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II. TMll-Like Small Pitch Approximation

For the purpose of analysis it is convenient
to cut the iris-loaded waveguide into two regions,
i.e., the axial and the cell region. Approximate

(1)kh = n/2

where k is the wave number in the guide.

In this section, analytical expressions for
transverse interaction parameter, shunt impedance,
peak fields, etc. of alternating-periodic (AP)
cavities will be derived. They will be obtained
directly from the corresponding expressions for
uniform-periodic (UP) waveguides, which lend them
selves more easily to analysis. The investigations
will be based on the TMII-like small pitch approxi
mation, in which use is being made of the fact that
the HEMII passband is close to the TMII cut-off
frequency of a cylindrical waveguide with identical
radius. The notations used for the analysis of UP
waveguides and AP cavities are shown in Figs. 1
and 2. The width of the excited cell is designated
as d, both in UP and AP cavities, whereas the pe
riod is designated as h in UP and 2h in AP cavities.
By making the distinction between cell width and
period, we allow for a finite iris thickness in the
expressions obtained. All numerical examples, how
ever, will be based on infinitely thin irises. In
addition, all considerations will be limited to de
flectors of extreme relativistic particles with n/2
phase shift per cell, leading to the condition
which remains valid for UP and AP structures

We will attempt to find analytical expressions
for the figures of merit introduced. This will re
quire a simple representation of the fields in
iris~loaded deflectors. Many properties of alter
nating-periodic structures can be explained by the
help of the small-hole approximation used in Ref. 1.
However, the dependence of the deflector parameters
on the beam hole radius is more naturally obtained
from the small pitch approximation. The particular
version of this approximation elaborated on in this
paper will make use of the fact that the bandpass
of the HEMll deflecting mode is in the immediate
vicinity of the TMII cut-off frequency (TMII-like
approximation). The expressions obtained from this
simple field approximation are probably only quali
tatively correct and their verification by experi
ments or a rigorous theory is desirable and neces
sary.

Application of the above requirements to a system
atic deflector design will be facilitated by intro
ducing three figures of merit. Their relative
weight, however, will remain subject to discussion
and no universal solution can be found.

*Work performed under the auspices of the
U.S. Atomic Energy Commission.

2) Superconducting deflectors are intended
for use in separated counter beams and
the particle fluxes are of greatest
importance.

3) The equipment and operating costs of a
superconducting rf beam separator depend
strongly on the refrigerator required,
and economic considerations must enter
the optimization procedure.

1) The stability of the fields in the pres
ence of machining errors, n~chanical

vibrations, or similar perturbations, is
enhanced by operating in the confluent
n/2 mode with the largest possible group
velocity.

In the design of a deflector aL compromise so
lution is indicated in order to respect several
conflicting requirements:

We pointed out in a previous report,l that
superconducting deflectors are preferably designed
as alternating-periodic iris-loBded cavities. Op
eration in the confluent n/2 mode with the largest
possible width of the excited cells leads to per
formance characteristics comparable to that of a
resonant ring but without the latter's well-known
problems. The purpose of this paper is to work out
the design criteria for superconducting cavities
permitting a systematic optimization of the deflec
tor geometry. Since the operating frequency is
determined by the momentum range of the particles
to be separated and the deflector length by the an
gular deflections considered desirable,2,3 the
optimization procedure is essentially limited to
the choice of the beam hole radius.

1. Introduction

Abstract

Analytical expressions for transverse shunt
impedance, peak fields, group veloclty, etc. of
alternating-periodic iris-loaded deflector cavities
operating in the confluent n/2 mode are derived
from the TMll-like small-pitch approximation. It
is shown that the smallest peak fiel.ds and the
largest shunt impedance are obtained in structures
with vanishingly small width of the coupling cell.
An optimization of the structure determines the
ratio of the beam hole radius divided by the wave
length to be 0.3, implying a forward-wave opera
tion. Possible complications due to the degenerate
dispersion diagram are discussed.
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field representations are found independently for
each region. The subsequent matching of the tan
gential electric component along the common bound
ary yields the relative amplitude of the fields in
each region. The deflector characteristics are
then obtained simply by integration.

The field representation in the axial region
requires, in general, two linearly independent
solutions. The boundary condition E8 - 0 on the
iris along r - a entails a coupling between solu
tions and leaves only one expansion coefficient,
Bo ' which is proportional to the deflecting field
strength acting on synchronous particles. The
fields in the axial region of a wave traveling with
a phase velocity equal to the velocity of light can
in natural units (c - ~o - 1) be represented by

J 1 (kr)
ie

-i8 .."

kr

alI J {(kr)
-i6

(6)c e
0 .....

0

with the wave number given by k - jll/b. The es
sence of the "TMll-like" small pitch approximation
lies in the use of Ez ~Jl(kr) rather than the
usual4 Ez ~ Jl(kr) - NI(kr) Jl(~b)/NI(kb). The
errors caused by this simplification are smallest
if alb ~ 0, but a preliminary estimate showed that
the use of (5) and (6) leads to qualitatively cor
rect results as long as ka < jll' with jll being
the first zero of J{.
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e

. -i8l.e

The ratio of the coefficients co/Bo is ob-
tained by matching of Ez at r =a according to

~h ~d

J EI e
jkz

dz =] Ell e
jkz

dz (7)
z z

where the transit time factor

(9)

(8)

TId
4h

sin.!! £
4 hc

00

which leads to

Co { J l (ka) i C }-l
'B=- ~hoo

o

(3)

(2)

e- jkz

e- jkz

-i8
e

. -i8
l.e

2 2
{( k

2
r ) + ( ~a) }

i I B {( kf )2 ( k
2
a )2 }

0

- j kr
-i8

e

and
2 2

_{ ( kzr ) _ ( k
2
a ) +

aI {( kr )2+ ( ~a )2B 20

kr
. -i8
l.e

Together with (1) it follows that lal = Bo ; the
expansion coefficient equals the equivalent deflec
ting field strength.

Taking into account the fact that the entire
bandpass of the HEMII mode is in the vicinity of
the TMII cut-off frequency, we are able to repre
sent the fields in the slot by

k
2
W TI (ka)2 { 1 +

I (ka)4 }
7 4 '6

0

c 2 {
+£~(Bo)

.2 J~(jll) - (ka)2 i(ka)J11 0
0

The transverse interaction parameter of a
traveling-wave UP deflector is in natural units
defined as

where W represents the total stored energy per
unit length, k the frequency or wave number in
free space, and Bo the equivalent deflecting field
strength. It is more convenient to investigate
the dimensionless quantity kQ/Rrw = k2W/B~, which
is a function of ka and d/h only, since we limit
our considerations to TI/2-mode operation. By sim
ple integration, the following explicit expression
was obtained:

(11)

(10)

(5)

(4)

Co I
J

. : e_iel
~ J 1 (kr) ~

The time factor e jkt will be omitted from all equa
tions. Note that i 2 - j2 - - 1, but ij i-I. The
transverse force on an extreme-relativistic parti
cle is equivalent to a magnetic field which is
given by

and This result reduces for ka ~ 0 to the expression
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previously derived from the small-hole approxima
tion, that is

The expressions entering into (19) are given by
(11) and (17). Equation (19) reduces for vanish
ing beam holes, i.e. ka ~ 0, to the equation

In lossless structures, the group velocity
equals the energy velocity5 which is defined as

(20)

(21)

1
2"ors

In waveguides with a beam hol~ radius
ka < jll' the peak electric field E occurs in the
slot at ka = jll and its value is

which is identical to the expression previously
derived from the small-hole approximation.

(13)

(14)

(12)

!
W

where P represents the axial power flow. It is
more convenient to express the energy velocity as
a quotient of two dimensionless quantities,

,..

-

where the denominator is given by (11) and the
numerator by-

2
~ = ~ (ka)4 { 1 (ka)2 - 1 }
B2 8 3

o

(15)

It is more difficult to find the value of the peak
magnetic field on the metallic walls, but it is
possible to indicate an upper limit which is

(22)

Note that this quantity is related to the series
impedanc~ of a waveguide which is usually defined
as Z = Bo/P.

The pertinent aspect of Eq. (21) and (22) is that
the peak fields are proportional to co/Boo

+ [ 2 - (ka) 2 ] Ji (ka) - (ka) 2 J~ (ka) }, (17)

where ozP represents the power loss per unit
length. It appears more convenient to de~ermine

the dimensionless quantity RTW rs/k= r s Bo/k ozP,
with r s being the surface impedance. After some
manipulations, we find that

(23)

The characteristic parameters of a UP
standing-wave cavity follow directly fro;-the
above expressions. We adopt the convention that
the transverse momentum PT imparted to a synch
ronous extreme-relativistic particle traversing
the cavity is given by

(24)

where q is the particle charge, t the deflector
length, Po = ozP t the total power loss in the
cavity walls, and RSW the shunt impedance of the
cavity, which is related to the previously defined
Rrw according to

Furthermore, it can be shown that the quality fac
tors of waveguides and cavities are identical, and
that the peak fields in cavity and waveguide are
related by

(16)

The transverse shunt impedance of a UP wave
guide is defined as

B2
R = 0

TW aP
z

k 0 P/B
2

r
z 0 s
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The quality factor of a structure is defined

where t represents the iris thickness.

(26)

(25)

:sw ~ 2;W
o 0

Even though in the stationary state no energy pro
pagates in a cavity, the group velocity of the
corresponding waveguide remains indicative of the
sensitivity of the structure to perturbations.

However, it was pointed out by Lengeler,6 that the
following inequality holds,

(18)

(19)

Q = ..!R.o P
z

or s

by

The losses are proportional to the surface resist
ance r s and it is more convenient: to determine the
dimensionless quantity ors ' which is obtained as
the ratio

-
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The number of wanted pa~ticles nw transmitted
through the separator stage is proportional to the
equivalent deflecting field and the beam hole
radius, that is3

The equivalent deflecting field is limited by the
critical magnetic field and bi field emission, if
superconducting lead is used. a But we showed, in
the previous section, that E/Bo and B/Bo exhibit
in first approximation the same dependence on ka,
whence finally

The transmission of wanted particles is obviously
maximum if ka = jll ~ 1.84, which would imply for
ward-wave operation at a reasonable value of the
group velocity, vg ~ 0.025.

The costs for equipment and operation of a
superconducting rf beam separator depend strongly
on the refrigerator required, and, therefore, on
the rf power losses in the cavity, Po. The cost
figure of deflectors must be compared at equal
performance levels. The rf power losses at equal
Boka and equal length depend on transverse shunt
impedance and beam hole radius according to

f
I

J

....

(27)

(28)

kaex: B
o

It was pointed out that this condition would lead
to forward-wave operation. In the design of trav
eling wave structures, forward waves were shunned
by most laboratories in view of their degenerate
dispersion diagram,8 but it was proven at CERN
that successful operation is nevertheless possi
ble. 9 Degenerate dispersion diagrams are less ob
jectionable in standing wave operation, since, in
general, the degeneracy can be removed by imposing
the propagation constant through a correct choice
of the deflector length. For the purpose of this
paper, we will assume that no restrictions on the
choice of the sign of vg exist, but we should keep
in mind that forward-wave structures will entail
some complications in the design due to the in
creased number of resonances in the vicinity of
the operating frequency.

The AP cavity is obtained from a UP cavity
operating in the n/2 mode by increasing the width
of the excited cells. The slot region of the
coupling cells are in first approximation field
free. A short reflection will show that the same
expressions remain valid for AP as well as for UP
cavities, if d is taken to be the width of the ex
cited ~ell and t the iris thickness. The group
velocity, however, is only meaningful if conflu
ence was achieved by proper adjustment of the
coupling cell radius. Otherwise, the group veloc
ity equals zero.

Numerical results for deflector cavities with
infinitely thin irises (t = 0) were obtained from
the above expressions and are depicted in Figs. 3
to 5, where transverse shunt impedance, peak
fields, and group velocity are plotted as a func
tion of beam hole radius with the cell size as
parameter. We see that the group velocity has a
relative extremum for ka ~ 1.3, but the absolute
maximum is achieved by choosing ka > /3, which im
plies a forward-wave operation. It is worthwhile
noting, that the group velocity is insensitive to
the value of d/h. Furthermore, one finds that the
smallest peak fields occur in small hole deflec
tors, i.e. ka - 0, with d/h - 2. Figure 3 shows a
maximum of the shunt impedance at d/h ~ 1.8, but
this value depends somewhat on the iris thickness.
One finds that in real structures, which have a
finite iris thickness, the maximum shunt impedance
is obtained by adopting the smallest possible
width of the coupling cell. One approaches, in
the limit of vanishing cell width, a geometry in
which the coupling cells are removed from the beam
line, resulting in a side-coupled structure. 7

However, problems connected with the fabrication
of superconducting surfaces exclude this solution.
The width of the coupling cell in AP iris-loaded
cavities has in practice a lower limit due to the
confluence condition and excessive dimensional
tolerance requirements on the coupling cell.
Nevertheless, it is justified to base the optimi
zation of the beam hole size on a deflector geom
etry with a very small coupling cell width; in
other words, we will take d/h = 1.8 in the sub
sequent optimization procedure.

IV. Conclusion

Analytical expressions for transverse shunt
impedance, peak fields, group velocity, etc. of
alternating-periodic iris-loaded deflectors were
derived from the TMll-like small pitch approxima
tion. tt was concluded that alternating-periodic

they are, in view of (17), a function of ka, which
is depicted in Fig. 6. The most economical struc
ture is obtained at a beam hole radius ka ~ 1.9,
resulting in a group velocity vg ~ 0.042. The
ratio Jl(l.9)/Jl(jll) ~ 0.999 indicates that the
choice of ka ~ 1.9 leads to the maximum particle
fluxes and, at the same time, to the most econom
ical solution.

III. Optimization

In this section, an analytical optimization
of the deflector for superconducting rf beam sep
arators will be attempted. Operating frequency
(1.3 GHz) and deflector length (3 m) were deter
mined in a previous design study.3 The results
obtained in Section II of this paper support the
earlier conclusion that alternating-periodic iris
loaded cavities operating in the confluent n/2
mode appear to be ideally suited for superconduc
ting rf beam separators, and, in addition, they
yielded the desirable ratio d/h. The only freedom
left for the optimization procedure is the normal
ized beam hole radius ka.

Insensitivity of the resonant frequency of
the cavity to machining errors, mechanical vibra
tions and similar perturbations is achieved by
large absolute values of the group velocity.

P
o

ex: _...;l=--_
2

RSW(ka)
(29)

(
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cavities operating in the confluent TT/2 mode are
well suited for use as superconducting deflectors
in rf-separated counter beams.

It was shown that the smallest peak fields
and the largest shunt impedance are obtained in
structures with vanishingly small width of the
coupling cells, but it was pointed out that, in
practice, the requirement for confluence and con
siderations of dimensional tolerances impose a
lower limit on the width of the coupling cells.

The optimization of transmitted particles
and of the costs depending on the rf power losses
determined the value of the normalized beam hole
radius ka ~ 1.9. This value implies forward-wave
operation with possible complications due to the
degenerate dispersion diagram. On the other hand,
backward-wave operation with ka ~ 1.3, which was
suggested in Ref. 3, would result in a price in
crease by about 30% at otherwise equal perform
ance levels.

Although the approximations made will limit
the accuracy of the results obtained, we believe
the conclusions to be qualitatively correct, and
expect that future work, which is clearly neces
sary, will follow the direction pointed out in
this paper.
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Fig. 1. Geometry of uniform-periodic waveguide.

- ..-----

-t

-

r---""-

d

I~

a b

-l ~
...

2h

Fig. 2. Geometry of alternating-periodic waveguide.
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Fig. 3. Transverse shunt impedance vs beam hole radius of deflector cavities.
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d/h = 1.0 represents UP cavity, d/h > 1.0 AP cavity.
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field ratio exhibits in first approximation the Same functional

dependence on ka. The curves are most accurate for ka - a and

are invalid for ka > j{l'
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ka > vf 3 implies forward wave operation.
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