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Abstract

A method is described to find configura-
tions of surface currents, creating a given
magnetic field. The method was used to find
winding configurations for superconducting
magnetic systems of various accelerators.

1. Introduction.

One of the key problems in designing
air-core magnetic systems for accelerators
is the choice of winding configuration, cre-
ating a given magnetic field in a certain
working region (aperture). The general me-
thod for solving this problem on a computer
is step-by-step refinement of some initial
current configuration, Biot-Savart's_formu-
la being used for field calculationsl),
This method requires a great amount of com-
puter time and strongly depends on the
choice of initial approximation.

Below there is described a simplified
method of synthesizing a current configura-
tion for a given magnetic field requiring
much less computer time and in some cases
enables one to obtain an analytical solu-
tion. In any case, this method may be used
for a preliminary choice of appropriate
configuration. To simplify the problem, we
use the approximation of an infinitely thin
current layer (current surface) which is
Justified by the possibility of realizing
relatively thin superconducting windings
having large current density.

2. Synthesis of surface current
configurations.

Let us consider a curreant surface S,
surrounding some region, in which the given
magnetic field is to be created. For any
harmonic internal field B, on the surface
there exists, in principle, a unique cur-
rent distribution creating this field. Any
distribution of surface current may be de-
scribed in terms of magnetic moment distri-~
bution m, the current density being expres-
sed by the formula

i(P) = cRot m(P), P€S. @)
The meaning of (1) is simple: current lines
are lines on which m = const. The magnetic
field in the internal region, where current
is absent, may be expressed in terms of a
scalar potentiasl: B = gradV. The density of
magnetic moment distribution m is relsated
to the boundary values of the internal
field potential by the expression
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This expression may be considered as an
equation from which one can find & current
configuration creating the magnetic field
with given potential V. This integral equa-
tion, two-dimensional in the general case,
may be reduced to one- dimensional equations
for current surfaces of axial or cylindri-
cal symmetry.

5. Axial symmetry.

In many cases, for magnetic systems of
accelerators, we may take a current surface
having rotational symmetry (for example, a
spheroid or toroid). Then, using the Fourier
expansion sbout ¢ (r,d,z - cylindrical
coordinate system)

V(r,d,z):ZVN(r,z)eiNd, n =ZmNeiM 3)

we can obtain from (2) one-dimensional in-
tegral equations for the amplitudes of the
magnetic moment harmonics Dy :

[(r—f')ni,+(z—2)nz e rnf(ZEN"FN+1'Fﬁ—l)
(2=7)2+ (z=5)2 N v2((r+5)24+(2-5)2)
Lotbn (8,3)88 —2urm (z,2)= Vy(x,2)%. (4)
The contour L (r=r(s),z=z(s)) is the cross-
section of the surface by a plane ¢ =counst.

The functions Fy(v) appearing in equations
(4) are elliptic-type integrals, expressed

L3

by /o
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§ (V)=(1-v) 0(1-(1—v2)sin2t)5/2 (5)
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(On the calculation of these functions see
Appendix). The case N = O corresponds to
an axial-symmetry field.

4, Modulated two-dimensional
approximation.

The second analogous case is that of a
cylindrical current surface, the generating
line of which is along the y-axis of the
cartesian coordinate system. Such a surface
may be considered as the limit of a toroid
whose larger radius increases to infinity,
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while the shape of its cross-section re-
mains unaltered. In this case for every
harmonic component having the wave number

’

V= Vk(xaz)exP(iky>s m = mkeIP(iky),

one can also obtain a one-dimensional equa-
tion

(x-i':)ni+(z—2)n2
(x=%)%+ (z-%)2

k, Cku)m, (%,2)45 -
—2ﬂmk = Vk. (7)

Here the contour L (x=x(t),z=2(t)) is the
cross-section of the surface by a plane

y=const; ul= (x-%)%+ (2-2)%; ky (x) = XK, (x)
(K1 is the modified Bessel function). The
case k=0 corresponds to a two-dimensional

field. The general case may be described
as a modulated two-dimensional field.

The equations (4) and (7) can be solv-
ed on a computer by known methods. Computer
time required is small, so one can evaluate
many current surfaces, Below we will only
consider some cases, when analytical solu-
tions are possible.

5. Modulated two-dimensional field
in circular aperture.

Let us take the contour L in the equa-
tion (7) in the form of a circle of radius
a: x = a-cos(t), z = a-sin(t). Then its
solution can be obtained in the form of
multipolar expansion

-2ﬂmk(t)= Vk(t);§%°n<ka)vkn31n(nt)’ (8)
where Vk& are the multipolar coefficients

for boundary potential amplitudes of in-
ternal field,

o0
vy () =11Z=;ansin(nt),
and ¢, (x) = 1-(2L{x) (nK (x)+xK, 3 )7
(In and Kn are the modified Bessel func-
tions), We have taken only median-plane
fields for simplicity.

6. Finite-length multipole magnet.

When designing multipole magnets the
common practice is to use a two-dimensional
approximation in which the magnet is assum-
ed to be of infinite length. A real multi-
pole has finite length and the winding con-
ductors are connected to each other in some
way at its ends. let us consider a finite-
length multipole with a circular aperture.
In an accelerator, the main characteristic
of a short multipole is the mean value of
the magnetic field along the y-axis. From
formula (8) one can see that the dependence
of the mean field on the transverse coordi-
nates x,z is determined by the dependence
on t of magnetic moment density, averaged
over y:

o0

m, (t) = I e [mCt,3)dy 9
The dependence of m,(t) on t must be multi-
polar: m8~ sin(nt). This requirement may be
satisfied by the following magnetic moment
distribution

n(t,y) = mn(y)sin(nt) (10)
where mnp(y) is the magnetic moment form
factor. The formula (10) gives the coil

configuration of a short multipole magnet
having an undistorted mean field.

To calculate the magnetic field creat-
ed by the distribution (10) we will use the
integral in formula (4) since a circular
cylinder is also a rotational surface.
Using the symbols of par.3 we obtain that
the distribution of magnetic moment on a
cylinder r = a,

m(g,z) = my(z)cos(Ng), Q1)
creates a magnetic field with the potential

V(r,4,2) = VN(r,z)cos(Nﬁ). (12)

For the region close to the multipole axis,
calculation of the integral gives the re-

sult N
VN(r’z)r<<a = _fN(Z)(r/a) . (13)
Here the form factor of near-axial field is

given by -
o) Ja2(N+l)/N —(2-3)2 . 1
z) = A - m,(Z2)dz 14
N (ad+(z_§)2)N+3/2 N
where A = wa N (2N-1)!1/(2N-2)1!

Let us consider the example: multipole
magnet with a linear decrease of magnetic
moment amplitude at the edges, i,e. (Fig.l)

L2+z, —12<z<-L1,
~1
oy (z) = (Tp=Iy) Ly-Ly, =Ly¢z<¢ Ly,
L2-z, Ll<z< L2.
I —
+C<< )s KIRTY,
~ 2Lo

Fig.l. One-pole coil of a short multipole
magnet.
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For a dipole (N=1), the form factor of near-
axial field will be equal to

£1(2) = (L,=Ly )7L (P(T#2)+ P(Ip=2)-P(Ly +2)-
-P(L,~2)) where 2P(x)= x> (a2+x2)™2.  (15)

It is evident that the same formulae
give the 'bottoming' of the field in the
region between two similar multipole magnets
having large lengths and a linear decrease
of magnetic moment at their ends. It is to
be noted that integration over parameter a
between the limits a and b (i.e. evaluation

of [fy(z,a)ada) will give the form factor
of near-axial field for a multipole magnet
having a finite thickness of winding.

7. A thin current disk.

Let us take the current surface in the
form of double-sheet disk, which we may con-
sider as the limiting case for & spheroid,
the vertical aperture of which approaches
zero. If the current is divided equally be-
tween the sheets, the field between them
(in a working region of zero height) will
have only a vertical component. Equation
(4) becomes meaningless in this case, but
considering the limit of zero vertical aper-
ture, we obtain the formula for calculating
the magnetic moment distribution creating
the magnetic field with amplitude BN(r) of
N-th azimuthal harmonic:

1 1
a(r/a) Vel Nat sl+NBN(ast)ds
- N(I‘): 7 (16)
(t2-r2/a2 )Vt w2 (1-s2)%
r/a 0
For a field with amplitude
By(r) = B,(x/a)d a”

(complex values of field index ¢ correspond
to spiral field) we obtain from (16)

—ay(2) = QGr/a) (@*-r? e 359, 1:251-07/62)
(8)

where Q = %3”;3/2 G(N+gj2)/G(N+g+5)

(F(a,bj;c;x) is the hypergeometric function,
G(x) is the gamma function).

The distribution (18) gives infinite
current density at the edge of the disk.
To eliminate this shortcoming, we will take
a superposition of such distributions with
the radius a of the disk varying between a
and b; f(&) is the weighting function. The
field in the region r<a will be again of
the form (17); the region a<r<b will play
the role of a 'protective ring' providing

finite current density. For £(x)~xN-%4 we
obtain

M(r/b)-M(r/a), r<a,
—mN(r)= D(r/a)N'B.{

M(r/b), a<r<b, 19

where D = 2Q(N-g-3)/((d/a)""972-1),

M(x) = (1-x2)5/2p(%'5,1;g;1-x2).

In the case_of_a % form field (N=q=0)
with f(x)~ x-1(b2-x2)~%, we obtain a current
distribution with constant current density
in the protective ring:

2_.2\%
ZﬂBO/C %—sin'l[E b e ], r<a,
ig (r)= — a|p2-pe
ch~™(b/a)| 1, a<r<b. (20)
Appendix

The functions Fy(v) defined by (5)
are expressed in terms of hypergeometric
function:

o2 N+
Fy(v)= A(i%&r F (N}, N+%; 2N+ 131-v2) (21)

where A = w(2N+1)!!/(2N)!!

By applying the formulae for conversion
and analytical continuation of the hyper-
geometric function, we obtain a series
which is asymptotic with respect to N

N+?
Av%gl—vZ_iAF(“%’g;N+1;—(li%22) (22)

Fo (V)=
w() 2(1+v)N-%

and the series about the point v=0

-]
Py ()=(1v2 )R- T'D_(n_-21nv)w2+2)
n=0 (25 )
where Dnz(N;%)n+1(N+%)n+1/(n!(n+l)!),

h = g(l+n)+g(2+n)~-g (n+N+}b)-g (n+N+3/2),

g(x) is the logarithmic derivative of the
gamma function.

The series (22) is convenient for cal-
culations in the region v>2.5/(N+5) where
9 terms give the accuracy of 10-5; in the
region v<2.5/(N+5) the series (23) must
be applied, and no more than 11 terms are
needed for an accuracy of 10-2,
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