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The meaning of (1) is simple: current lines
are lines on which m = const. The magnetic
field in the internal region, where current
is absent, may be expressed in terms of a
scalar potential: B = gradV. The density of
magnetic moment distribution m is related
to the boundary values of the internal
field potential by the expression

Abstract

A method is described to find configura
tions of surface currents t creating a given
magnetic field. The methoa was used to find
winding conf~gurations for superconducting
magnetic systems of various accelerators.

1. Introduction.

One of the key problems in designing
air-core magnetic systems for accelerators
is the choice of Winding configuration, cre
ating a given magnetic field in a certain
working region (aperture). The general me
thod for solving this problem on a computer
is step-by-step refinement of some initial
current configuration, Biot-Savart'sl!ormu
la being used for field calculations ).
This method requires a great amount of com
puter time and strongly depends on the
choice of initial apprOXimation.

Below there is described a simplified
method of synthesizing a current configura
tion for a given magnetic field requiring
much less computer time and in some cases
enables one to obtain an analytical solu
tion. In any case, this method may be used
for a preliminary choice of appropriate
configuration. To simplify the problem, we
use the approximation of an infinitely thin
current layer (current surface) which is
justified by the possibility of realizing
relatively thin superconducting windings
having large current density.

2. Synthesis of surface current
configurations.

Let us consider a current surface S,
surrounding some region, in which the given
magnetic field is to be created. For any
harmonic internal field B t on the surface
there exists, in principle, a unique cur
rent distribution creating this field. Any
distribution of surface current may be de
scribed in terms of magnetic moment distri
bution m, the current density being expres
sed by the formula

3. Axial symmetry.

J
COS(i'p ,nQ)

-2~m(P) + 2 Q m(Q)dSQ : V(P). (2)
r pQ
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This expression may be considered as an
equation from which one can find a current
configuration creating the magnetic field
wi.th given potential V. This integral equa
tion two-dimensional in the general case,
may be reduced to one- dimensional equations
for current surfaces of axial or cylindri
cal symmetry.

(6)

(5)

where

In many cases, for magnetic systems of
accelerators, we may take a current surface
having rotational symmetry (for example, a
spheroid or toroid). Then, using the Fourier
expansion about ¢ (r, ¢, z - cylindrical
coordinate system)

~ rn~ ~ rn~ ()V(r,~,z)=L.VN(r,z)e ,m =~~e 3

we can obtain from (2) one-dimensional in
tegral equations for the amplitudes o£ the
magnetic moment harmonics ~:

Jf<r-r )ni-+ (z-z )nz2F _ rnr (2FN-FN+l-FN_l )]lC
l (r-r)2+(z-z)2 N v2«r+r)2+(z-z)2)

L "r~(r, z)d.S -2~r~(r, z): VN(r, z)r%. (4)

The contour L (r:r(s),z:z(s)) is the cross
section of the surface by a plane ~ :const.
The functions FN(v) appearing in equations
(4) are elliptic-type integrals, expressed
by fC/2

F (V)=(1_V2)~f(-1)NV2COS(2Nt)dt
N (1-(1-v2 )sin2t)3/2

o
v 2 _ (r_r)2+(z_z)2

- (r+r)2+(z-z)2

(On the calculation of these functions see
Appendix). The case N = 0 corresponds to
an axial-symmetry field.

4. Modulated two-dimensional
approximation.

The second analogous case is that of a
cylindrical current surface, the generating
line of which is along the y-axis of the
cartesian coordinate system. Such a surface
may be considered as the limit of a toroid
whose larger radius increases to infinity,

(1)r(F) = cRot m(P), PES.
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mo(t) = L;}ffm(t,y)dy

The dependence of mo(t) on t must be multi
polar: m ,.. sin(nt). This requirement may be
satisfie8 by the following magnetic moment
distribution

Let us consider the example: multipole
magnet with a linear decrease of magnetic
moment amplitude at the edges, i,e. (Fig.l)

{

L2+Z' -~<z<-Ll'

mN(z) = (L2-Ll )-1 L2-L1 , -L1(z< Ll ,
L2-z , Ll <z < ~.

(14)

(10)

(12)

m(t,y) = ~(y)sin(nt)

where

V(r,~,z) = VN(r,z)cos(N~).

For the region close to the multipole axis,
calculation of the integral gives the re-
sult N

vN(r,z)r«a = -fN(z)(r/a). (13)

Here the form factor of near-axial field is
given by

where mn(Y) is the magnetic moment form
factor. The formula (10) gives the coil
configuration of a short multipole magnet
having an undistorted mean field.

To calculate the magnetic field creat
ed by the distribution (10) we will use the
integral in formula (4) since a circular
cylinder is also a rotational surface.
Using the symbols of par. 3 we obtain that
the distribution of magnetic moment on a
cylinder r = a,

m(~,z) = mN(z)cos(N~), (11)

creates a magnetic field with the potential

00

-2"mk (t)= Vk(t)-L cn (ka)Vknsin(nt), (8)
n"'l

where Vkn are the multipolar coefficients
for bounaary potential amplitudes of in
ternal field,

00

Vk(t) =2:Vknsin(nt),

and cn(x) = 1-(2~;)(n~(x)+x~_1(X)))-1

(In and Kn are the modified Bessel func
tions). We have taken only median-plane
fields for simplicity.

while the shape of its cross-section re
mains unaltered. In this case for every
harmonic component haVing the wave number
k,

V = Vk(x,z)exp(iky), m = ~exp(iky),

one can also obtain a one-dimensional equa
tion

f
(x-x)OX+ (z-z )n~

2 . 2 ~ 2
z

kl(ku)mk(x,z)ds
(x-x) +(z-z)

L -2 srII1t = Vk • (7)

Here the contour L (x=x(t), z=z(t)) is the
cross-section of the surface by a plane
y=const; u2=(x_x)2+(z_z)2; kl(x) = XK1(X)
(Kl is the modified Bessel function). The
case k:0 corresponds to a two-dimensional
field. The general case may be described
as a modulated two-dimensional field.

The equations (4) and (7) can be solv
ed on a computer by known methods. Computer
time required is small, so one can evaluate
many current surfaces. Below we will only
consider some cases, when analytical solu
tions are possible.

5. Modulated two-dimensional field
in circular aperture.

Let us take the contour L in the equa
tion (7) in the form of a circle of radius
a: x = a-cos(t), z = a·sin(t). Then its
solution can be obtained in the form of
multipolar expansion

6. Finite-length multipole magnet.

When designing multipole magnets the
common practice is to use a two-dimensional
approximation in which the magnet is assum
ed to be of infinite length. A real multi
pole has finite length and the Winding con
ductors are connected to each other in some
way at its ends. Let us consider a finite
length multipole with a circular aperture.
In an accelerator, the main characteristic
of a short multipole is the mean value of
the magnetic field along the y-axis. From
formula (8) one can see that the dependence
of the mean field on the transverse coordi
nates x,z is determined by the dependence
on t of magnetic moment density, averaged
over y:

1"4------- 2L2

Fig.l. One-pole coil of a short multipole
magnet.
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(17)

For a dipole (N:I), the form factor of near
axial field will be equal to

fl(z) = (~-LI)-l(p(~+z)+P(~-z)-P(Ll+z)-

-P(Ll-z) where 2P(x)= x2(a2+x2)-~. (15)

It is evident that the same formulae
give the 'bottoming' of the field in the
region between two similar multipole magnets
having large lengths and a linear decrease
of magnetic moment at their ends. It is to
be noted that integration over parameter a
between the limits a and b (i.e. evaluation
of ffu(z,a)ada) will give the form factor
of near-axial field for a mUltipole magnet
having a finite thickness of winding.

7. A thin current disk.

Let us take the current surface in the
form of double-sheet disk, which we may con
sider as the limiting case for a spheroid,
the vertical aperture of which approaches
zero. If the current is divided equally be
tween the Sheets, the field between them
(in a working region of zero height) will
have only a vertical component. Equation
(4) becomes meaningless in this case, but
considering the limit of zero vertical aper
ture, we obtain the formula for calculating
the magnetic moment distribution creating
the magnetic field with amplitude ~(r) of
N-th azimuthal harmonic:

1 1

J
a(r/a)Ntl-Ndt fsl+NBN(ast )ds

-m (r)- (16)
N - (t2_r2/a2)~ "2(1_s2)~

ria 0
For a field with amplitude

~(r) = Bo(r/a)q

(complex values of field index q correspond
to spiral field) we obtain from (16)

N 2 2 ~ N-q 3 2 2-mN(r) : Q(r/a) (a -r )f~(~,1;2;1-r /a )

1 (18)
where Q = 2lb1T- 3/ 2 G(N+i+2 )/G(N+§+3)

(F(a,b;c;x) is the hypergeometric function,
G(x) is the gamma function).

The distribution (18) gives infinite
current density at the edge of the disk.
To eliminate this shortcoming, we will take
a superposition of such distributions with
the radius a of the disk varying between a
and b; f(a) is the weighting function. The
field in the region r < a will be again of
the form (17); the region a < r < b will play
the role of a 'protective ring' prOViding
finite current density. For f(x)_xN- 4 , we
obtain

-mNCr)= DCr/a)N-3. {M(r/b )-M(r/a), r -< a,
M(r/b), a< r< b, (19)

where D = 3Q(N-q-3)/«b/a)N-q-3_1 ),

M(x) = (1-x2)3/2F(N2q,1;~;1-x2).

In the case of a yniform field (N=q=O)
with f(x)- x-l (b2-X2)->'2, we obtain a current
distribution with constant current density
in the protective ring:

{

2 -l[ r (b2_a2)~]
211'Bo/c i sin alb2-r2 ,r < a,

i¢(r)= ch-1Cb/a) 1, a<r<b. (20)

.Appendix

The functions FN(v) defined by (5)
are expressed in terms of hypergeometric
function:

(1 2)N+~ 2
FN(v)= A ;~N+l F(N-~,N+~;2N+l;1-v) (21)

where A = !t'(2N+l)!! / (2N)! !

By applying the formulae for conversion
and analytical continuation of the byper
geometric function, we obtain a series
which is asymptotic with respect to N

F (v)= AV~(1-V)N+%F(_!,2.,N+l.,_(1-V)2)
N 2(1+v)N-~ 2 2 4v (22)

and the series about the point v=O
00

FN(v)= (1_v2 )N+~(l_ LDn (~-21n (v) )v2n+2 )

n=O (23)
where Dn=CN-%)n+l(N+~)n+l/(n!(n+l)!),

~= g(1+n)+g(2+n)-g(n+N+~)-g(n+N+3/2),

g(x) is the logarithmic derivative of the
gamma function.

The series (22) is convenient for cal
culations in the region v> 2.5/(N+5) where
9 terms give the accuracy of 10-5; in the
region v < 2.5/ (N+5) the series (23) must
be applied, and no more than 11 terms are
needed for an accuracy of 10-5.
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