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A rotating ellipse in q, p appears to be a station­
ary circle in q, ~.

We notice that if we~take 13 = ° in eq. (3)~ and
then change p, only p will change but not q. With
13 = 0, integrals of the type indicated will trans­
form into something like

The force between two particles depends only
on their relative positions and not on their rela­
tive momenta (if their relative velocities are much
less than the velocity of light). We therefore have
to work out integrals of the type

An ellipse is defined by 3 quant~t~es (i.e.
area, eccentricity, tilt; or a, b, c of eq. (1)),
and our matrix has 4 quantities. The matrix is
therefore not uniquely defined. This is'because
an ellipse which has been transformed into a circle
can be further transformed with no additional change,
as we can rotate the circle through an arbitrary·ang1e
around its centre. We therefore have exactly one
degree of freedom in our choice of transformation
matrix. How can we use it ?
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1. Introduction

In many accelerator dynamics problems some sort
of focusing keeps the particle together, and the
density distribution function is an isolated island
in phase space. The particles are not confined
for example by metal walls, but are rather floating
in a potential well. There is a certain number of
particles on the bottom of this well, and everything
else between - 00 and + 00 may be neglected. Very
often the density distribution function has a more
or less Gaussian shape. In a phase plane the
particles travel around the origin on trajectories
which are approximately ellipses. Usually we know
quite a lot about the motion of the particles : we
know for instance the no-space-charge solution, or
we even know the solution for linearized space­
charge forces.

Perform a coordinate transformation so that the
distribution function becomes almost stationary.
Then expand the distribution function in Hermite
polynomials, and use the expansion coefficients as
dynamical variables. This method is efficient for
computer calculations when the distribution function
is roughly Gaussian.

Similar situations also exist in other branches
of physics, for instance in the dynamics of a galaxy.

Abstract

2. How to Tell the Computer what We Already Know

The method to be described tries to save time
on the computer in two ways :
1. We tell the computer everything we already

know about the problem,
2. We introduce an efficient description of

shapes of distribution functions.
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3. Why Hermite Polynomials

Hermite polynomials are orthogonal with a
Gaussian as weight function :

We now put all our knowledge of the problem
into the quantitiffi a, y and O. If, for example,
the particles travel around the origin in approxi­
mately circular orbits, the computer will only have
to keep track of the deviation from such circles,
while the gross motion - the travelling around - is
described by a,y,o. The computer can then integrate
the differential equations using larger time steps
than would otherwise be possible.

In the general case, with all matrix element non­
zero, the integration path in q,~ would not be
parallel to any of the coordinate axes, and such
'skew' integrals would be much more difficult to
work out. We therefore choose a transformation
matrix
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Let us assume that the distribution function
is approximately a two-dimensional Gaussian in
phase space

p(t,q,p) % exp (-[a(t)q2 + 2b(t)qp + C(t)p2]). (1)

By performing a linear coordinate transformation we
can transform the approximately elliptical equi­
density contours into approximately circular ones :

~(t,q,~) % ex{- [q2 + ~2])

with
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~(t,~) =.!-exp(-~2)'""a (t) H (q) (16)
;; ~ k,O k

k=O

We also need d~/d~ and d~/d~. They are easily found
from one of the many useful* recurrence relations
for Hermite polynomials :

Then substitute the expansion (8) into the
transformed Vlasov equation (14). The left hand side
is simply :

'V M M+l-t (17)"* = ;. exp(-(q2+~2~LL (-)at,m-l (t) Ht (q)H
m

(p)

t=O m=l

The forces are essentially described by Y and
will therefore contain the integral A shown in eq.
(4). Similarly, Ywill contain the integral ~ •
But this integral is easily worked out and is :

o 2r r ~ ;; . (7)
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In the transformed frame we describe the distri­
bution function by a series expansion in Hermite
polynomials :

~(t,~,~) = ~ exp C(~2 +

Jexp(-z2) Hr(z) Hs(Z) dz =

They therefore offer themselves to describe devia­
tions from a basically Gaussian shape.

The expansion coefficients ai jet) will then be our
dynamical variables. The more the distribution func­
tion deviates from a Gaussian shape, the more coef­
ficients will be needed. But usually the necessary
number of coefficients will be much smaller than the
number of superparticles necessary in a superparticle
approach, or much smaller than the necessary number
of mesh points in a finite-difference method.

where

4. The Recipe 'V 'V
and similarly for ap/aq.

simple.
dq = X(t,q,p) (10) series,
dt be able

dp _ we must

dt ":'" Y(t,q,p) (11) forward

If the single-particle equationsof motion are : But now comes a problem which is not quite so
The right hand side contains products of two

one of type (16) and one of type (17). To
to find equations of motion for the ai j'S,
rewrite the right hand side into a str~1ght­
series like :

(12)
Once this has been done, the equation of motion for
the ai .'s is found by identifying term by term

,J

M M-i

~ exp(-(~2+p2~LL bi,j (t)
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then the equation of motion for the distribution
function (the Vlasov equation) is :

dP dP apat = - X(t,q,p) aq - Y(t,q,p) ap

We assume that X and Y in eqs. (10) and (11) can be
derived from a Hamiltonian; this gives a Vlasov
equation (12) that is Liouvillian.

By substitution we now find the equation of motion
for the transformed distribution function

'V 'V 'V
ap 'V 'V 'V op 'V 'V 'V opat = - X(t,q,p) ~ - Y(t,q,p) aw (14)

Usually ~ and Ywill look more complicated than their
untransformed counterparts, but the comp~ter will
prefer them in any case, as they yield a p that moves
less than p. We include here the possibility that
the transformation matrix in (6) has non-constant
determinant. If so, the transformation is non­
canonical and the transformed Vlasov equation (14) is
non-Liouvillian. This is useful if we want to des­
cribe a situation with emittance growth in an effi­
cient way. How it can be done in practice, see Sec.6.

- exp(-z2) H (z)
n+l

5. How To Multiply Two Expansions

i- exp(-z2) H (z)
dz n

. So, the.problem ~s to find the.bi,j's. The
r1ght hand s1de conta1ns more than Just the product
of the two series (16) and (17), but let us perform
this multiplication just to illustrate the procedure.
Let us call the coefficients of this product ci .
to distinguish them from bi,j which contain sligfit­
ly more.

* The recurrence relation which is useful here is

In Morse and Feshbach it is misprinted with an extra
factor 2, which makes the formula somewhat less useful.

(6)

(13)p(t,q,p)
'V 'V 'V
p(t,q,p) =

First perform the coordinate transformation
and put
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In analogy with eq. (9) we write

which,is just the orthogonality integral, eq. (7).
But the integral over ~ is worse and gives

1 JJ'Va~ '\, '\, 'V 'V (20)
c. . 1 n>..w Hi (q)Hj (p)dq dp

1, J 2 i i ~ ;; 2 j j ~;; -00

The integration over ~ leads to expressions such as

7. Conclusion

tial that the solution around which we expand is as
close to the exact solution as possible. That is,
we have to make a good choice for a,y,o. Normally,
these will be given in terms of a set of coupled
differential equations, for instance those of the
corresponding linearized theory. But we can do even
better : it is possible to modify these differential
equations so that the ellipse described by a,y,o
automatically gives the correct second-order moments.
This amounts to arranging that a20= all = a02 = 0
if the initial condition is a20= all= a02= O. The
differential equation for a,y and 0 will be some­
what more complicated than in the linear model,
but the resulting complication is rather moderate.
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This looks frightening" but Gradshteyn and Ryzhik
give this integral and it even has a nice analytical
form which we denote here by GRi,k,~ for shortness.
Putting these pieces of mathemat1cs together, we
have

c ..
1,J
~

2
i. ,
1.n

M M+1-j

k=O ~=O

ak,O a~,j_1 GRi,k,t (23)

This method is suited to the calculation of
non-linear space-charge problems where the particle
distribution is roughly Gaussian. (However, one
could also use other weight functions than Gaussians;
this would require the use of a function family
different from the Hermite polynomials). The method
is being tried in order to explain the observed blow­
up of bunches in the CERN PS whilst crossing transi­
tion.

We remark in passing that though we have to
work out a number of coefficients ~2 , each of which
contains double sums up to M, it is possible to store
away certain sub sums and use them again later so that
the work involved is only proportional to M3 , rather
than M4 •

6. A Small Refinement

To be able to get high accuracy with only a
small number of expansion coefficients, it is essen-
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