
DAMPING OF THE LONGITUDINAL INSTABILITY IN THE CERN PS

D. Boussard and J. Gareyte

CERN, Geneva, Switzerland

we have:
I e

~ :=~ Re 1: Ap
2

Z(p) j* exp [j;, (n-m)2n] (4)
mn nR

2
M p=O

where Ap is the Fourier coefficient of the bunch,
defined, if i(t) is the current, by
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3. Experimental observations in the CPS.

Different observation techniques are used:
Direct observation of bunches on a fast oscil
loscope with "mountain range" display (photo 1),
observation of the phase difference between
bunches and the RF voltage, by means of phase
discriminators,
spectral analysis of the signal of a radial
PU station to separate the different modes
(photo 3),
observation of the peak detected PU signal
showing filamentation (photo 2).

Clean oscillations of the first moment of the
13 ns long bunches are observed soon after tran
sition, reaching a maximum peak to peak amplitUde
of 7 ns before filament at ion and higher order
instabilities come into play.

As can be seen on photo 3, in general mode
numbers from 1 to 5 are present with e folding
times T around 50 ms. The parasitic resonances of
our 14 accelerating cavities (Q~ 20, F ~ 48 ~rnz,

Ro = shunt resistance ~ 800 0 each) may give rise

2.2 The influence of the beam control system

It was demonstrated2 ,3) that in absence
of synchrotron frequency spread from bunch to
bunch the beam control loops (radial and phase)
do not affect the stability conditions of the sys
tem. They introduce a coupling between ounches,
but which is apparent only for the k = 0 mode.

On the contrary, if a small spread is present,
the beam control is able to "see" the motion of
the bunches also for the other modes, and has a~)

important influence on the dipole instability3, .
This was demonstrated analytically for a h=4
machine, and confirmed by means of a computer pro
gram.me in the case of the CPS (h=20). This computer
programme solves the general case by computing the
eigenvalues and eigenvectors of a hxh complex
matrix, in which, in addition to the wake fields,
the action of phase lock, radial control, bunch
to bunch spread in frequency and population is
taken into account.

A noteworthy conse~uence of the action of beam
control is that suppressing some bunches in the
machine does not ensure stability, even in the
case of low Q wake fields: the beam control
"bridges the gap" provided that som~ spread in
synchrotron frequencies is present 5).
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2. Mathematical description of the instability

The perturbed synchrotron equations for a
particle having a momentum deviation u=P-Po and
a phase deviation ~ are:

U = 2:R [V (sin~ - sin ¢s) + v (~) ]

Po

revolution frequency

h~ , where g is the azimuth and h the harmo
nic number. V is the accelerating potential
and v the perturbing potential.

2.1 Simple approach 1,2,3)

If we asswne that the bunches are rigid,
equations (1) apply to the phase ~ and the momen
tum deviation u of the centre of mass of bunch m,
subject to the ~erturbing potential v (~).
Linearizing (1) and expanding v to fTrst order
. t mlon ~ we ge : h
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<Pm + 1: ~mn ~n -= 0
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-I. Introduction

Coherent bunch oscillations become unstable
in the CPS when intense short bunches are accel
erated. The instability is attributed to a coup
ling from bunch to bunch via some external struc
ture of impedance Z: a bunch induces in this
structure a voltage which perturbs the motion of
the following bunches. The system being closed
after h=20 (harmonic number)bunches may be un
stable.

Abstract

After a summary of the theory of the coherent
longitudinal instability observed in the CPS,
three different compensation techniques are pre
sented : spread in the synchrotron frequencies
of individual bunches, Landau damping by RF non
lineari ties, and active feedback. Experiment3-1 re
sults are described.

Looking for harmonic solutions of the form ¢m exp
(- jwt), eq. (2) becomes algebraic:

2 2 h
(- W + 0 ) ¢ + 2: ~mn ¢n a (3)

m n=l

The h solutions for i can be found from the eigen'"
values of the coefficient matrix of (3). The
growth rates are 1/T = 1m (w). If the h bunches
are equal and if there is no synchrotron frequen
cy spread, the matrix is cyclic and adjacent
bunches oscillate with a phase difference k(2n/h );
k = 1,2, ••• h, will be called the mode number.

The Pmn are. easily found by a Fourier analysis
method. If 1

0m
1.s the mean current of bunch m,
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As ud'l' = OMR d~, we get:

(u'v)n = EI '" Z(p) A nh (1"v!R I*
l o t1 p--p np

x e-~ (2lt(m-l) + ~ ]
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where
1 +It . '£ - jn'l'I =~ f e JP h d'l'np
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was completely damped. Further experiments during
a normal acceleration cycle gave not so favorable
results, either because tne growth rates were then
a little larger, or for another unknown reason.

Experiments both on a flat top and during
acceleration with a sinusoidal amplitUde moiula
tion of the RF at the revolution frequency (pro
ducing the sinusoidal pattern) showed no visible
damping, in agreement with the theory for the case
of short range wake fields and beam controlled
acceleration.
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where (u'v) =--2n It

we get

Now let v (~) be the instantaneous voltage seen
by a particle of bunch m where it has the phase ~.

It is the sum of the ones created in impedance Z
by the passage of all bunches, and can be decom
posed in Fourier series in Q = ~ (aZimuth in a

frame rotating with the synchronous particles).
If we consider only dipole oscillations (without
changes in shape), we can write:

11 + co .1£.£ [2 ( ) rI. ] ( )
v(~)= E I E Z(p) A e-JPh e-Jh It m-l +l"l 8

l =1 0 p=-co P

5. Stabilization by Landau-damping

A spread in the unperturbed synchrotron fre
quencies of the individual particles may intro
duce a damping of the instabilities.

5.1 Analytical calculations 7)

Following a paper by A.N. Lebedev 8),
we use a Vlasov equation approach. The fact that
we consider h=20 bunches oscillating not in phase
complicates strongly the problem in our case.
Simplifying assumptions have to be made to make
the calculations tractable: in particular a single
resonator with a Q. not too low is assumed to be
responsible for the instability.

Let f(u,~,t) be the distribution function of
the particles in the machine. If f o (u) is the
stationary (unperturbed) distribution function,
we can write:

f = f o + f t and suppose f t «fo (6)

Applying the Vlasov equation to f, expressing
u and ~ in the amplitude a and phase 'I' of the un
perturbed synchrotron motion and assuming ft of
the form:

4. stabilization by frequency spread

A very general method of damping the instabi
lity is to make the synchrotron frequency of the
bunches slightly different in order to reduce the
influence of parasitic couplings.

4.1 Selection of a modulation pattern

In the case of a machine without beam
co~trol a direct solution of the problem can be
found for a sinusoidal modulation of bunch fre
quencies, {I period per turn) using Chesbyshev
functions6J.

In our case the effect of some modulation pat
terns is strongly attenuated by the beam control
system 3,4). The computer program already mentioned
has allowed us to select the more efficient
schemes. For a mode 1, a sinusoidal modulation
gives the stronger reduction of growth rate, and
the effect is not reduced by the beam control.
For a mode 5 (short range wake fields), a meander
pattern (h/2 periods per turn)' should be preferred
because it is not affected by the beam control.
On the contrary, the effect of the sinusoidal
spread is in this case strongly reduced. For typi
cal e-folding times of T =70 ms the effect of a
frequency modulation of ± 3.5% is to multiply T

by about 4, which is sufficient to ensure stabi
lity within a 500 ms acceleration cycle. For a
stronger instability, (T < 70 ms) the multiplying
factor falls off rapidly, so that unpractically
large modulation amplitudes would be needed.

4.2 Experimental results

A simple way to produce the meander pat
tern is to irive one cavity at half the RF fre
quency. Experiments were first made on a magnetic
flat top at 10 GeV/c. Photos I show typical bunch

shapes at the end of the 500 ms flat top without
(a) and with (b) one cavity fed at RF/2. (10 kV,
corresponding to 7% of the main RF voltage, i.e.
M/O - :: 3.5%).

Photos no. 1 - Bunch shapes
a) without RF/2 b) with RF/2
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During these experiments, the instability,
with measured e-folding times of 50 to 150 ms,

to mode numbers 3,4,5 with T ~ 80 ms. Electrosta
tic septum extractor tanks (Q. ~ 700; F ~ 69-90
MHz, Ro=18 kO) introduced recently in the machine,
where found to be responsible for very powerful in
stabilities with e-folding times of 10 ms. The mode
numbers are related to the resonant frequency of
the tank, which changes with the position of the
electrodes. Their influence was very much reduced
by damping the main resonance by means of a mag
netic coupling loop and an external resistor.

It is felt that other structures are involved
in the excitation of the observed instability, and
investigation is going on.
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Now the current i (~) of bunch m is given by:
m

i m (~) = ~~o ffm (u,<p) du

We can again develop both sides in Fourier series
and get, with f given by (7), after some calcu-
lations: .k ii m _ I je Of

A. e-Jfi m = Z Z _o_f_o~ Z Z(p) A
-K: n l R20M aa w+nO p p

Photo no. 2 - Peak detected wide band PU signal
- RF voltage

trigger : transition timing-50 ms/cm

duced to damp the instability, and this can only
be achieved by bringing the extreme particles of
the bunches very near to the separatrix.

5.3 Experimental results

A programmed voltage reduction has been
applied from transition to high energy, such as
to give a constant longitudinal acceptance, very
near to the emittance measured just after transi
tion (6 GeV/c). The result is spectacular (photo
2) provided the bucket is tightly fitted to the
bunch all along the acceleration cycle. The emit
tance blow-up which is normally around 6 is reduoed
to a negligible amount. This method is presently
used in operation.

(11)

(10 )
I
nk

x e -j~ [2n (l - m) + ~Jnh 1*

P np

If Z is the impedance of a resonator with a Q not
too low, we can make further simplifications: neg
lect the variation of A in the meaningful range
of frequencies, take p=~ in the In~' If we restrict
ourselves to n=-l, (dipole motion) and to small
oscillations, we get:

afo _da ""ii = _e_ Z 10 f L 2Re Z(p)
m R20M l aa O-w p=o

where J
1

is the Bessel function of order 1.

If ~ ~ 1, the bracket depends on p. We can

again neglect this variation if the Q of the re
sonator is not too low, and write:

2
w

iim
1

¢l ~ml (12)= 1. ~
where

1 h2 af J 2 (* a) da
f aa

o 1 (13 )t:: 4n "2 (0 - w )2 0p

The ~ml is the one of section 2, except for the
Fourier coefficient of the bunch, which is now
implicitely included in the integral.

Knowing A from the eigenvalue problem (12) we
have now to solve the dispersion relation (13) to
get the perturbed collective frequency w. For
distributions other than the rectangular one, we
have to turn to numerical calculations.

5.2 Numerical calculations

A computer programme has been written to
solve (13) for any given distribution function ~o'
in particular for a function of the type (1-a4) ,
which gives a good fit to the observed CPS bunches.

The determination of the threshold must be
carried out in any particular case, as the rela
tive magnitude of the real and imaginary part U
and V of the eigenvalues depend very much on the
Q and the tune of the resonator responsible for
the instability. As pointed out by Hereward 9)
the space charge frequency shift should be in some
way introduced in the diagonal terms of the matrix.
This extra term is, for the CPS comparable with
the term coming from the wake fields. It might
change the threshold intensity by approximately
40%.

The practical result of our calculations is
that a very strong non linearity has to be intro-

6. Active feed-back damping

The principle of this method is to detect any
longitudinal instability by looking at the signal
of a radial PU-station and to feed back this sig
nal to the beam through a cavity. This system can
be considered as an auxiliary beam control work
ing on the RF voltage (unlike conventional systems
working on the phase), which allows us to act more
or less separately on each bunch depending on the
tune and the bandwidth of the cavity. As the latter
is not memoryless, information from bQ~ch number
m will affect not only bunch number m itself, but
also all the other bunches. The total time delay
of the system (PU to caVity) must be equal to the
transit time of the beam.

This feed-back system will modify equations
(3) in the following manner:

2 2 h h
(- 0 + w)iim+ L ~mn iin + E j Ymn w ¢ = ° (14)

n=1 n=1 n

Ymn corresponds to the influence of bunch number
n on bunch number m through the feed-back loop.
The y's are proportional to the loop gain and the
jw says that the radial position of bunch n is
proportional to the derivative of <p • For equal
bunches and no synchrotron frequenc~ spread the
eigenvalues are given by:

2 h ) h- lo + E (\3 + jY
l

w ek
l=1 l

where l = m-n and ek exp 2n jk/h. The influence
of the main beam control system does not affect
this result.
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Yl can be calculated using a Fourier expansion
like in equation (4). The PU signal which corres
ponds to bunch l is of the form:

+00

adjacent modes (5 and 6) are outside the bandwidth
of the system and are not damped. This result was
confirmed by the use of the other diagnostic tech
niques.

The root displacement, due to the feed-back sys
tem is given by:

This result shows that mode number k can be stabi
lized by a feed-back system working on the fre-

Wo
quency (qh ~ k) 211'

Photos no. 3

Spectrum display
of a radial PU
signal (vert.log.
scale)
a) without damping
b )Nith dampL'lg

6 5 4 3 2 1 t~ RF frequency
mode number
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7. Conclusion

The three studied schemes are efficient in
damping longitudinal instabilities, and may be
combined to suit particular cases. However, their
use becomes very tricky if fast growth rates are
involved. Therefore, care has to be taken not to
introduce in the machine too harmful equipment.
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R l being the radial excursion of bunch land sRo
tge DC component of the PU signal from bunch l.
The voltage seen by one bunch when it passes
through the cavity is therefore:

h +00
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g[X(p) + jY(p)]being the electronic gain of the
feed-back loop and tit the time delay error. Now,
converting radial displacements into phase oscil
lations, one finds Y

l
:
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Using (18) and (19) one finds that for p I qh±k
(q any integer), tI w 2 vanishes (sum of the h roots
of unity) whereas for p = k for example one gets:

2 s h2 e w 2 . .
tlw = g 2 ~ ~(k)+JY(k)] exp(Jk Wo tit) (20)
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6.2 Experimental results

We used one of the present 14 cavities
of the PS as a feed-back cavity and tuned it around
the 17th harmonic of the revolution frequency
(h=20 in the CPS) in order to stabilize mode num
bers around 3.

The electronic gain required to suppress insta
bilities having 10 ms growth times is around 106
at 28 GeV using our normal PU stations. Therefore
the noise is an important problem and we reduced
it by filtering the signal by a "comb" filter
(band-pass at 17, 18 and 19th f , band reject
at f

RF
). rev

Note that the beam was brought in the centre
of the radial PU electrodes in order to remove as
far as possible unwanted components due to a dis
persion in bunch populations.

Photos 3, taken on a spectrum analyser with
multiple triggering show the stabilizing influence
of the feed-back loop on modes 1,2,3 and 4. The


