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expressed with the normalized variables

(r = magnetic radius, R = mean radius) and with the
in~ependant variable 8 (ds = R d8).

Abstract
An analytical approach to the non-linear space

charge effects in electron-positron colliding beam
rings is presented. In particular, the distribution
function of the betatron frequencies is computed in
some special cases of interest, such as head-on
collisions, uncomplete compensation with four beams.
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Distribution function for the betatron frequencies

describing the amplitude and phase evolution induced
by the perturbating space charge forces.
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Introducing into the perturbating hamiltonian(2)
the unperturbated Floquet solutions one obtains from
equation (3a) :

Let a and ~ be the amplitude and phase of the'
usual Floquet solutions ; the method of variation
of canonical constants 7)then gives the equations

Perturbation method

A circular beam with gaussian distributed
charges creates in its own frame an electrostatic
potential which can be written :

Many approaches have been tried to investigate
beam-beam effect which limits current density in
storage rings. The linear incoherent or coherent
theories 1 ,2,3)lead to frequency shifts for betatron
motion, but unfortunately such explanations do not
account for the dependence of current limits on the
operating point, which has been experimentally
established. Another method has been developped,
consisting in numerical computation of the betatron
motion of a particle passing turn after turn through
the non linear space charge field created by a bunch
circulating in the opposite direction4 ,S).

In the present work an analytical approach is
made considering the beam-beam effect as a strong
non-linear phenomena. More precisely one gives a
method of calculating the resulting wave number
distribution in any possible case. This can be also
a starting point for a study of amplitude evolution.

(I)

where Q- is the charge per unit lenght, and a the
standard deviation for the radial density distribu­
tion.

In the laboratory, with S ~ 1, the magnetic
potential is purely longitudinal so that it can be
added to the electrostatic one, and one can write :
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In an electron positron storage ring particles
are gathered in short bunches, so one can assume
that during interaction the transverse position of
the particle remains unchanged. Then, in (4) the
longitudinal charge density must be integrated over
the interaction region. Moreover, taking into
account the fact that the interaction regions are
well defined, the Floquet factors can be expressed
in terms of Twiss functions. Finally the wave number
variation due to one interaction is given by :

Llcjl Nr S .
~

(_I)k 1
LlV ~= - o X1

X 27T 4rr y 0 2 k=I k. k! 2 3k- 2

k
Ck (:irp

(:i/(k-P-l)
'L (k-p) (5)

p=O p

[P~I 2 C2 p cos 2 (p-n)(v e + • ) + C2P]
n=O n z z p

(2)

ov cA
Y

which, refering to G. Leleux5),leads to perturbating
hamiltonian :
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Discussion about possible amplitude evolution

The same method applied to equation 3b would
show no change in amplitude.

where z. and x. are the betatron amplitudes in the
interaction re~ion.

where t:,vxo is often called the linear frequency
shift. A similar formula is obtained for the ver­
tical motion.
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Space charge compensation

Then it appears that non linearities will
introduce a slow varying part for the phase evolution
which also leads to a change in amplitude.

Conclusion

Nevertheless it can help to give a better idea
on these phenomena if one can later measure the
distribution function.

The present study does not permit to define
any current limitation for the beam-beam effect as
long as the effects of the non-linear resonances
and amplitudes growth are not well understood.

The idea developped by the ACO group to put in
interaction four beams does not permit to expect a
perfect space charge compensation, in particular due
to the fact that dipole defects can remain in the
machine.

It has been interesting to look to residual
dispersion in wave numbers due to the unperfect
compensation. Calculations similar to the head-on
collisions case have been done by adding the po­
tential due to the separated "companion beams". The
results are represented on fig.2, where a is the
standard deviation of the distribution, 01 and 02 are
respectively the radial and vertical separations of
the beams.

Assuming the four beams have the same inten­
sity, they will be separated from the machine axis
by a quantity 4, as shown on the figure.
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The present calculation can be also performed
for a Gaussian beam with an elliptical cros~ section
using the corresponding potential formulas, ,10~
The flat beam case leads to an analytical formula­
tion for the distribution function ll ).

A numerical study of (6) has been done using
a Monte Carlo method. Rayleigh distributed numbers
representing the amplitude were generated and put
into the formula (6) giving the wave number distri­
bution represented on fig.l. It must be noticed that
the seriesin (6) has a very low convergence, but
numerical improvements were made to obtain rapidly
the result with a good precision.

After a great number of interactions and
assuming the operating point is out of non-linear
resonances, the mean value for the wave number dis­
placement becomes :

Until now the non-linear resonances have been
neglected, assuming the operating point was chosen
properly. Nevertheless in the preceeding paragraph it
is shown that when the current increases,the spread
in betatron frequencies increases,so it may be
possible to bring some particles on non-linear
resonances whose strength still remains difficult
to appreciate.

A non linear resonance means that there is a
phase relation between two interaction points so
that the average effect has not the same significa­
tion. To take this new effect into account one can
write for the perturbation hamiltonian :

(7)

where e = ~~ (M being the number of interaction
points per turn).

Furthermore from formulae (2) and (3) one
can show that

~: = - 2 a tg (ve+He») ~: (8)

The method can be also used in the case of
beams· crossing at an angle.
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