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Abstract

A. THE COMPUTER PROGRAM

Although the variable 6 is used in the
computation, we print out, instead, the
variable w conjugate to 1jJ and related to 0
by

mcR
w == - hS so. (3)

s

To compute Ndf/d1JJ at a given particle
the numbers of particles in two ~-bins of
equal width on either side of the given
particle are counted and the difference is
taken. This gives the value of Ndf/d~

averaged over two bin widths. The local
value of Ndf/d1jJ is strictly correct only
when the typical wavelength of the varia­
tion of f is infinitely large compared to
the vacuum chamber radius. Using the aver­
age value improves the approximation for
short wavelength variations in f which
occur at the ends of a beam bunch and when
the beam bunch is broken up by negative­
mass instability. Comparison of numeri­
cally computed exact longitudinal field
with that given by Eq. (2) using the average
density gradient <Ndf/d~> shows that the
bin size should be approximately equal to
3/4 of the vacuum chamber radius b.

We assume a linear dependence of Ys on
n, namely that the synchronous energy gain
per turn is constant. This corresponds to
a guide magnetic field rising linearly in
time. The origin of n is defined by
Ys n==Q = unperturbed Yt. We choose a
start1ng point no far enough before tran­
sition where all forces are approximately
linear. For initial conditions at no we
use those given in Ref. I with a distribu­
tion in the (1JJ,w) phase space covering an
elliptical area and which is parabolic
when projected on either the 1jJ or the w
axis.

where

r p classical proton radius
= 1.53 x 10-lB m

Rs synchronous orbit radius
N number of protons per bunch
Nf(1jJ) number of protons per unit ~

g geometrical factor = 1+2in(b/a).

For the rf force these difference equations
accurately represent the case of one accel­
erating gap and give an adequately good
approximation when there are many acceler­
ating gaps distributed around the ring.

(2)/::,
n

h
¢s
Ys

The phase motion of each individual par­
ticle is given by the difference equations

J
'1JJn + l =1JJ n+2'ITh ~ S ,n (+--+-) !on+~n\

Ys,n- l Yt,n Ys,n \ J

1 0 =0 + ( _ ) [sin (¢s ,n+l+1JJ n +l ) -1]
Ln+l n Ys,n+l Ys,n sin¢s,n+l

+ !.(t,. + Y~,n+l" )
2 n 2 u n+l (1)

Ys,n

A multiparticle computer program was
written to study the Yt-jump and ¢s-switch
schemes 1) for matching beam-bunch length in
crossing the transition energy when the
longitudinal space-charge force is signifi­
cant. This computation takes into account
nonlinearities in the forces and can, there­
fore, yield information about the bunch
stability.

The results show that all ¢s-switch
schemes suffer from negative-mass instabil­
ity shortly after transition. On the other
hand, Yt-jump schemes are stable and are
effective for bunch-length matching.

rf harmonic number
synchronous rf phase
synchronous energy in mc 2 units

== (1_S~)-1/2

transition energy in mc 2 units
deviation of particle rf phase
from CPs
deviation of particle Y from Ys
energy gain per turn due to space
charge

n(in subscript) = revolution number.

For a long and thin cylindrical beam bunch
of length i and radius a inside a perfectly
conducting thin cylindrical vacuum chamber
of radius b (b«i) the space-charge term
can be written as

*Operated by Universities Research Associa­
tion Inc. under contract with the United
States Atomic Energy Commission.

Standard checks for accumulated round­
off errors and for the choice of particle
number are made. For the cases studied
2000 particles are used.
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As a check, we linearized the rf force
[replacing sin(~s+~)-sin ~s by (cos ~s)~]

and compared the rms phase ellipse of the
computed distribution with that obtained
in Ref. 1 using the rms envelope equation.
Close quantitative agreement was obtained
for all cases in which the particle bunch
is stable against the negative-mass insta­
bility.

B. RESULTS AND DISCUSSION

All the results presented here are for
the NAL booster synchrotron with the
S¢renssen parameter2

) no(O) = 3.8. Other
pertinent parameters are given in Table 1.

The initial equilibrium distribution a~

the starting point no = -750 is shown in
Fig. 1, where N* is the number of particles
included in the graph. The area covered by
the distribution is about 66% of the no
space-charge rf bucket area. This high
bucket filling factor clearly exhibits the
effect of the nonlinear rf force on the
distribution at transition as shown in Fig.
1. These distributions are stable against
the negative-mass instability. The ~esults

for the various matching schemes studied in
Ref. 1 are given below, except, now, with
nonlinear forces and negative mass insta­
bility the parameters are readjusted for
each case to optimize matching.

Case 1

This is the case of normal transition
crossing--no Yt-jump and simple ~s-switch

from ~s to TI-~s at transition. In addition
to the familiar bunch length oscillation
after transition we also observe the bunch
breakup and particle loss due to the
negative-mass instability shortly after
transition. These results are shown in
Fig. 2.

Case 2

to a phase-space blowup of only about 20%.
The readjusted parameters are: Yt jumps
linearly downward from 5.446 at n = 0 to
5.236 at nl = 105, then linearly upward
back to 5.446 at n2 = 210.

Case 4

The triple ~s-switch shown in Fig. 5 is
extremely unstable. The rf defocusing in­
troduced after transition keeps the bunch
length large and the energy spread small.
This greatly reduces the Landau damping
action. The beam bunch is completely bro­
ken up and a large number of particles are
lost. This is presumably the reason why
the triple-switch scheme was found to be
ineffective when tried on the CERN PS. On
the other hand, a scheme in which a compro­
mise is made between negative-mass insta­
bility and matching may prove to be advan­
tageous.

Case 5

The double ~s-switch is no better than
the triple ~s-switch.

Case 6

In the original Q-jump scheme 3
) the

bunch length is kept large by a big Yt jump.
Although the energy spread is kept small
the big downward Yt jump greatly increases
the particle revolution-frequency spread
for given energy spread, hence greatly in­
creases the Landau damping action. This
is the case most stable against negative­
mass instability and is shown in Fig. 6
where Yt jumps downward linearly from its
unperturbed value at transition to 4.506 at
n = 20. However, for our choice of ~s the
very long beam bunch after transition
causes excessive particle loss out of the
rf bucket. This particle loss can presum­
ably be reduced by increasing the rf bucket
size.

(4)_ A

The criterion for negative-mass insta­
bility given by Neil and Sessler 4 ) states
that a beam bunch is stable above transi­
tion if

~w2 > 4hNg ~ r~Rs/ 1
s Ysn

_ -2 -2 A

where n = Yt - Ys ' and ~ and ware the

full width and height of the bunch. This
criterion is plotted in Fig. 7 for all the
schemes using values of ~ and ~ obtained
in Ref. 1. Examination of these plots
gives a clear understanding of the negative­
mass instabilities exhibited by the multi­
particle computation.

In general, we can make the following

Case 3

The case of the single Yt-jump is shown
in Fig. 3. The reoptimized parameters are
such that Yt continues the unperturbed
value of 5.446 to nl = 240, jumps linearly
up to 5.576 at n2 = 270, and stays constant
from thereon. In this case the negative­
mass instability results in a blowup of the
phase-space area by about 90%. The small
tail in the distribution caused by the non­
linear rf force leads to some particle loss
and is ignored. Nevertheless, this parti­
cle loss and dilution of phase-space den­
sity is tolerable and this scheme is con­
sidered useable.

In the case of double Yt-jump shown in
Fig. 4 the negative-mass instability is
reduced by the downward Yt-jump and leads
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observations:

1) At these high values of naCO) the chief
benefit derived from applying these
so-called "matching" schemes is the
reduction of negative-mass instability
rather than the matching of bunch length.
Any matching scheme in which the bunch
length is kept large, hence the energy
spread small, and in which nothing is
done to increase n is ineffective be­
cause of the negative-mass instability.

2) Even with the Yt-jump the negative-mass
instability still results in some dilu­
tion of the phase-space density. Clear­
ly, the larger the downward Yt jump the
better it is for stability. The Q-jump
scheme is most effective if such a large
Yt jump can be accommodated.

3) The effect of the negative-mass insta­
bility depends on the particle distri­
bution in the bunch. Hence only the

qualitative features of the results are
meaningful. In any case, the bunch
breakup caused by the negative-mass in­
stability makes the matching parameters
rather insensitive.

4) Although the nonlinearity of the rf
force must be considered in providing
a sufficiently large rf bucket it does
not affect the qualitative features of
the matching schemes.
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Table 1
PARAMETERS FOR THE

NAL BOOSTER SYNCHROTRON
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Fig. 7 Stability criterion for the matching schemes.
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Fig. 3t Distributions for the single yt-jump.
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Fig. 4t Distributions for the double yt-jump ..

Fig. 6t Distributions for the Q-jump.

t The scales are the same as in Fig. l-(a).
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