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(1.1)

Alternatively, one can regard a beam as a
harmonic oscillator with a frequency-dependent
"damping constant". This damping constant, which
results from Landau damping and wake-field anti­
damping, when evaluated at the frequency of a
natural mode of the system, is a measure of stabil­
ity. The response of a beam to a driving force
provides a measure of the damping constant at neigh­
boring frequencies and by analytic continuation the
damping at the mode-frequency can be obtained.
Similarly, other information such as the stability
coefficients U, V and the frequency spread $,
[see Ref. (1)], can be deduced from the response
function.

action and frequency spread. We find that a single
analytic function (of complex frequency) enters into
the dispersion relation that determines beam stabil­
ity and into the response function that describes a
driven beam oscillation. Thus analytic continuation
permits, at least in principle, the determination
from measured data on beam response to a driving
force, of all the relevant parameters describing
beam stability.

Space-charge forces acting between the par­
ticles are described by A and B. Only linear
space-charge forces are included, so that higher
order terms in x. and x are neglected. Actually,
the term EX contains both the local space-charge
field as well as wake fields left by particles which
are located at a different azimuthal position in the
beam. However, for the coherent oscillation, x
is the same at every azimuthal position except for
a phase factor. We take the influence of this
phase factor to be included in B. The quantity
Q.2 Q.

2 x. represents the external focusing (~.
~ 1 1 1

is the ith particle revolution frequency). The
action of the knock-out electrode on particle ~ 1S

described by the G term [see Ref. (4)]. Only the
harmonic of the electrode field with

m ~ (n ± Q )~
rf 0 0

is retained (Q is the average revolution fre­
quency and Q °is the small-amplitude tune of a
particle of a~erage energy). The time derivative

1. Equations of Motion

The equation of motion of the ith particle may,
in linear approximation, be written-as

where x. is the position of the ith beam particle
and x ~~(~ x. )/N is the position-of the beam
center of mas§.
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Introduction

Transverse coherent beam instabilities
l

) have
been observed in virtually all high intensity accel­
erators and storage rings. The theory of these
instabilities is well established. However, it is
generally difficult to make an accurate estimate of
the wall and beam properties that enter into the
theory. This difficulty results from the complex
nature of the beam environment.

The response of an intense beam of interacting
particles to a deflecting rf-signal is computed
theoretically and shown to be closely related to
transverse coherent beam stability. It is shown
that the beam response to sinusoidal excitation
provides a direct measure of the stability of beam
modes for given machine conditions (beam intensity,'
octupole current, sextupole current, momentum
spread, etc.). This measurement includes the
properties of the beam surroundings as well as the
frequency spread effective for Landau damping.
Since it is generally difficult to evaluate theoret­
ically the wall and beam properties that enter into
stability calculations, the information which can
be obtained from rf excitation experiments should
be very valuable; especially in devising practical
procedures for reducing the severity of coherent
transverse instabilities.

The present note gives an analysis of a tech­
nique by which transverse stability as a function
of beam and wall properties can be measured. For
simplicity we restrict the treatment to the case
of dipole oscillations of a single-species beam.
The basic idea is to observe the response of a beam
to a deflecting rf fie~~. This technique was first
used by the MURA group several years before the
detailed nature of the instability was understood.
More recently, similar ~xperiments have b2Jn per­
formed on the Bevatron3 ). The MURA group also
gave a simplified analysis of the method, based on
a single particle dynamics.

Although the model considered by the MURA
group explains some of the important features of
the instability, it does not include the inter­
action of the particles through both local and wake
fields, nor does it give a quantitative description
of the effect of Landau damping. The present note
gives an analysis of beam response to a driving
force in the presence of both self-field inter-
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occurring in (1.1) is the IIhydrodynamic derivative"

The coefficients A and B can be inter­
Ipreted in terms of the famil)ar coherent and
incoherent freQuency shifts5 , and also in terms

d/dt a/at + (1.2 )

of the stability coefficientl ) U + V + iV. The
relevant relations, which were first obtained by
L. J. Laslett (private communication), are derived
in Ref. (4) and summarized in Table L We note
that the IIs ingle p:l.rticle freQuency shift II A is
real, whereas the Ifcoherent shift If B includes
contributions from resistive walls and, in general,
is a complex Quantity and different for different
modes.

TABLE 1

Relation between the Quantities A and B [EQ. (1.1)]; the Laslett Q-shifts 6 Qic' 6 Qc; and the LNS­
coefficients U and V.

u + V + iV - B/2fi. Q :o 0
LNS-stability coefficient.

(A + B)/2fi. 2Qo 0
Coherent betatron freQuency depression due to space­
charge (coherent Laslett Q-shift).

Incoherent Q-shift due to space-charge (single­
particle Q-shift).

By combining these relations,

U + V + iV = fi. (6 Q - 6 Q. ).
o c ~c

The above 6 Qc includes in-phase (resistive) components of the self-field.

2. Solution of the Basic EQuation where

In solving (1.1) we must take the effect of
freQuency spread into account. The case in which
this spread is due to momentum spread is simple and
will be considered first. The response of the
l.h.s. of (1.1) to a driving force G exp(-~ t)
is simply

energy distribution

Both Q and fi. are functions of p.

(2.5 )I (CD ) = J _--=-n....;(~p""'-)d;.;oo,P ....,...2 •
p rf 0 (Qn)2 + A _ ( )~, CD

rf
- nfi.

The function n(p) is the
function of the p:l.rticles, and

Joo n(p)dp "" L
o(2.1)

G exp(- ~t)

x.
~

Therefore, fo~~oWing the procedure first outlined
by E. Courant }, we insert a trial solution

Xi = G f i exp(-~rft) ,

x = G F exp(-~rft) •

The complex functions fi(CDrf ) and F(CDrf )
include the phases of the oscillation and we assume
that A and B are independent of freQuency, for
freQuencies near the mode freQuency.

EQuations (2.2), (2.4), and (2.5) describe the
response of the beam. In addition to the p:l.rtic­
ular solution (2.2) the oscillation of a particle
contains the free betatron oscillation which is of
random phase and therefore does not contribute to
the average motion (2.3). If the beam is unstable
there will be growing collective oscillations at
the freQuencies of the beam normal modes. These
terms don't contribute to the response at freQuency
CD f' although they usually would preclude observa­
tIon of beam response to the rf. This point is
elaborated upon in Sec. 5 .

Using the fact that

x (~x.)/N ~ f n(p)x(p)dp
~

we find the beam response

F(CD f) = (B + 1/1 )-1
r p (2.4)

Next, we proceed to include the freQuency
spread due to nonlinearities in the ext~nal fo­
cusing. It was pointed out by Hereward that in
this case the response of the l.h.s. of (1.1) to
a driving force G exp(-iCDt) is
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l/I (w ) = 2 Q U (U + V + i V).coo

In the present notation, we write (2.6) as

1 - K

(QU)2 + A _ (ill _ nu)2

(Qu)2 + A + (ill - nU)2
- K 2 2 G exp( -ic.orft).

[(QQ) + A - (w _ nU)2]

(2.6)

B + l/I(w) = l/F(w)c c

3. Measurement

O.

(2.6)

Using (2.6) we obtain in a similar fashion as
was used to derive (2.4), [see Ref.(7)]:

Here, g(a) is the amplitude distribution function
of the particles, and we have normalized g(a)
such that

1 a d(QU)
Here K = 2' QQ da is determined by the

amplitude-dependence of the external betatron
frequencies QU. Equation (2.6) is correct to
first order in K and G.

3.1 Sinusoidal Excitation

The fact that beam response (2.4b) and mode
stability (2.7) are governed by the same function
F(ill) suggests determining the mode-frequency ill
by analytic continuation of the function F(w f)C
as measured for real frequencies (illrf ) • r

To elucidate the procedure, let us introduce
the inverse of F(ill):

X(w) = l/F(w).

Now, because X(w) [as defined by (2.4b), (2.5b), and
(3.1)] is analytic, we can expand around some fre­
quency ~ to obtain X(illc ):

L x(n)(w )
X(w ) = X(~) + ,1 (w - wl)n.c J. n. c

n=l

(2.4a)

2
g' (aJ a. QU da

2 2 '(QQ) + A - (illrf - nQ)

(B + 1/1 )-1
a

F(Wrf )

where

00 2
J g(a) d(a QQ) = 1.

o

Both Q and Q are functions of a.

The quantities X(w
l

) and x(n) (w
l

) can be
determined for WI real from the measured response
curve X(w) and fience w can be determined from
(2.7) and (3.2). c

If w
l

is close to w we can neglect higher
order terms in (3.2) and obtain, from (2.7),

Thus, let us assume that we measure the slope of the
quantity tan a

(3.5 )

(3.4)

s = d(tan a)/dru

Of great interest is the imaginary part
Im(ill) which is a direct measure of the mode sta­
bility. This quantity can, for example, be deduced
from the phase response

~(r,,) _ t -1 J Re[X w ] l
~ ~ - an \ Im X w (.

(2 .4b)

/><J n(p)dp 1
o

Finally we consider the combined effect of
momentum spread and nonlinearity. We first consid­
er a group of particles with the same momentum
but of different betatron amplitude ai; and
thereafter we sum over all groups. If there is no
correlation b~tween betatron amplitude and momentum
of the particles we may write

where now

I(ill )~ _ r g'(a) a
2

Q U n(p) da dp
rf 0 (QQ)2 + A _ (ill

rf
_ nQ)2

Now Q and Q are functions of a and p.

00 2J g(a) d(a QQ) = 1.
o

The observation which forms the basis for this
paper is that I(w f)' Eq. (2.5b), is the same 1)
dispersion integral tbat appears in the LNS theory
and is used there to determine tge complex mode­
frequency we from the relation

at a frequency w where d Im[X(w)]/dm = O. Then
we have, by virtu~ of (3.3), (3.4), and (3.5),

(3.6)

is a direct meas-s(w )a

- 1/s (w ).a

s(w) = Re[X'(w )]/Im[X(w )]a a a

Im(w )c

and

The evaluation of measured data is simplified
if the functional form of X(w) is known; X(w) in
turn is determined by the dispersion integral (2.5b).
This integral is evaluated for various distribution
functions in [Refs. (1) and (8)]. Results from

In other words, the slope
ure of beam stability.

The "single-particle" shift A does not appear
explicitly in Ref. (1) but is incorporated into
the v-value. The function h(a) of Ref.(~ is
related to g(a) used above by h' = 2g'QQ and the
a- and p-dependence of QU is neglected in the
numerator of the dispersion integral.

*
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by spontaneously growing (or stimulated) coherent
modes. However, measured data can be extrapolated
to the threshold. If the wall impedances are not
strongly frequency-dependent, one can often make
measurements near the stable modes and extrapolate
from there to the frequencies of the unstable modes,
a technique employed in both Refs. (2) and (3).

It is noted that the measurement of l/s(w)
or Im(w) will not give explicit information ~n
the va1ugs of U and V, but rather a quantity
re1ated to V-/::; S. However, U and V are only
of interest for calculating the effective beam
stability and this quantity is directly obtained
from the measurement. If required, U, V, and
/::; S can also be derived from the beam response
curve, as described in Sec. 3.1.

8.

o and X(~).

5. Discussion

A detailed example may be found in Ref. (4) •

x ;(0) exp( -irn t)c

with W the mode frequency determined by (2.7).
The dec~y rate of the transient, Im(w), is a
direct measure of the "effective dampi5g".

An alternative measuring technique which can
be used is based on pulse exciting the beam an~

observing the transient behavior of the modes2 •
Excitation of a given mode may be accentuated by
choice of the pulse waveform. The transient
behavior of a mode is clearly

4. Bunched Beams

The generalization to a machine with equally
shaped, ,qually spaced and equally populated
bunches9 is straightforward. The same measuring
techniques that were discussed for a coasting beam
can be used in this case to measure the stability
of "coherent bunch modes."

The other limiting case, where the bunch-to- )
bunch spread is large enough to decouple the burdles9
will need a somewhat modified measuring method.
Since the bunches are largely decoupled, each
bunch will resonante at a slightly different fre­
quency. By observing the response of a bunch in the
neighborhood of its resonance we may measure the
IIsingle bunch stability." At the same time the
bunch-to-bunch frequency spread can be detected.

The quantities l/s(w) or -Im(w), which
can be measured as describ~d in Sec. 3,care measures
o~ the e~fective stability o~ the mode under consid­
eration. Thus, by measuring these quantities as a
function of relevant machine parameters, such as
intensity, octupole current, energy spread and wall
properties, one can predict threshold conditions
[l/s(w ) -+ 0, Im(w) -+ 0] and presumably thus
deviseaprocedures f8r reducing the instability.

3.2 Pulse Excitation

In addition to the effective damping (3.7) the
unknown quantities A, Re(B), Im(B), and 6, Scan
be deduced from the measured response curve F(w f)
if we can anticip3.te the shape of the distributi£n
function. As an example, these four quantities
can be determined if we measure wa' X(wa ), a
frequency ~ where

some representative examples are presented in Ref.
(4) •

These measurements can only be performed in an
intensity range such that the machine is stable
since otherwise the driven response will be masked




