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A MESH-ITERATION PROGRAM FOR FIELD CALCULATIONS IN LINAC CAVITIES*

G. Parzen
Brookhaven National Laboratory

Upton, New York

- 1. Introduction

This paper summarizes some of the experiences
met in applying the JESSY mesh-iteration program
to the calculation of the fields and resonant fre
quency of cells in a 200-MeV proton linac.

and resonant frequency of the lowest mode, and
they include programs written by Edwards and
Christian 1 Taylor and Kitching,2 Hoyt, Simmonds
and Rich,3,4 Parzen,5,6 Martini and Warner,7 and
Katz.

which can be used to find a more accurate result
for the resonant frequency.

A number of mesh-iteration programs have been
written to solve the above problems for the fields

The lowest mode of the cell can be found by
solving the differential equation
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The iteration relation used by JESSY at each
interior mesh point is given by

The JESSY mesh-iteration program replaces the
differential equation by a set of difference equa
tions for each point on a rectangular mesh. For
each interior mesh point one obtains a difference
equation of the sort

II. Iteration Procedure

F (n) + F(n) + F(n+l) + F(n+l) + k 2 F(n).
a l 1 a2 2 a 3 3 a4 4 0

(2.2b)

where the four neighbors of each interior point
are indicated by Fl to F4, and the interior point
being considered is indicated by Fo ' The ai are
found by standard methods. l

Before ever2 iteration defined by Eq. (2.2),
a new value of k is computed to use in Eq. (2.2).
In the JESSY program, the new k2 is computed ac
cording to Eq. (2.1) by

In Eq .(2.2), n is the iteration number, and
a is the over-relaxation parameter. aI' a3 refer
to the right and left neighbors and a2, a4 refer
to the above and below neighbors.

Other programs l ,3 have used the actual varia
tional principle, Eq. (1.3), to find a new value
for k2 One may note that the k2 found from the
variational principle, Eq. (2.1), is closer to the
k2 of the physical problem being solved, but this
k2 is not necessarily converging to the eigenvalue

where the sum is over all interior mesh points,
LF = E aiFi at each mesh point, and R is the dis
tance of the mesh point from the z-axis.
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In addition, there exists a variational
principle

Each tank of the linac consists of a large
number of cells as shown in Fig. la. The number
of cells varies from 57 in the first tank to 19 in
the last or ninth tank. The length of the cells
increases from about 6 cm for the first cell to
about 84 cm for the last cell. Mesh-iteration
programs cannot easily solve for the fields in the
entire tank. Instead the mesh-iteration program
treats the problem of the single cell whose end
boundary conditions require the fields to be peri
odic with the period of the cell length. The cell
is shown in Fig. lb.

where F = r ~, and ~ is the azimuthal component
of the magnetic field. The lowest mode has only a
Rep component in the magnetic field because of the
cylindrical symmetry. The functionF is used be
cause of its simple boundary conditions which are
that of/on = 0 on all boundaries except the r = 0
boundary, where F = O.

*Work performed under the auspices of the
U.S. Atomic Energy Commission.

The electric field can be found from F ac
cording to the equations
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III. Theory of the Iteration Procedure

The set of difference equations given by
Eq. (2.1) may be written as a matrix equation,

The boundary condition of/on = 0 is also re
placed by a difference equation which is used to
iterate the boundary points. This difference
equation has the form
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F(n+1) = CF (n)

C = D- l (D + I - A)

The diagonal dominance property states that
the elements of A satisfy

The above discussion can be generalized to
apply to the iteration process with over-relaxation,
and where in each iteration values of F found from
the current iteration as well as from the previous
iteration are used in finding the new value of F.
The procedure may be found in various textbooks,9,10
and requires that the A matrix have the property of
diagonal dominance and that the elements of A be
non-zero only when they relate F at a mesh point
to F at the four nearest neighbors.

Because of the diagonal dominance property of
A, which is discussed below, one may show that the
largest value of As is limited by As < 2a. Thus f
ranges between

The factor f will have its largest value for
As = Ao ' if A, the guess for the eigenvalue, is
very close to Ao or somewhat larger than Ao ' and
for this choice of I the iteration process will
converge to the eigenfunction with the lowest
eigenvalue Ao '

The two procedures for choosing I mentioned
in Section II will both lead to convergence be
cause one choice which is based on the difference
equations leads to a I which converges to Ao so
that A becomes very close to AO ' and the other
choice of A, based on the variational principle,
leads to a I which is empirically known to be some
what larger, at most about 10% larger, than Ao '

We will further simplify the analysis by as
suming that the diagonal matrix D has the same
positive value for all of its diagonal elements,
and which will be denoted by a. If we then expand
F in the eigenfunctions, us' of the matrix A, with
the eigenvalues As' we see that each multiplica
tion by the iteration matrix C reduces the compo
nent of F associated with Us by the factor

(3.1)

(2.4)o

AF

where A = k
2

is the eigenvalue, A is a matrix
whose elements are the ai of Eq. (2.1) and corres
ponds to the difference representation of the dif
ferential operat r, _(o2/or2 - (l/r) %r+ o2/oz2),
and F is a column vector whose elements are the
values of rRw at the interior mesh points and on
the boundary points.

In discussing the convergence of the itera
tion procedure we will at first limit ourselves to
the case where over-relaxation is not used, and
where in each step of the iteration only the val
ues of F found from the previous iteration are
used in finding the new values of F. In this
case one may write the iteration equations as

where the three mesh points used in Eq. (2.4) in
clude the boundary point being considered and its
two neighbors which lie closest to the normal.
The Si are found by standard methods. 8 This
three-point algorithm is correct only to first
order in the mesh size. An attempt was made in
JESSY to use the second order relations for of/on
given in Ref. 8. However, the iteration process
failed to converge when the second order relations
were used for the geometry required by the linac
cell.

of the set of difference equations, Eq. ~2.l),
that we are solving by iteration. The k found
from Eq. (2.3) is converging to the lowest eigen
value of the difference equations and it may dif
fer from the k2 found from the variational prin
ciple by as much as 10% for the smaller cells.
It is shown in Section III that either k2 may be
used iu the iteration procedure.

(3.2a)
4

-I ai/Cio $ 1

i=l

(3.6)

In Eq. (3.2), we have written A as A = D - L - U,
where D is the diagonal, L is the lower triangle,
and U is the upper triangle part of the A matrix.
I is the current guess for the eigenvalue A which
is used in the iteration.

where al to a4 all have the same sign, and the in
equality holds for some mesh point.

IV. Convergence Acceleration Technique

I....

Rewriting (3.2), one finds the iteration
matrix C,

Several techniques were applied in the JESSY
program to accelerate the convergence:
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The Mesh Interval Sequence

In the JESSY program, the mesh interval in
the I' and z directions may be unequal and are in
dicated by EL and H respectively. The convergence
becomes slower when the mesh interval becomes
small. The convergence may be accelerated by
first doing the run with a large mesh interval,
and then using the results for this run as the in
itial load for a second run, using a smaller mesh
interval.

In the runs done on JESSY, EL was held con
stant in a sequence while H was decreased in each
step by a factor of 2. Since the mesh with smal
ler H has more mesh points, it is necessary to
interpolate to find F at the additional mesh
points.

scan, the best convergence rate RTMX is compared
with RTO, which is the lowest rate one will accept.
If RTMX < RTO, the scan recovers or starts again
with ALFO = 1.8 and DALF = 0.1. The value set for
RTO is RTO = 0.001, where the rate is defined as
the percentage change in the residual for each
iteration.

Because of the large number of parameters in
the ~-scan, it is difficult to optimize the choice
of these parameters. The choice given above may
not be the best but it gives acceptable results.
An ~-scan using five values of ~ rather than three
was attempted but did not give as good results.
Runs with 10 iterations for each ~ seemed to do
about as well as 20 iterations for each ~.

Integerization

The Initial Load

The time required for the run is considerably
affected by the correctness of the initial guess
for F. By examining the solution found in several
runs, an empirical result was found for the initial
guess. This empirical result for F is

F
222

I' L~2+(_Rr) [1-0.5 (-Rr ) ]
(R+ d/Z) 2 R '

(4.la)

It sometimes happens that a boundary point is
very close to a mesh point. This would give rise
to very large weights in the iteration of the star
point near the boundary point, which resulted in
much lower convergence rates.

It was found advisable to integerize the
boundary. If a boundary point was very close to
a mesh point, it was moved onto the mesh point.
The criterion for close that was used was a dis
tance of 0.0005 em.

The Over-Relaxation Scan

and the parameters R, d, L are defined in Fig. lb.

There are several techniques included to keep
the scan from going too far off. The choice of
ALFMX after each scan is limited to be less than
ALFLM, and ALFLM = 1.95. There is 8L recovery
techni.fl.':le to keep the scan from narrowing down on
an ~ wIth too Iowa convergence rate. After each

Over the wide range of cell dimensions which
were run with the JESSY program, the choice of the
over-relaxation parameter of ~ = 1.9 would work
quite well. In some cases, however, when the mesh
size was large or when the boundary of the drift
tube was close to mesh points, a smaller value of
~ was required for convergence and the convergence
rate was slower.

The accuracy of mesh-iteration programs is
difficult to estimate theoretically. A comparison
of the program results with experimentally measured
results provides a good estimate of the accuracy.

One criterion of the accuracy of the results
which was found useful was to compare the average
electric field along the axis, Eo, as computed by
two different methods. One method of computing Eo
is to simply integrate the electric field along the
axis. The second method is to use the flux of the
magnetic field across the r,z plane, which accord
ing to Maxwellfs equations should also give Eo.
The percentage disagreement in the result for Eo
as found by these two methods was found to be a
good measure of the error in the electromagnetic
fields computed by the program.

V. Accuracy of the JESSY Program

The accuracy of the JESSY program, as found
by comparison with the experimental measurements
of MURA,ll Brookhaven,S and the University of
Tokyo,12 may be summarized in the following state
ment: The error in the electromagnetic fields is
of the order of a few percent, and the error in the
resonant frequency is about 0.1% except possibly
for the very low ~nergy linac cells.

A more complete picture of the program accu
racy is provided by Fig. 2, where the error in the
frequency as determined by comparison with experi
mental measurements is plotted as a function of
cell length for both the MESSYMESH and JESSY pro
grams. The MESSYMESH program uses a mesh size of
0.25 by 0.25 em. The JESSY program can go to the
smaller mesh of 0.125 cm in the z-direction and

(4.lb)[ r
2 + (z - L/2) 2 JR

where

An empirical method of choosing ~ was devel
oped which scans a certain range of ~ and chooses
the ~ with the fastest convergence rate. The scan
covers three values spaced at ALFO .- DALF, ALFO,
ALFO + DALF. The program runs 20 iterations with
each ~ and finds the ~ with the best convergence
rate, ALFMX. The next scan is done for three
values of ~ centered at ALFO = 0.5 (ALFO + ALFMX) ,
and the DALF is reduced to DALF = 0,,75 * DALF.
The initial scan is done with ALFO :. 1.8 and
DALF = 0.1, so that the init ial scan covers ~ =1.7,
1.8, 1.9.
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0.25 cm in the r-direction. The results from
Fig. 2 indicate an error of about 0.4% in the fre
quency for the smaller L cells which can be reduced
by decreasing the mesh size.
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-~ Fig. l. The geometry of the linac cells.
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• JESSY, H=0.25
• MESSYMESH, H=0.25
... JESSY, H=0.125
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Fig. 2. A plot of the error, 6f, in the results of mesh-iteration programs

for the resonant frequency, as found by comparing computer results

with experimental results. The experimental results used here were

those of the University of Tokyo group.
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