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Mesh &Series

C is a constant very roughly equal to
unity and rl is the outer radius of the
drift-tube. Now for large n

Starting Values

Before the relaxation can begin we
must supply values of Hep at each of the
mesh points. The closer these starting
values are to the true solution the faster
will be the convergence. As in the prece
ding section we divide the cell into two
regions, but this time the dividing cylin
der has a radius somewhat smaller than the
drift-tube radius; it should lie in the
narrowest part of the gap between drift
tubes. In the outer region a solution of
the type (1) is used. In the inner region
a similar form with different constants
but containing Bessel functions regular at
the origin is employed. The two sets of
constants are to be chosen in such a way
as to satisfy the boundary condition on

Relaxation proceeds point by point
starting with the row of mesh points near
est the axis. It stops after completion
of the second last row, which lies a few
centimetres beyond the drift-tube radius.
Then the coefficients An are calculated by
least-squares fitting to the values of Hep
on the second last (or sometimes an earl
ier) row of the mesh. The series is used
to generate values of Hep at an extra row
of mesh points lying just beyond the last
true row. The values of H~ on the extra
row of mesh points are used to complete
the cycle of relaxation. Although conver
gence has not been p~oved, the method is
found to converge in practice. An over
convergence factor of 1.3 is used; in one
case divergence appeared to occur at an
overconvergence factor of 1.4. The radial
derivative of Hep at the seam between the
two regions appears to be continuous; for
some low values of B it is necessary to
move the seam outward a centimetre or so
to get this continuity.

exponentially with n. Convergence is more
rapid as B is decreased, a fortunate oc
currence since the low-B cells are in
other ways the more difficult to handle.
The contribution of each term in (1)
beyond the tenth can be reduced below 10- 3

of the zeroth if (r-rl) is kept larger
than l or 2 cm.

The use of the series in the outer
region reduces the number of mesh points
needed for a given spacing by roughly an
order of magnitude. In one case in which
a cell was treated by the purely mesh
method as well, the time required to meet
the same convergence test with the mesh
series method was IS-times smaller.

(3)

(2)

Sn '" kn/B.

Thus the terms in (1) falloff

Reports l ,2 at the last conference
on calculations of fields in linac cells
indicated that difficulties arose with
Alvarez-type cells, especially at lower
values of B. Convergence becomes slower
as B is decreased, and there is some doubt
about the accuracy of the' resul ts. In
this paper three devices for improving the
calculation are discussed. They are dir
ected toward decreasing the number of mesh
points, improving the starting values for
the relaxation, and increasing the speed
of convergence of the frequency-iteration.

The constants An are so far com
pletely arbitrary. They are to be chosen
to match the mesh solution in the inner
region. Using the fact that Hep does not
change sign over the cel~, one can show
that the ratio of the n t term in (1) to
the zeroth is leSs than

Here k is the wave number, b is th~ cell
half-length, and ~n = {(nTI/b)2-k2}~; z=O
is at the middle of the cell. Zl(kr) and
Ll(~nr) are linear combinations of the two
solutions of Bessel's equation of order 1,
chosen in such a way that EZ vanishes on
the outer cylindrical boundary.

Imagine a cylindrical surface
concentric with the drift-tube and lying
just outside it. Inside this surface we
use a mesh-type of calculation essentially
the same as the one described in reference
(2). Outside the series is represented by
a series of terms each one of which satis
fies the differential equation as well as
the boundary conditions on the outer cyl
indical boundary and on the two planar
boundaries of the cell. It is sufficient
to describe the form of the one non-zero
component of the magnetic field, H~. The
solutions have the form ~
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the drift-tube as well as possible, while
maintaining adequate continuity on the
seam between the two regions. This is
done by minimizing the sum of the square
of "errors" at points spread roughly uni
formly over the drift-tube contour and the
seam. At a point on the drift-tube the
error is the tangential electric field; at
a point on the seam the square of the
error is the weighted sum of the squares
of the discontinuities in tangential com
ponents of E and H. The minimization is
carried out-subject to the constraint that
EZ at one point be fixed. The problem re
duces to the solution of a set of linear
equations. Once these equations are
solved the RMS error, minimized with re
spect to the coefficients in the series,
may be calculated for the particular
choice of trial wave-number k.

The minimized RMS error is then
calculated by the method outlined for each
of a number of values of k in the region
of a suspected eigenvalue. Usually the
RMS error when plotted against k gives a
smooth curve concave upward. An example
is shown in Fig. 1. There is no diffi
culty in locating the minimum of this
curve, ko ' within 1/2%. The value of ko
is used as a first guess at the eigenvalue
for the mesh-series calculation, and
starting values of H¢ are calculated from
the series with the corresponding sets of
coefficients.

To test the method its results
were compared with results obtained by
MESSYMESH 3 at 10 roughly uniformly spaced
values of S stretching from 0.0402 to
0.4016. For S greater than 0.1 the agree
ment was of the order of 1 Mhz or better.
Below B = 0.1, where the width of the gap
becomes small compared to the drift-tube
radius, the calculation with the present
form of the program becomes more unreli
able, and the clear minimum shown in Fig.
1 may not occur; it is then necessary to
adjust either the spacing of the points at
which the error is calculated or the rela
tive weighting of electric and magnetic
field errors. The minimized RMS error is
usually about 5% of the maximum electric
field strength. There are always a few
points at which the errors are much worse;
in good cases they rise to about 20%, in
bad cases to 40 or 50%. In all cases the
starting values of H¢ calculated gave good
results in the relaxation process.

Iteration on k

A method different from that of
reference (2) has been used for choosing
successive trial values of the eigenvalue,
k. Suppose that for a fixed value of k
the relaxation is carried on until the
change in the fields becomes negligible.

Then the Rayleigh-Ritz upper bound on the
frequency - see reference (2), for example
- is a perfectly definite function of k
which I shall call F(k). The curve in
both parts of Fig. 2 is k* = F(k) calcula
ted for the cell of MESSYMESH run number
30635. The value of k corresponding to
the minimum in the curve k* = F(k) must
correspond to the eigenvalue for our par
tially discretized problem. Therefore at
this minimum k* = k. Hence the eigenvalue
corresponds to the intersection of the
curve k* = F(k) and the straight line
k* = k. Computationally this means that
we are looking for a zero of the function
F(k)-k, a much easier task than locating a
minimum.

In our program k is varied by 2%
steps and a zero of F(k)-k is calculated.
For the results given in the next section
not more than three values of k were
needed in the refining process, once a
zero was bracketed. When we tried to use
the usual method, as described in refer
ence (2), many tens of values were re
quired. The success of our method depends
on making sure that the residuals are ade
quately small before the k-iteration
begins, and on the use of the starting
values of the preceding section. When the
relaxation was begun from cruder starting
values, it was very difficult to ensure
that F(k) was unchanged by more relaxation.

Note that our method of finding
the eigenvalue actually allows a lower as
well as an upper bound to be calculated.
The usual variational calculation gives an
upper bound only, but here the parameter
being varied is itself the trial eigen
value.

Results

In Table I a comparison is made
between the results obtained by MESSYMESH
and by the method of this paper for three
different cells; the MESSYMESH result is
printed above ours. TTF stands for tran
sit-time factor; ~Eo is the percentage
difference between the mean field along
the axis calculated by the line-integral
method and by the surface-integral method.
The smaller mesh size and the smaller ~Eo

for our method suggest that it is the more
reliable. Both TTF and ZT 2 are somewhat
higher in our results than in those by
MESSYMESH. The comparison in reference
(1) for similar cells shows that MESSYMESH
also gives lower results than JESSY for
both these quantities.

The overall time required to treat
each of the cells in the table was under
30 minutes on a computer about 5 times
slower than an IBM 7094. The time depends
very much on the smallness required of the
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residuals before the k-iteration begins, and we
don't yet know how small they need be. The middle
case in the table was done in 13 minutes.
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Note Added During the Conference

The paper by Martini and WarnE!r (this con
ference, page 512) also uses

(a) a combination of a mesh i.n one part of
the cell with a series in another part;

(b) analytical starting valuE!s, though the
latter appear to be diffE!rent in form.

Although work on these ideas appe8lrs to have been
initiated at about the same time at CERN and in
Chalk River, the former group has proceeded more
rapidly and has treated a considerably larger
number of cases.
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TABLE I

Comparison with MESSYMESH Results

(result of this paper below MESSYMESH result)

MESSYMESH L/2 Frequency TTF Mesh Size liE ZT 2

Run No. cm Mhz cm 0
0 Mn/m1)

20243 3 200.935 .641 .2500 6.9 26.7
200.46 .664 .1250 -2.6 28.9

30441 11 207.080 .832 .5000 4.3 52.8
207.23 .850 .2500 -0.3 55.8

30635 23.5 199.089 .802 .5000 1.1 40.4
199.17 .809 .2500 -0.3 41.4 ...
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Fig. 1 RMS error in satisfying the boundary conditions,
minimized with respect to the coefficients in
the series representing the field, plotted
against trial eigenvalue.
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The curve is the Rayleigh-Ritz upper bound on
the wave-number calculated as a function of
trial wave-number, k, with fields which have
been relaxed until the residuals are negligible.
The straight line k* = k goes through the minimum
of the curve. Part (b) is an enlargement of a
portion of (a) near the minimum. The cell cor
responds to MESSYMESH run no. 30635,.
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