E.D. Courant * and M. Month

Brookhaven National Laboratory, Upton, L.I., New York l1973, U.S.A.

* Also at State University of New York, Stony Brook, New York, U.S.A.

Abstract

Nonlinearity of the magnets in a synchrotron limits the amplitude that can be reached in thirdintegral resonant beam extraction. This limit is calculated for the case of extraction out of the median plane when the principal magnet nonlinearity is symmetric in the median plane. The method used is the construction of the appropriate canonical invariants in four-dimensional phase space, using a version of the formalism of Moser, Hagedorn and Schoch.
-

The effectiveness of resonant beam extraction at a third-integral resonance from a circular accelerator is limited by distortions of the phase-space trajectory from the ideal shape it would have if the guide and focusing fields were purely linear except for the component exciting the desired resonance.

If extraction is to take place in the median plane, the nonlinearity needed to excite the resonance has median plane symmetry, as do the unwanted nonlinearities that distort the phase space. Then the details of the extraction process can be obtained by solving the equations of motion in the median plane only. This case has been analyzed previously l).

In some cases, however, it may be desirable to extract the beam out of the median plane (vertically). For example, if the synchrotron magnets are superconducting, a preferred magnet design provides equal horizontal and vertical apertures, while the beam in a synchrotron usually requires more horizontal than vertical aperture. It is then advantageous to utilize the "excess" vertical aperture for extraction. This design philosophy is followed in the Cold Magnet Synchrotron (CMS) study 2) undertaken at Brookhaven National Laboratory.

To analyze the extraction process for this case, we must treat the coupled two-dimensional equations of motion. We consider a Hamiltonian of the form

$$
\begin{align*}
H_{0}\left(p_{x}\right. & \left., p_{y}, x, y, \theta\right)=\frac{1}{2}\left[p_{x}^{2}+p_{y}^{2}+R^{2} K_{1}(\theta) x^{2}+R^{2} K_{2}(\theta) y^{2}\right] \\
& +\frac{1}{3} E(\theta)\left(y^{3}-3 x^{2} y\right)+\frac{1}{3} F(\theta)\left(x^{3}-3 x y^{2}\right) \\
& +\frac{1}{4} D(\theta)\left(x^{4}-6 x^{2} y^{2}+y^{4}\right) \tag{1}
\end{align*}
$$

where $2 \pi R$ is the orbit circumference, $\theta=s / R$ ($s=$ distance along the equilibrium orbit), K_{1} and K_{2} are the linear focusing functions, E and F represent the sextupole components of the field that are, respectively, antisymmetric and symmetric in the median plane, and D represents the octupole
components.
We transform to angle and action variables J_{1}, $J_{2}, \phi_{1}, \phi_{2}$ defined in terms of the solutions (assumed known) of the linearized problem (i.e., with $E=F=D=0$):

$$
\begin{gather*}
x_{i}=\left(2 J_{i} \beta_{i} / R\right)^{\frac{1}{2}} \cos \left(\phi_{i}+\psi_{i}(\theta)\right) \tag{2}\\
p_{i}=-\left(2 J_{i} R / \beta_{i}\right)^{\frac{1}{2}}\left[\sin \left(\phi_{i}+\psi_{i}\right)+\alpha_{i} \cos \left(\phi_{i}+\psi_{i}\right)\right] \tag{3}
\end{gather*}
$$

Here $i=1,2$ refer to x and y coordinates; β_{i}, α_{i}, ψ_{i}, are the Courant-Snyder parameters 3) of the linear solution which are in the form

$$
\begin{equation*}
x_{i}=\beta_{i}^{\frac{1}{2}} \exp \pm i\left[v_{i} \theta+\psi_{i}\right] \tag{4}
\end{equation*}
$$

where ν_{i} are the betatron tunes, and $\beta_{i}, \alpha_{i}, \psi_{i}$ are periodic functions of θ satisfying

$$
\begin{equation*}
\frac{d \beta_{i}}{d \theta}=-2 R \alpha_{i} \quad, \quad \frac{d \psi_{i}}{d \theta}=\frac{R}{\beta_{i}}-v_{i} \tag{5}
\end{equation*}
$$

In terms of the new variables the motion is determined by the Hamiltonian

$$
\begin{align*}
& H(J, \phi, \theta)=v_{1} J_{1}+\nu_{2} J_{2}+S\left(J_{1}, \phi_{1}, J_{2}, \phi_{2}, \theta\right) \\
& +T\left(J_{1}, \phi_{1}, J_{2}, \phi_{2}, \theta\right) \tag{6}
\end{align*}
$$

where S and T equal the terms in E, F and D from (l) expressed in terms of the new variables; S and T are, respectively, third and fourth degree polynomials in $J_{1}{ }^{\frac{1}{2}}$ and $J_{2}{ }^{\frac{1}{2}}$ and are periodic in the angles ϕ_{1}, ϕ_{2} and θ.

We now follow a modification of the procedure by Moser 4) as elaborated by Hagedorn and Schoch 5). The procedure is to find canonical transformations which reduce the Hamiltonian to a form which does not depend explicitly on θ; such a transformed Hamiltonian is constant and, when transformed back to the original variables, yields invariant trajectories in phase space. For resonant beam extraction one has to arrange matters so that one of these invariants corresponds to a rapidly increasing amplitude in the y direction.

Instead of carrying out the transformations explicitly, we may look for the invariants directly. We seek functions

$$
G\left(J_{1}, \phi_{1}, J_{2}, \phi_{2}, \theta\right)
$$

which are invariant when J_{i}, ϕ_{i} follow the equations
of motion. This was done by us for the one-dimensional case in a previous paper l); here we shall use a slightly different formalism.

According to the principles of Hamiltonian mechanics, the condition for invariance of G is

$$
\begin{equation*}
\frac{d G}{d \theta}=\frac{\partial G}{\partial \theta}+[G, H]=0 \tag{7}
\end{equation*}
$$

where $[G, H]$ is the Poisson bracket, defined for any two functions U and V by

$$
[U, V]=\sum_{i}\left[\frac{\partial U}{\partial \phi_{i}} \frac{\partial V}{\partial J_{i}}-\frac{\partial U}{\partial J_{i}} \frac{\partial V}{\partial \phi_{i}}\right]
$$

We now write G in the form

$$
\begin{equation*}
G=\alpha J_{1}+\beta J_{2}+A+B+C \ldots \tag{8}
\end{equation*}
$$

where α and β are constants, and A, B, C, \ldots are, respectively, polynomials of degree $3,4,5, \ldots$ in $J_{1} \frac{1}{2}$ and $J_{2}^{\frac{1}{2}}$ combined, and are periodic in the angles θ, ϕ.

By choosing $\alpha=0$ or $\beta=0$ in (8) we expect to find two different invariants (reducing to J_{2} and J_{1} in the absence of nonlinearities). We write S, T, A, B, C, \ldots as power series in $J_{1}^{\frac{1}{2}}$ and $J_{2}^{\frac{1}{2}}$ and Fourier series in the angles with appropriately labeled coefficients; for example

$$
S_{k, r, s}^{n, m}
$$

is the coefficient of $J_{1}^{m / 2} J_{2}^{n / 2} e^{i\left(k \theta+r \phi_{1}+s \phi_{2}\right)}$ in S. In the third degree functions S and $A, n+m=3$; in B and $T, n+m=4$; in $C, n+m=5$. We shall omit the superscript m in what follows.

Equation (7) then separates into the sequence

$$
\begin{gather*}
A_{\theta}+v_{1} A_{\phi_{1}}+v_{2} A_{\phi_{2}}=\alpha S_{\phi_{1}}+\beta S_{\phi_{2}} \tag{9a}\\
\mathrm{~B}_{\theta}+v_{1} B_{\phi_{1}}+v_{2} B_{\phi_{2}}=[\mathrm{S}, \mathrm{~A}]+\alpha T_{\phi_{1}}+\beta T \phi_{\phi_{2}} \tag{9b}\\
C_{\theta}+v_{1} C_{\phi_{1}}+v_{2} C_{\phi_{2}}=[\mathrm{S}, \mathrm{~B}]+[\mathrm{T}, \mathrm{~A}] \tag{9c}
\end{gather*}
$$

where subscripts denote partial differentiation.
We require solutions A, B, C, \ldots having the following properties :

1. A, B, C, ... are periodic functions of the three angles.
2. Because of the physical meaning of J and ϕ, a term of order $J_{1} p / 2 J_{2} q / 2$ contains only Fourier components in ϕ_{1}, ϕ_{2} with $|r| \leqslant p$ and $|s| \leqslant q$, with r even or odd as p is even or odd, and s even or odd as q is even or odd. (S and T also have this property.)
3. As the resonance $\nu_{2} \rightarrow M / 3$ is approached A, B, C ... must not become infinite. This, as we shall see, imposes a condition on B and on certain constants of integration.

The solutions are obtained in an obvious way by equating Fourier coefficients. In particular, the solution of (9a) is

$$
\begin{equation*}
\left(k+v_{1} r+v_{2} s\right) A_{k r s}^{n}=(\alpha r+\beta s) s_{k r s}^{n} \tag{10}
\end{equation*}
$$

If we put $\alpha=0$ in (10), i.e., we look for the invariant responsible for extraction, we note that with $k= \pm M, r=0, s=\mp 3$ the coefficient of $A_{k r s}$ goes to zero as the resonance $v_{2}=M / 3$ is approached. To keep A finite (condition 3 above) we must make β go to zero with $\varepsilon=v_{2}-M / 3$. We choose $\beta=\varepsilon$. Since the only coefficients in S with $s= \pm 3$ have $n=3$ (condition 2), this gives
$A=J_{2}^{3 / 2}\left[S^{3} M_{M, O,-3} e^{i\left(M \theta-3 \phi_{2}\right)}+\right.$ comp. conj. $]+\varepsilon A^{\prime}$
where the last term goes to zero as $\varepsilon \rightarrow 0$.
If we stop at this point, we obtain the wellknown extraction invariant leading to a triangular separatrix in (y, p_{y}) phase space (if the small term εA^{\prime} is neglected). The value of the coefficient $S^{3} \mathrm{~m}, 0,-3$ is related to the rate at which the amplitude of oscillations increases during extraction; it is easily verified that, if phase space distortion is neglected,

$$
\begin{equation*}
E_{M}=2\left[S_{M, 0,-3}\right]=\frac{\left(2 B_{2}\right)^{\frac{1}{2}}}{9 \pi} \frac{\Delta y}{y_{e}{ }^{2}} \tag{12}
\end{equation*}
$$

where β_{2} is the value at the extraction azimuth, y_{e} is the vertical position of the extraction septum, and Δy is the increase in amplitude per three revolutions at amplitude y_{e}.

To obtain the phase space distortions due to nonlinearities we must solve (9b). We make a few simplifying assumptions : (a) the median plane symmetric terms F are large compared to the symmetrybreaking terms E; thus coefficients S^{n} krs with odd n are small compared to terms with even n. (b) during the extraction process the vertical amplitude becomes large compared to the horizontal amplitude, i.e., $J_{1} \ll J_{2}$. (c) we are close to the resonance (ε small); therefore, in calculating B we confine ourselves to the resonant case $\varepsilon=0, \nu_{2}=M / 3$.

Solving (9b) by Fourier analysis gives

$$
\begin{align*}
B_{k r s}^{n} & =\frac{3}{2}\left[\frac{n+s+2}{k+v_{1} r+v_{2} s} S_{k-M, r, s+3}^{n-1} S_{M, 0,-3}^{3}\right. \\
& \left.-\frac{n-s+2}{k+v_{1} r+v_{2} s} S_{k+M, r, s-3}^{n-1} S_{-M, 0,3}^{3}\right] \tag{13}
\end{align*}
$$

Because of assumption (a) above, the terms with $n=3$ predominate, and B is of the order $F E_{M} J_{1}^{\frac{1}{2}} J_{2}{ }^{\frac{3}{2}}$.

The angle-independent terms in $B(k=r=s=0)$ are left indeterminate by this procedure. To find these we must go to equation (9c) for C and invoke condition 3, namely that C remains finite for $\varepsilon=0$. Thus for (krs) $= \pm(M, 0,-3)$ the right hand side of (9c) must vanish. This condition gives, after considerable labor,

$$
\begin{align*}
& \mathrm{B}_{000}^{4}=\mathrm{T}_{000}^{4}-\sum_{\mathrm{k}}\left[\frac{\left[\mathrm{~S}^{2} \mathrm{k}, 1,0\right.}{\mathrm{k}+\mathrm{v}_{1}}\right]^{2} \tag{14}\\
& \left.+\frac{\left[\mathrm{S}^{2} \mathrm{k}, 1,2\right]^{2}}{\mathrm{k}+v_{1}+2 v_{2}}-\frac{\left[\mathrm{S}^{2} k,-1,2\right]^{2}}{k-v_{1}+2 v_{2}}\right\}
\end{align*}
$$

and a similar expression for $\mathrm{B}^{2}{ }_{000}$. Note that these terms do not involve the resonance-exciting term E_{M}.

The invariant, to this order, is thus of the form

$$
\begin{align*}
G & =\varepsilon_{J_{2}}+E_{M^{\prime}} J_{2}^{\frac{3}{2}} \cos \left(M \theta-3 \phi_{2}-\delta\right) \\
& +\varepsilon A^{\prime}+b\left(\phi_{1}, \phi_{2}, \theta\right) J_{1}{ }^{\frac{1}{2}} J_{2}^{\frac{3}{2}} \\
& +B_{000}^{2} J_{1} J_{2}+B_{000}^{4} J_{2}^{2} \tag{15}
\end{align*}
$$

where δ is a phase angle.
The other invariant is obtained in the same way by solving (9) with $\beta=0, \alpha=1$. Since there are no resonance problems here, the invariant is just equal to J_{1} plus terms of degree at least $\frac{3}{2}$ in J_{1} and J_{2} combined; therefore, if we limit ourselves to terms of up to the second degree we may regard J_{1} as a constant parameter as far as the invariant (15) is concerned. Furthermore, because of assumption (a) the term in $b\left(\phi_{1}, \phi_{2}, \theta\right)$ in (15) is small compared to the $B^{4}{ }_{000}$ term.

Therefore, to this order, the constancy of (15) means that there is an approximate invariant curve in vertical phase space, of the form

$$
\begin{equation*}
G=\varepsilon^{\prime} J_{2}+E_{M} J_{2}^{\frac{3}{2}} \cos \left(M \theta-3 \phi_{2}-\delta\right)+B_{000}^{4} J_{2}^{2} \tag{16}
\end{equation*}
$$

with $\varepsilon^{\prime}=\varepsilon+\mathrm{B}^{2}{ }_{000} \mathrm{~J}_{1}$; thus the primary effect of J_{1} is a shift in the resonance frequency.

This is formally just like the one-dimensional situation, but here the principal distortion term $B^{4} 000 J_{2}{ }^{2}$ arises from the nonlinear coupling of horizontal and vertical oscillations. It is just of the same order of magnitude as the corresponding distortion term in the one-dimensional (median plane extraction) case, but depends on a different detailed combination of Fourier components.

For the purposes of beam extraction, the phase space distortions must not prevent the amplitude from reaching the position of the extraction septum.

Using the expression (12) for E_{M} and noting that $J_{2}=y_{\max }^{2} / 2 \beta_{2}$, we find that the peak amplitude of the extracted beam at resonance is

$$
\begin{equation*}
y_{\max }=\frac{2 \beta_{2} \Delta y}{9 \pi y_{e}^{2} B_{000}^{4}} \tag{17}
\end{equation*}
$$

This must be small compared to y_{e}; thus we require :

$$
B_{000}^{4}<\frac{2 \beta_{2} \Delta y}{9 \pi y_{e}^{3}}
$$

To achieve this in an accelerator whose magnets possess appreciable nonlinearity, one may build in a set of compensating sextupole magnets so as to cancel the combination of sextupole Fourier components entering into (14). However, there is a conflicting requirement for compensating sextupoles: it is necessary to control the momentum dependence of v_{1} and v_{2} (chromaticity) in order to ensure that no part of a beam with momentum spread is too close to undesirable resonances, but at the same time to retain a large enough spread in the v 's to provide Landau damping of coherent instabilities. This means that the two integrals

$$
\begin{equation*}
\int_{0}^{2 \pi} F(\theta) \beta_{i}(\theta) n(\theta) d \theta ; \quad i=1,2 \tag{18}
\end{equation*}
$$

should have certain prescribed values, where $\eta(\theta)$ is the "momentum compaction function". This is accomplished with two sets of sextupoles, periodically spaced around the orbit, one set located at azimuths where β_{1} is large and the other where β_{2} is large. If these are appropriately energized their distribution will possess many high-order Fourier harmonics, and $\mathrm{B}^{4} 000$ will still be appreciably different from zero. To make $B^{4}{ }_{000}$ small enough, we can then energize octupoles. By (14), only the azimuthal mean

$$
\int_{0}^{2 \pi} \beta_{2}{ }^{2} T(\theta) d \theta
$$

has to be controlled; thus (at least to the degree of approximation treated here) the azimuthal distribution of octupoles may be chosen on the basis of design convenience.

We see thus that in an accelerator with nonlinear magnets, sextupoles may be introduced so as to produce the desired dependence of betatron frequencies on momentum, and then vertical resonant beam extraction can be accomplished if octupoles are energized with a mean strength so as to make the quantity B_{000}^{4} (eq. 14) small enough.

References

I. M. Month and E.D. Courant, Particle Accelerators 2, 105 (1971);
R.W. Chasman and M. Month, Particle Accelerators 2, 109 (1971).
2. A. Van Steenberger, editor, "Design Study of a Cold Magnet Synchrotron", Report BNL-15430 (1970).
3. E.D. Courant and H.S. Snyder, Ann. Phys. 3, l (1958).
4. J. Moser, Nachr. Akad. Wiss. Göttingen, IIa, No. 6, 87 (1955).
5. R. Hagedorn, Report CERN 57-1.
R. Hagedorn and A. Schoch, CERN 57-14.
A. Schoch, CERN 57-21, (1957).

