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Summary

In a periodic structure, there are always

two basic waves for each fre~uency. Inside a

passband, these basic waves are the two travel­

ling waves which can propagate in both

directions down the structure. At the edge of

a passband (0 or 1t mode), the two travelling

waves become identical, and another basic

solution must be found. This second solution,

instead of being periodic, varies linearly

along the structure. One of the basic waves

is thus periodic, while the second one is non­

periodic, and they have oppoeite parities with

respect to a symmetry plane of t4e structure.

If we consider the adjacent edges of two

neighbouring passbands, the two periodic waves

at these two cut-off fre~uencies have also

different parities. When the structure is

progressively deformed until the two adjacent

cut-off fre~uencies merge, that is when the

structure is being compensated, the non­

periodic wave at one fre~uency tends towards

the periodic wave at the other fre~uency:

therefore, in a compensated structure, both

basic waves are periodic along the structure

at the crossing point of the two passbands.

estimates obtained by matching the maximum

current on the outer wall of two adjacent

Alvarez cells.

Possible electromagnetic waves in a

periodic structure

In a periodic structure with geometrical

period L along the z-axis, the most general

field solution may be represented as a linear

combination of two linearly independent solu­

tions (ll' HI) and (E2 , H2). Because of the

periodicity of the structure, the vector

functions El(Z + L), Hl(z + L) and E2(z + L),

t 2(z + L) are also solutions of the wave­

e~uation,and are thus derived from the former

solutions by the linear relations

A

(1)

HI (z + L); HI (z)

12(z + L) I~ A 1112(Z)

thus varies linearly in general, whereas it

remains periodic in a compensated structure.

l"inally, measured field variations along

the axis of locally compensated non-uniform

Alvarez structures are compared with theoretical

AEsume several cells of a terminated struc­

ture are ~etuned in such a way that the overall

resonrnm fre~uency remains e~ual to the cut-off

fre~uency of the perfect structure; reactive

power flows out of the detuned cells, and such

a non-zero flux can arise only from a combin­

ation of the two basic waves at the given fre-

Une~ual eigenvalues, thus linearly

independent eigenvectors.

The canonical form of A is

where the 2 x 2 matrix A is independent of the

coordinates.

By a suitable choice of the basic solu­

tions (EI , HI) and (E
2

, H2), the matrix A may

be put into Jordan's canonical form. If we

denote the two eigenvalues of A by ~l' ~2' we

must distinguish between three cases :

case I

The field between two de tuned cells~uency.

-

-
-
-
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oase" i Equal eigenvalues A with one eigen­

vector.
This case thus corresponds to the edge of a pass­

band.

zero.

where~ is any constant different from

The canonical form of A is

II ~ ~ II Since the matrix A is supposed to have only

one eigenvector corresp:anding to A, we get with

jordan's canonical form

~ase 3 # Equal eigenvalues A with two indepen- r El(z + L) AEl(z)
dent e igenvec.t,ars • ,A

"-
The canonical form of A is

II ~
0

II l
E2 (Z + L) AE2(Z) +~ El (z)

A

This case thus corresponds to the

particular value ,= O.

The determinant of A is easily shown [1]
to be unity. Therefore Al A2 = 1 in all cases,

and we may take

JH1 (z + L)

1H2 (Z + L)

or more generally

We now look for the implications of eq.(l)

in the three cases.

os oS
Case 1. Al r A2 , i.e. e- J r e J or S r n~

(n, any integer).

From (1) and (2) we get

11.1

wher.e e may be complex.

r El (z + L)
J

1E2(Z + L)

-je .... ( )e El Z

(2) fr1
(Z

+ pL)= AI11(Z) ...
E2(Z + pL)= AP [E2(Z) + p ~ El(Z)]

.",

(5)

i
P1(Z + pL) = APHI(z) -'

1H2(Z + pL)= AP [H2(Z) + P~Hl(Z)J
...J

1, 2, 3.·.
p 0,

-1, -2, -3 •••

JHI(z + L) e- j e HI(z)

1H2 (Z + L) = e
jQ H2 (Z)

The two basic solutions (El,Hl ) and

(E
2

,H
2

) thus appear as waves travelling res­

pectively in the positive and in the negative

z-direction, both having a (complex) phase

shift e per cell along the structure.

Oase 2 ° Al A2= A viith A
2 = 1 •

We have A = 1 when 8 = 0 and A = -1 when e ~.

The solution (El , HI) is periodic, with

period L when e = 0 and period 2L when e = ~.

It may be considered as a travelling wave

having a phase shift per cell equal to 0 or ~,

but nothing allows it to be distinguished from

a standing wave.

The second solution (12 , H2) exhibits an

overall linear variation along the structure,

and is de:r:I.ned only up to an additiOLal term

(- ... )proportional to the periodic solution El,Hl •
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From (5) we get the complex Poynting

vector along the structure :

£or the periodic solution,

~ [El x HI-J = t [El x Hl -}

(z + pL) (z)

for the non-periodic solution,

( 6)

waves. In the mathematical theory of Hill's

differential equation [2], this case is called

a case of coexistence of two periodic solutions.

Since the most general solution is a linear

combination of (El , HI) and (E2 , H2), any

solution is then periodic.

-
-

t [E2 x it2• ] ~ t [E2 x it2• ] + *lJf [El x it2• ]
(z + pL) (z) (z)

+ p2f ,12•.~ [El x itt]
( z)

(7)

-
-

-

-

-

If we consider the region of the structure

which is enclosed between two cross-sectional

planes at z and (z + pL), the difference be­

tween the average electric and magnetic energy

.stored in this region is proportional to the

total flux of the complex Poynting vector

flowing into it. For the periodic solution,

this flux is zero by virtue of (6): in every

cell, the stored electric and magnetic energies

are equal. As shown by (7), such an equality

does not hold for the non-periodic solution.

6Cee 3. ~l = A2 A with A2 = 1.

Since the matrix A is now supposed to have two

independent eigenvectors corresponding to A,

we get with Jordan's canonical form

,
JEI (z + L) All(z)

1E2(· + L) AE
2

(z)

(8)

Iitl (· + L) ml(z)

1H2(z + L) = iit'2(Z)

,In this very particular case both (EI ,HI) and

(~2' H2) are periodic solutions, with period

!L when Q = 0 and period 2L when Q = n. They

~ay be considered as travelling or standing

In short, within a passband or a stopband,

there exist two basic travelling waves defined

by (~). At the edges of a passband, Q = 0 or

n : the waves travelling in the positive or in

the negative z-directions become identical to

each other and consequently also identical to

standing waves. They are periodic in z, with

period L when Q 0 and period 2L when Q = n.

The second linearly independent wave,

according to (5), is in general non-periodic

instead it varies linearly along the structure.

In very special cases, however, the second basic

wave is also periodic down the structure.

Symmetry properties efthe solutions at

o mr'"1'li -mode in a symme'ir-ioalstructure

Let us assume, which is the case for most

accelerating structures actually used, that

the unit-cell of the structure has a symmetry

plane normal to its axis. If such a plane is

chosen as the origin of the z-coordinate, all

the planes z = n ~ (n, any integer) are also

sYmmetry planes of the structure.

Due to the sYmmetry or the structure about

z = 0, it may be shown [lJ that the periodic

solution is either symmetrical or antisYmmetrical

about z = O. The second (in general non­

periodic) basic solution may then be taken

-
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respectively as antisymmetrical or symmetrical

about z = o.
In ~ mode, ~ = ~1. Therefore

I

.J

-+ -+b) z = 0 is a symmetry plane for E
l

, H
2

and- ....an antisymmetry plane for HI' E2 •

This case is deduced from a) by permuting.. ..
E and H. Whence

It is also worth noticing that the parity

of a periodic solution is the same about all

sYmmetry planes of the structure in 0 mode,

but in ~ mode this parity is different about

the symmetry planes z = nL and z = (2n + 1) ~ •

Boundary conditions for the two basic

waves at 0 or ~ mode in a symmetrical

structure

From the sYmmetry properties just mentione~

there are two possibilities :

In o mode,

- LHI t('2)

In 1t mode,

-+ L
Elt ('2)

o

o

o

o

a) z = 0 is an antisymmetry plane for El ,H2
and a symmetry plane for 1

1
, E2 •

Designating with a subscript t the part

of the field which is transverse to the z-axis,

we get at once

o

We do not write the conditions for the

z-components of the fields, because they follow

from the conditions for the transverse compo-

nents by Maxwell's equations.

Taking Z = L in equation (,4) yields- "2

J11 (~) ii1 (- ~)

"l -+ L -+ L -+ L
Ei2') !IE (- -) +' E (- -)2 2 1 2

JHI (~) m(- l!)
1 2

1H/~) >Jt (- l!) + ,iI (_ l!)
2 2 1 2

In 0 mode, ~ = 1. Using again the sym­

metry properties about z = 0, we obtain

These boundary conditions are summarized

in table I. The periodic waves are determined

by homogeneous boundary conditions, to which

there corresponds a discrete spectrum of eigen­

frequencies. In contrast, the non-periodic

waves are determined by non-homogeneous boundary

conditions which require a preliminary know­

ledge of the corresponding periodic wave, and

also prevent the non-periodic waves to be

excited in a finite ideal structure terminated

by metallic end-plates.

In all cases, the flux of the complex

Poynting vector across any sYmmetry plane of

the structure (at z = n~) is zero for the

periodic wave.

Taking for example z = 0 in (7), we then

get for the non-periodic wave

1[£2 x H2"] -t [12x H2"J
(pL) (0)

I {\ Iit1 x ~" ] 4"[~2 x it1" ]} ( 9)
- (0) (0 )

The flux of the complex Poynting vector

across a symmetry plane of the structure thus

varies linearly from cell to cell ; in other

I

J
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Table I. Eoundary conditions for the two basic waves at a passband-edge

a) The periodic wave is antisymmetrical b) The periodic wave is symmetrical

about the plane z = 0 about the plane z = 0

o mode

Periodic wave Periodic wave

,

I I
,

I •, I

I •, I,
0 L a L

'2 2

Non-periodic wave Non-periodic wave

j

1-{; .:;; I It
t;;

I (PeriodicL
(periodicLI

= "2 . = '2 .
~~--

field at 2') field at 2)
0 L 0 L

'2 2"

1t mode

Periodic wave Periodic wave

I I ! I
0 L 0 L

2' 2"

Non-periodic wave Non-periodic wave

I
1t

t;; [ t;;
I (periodic

L IttI = -"2 . = - 2" . (periodic
LI field at 2')I field at '2)

0 L 0 L
'2 2

--,-

--- short circuit ott = 0) ------ open circuit (itt = 0)
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Fieure 1. The two basic waves at 0 mode in an Alvarez structure without stems

(Proton energy 18.737 Mev)

a) Periodic wave, antisymmetrical with respect to the plane z
b) Non-periodic wave, symmetrical with respect to the plane z

words, the difference between average electric

and magnetic energy st.red in a cell is the

same from cell to cell, but it is not zero for

the non-periodic wave. This fact together

with the non-homogeneous boundary conditions

show that the non-periodic wave is not

resonant, but driven at the frequency of the

(resonant) periodic wave. A somewhat similar

idea has been put forward recently by

Carter [3].

without stems [4]. For such a EOIO mode, the

periodic wave is antisymmetrical about the

plane z = O. The electric field lines, or

lines of constant rH~, are shown in figure 1

for both waves. The indicated numerical

values are those of rH~, normalized to the

maximum value ~or the periodic wave. For the

non-periodic wave, they correspond to ~ = 2.

Parity of two periodic waves corresponding

to adjacent cut-off freguencies

As an example, the boundary conditions of

table I have been used to compute the two

basic waves at 0 mode in an Alvarez structure

Two neighbouring passbands of a structure

may lie close together at n mode (figure 2a) or
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at 0 mode (fig. 2b). If, by continuous deform­

ation of the structure,the two adjacent cut-

off frequencies can be brought together so that

the two passbands join up, the passbands are

said to be confluent and the structure is

called compensated.

The periodic waves corresponding to two

adjacent cut-off frequencies must satisfy the

boundary conditions of table I~ at the same

time their eigenfrequencies may become

infinitely close by progressive shaping of the

structure. Since the spectrum of eigenfre­

quencies is discrete for all homogeneous

boundary conditions of table I, this means

that, except for the case of degeneracy which

we disregard here, the two periodic waves cor­

responding to adjAcent cut-off frequencies must

have different parities.

This statement is illustrated in figure 2. Al­

though it is the only statement which can be

made about the sYmmetry of periodic waves at

cut-off, it is particularly important. First,

it implies that in an ideal terminated structure,

only one of the two periodic waves corresponding

to adjacent cut-off frequencies can be excited,

because only one periodic wave can satisfy the

boundary conditions at the end-plates. More­

over, when the stopband between two neighbouring

passbands is made vanishingly small, the two

periodic waves at the edges of the stopband

ultimately become two periodic waves having the

same frequency but opposite parities, thus re­

presenting two linearly independent periodic

waves: there is coexistence of two periodic

solutions, which is just case 3. We see now

that this very special case arises when the

structure is compensated. It is also clear

that, except for the case of degeneracy, the

two coexistent periodic waves have different

parities.
Fig 20

Fig. 2. Lispersion curves, showing the sym­
metry of the periodic waves at Gut-off for

two adjacent passbands.

ws' angular frequency of a periodic
symmetrical wave

wA' angular frequency of a periodic
antisY:Illl'letrical wave

Compensated structures

In such a case of coexistence, the two

sets of boundary conditions a) and b) in table I

simultaneously admit a solution at the same

frequency. This means that the homogeneous

problem associated with the non-homogeneous

boundary conditions for a non-periodic wave

now admits a non-trivial solution at the fre­

quency of the periodic wave: the non-homogenous

problem then no longer admits a solution at

this frequency, and tte non-periodic wave no

longer exists. This is to be expected, since

the two basic waves are periodic, so that every

solution is also periodic. In fact, when the

stopband is shrinking to zero,' is going to

zero, and the non-periodic wave ultimately re­

duces to the periodic wave with opposite parity~

the two basic waves thus remain continuous when

passing through the compensated case.

An accelerating structure is normally

designed to work with a periodic wave in 0 or

.n·moQ.&- {-this Wa:'Te~ % -aR-t-isymmetrieal with

~'t t.()···~.~c .end.~pla.t.es. aJ: -the. .QaYity).,
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the integral of the non-periodic field over a

In drift tube structures it is essentially

the integral of the field which determines the

acceleration in a gap. Taking the z-origin in

the middle of a gap, there are two possibilities:

cell

d1 vanishes, and

pL
~2 • di is then periodic.

pL

L
~+

length JL

-'2 +

0, thez
so that the field is periodic down the structure.

If some perturbation of the structure causes

the second basic wave to be excited, the total

field will remain periodic in a compensated

structure, because this second wave is also

periodic down the structure. In a non-compen­

sated structure, on the other hand, any excita­

tion of the second (non-periodic) wave will in­

duce a tilt in the total field, since this non­

periodic wave varies linearly along the struc­

ture.

The second basic wave is always excited

when several cells of a terminated structure

are detuned in such a way that the overall

resonant frequency remains equal to the cut-off

frequency of the perfect structure. Indeed,

due to the unbalance between stored electric

and magnetic energies in the detuned cells,

reactive power must flow out of or into these

cells. As already pointed out, the flux of

the complex Poynting vector across any symmetry

plane of the structure is zero for a periodic

wave, such a non-zero flux can arise only from

a combination of the two basic waves, which

leads to the most general non-periodic solution

for normal structures, and to a superposition

of periodic solutions having both parities for

compensated structures. The field between two

detuned cells thus varies linearly in normal

structures, whereas it remains periodic in a

compensated structure.

An important remark should be made here.

If instead of the axial electric field, we con­

sider the integral of this field on the axis

over a cell length, we get from equation (5):

a) the periodic wave is anti symmetrical about

z = 0 (this is always the case when the struc­

ture is terminated by a metallic end-plate at

z = nL). Then the voltage of the periodic

field across a gap does not vanish, and by

(10) the voltage of the non-periodic field

varies linearly along the structure.

b) the periodic wave is symmetrical about

z = o. The voltage of the non-periodic field

across a gap is then also periodic down the

structure.

Although the latter possibility can never

be realized in a uniform structure which is

terminated by a metallic end-plate at z = nL,

it can OCCl~ locally in a non-uniform structure,

as shown in figure 3. This figure is part of

the recent measurements made at CERN in order

to investigate the field stability against

perturbations in an accelerator tank[5]. It

shows the variation of an averaged electric

field Emax • giL along a scale model of the

tank 2 (10-30 MeV) of the CERN linac injector.

1

J

I...

(10)

When the periodic field El is symmetrical about In figure 3 this model was compensated on the

average in 0 mode by using a cross-bar stem

configuration with two stem diameters:
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F'igure 3. Electric field along the axis of a partially compensated non-uniform structure,

and resonant frequencies of individual cells in the Alvarez and stem 0 modes.

without perturbation (frequency 1253.54 MHz)

.-.-.- with a tank perturbation of -2 ~rnz in cellI

-

a diameter of 6.16 mID, which would compensate

locally the cell no. 10, and a diameter of 12 I!lr.l,

which would compensate locally the cell no. 26

(see figure 17 in reference 5). It is remark­

able that the slope of the field just vanishes

in the neighbourhood of these cells. Consider­

ing the structure as locally uniform, we expect

from the above reasoning that the field should

be flat in the cell where the oper&ting fre­

quency equals the 0 mode frequency of the stem

resonance, since the periodic wave is then

structure, there must be a discontinuity in the

field slope when the stem diameter changes

abruptly.

Figure 3 also shows theoretical estimates

of the local Alvarez and stem 0 modes frequencies

along the tank, together with an estimate of the

operating frequency. The discrepancy of 3.5 MHz

between this estimate and the measured operating

frequency can be attributed to manufacturing

errors in our tank 2 model [5J

slope of the field changes sign, as does the

difference between the 0 mode frequency of the

stem resonance and the operating frequency.

Since the same situation occurs twice along the

-
symmetrical about z = O. At tbis cell the

Non-~niform QG~ensated structures

When a structure is not strictly periodic,

it must be compensated locally everywhere in

order to achieve good field stability against
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perturbations [5J. OLce this has been done,

the structure is extremely insensitive to manu­

facturing errors and is thus likely to produce

the theoretical field which is computed for a

perfect structure.

The question then arises, how to compute

the theoretical field in a non-uniform Alvarez

structure by matching cells which are computed

individually using short-circuit boundary condi­

tions (see table I,a). This matching of

computed fields is clearly not possible every­

where on the common surface between two adjacent

For tank 1 (figure 4), the splitting of

the theoretical curve into three parts marked

with A,B,C corresponds to a change of the drift

tube bore diameter from A to B, and of the

drift tube outer diameter from B to C. The

agreement between theoretical and measured

fields is as good as may be expected from the

mechanical accuracy of the model; in fact, the

difference between the measurements made on

the two types of compensated structures for tank

1 shows the magnitude of the experimental

errors.

matching the azimuthal magnetic field at one

point of this surface almost results in a per­

fect matching at all other points [6]. As a

working condition, but hoping for a better

condition in the future, we have chosen to

match the maximum value of rH at the outer
q>

wall of the cells, where this quantity repre-

sents the total current flowing in the wall at

the cross-sectional plane which passes through

the middle of a drift tube.

cells. Nevertheless, for low energy cells, For tank 2 (figure 5), the agreement be­

tween theoretical and measured fields is still

qUite good if it is taken into account that

the model has not been perfectly compensated and

moreover that, due to the varying stem diameter,

the individual cell frequencies exhibit a large

variation along the tank [5J : it should be

remembered that the field perturbations due to

tuning errors in a compensated structure are

zero only up to the first order in these

tuning errors.

This has been done for the 25 first cells

of the new injector in Saclay (0.75-5 MeV) and

for the tank 2 of the CERN linac [5J. The

average axial field per cell turns out to be

very nearly constant in both cases. The

corresponding computed variations of the axial

field at the centre of the gaps,referred to the

average field in the first cell, and multi­

plied by giL in order to deal with a quantity

which varies rather little along the tank,

are shown respectively in figures 4 and 5.

The figures also display the same quantity as

measured by a standard frequency perturbation

technique, on the best locally compensated

models of both tanks [5]. The absolute scale

for the measured field has been determined by

using the theoretical value of stored energy

in all cells, obtained by numerical computations.

Conclusion

In a periodic structure at 0 or n mode,

in addition to the well known periodic field

solution, there exists a second basic solution

which in general exhibits an overall linear

variation along the structure. For a com­

pensated structure, on the other hand, this

second basic solution is also periodic. There­

fore, if the second basic solution is excited

by perturbations in the ideal structure, the

total field will have a tilt in normal

structures, whereas it will remain periodic

in a compensated structure.
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Figure 4. Comparison of theoretical and measured electric field at the centre of the

gaps, for the two best locally compensated tank 1 models.

theoretical field

-~-x-x field measured with two stems at 45 0
, alternating at 1800 from one

drift tube to the next

field measured with two stems at 150 0
, all parallel.

4030

GAP NUMBER

2010

_._.~~e!E.~ ...pe.!E~.!...C.!!!_._._._._._._._._._._._._._._._._._._ ._._

Theoretical

~~-_ ...... -- ---_--" VI v--- ......
,,/"""'-- '----...._-----------......,,-.._-----"

Measured

1-'

1.3
~

~

~ 1.2

~

'"8' 7.T
~
~

~ 1.0
S...
0

'" 0.9
~...
'"S 0.8
15
~

~ 0.7

.~
~ 0.6

0.5

-

-

Figure 5. Comparison of theoretical and measured electric field at the centre of the gaps,

for the best locally compensated tank 2 model.

Cross-bar structure, with variable stem diameter.
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