
AN ANALOG METHOD FOR MEASURING THE LONGITUDINAL COUPLING IMPEDANCE OF A RELATIVISTIC PARTICLE BEAM WITH

*ITS ENVIRONMENT

+
A. Faltens, E. C. Hartwig, D. MOhl, and A. M. Sessler

**Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

Abstract

The stability of a coasting beam against self
bunching (negative mass instability) may be express
ed in terms of a beam coupling impedance. The
impedance has contributions from self-fields, wall
impedance, and curvature effects. This paper de
scribes procedures for measuring the wall and
curvature contributions to the coupling impedance
by means of an analog in which the beam is replaced
by a conductor propagating a TEM-like mode. Condi
tions are derived under which the measurements are
valid, various measurement procedures are described,
and results of the application of the method to the
compressor of an electron ring accelerator are
reported.

In Sec. II there is firstly presented a dis
cussion of the definition of the coupling impedance
and its role in beam stability theory. There then
follows a review of previous work in which--under
certain circumstances--the coupling impedance is
related to wall impedance. Then, in the last Part
of Sec. II, the properties of a conductor-chamber
system are analyzed and it is shown how to deduce
the coupling impedance from electrical measurements.

Section III is devoted to a general derivation
of the result deduced in Sec. II. The argument in
Sec. III is self-contained, more general, and more
straightforward than the reasoning employed in Sec.
II, but was, of course, preceded by the work
described in the earlier section.

I. Introduction

Stability of a coasting particle beam i~ainst

self-bunching ("negative mass instability") is
necessary for the successful operation of proton
storage rings and electron ring accelerators as
well as for the efficient performance of many con
ventional cyclic particle accelerators. The essen
tial element in determining azimuthal beam stabil
ity is the beam longitudinal coupling impedance,
which is a measure of the coupling of the beam with
itself resulting frOm)the interaction of the beam
with its environment2 •

Section IV extends the discussion of measure
ment procedures. In the first part a number of
specific techniq.ues are described, and in the
second part a description of the application of
these techniq.ues to the LBL electron ring accelera
tor (ERA) compressor 4 is given3).

II. Impedances

The three parts of this section are devoted to
(1) beam stability theory, (2) the relation between
beam and wall impedance, and (3) the transmission
line characteristics of a conductor-chamber system.

*

Although for a variety of structures the
coupling impedance can be theoretically computed
[see Ref. (2) for numerous examples, as well as an
extensive bibliography of the original literature],
there are many structures of practical interest
which are too complicated to be readily amenable to
theoretical analysis. This paper is concerned with
a method for measuring the beam longitudinal cou
pling impedance. The essence of the method is the
determination of the propagation velocity of a TEM
like wave in the beam chamber by means of a phase
shift measurement. Simulation of the beam by a
wire (as we do) has been previously employed in
measuring lumped coupling impedances. The tech
niq.ues employed in these previous measurements may
be described as a voltage and current measurement.
The phase method to be discussed in the present note
is more sensitive by at least a factor of 10, and
makes the measurement of small lumped and distrib
uted impedances possible. Thus we present, in this
paper, analysis of a new problem, as well as novel
experimental techniq.ues.

L Beam Stability Theory

As a rule of thumb the beam is stab~1 against
self-bunching at frequency n (J)rev' ifl ,

(2.1)
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where (3c(J) Ifrev

is the particle revolution frequency,

TJ I7:2 :2 j ,

The stability of a coasting particle beam
against self-bunching ( "negative mass instability")
may be express~ in terms of a coupling impedance
Zn defined by

Here E is the nth harmonic of the az imuthal
electriR field atthe beam, I is the nth harmonic
of the beam current and R thg orbit radius.
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2
with r+. the transition energy in units of 2mnc
and r .~the pa2ticle energ~ in units of moc, so
that E = rm c, U = m c /e = 0.511 MV for elec-
trons and 93§. MV fgr prgtons, 1

0
= Ne f is

the circulating beam current, and !5E/E I~Vthe
full width of the beam energy distribution at half
maximum.

-2
with Z S a term of order r *and hence quite
small iR the relativistic limit. The remaining
terms we will show to be measurable by an analog
method.

3. Transmission Line Characteristics of a Conducto~

Chamber System

2. Beam and Wall Impedances

The nonzero surface impedance of the chamber
walls contributes an addit~Qnal term (Z w) to the
coupling impedance Z .5, } I~ the lo~ wave
length limit it has b~en shown7 that Z w/211:R is
simply eQual to the surface impedance pe¥ unit
length Z'. The impedance Z' is the same Quantity
that appears in the usual transmission line theory,
while 211:bZ' is the wall impedance of traveling
wave tube theory [-Ez (b )/H.0(b) in a straight tube
of radius b].

A lumped wall impedance, Z, due, for example,
to a narrow cavity or a discontinuity in chamber
cross section will, in the long wavelength limit,
contribute to Zn a term, ZnL' just equal to Z.

A final contribution, ZnC' to the coupling
impedance Z arises from the curvature of the
beam major rRdius. For a chamber with full height,
H, much less than its full (radial) width, and for
mode numbers, n~) such that n« 11:R/~H it has
been shown that

i "~C ~ (;}

L'
t

Let

Fig. 1. Unit el
ement of the
conductor-chamber I L.' Z'
system. The ~

inductance per unit 1
length of the ideal U C'
transmission line,
L' +L', has--
arbitr~rily--been +-- L'2 Z~
split into two parts. I
The capacitance per XBL 717 6365
unit length of the
ideal line is ct.
The impedance per unit length of the outer wall
is Z', and Z~ is the impedance per unit length
of the central conductor.

First, consider a smooth chamber without lumped
impedances. Let a unit element of the line be rep
resented by the equivalent circuit shown in Fig. 1.

Consider the transmission line formed by in
serting a conductor into the vacuum chamber at the
beam position. For the remainder of this section
we neglect curvature terms, and hence we consider a
straight transmission }ine and may employ conven
tional circuit theory9 •

Z~ Z' + Z~

Here the index 2 refers to the central conductor,
and quantities without index refer to the properties
of the outer wall. The inductance per unit length
of the ideal transmission line is designated by L~

and has been--arbitrarily--split into the two terms
L' and L2. The term Z2 is due to the finite
surface impedance of the central conductor. The
impedance per unit length of the outer wall is Z',
and this is the quantity that we wish to measure.
The familiar equa~~ons for the TEM current I and
potential U are

(2.4 )tn ~ •
a

211: Ko
IJ. co

There are a number of different phenomena
which contribute terms to the beam coupling imped
ance Z. There always is a contribution from self
field e¥fects (Z s). This term is usually computed
under the assumpt~on of a perfectly conducting
smooth wall surrounding a beam moving in a straight
line, and in the long wavelength limit [:\ = 211:R/n
» 211:b/r, with b the chamber radius]: n

IJ. C!....!!. (!+ 211: Ko) (2.3)
ZnS 0 ~r2 2 1J.

0
c '

where K is the characteristic impedance of a
transmis~ion line consisting of the beam as the
central conductor and the perfectly conducting
chamber as the outer conductor. For a beam of av
erage radiUS, ai)mOving inside a chamber of aver
age radius, b,:

Generally, ZnC is a rather difficult quantity to
evaluate anal~ically. In conventional synchro
trons Z C is, of course, a negligible term, but
in elect¥on ring accelerators it can be the dom
inant term in Zn

In summary, in the long wavelength limit

Z
n

(2.6)

* We assume here and in the following that for
the unstable wave ~W = mike = ~ J cf. Ref. (5).

** In agreement with engineering textbooks we
write in th~ present subsection the time depend
ence as e+Jwt instead of the "theorist's
convention II e -:iillt Results can be converted
by replacing j with -i.
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The transmission line parameters L' , Z2' and
C' can in principle be calculated or de~ermined by
a model measurement. A measurement of k and/or
Z then serves to determine the wall imp~ance Z'.o

[JerC' (jwLt + ztl]~ '" j<o(LtC' )~~ + ~ :iJ
(2.9)

~ - j w C' U ,

which are valid to first order in Zt/jillLt •

The main parameters characterizing the line of
Fig. 1 are the propagation constant

III. Formal Derivation

augmented by the term Z • This hypothesis will
be shown, in the next seg~ion, to be correct.

We start from the wave equation for the scalar
and vector potential which in the Lorentz gauge and
for a time dependence e-~t we write as

We consider--separately--the two situations of
a beam in a conducting chamber and a wire in the
same chamber. Nonzero chamber wall impedances and
curvature of the beam (and wire) are included. The
essence of the method is to replace the wire by
suitably chosen fictitious currents which are then
found to be closely similar to the beam sources,
and hence allow the deduction of a relation between
the two situations.

In this section we establish the relation
between a beam coupling impedance and the phase
velocity of a corresponding TEM-like mode on an
analog transmission line. The method of proof is
an extension of a technique developed by V. K.
Nei110• It is not as straightforward as a Green's
function analysis, but provides more physical in
sight into the problem while yielding the s:une result.

(2.8 )

• (2.10)

dU
dX

and the characteristic impedance

Z (jillLt + Zt,)t ~ (L~l~ ~
o jwC

I c'; ~

with

dA
z

+ dZ'

- ~ j
0""

- (l/e ) p •o

Using cylindrical coordinates with the e
direction as the direction of particle motion we
write the azimuthal electric field at the beam (or
wire) surface as

i c2 C
Eg ::;; imAg + w R ()8 (:z . k)

~ (1 +. ~22 c~ ) Ae + Elw R dQ
where

In a straight, perfectly conducting structure,
A ::;; A ::;; 0, and hence El ::;; O. Curvature and non
z~ro ~ll impedance will contribute to Eg through
El as well as through a chang~ Ag • Provided,
however, the sources va:ry as eJ..ng and the chamber
is smooth as a function of 9 (no lumped imped~

ances), the potentials will also vary as e inQ and
the Ae term in Ee contributes a term propor
tional to

so it is sufficient to solve the wave equation for
k·

The vector potential A and the scalar potential
§ are interrelated by""the Lorentz condition

(2.11)

U ~ U e-jP(x)o ,
(2.12 )U -jp(x)I ~

0

Z e ,
0

dU
dx ::;; - [jwLt + Zt + Z5(x - xo)]I ,

dI . C' U •dx ::;; - JW

~ (X I 1 [Zt + Z5(x - x )] }
p(x) ::;; w(LIC') J 11 + - 0 dx.

t 2 j w L'
t (2.13)

An approximate traveling wave solution of (2.11) is:

From (2.13), the phase difference between
x 0 and x::;; d is

Consider, now, a chamber having a lumped
impedance Z located at the position x. The
line equations (2.8) are augmented to begome:

~ ~I 1 Zt + Z/d)"p(d) - p(O) ~ w(Ltcr) d 1 + 2" I • (2.14)
jwLt

Thus a measurement of phase difference yields
information about (Zt + Z/d) which is exactly the
quantity entering the beam coupling impedance Z
(provided Z'» z~p. n

Finally, as suggested in Ref. 8, curvature
terms appear to enter both the beam problem and the
transmission line in the same manner so that a
curved line would be expected to have 21tRZ{
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(1 :: :: ) = (1 -~~) =(- / 7~'
and hence negligibly in the relativistic limit.

i(n e~t)
L' I 0t n e

Here Lt is the inductance per unit length of the
ideal transmission line. From (3.6) we obtain the
first order shift in n :

Consider, firstly, the beam as a source.
Neglecting the finite size of the beam, we may write

2 je In 5(r - R) 5(z) ei(ne~t) n
o

where f::" ~ - n - no

The quantity E (~) is approximately equal
to E1_(n) [as determ!n~ by the solution of (3.1)
with ~e beam sources (3.4)] since the assumed
sources (3.5) are almost the same as the sources
(3.4). In fact, provided that

n

f:::.n « 1,

~ 1 «1
2-/1 - ~

and

with CD R:s nf3c/R. Solution of (3.1) with the source
(3.4) and appropriate boundary conditions on the
chamber walls would yield, via (3.3), the coupling
impedance Z, as defined by (2.1).

n

Consider, now, the situation in which the
chamber has a perfectly conducting wire replacing
the beam. The field boundary conditions on the
wire are that Ell 0 and

jsurf HI! '

Psurf = € EJ. '

where Psurf and j surf are the surface charge
and current on the wire. We may regard this charge
and current as a source for the potential & which
is then determined by (3.1) along with the boundary
conditions on the chamber. A proper solution has
the fields obtained from A consistent with the
assumed sources. ~

the difference in the azimuthal wave number of the
two sources is negligible and El (no) may be re
placed by El (n). This replacement would be inac
curate if the chamber had very sharp resonances, so
that the response at wavelengths (2n:C/CD)~ and
(2n:c/CD)(1 + tn/n )-1 were very different. When
(3.10) is satisf~ed, and employing the definition
(2.1), we have from (3.9):

c

Demanding that Ee = 0 yields an equation for n.

IV. Measurements

Extension of the derivation to include lumped
impedances follows arguments employed in Sec. 11.3
and will not be detailed here.

At first sight, the analog transmission line
might be used to yield a coupling impedance via a
direct measurement of the longitudinal electric
field ES• However, the large transverse fields

Equation (3.11) will be recognized as a generaliza
tion of (2.9) through the inclusion of ZnC.

The self-field term, ZnS' can in general be
estimated with sufficient accuracy, or it might be
determined through an auxiliary meas~ement.

However, since Z exhibits a l/r cancellation
it is negligible ~ the relativistic limit. Hence
a measurement of f::" n/n is a direct measure of
the coupling impedance ~erms which are the dominant
terms at relativistic energy. Furthermore, these
terms are the most difficult terms to estimate
theoretically.

In this section we first describe a number of
experimental techniques which may be employed to
measure the longitudinal coupling impedance, and
then describe the application of the techniques to
the LBL-ERA compressor 4.

j

For a perfectly conducting smooth straight
chamber n = no ' with

CDR

We obtain the conducting wire solution by an
iterative procedure in which zero-order sources pro
duce first-order fields which are required to sat
isfy ES = O. Using an ideal TEM field as a guide
we take zero-order sources as:

and ~ has only the component As = ASO' which at
the surface of the conductor is

It will be noted that the "azimuthal wave number"
n is related to the propagation constant (2.9) of
Sec. 11.3 by k = n/R. Solving (3.1), with the
proper chamber Boundary conditions yields a poten
tial ~ and then, from (3.3),

2 ~2 '\
- c2 n2 ) AS + El (n) •

CD R
/



- 342 -

preclude such a measurement. ConseCluently} more
refined methods must be employed} and we describe
three possibilities in the first part of this
section.

Z

. 2 k 0
s~n 0 'Vl

tj2 (4.2 )

In general it is convenient to employ a highly
conducting analog wire (Zr« Z')} but if the prop
agation constant is strongiy freCluency dependent it
is possible--in principle--to choose Z2 so as to
match both the wavelength and freCluency of the
analog line to that of the beam. In the experi
mental work reported in this paper the structure
was not resonant in the range of interest} and the
matching of propagation constants was not reCluired.

1. Three Measurement TeChniques

Measurement of the properties of a transmission
line is a highly developed subject and need not be
detailed here. We confine ourselves to brief de
scriptions of three techniClues.

A. Pulse response. If a short pulse is trans
mitted along the conductor-chamber system} reflec
tions will occur from discontinuities (lumped wall
impedances). In addition the transmitted pulse is
distorted due to the presence of both lumped and
distributed wall impedances which make the line
dispersive.

The Cluantity t l may be varied by shifting the
feed and load point} and hence direct experimental
measurement of the effective wall impedance
(Z~ff) = zit is possibie.

C. Traveling wave measurements. Neglecting
lumped wall impedances} if the conductor chamber
system is terminated as closely as possible with
its characteristic impedance} then a measurement
of the phase difference between two points allows
the evaluation of the real part of kO and hence}
from (3.12)} evaluation of In:(znC + ZnW). The simplest
measuring techniClue is to deteriirlne the freCluencies
for which the phase difference is m~} as under
these conditions the influence of reflections
(arising from the necessarily imperfect termination)
is minimal. It is important that the TEM wave
impedance of the beam chamber between the two
points of phase measurements be uniform except for
short lumps of known position. Phase comparisons
between the beam chamber and simple geometry walls
for which the propagation velocity or wall imped
ance is known will then eliminate the need for
precise absolute measurements. Phase shifts of
0.10 are easily detected.

where r = zo/zL} ZL being the terminating load
impedance.

B. Standing wave measurements. Neglecting
lumped wall impedances} the input impedance of a
line of length t is given by

These relations may readily be extended to
include the influence of a lumped impedance Z at
a distance t l from the feed point. It may be
noted that the corresponding expressions for l/Q.
and 6 CD are the same as in the case of a distrib
uted impedance Z~ff given by:

The measurement of the pulse response is most
useful for locating the position of discontinuities
by timing of the reflected pulse and also for
revealing the presence of strongly resonant coupling
impedances. It is a relatively simple techniClue
and is useful for preliminary exploration of a
chamber} and for comparative studies of chambers.
Unwanted lumped impedances} in the ERA compressor 4}
were eliminated using this techniClue.

The first kind of wall has been a thin metal
film--typically a few hundred Angstroms--on an
insulating support structure} which gives a resist
ance of from 1 Q to 50 Q per sCluare. The useful
resistance range now appears to be l~ - ~ per
sCluare} in which range the films are about 0.01
skin depths thick at 250 MHz yet still stop most of
the radiation through the walls and provide a low
impedance to the beam. The second kind of wall has
been made of circumferential metal hoops, thick

There was considerable interest in measuring
beam coupling impedance in the ERA compressor 4
because it appeared that a negative mass type of
instability was severely limiting the current that
could be captured into rings. In fact} it was this
problem which precipitated the work reported in the
present paper. For the compressor 4 design param
eters the tolerable impedance at 100 A circulating
current was Iz lin :5 40 Q. The self-field term
was Iznsl/n ~n 3 Q.

Chamber walls--actually side walls--which were
highly conducting would have been acceptable except
for the fact that they would not allow the penetra
tion of the pulsed inflector field (rise time
~ 20 nsec) reCluired for injection. Therefore} two
general types of walls were developed to satisfy
the conflicting reCluirements of (1) penetration of
the inflector pulse} and (2) adeCluately small
coupling impedance for modes n ~ L [Note that
the freCluency of mode n = 1 is ~ 250 MHz. ]

The techniClue can also be employed to deter
mine the influence of a small lumped impedance in
the chamber wall} as follows from (2.14).

2. Measurements on the ERA Compressor 4

(4.1)
Z cos ko

t + j r sin ko
t

o r cos ko
t + j sin ko

t

Either for a shorted (ZL = 0) or an open
(~ ~ 00) line} the input impedance exhibits sharp
resonances. The Q. value of these resonances may
be used to determine the resistive part of the
coupling impedance Z} while the shift (6CD) of
the resonant freCluenc~ determines the reactive part
of Z. (In practice comparative measurements}
emplo~ing highly conducting chambers} are useful to
determine the small shift of resonance.)
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canpared to a skin depth, which are broken at one
point and capacitively bridged so as to make a wall
which is conductive at high freCluencies and non
conductive at low freCluencies. The resistive metal
film walls have the disadvantage that they have a
real part of the impedance Z eClual to about 6
times the ohms per sCluare valuR in the interesting
resistance range of a few ohms per sCluarej the
hooped walls have the disadvantage that they have
resonances. Both types of walls are sufficiently
complicated to make an experimental measurement of
their properties desirable.

Because of the reCluirement that Iz l/n:5 40 '"
we have had to measure Iz I with an agcuracy of a
few ohms, but this was eas~ly possible by means of
the methods discussed above.

The characteristic impedance of the eCluivalent
line was close to 50,. and has been matched to
this value by slightly increasing the diameter of
the central conductor beyond the minor beam diam
eter. In most measurements the conductor covered
almost the full 3600 of the compressor. Measure
ments were taken in the range of 50 MHz to 1000 MHz.
This range was chosen because beam observations had
indicated that the instability was dominated by low
modes.

The measurements performed were either pulse
or traveling wave measurements. In most cases the
walls under consideration were compared to a solid
aluminium wall of very low surface resistance.

Pulse measurements on a 50 ,. per sCluare wall
revealed a considerable difference from the behavior
observed with a highly conducting walL This dif
ference was attributed to insufficient shielding
(i.e., a large Z C), To confirm this assumption a
traveling wave waR sent through the conductor and
the radiation outside the compressor was detected.
It was found that the transparency of the wall was
sufficiently large to explain the effect. The
radiation impedance of an unshielded beam by itself
is several times greater than the 40 ,. limit, so
that good shielding is a prereCluisite of the walls.

Pulse type measurements with a 1 ,. per sCluare
wall, a 2 Q per sCluare wall, and a hooped wall
showed little difference from a solid metal wall.
Figure 2 gives an example of the reflections which
occur in the presence of a solid ani a hooped metal
wall. It is noted that most of the reflections are
common to the two walls. They result mainly from
junction discontinuities at the two ends, where the
conductor is connected to 50 ,. cables.

Whereas the pulse measurement is relatively
coarse and can easily only detect impedance differ
ences greater than 1 Q, phase shift measurement can
detect differences of 0.10 per circumference cor
responding to a change of 0.2 ,. in the coupling
impedance. Figure 3 gives an example of such a
measurement. It will be noted that at the freCluen
des of interest (250 MHz - 500 MHz) the differen::es
between a hooped and a solid metal wall, and between
a 2 ,. per sCluare film and a solid metal wall are
less than 2 degrees per circumference [corresponding

Fig. 2. Reflection of a steep pulse fran
the simulating conductor in the ERA
compressor-4 chamber. Low impedance
solid metal wall (lower trace) and 2 ,.
per sCluare hooped sidewall. Time scale:
2ns/div.

XBL 1116364

Fig. 3. Measured values of the phase shift
difference between hooped walls and solid
aluminium walls (-), and between 2Q per
sCluare walls and solid aluminium walls
(---). The conductor simulating the beam
covered (almost) the full circumference
of the ERA compressor. The phase was
detected at the two ends of the conductor.

to about 4 Q in the coupling impedance]. No great
care was taken to reduce the reflections due to
mismatch at the two ends of the conductor. The
peaks in the two curves reflect the fact that the
phase shift is most sensitive to reflections at
frequencies for which the phase difference is an odd
multiple of ~/2 and most insensitive if this dif
ference is m~. The measurements at 250 MHz and
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500 MHz are 'luite reliable, because there b. ¢ ~ 21t
and 41t.

The measurements are in an early stage, and
the techni'lues are still being improved. From the
limited data obtained so far we have gained con
fidence that the measuring methods are reliable.
Furthermore, by means of repeated design and meas
urement, we have arrived at the sidewalls de
scribed above, which we believe to be suitable for
the containment of intense electron rings. Beam
experiments, employing these wall, are scheduled
for the folloWing months.
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