge
(for instance, AB,/B, at the interaction point is
+ 237 for 2 and - 37 for 4 interaction points) one
gets 0,020 for 2 and 0.018 for 4 interaction points,
which appears to be in good agreement with the theo-
retical value.

Applying this formalism to the Adone storage
ring, one finds that the measured currents are much
smaller than the limits computed here. Therefore,
it seems that at least two competing mechanisms
limit the stored currents.
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