
-
- LONGITUDINAL AND TRANSVERSE T AND S TRANSIT TIME COEFFICIENTS

:B. Schnizer1[)

European Organization for Nuclear Research
Geneva, Switzerland

-
Summary

Difference equations describing the motion
of a proton through an accelerating gap have
been given by P. Lapostolle at the Frascati
Conference (1965) and by the author (Washington
Conference, 1967). The dynamical coefficients
contained in them are discussed here. There
are two types, called T- and S-coefficients.
T-coefficients belong to motion across the
whole gap and have a simple form (transit time
factor times a modified :Bessel function).
Difference equations through the first half of
the gap needed to determine the mid-gap values
of the particle coordinates, involve in
addi·tion S-coefficients. Exact expressions
(series expansions) for the latter are given
here assuming that the Fourier coefficients of
E (r=a), the longitudinal field along the gap
cfrcumference, are known. Approximations for
the S-coefficients are discussed. Corrected
Tables of non-relativistic and relativistic
difference equations are given.

(1)

E (z,r)=-E (-z,r)
r r·

2. Field Representations

The field in 3 accelerating gap is
supposed to be an t ~ially symmetrical time­
harmonic TM-field I angular frequency W ) whose
compo~ent E is syn~etrica1 about z = 0, the
centre of tne gap.

E (z,r,~)=E (z,r)cos(~+~)z,r z,r 0

method how to derive th~s d~fference equation
is described elsewhere3J4)5J. Only corrected
versions of the difference equations are
listed in Tables III to VI.

E (z,r)=E (-z,r)z, z
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~ = w t is time-angle (= phase). Field com­
ponents are expressed by Fourier-integrals:
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- At the Frascati Conference P. Lapostollel )
gave a set of difference equations which co2yect
and extend the so-called Panofsky equations
describing the phase change and energy gain
along a linear accelerator. In this new version
transverse motion too was taken into account.
A new and improved derivation (including )
relativistic effects) was given by the author3 •
The difference equations for the change of
kinetic energy, phase, radial slope and position
across the whole gap involve only T-coefficients
which essentially consist of the transit time
factor times a :Bessel function. However, these
still depend upon the unknown mid-gap values of
the particle coordinates. For the determination
of the latter difference equations for the first
half of the gap must be used. These contain
besides the T-coefficients S-coefficients which
are of a more intricate nature. The expressions
for all these coefficients are given here and
approximations for them are discussed. The

y = Y1 + iy 2 ikr
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a is the inner radius of the drift tube. The
amplitude function b(k) can be related to
field E (z,a) applied along the gap (r = a,
Iz I ~ p'2):

(B O = 1 ,B = B ) by a Green's function for
a wave guid~. p-~ g + 2R. where g is the gap
length (= minimum distanc~ between drift tUbes)
and R. is the radius of curvature of the inner
drift

1
tube rim. The instantaneous peak

"voltage" (at <p = - <p ) along the line r = const.
is: 0

( 6)

ClO

VoT (k,r) " _[Ez(z,r) cos(kz) dz

VoTo(k) Io(krr)
ClO

VoTr(k,r) E _IEr(z, r) sin(kz) dz

VoTo(k) k ~ (krr)/kr00

V T (k,r) l!
o m

with

~OO

E1.s~Q) Bs cos (21tsz/p)E (z,a)z

vCr)

00

E (z,r) dz = V J (k r)
zoo 0

They are known as soon as the transit time
factor:

To(k): J E (z,o) cos(kz) dz =
-00 Z (s)

(b(k)/b(O» x J (k a)/I (k a)o 0 0 r

(b(O) = p). yea) = Ell p, V = yeo) = E1 p/J (k a).
E1 is the average field s~rength across tRe 0

gap, V is the voltage along the axis (of one
cell).o Evaluation of the integral repre­
sentations (2) with the amplitude function (4)
gives series expansions of the field. These
still contain the unknown Fourier coefficients
E1 ' B. A finite number of them may be
extrac¥ed from cavity fields calcula~jd by
numerical methods (mesh calculations ) which
usually give numerical values for U=-rH~(z,r).
The series for U = - rH(z,r) (Table I) 1S used
for r = a to set up a system of n equations of
n Fourier-coefficients (n is the number of mesh
points within the gap where values of U are
given).

3. Beam Dynamics Coefficients

Beam dynamics coefficients are Fourier
transforms (in z) of the field components.
There are two types of them, T- and S­
coefficients. T-coefficients are integrals
over across the whole interval (_00 ~ z ~ 00).
They appear in difference equations where the
particle crosses the whole gap cell (or gap).
Their expressions are simple. The S-coefficients
are defined as integrals over 0 < Z <00 and are
needed in difference equations along-half of
the cell. Their expressions are complicated.

is given and are nothing more than convenient
abbreviations. T (k) is a measure of the
distribution of EO in the longitudinal
direction. T (k); its derivatives T'(k),
T"(k) (and th~ above T-coefficients)oare
ngeded for the single value k = w / z (z =
longitudinal velocity of the partic~e a~ the
gap centre). They may be easily obtained
from fields given numerically by numerical
integration of the integral defined in (S)
(and from the formulae (6». If the cell is
regarded as a closed cavity, the limits of
integration ~ 00 in (6), (S) and (9) must be
replaced by ~ 1/2 (1 is cell length) and k by
21t/1. This hardly changes the numerical
values of these quantities. This method may
be more convenient than to express T (k) by
the Fourier coefficients B introducgd in
Chapter 2: n

T (k) T (k) (1 + y)
0 00

J (k a)
sin (/¥~2)Too(k)

o 0
(Sa)I (k a)a r (kp 2

00 2(-1)~ (kp)2
Y - L n

n=1 2 2
(21tn) - (kp)

The longitudinal, transverse and magnetic
T-coefficient are defined as:

The longitudinal, transverse and magnetic
S-coefficient are defined as:
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VoSl(k,r) 2 J E (z,r) sin(kz) dz
z

00°
V S (k,r) 2 J E (z,r) cos(kr) dz (9)

a r r
00

0

JV S (k,r)
2c

~Hg(z,r) sin(kz) dz
o m k

0 0

Sl and S (as well as T] and T ) are dimension­
less while S (and T ) nave th~ dimension of a
length. Thi~ may beminconvenient in numerics:
T

l
, T , Sl' S are somewhat smaller than

unity; S andrT are smaller than these by a
factor 15 to 10~. Defining kT and kS in
place of the expressions givenmin (6) ~nd (8)
brings disadvantages for the writing of
difference equations. For numerical work it
is suggested to normalize T and S by multi­
plying them by 2n/1 and to modify Nynamical
formulae in Tables V and VI accordingly. 2(In
all these formulae S (or dS /dk, d2S !dk )
is preceded by k, somthe norillalizatio~ can be
done in the following manner
kS = (k1/2n)x(2nS /1)=(kL/2n)xS ,
k1}ll2n ::.'!: 1.). m m norm

The S-coefficients are related to each
other by the following equations:

2W~HQ(0,r)/k ­

V k
2

S (k,r)/k
orr

Vo aSr(k,r)/a r 2 Ez(O,r) - (10)

- Vo Sr(k,r)/r - k VoSl(k,r)

These probably will not be exactly valid, if
the limits of integration in (8) are + 1/2,
but may represent a good approximatio~. They
could be useful for the calculation of radial
derivatives of S-coefficients since they
permit to circumvent the need of radial
derivatives of the field components. With the
help of series (4) for b(k ), series expansions
of the S-coefficients may ~e found. They are
listed in Table II. Unfortunately they are
complicated. Sl and S are more important
than S which only app~ars in relativistic
formul~ where the need for the half gap
difference equations is less severe.

Fourier coefficients E and thereafter
S (k,r), Sl(k,r) (with k =~/z ),0 < r < a,r 0- -
have been calculated from the potentials
U = - rHQ of various Alvarez cavities
(0.6 - 8 MeV). There emerge the following
results:

a) Sl may be approximated by the first two
terms and by the first (eventually second) term
of the simple series in n. The contribution of
the double series is negligible. The first
term is small at low energy, appreciable at
higher energies. This can be explained as
follows: kg/2 ~ n/2. In low energy cavities
kp/2 = k(g/2 + R.) comes near to n and the
cotangent is sm~ll, while at higher energies!
R. is small compared with g and kp/2 is nearer
t6 n/2 and the cotangent is larger. The term
proportional to J (k r) is the most important
one, it is alwaysOgrgater than Sl(k,r); it is
almost constant with r. The terms with n = 1
(2) contribute 30% (t%) at .6 MeV, 10% (2%) at
8 MeV at r = a, for smaller r the situation is
better) Therefore at low energy the formula
for SI derived for homogeneous field
E (z ,a) = ~ ( Iz I~ p/2) appears not a very
g~od approximation. Sl decreases slightly
with increasing energy.

b) S may be approximated by the single term
and by the first two (eventually three) terms
of the series in n while the double series can
be neglected. The absolute value of the term
with n = 1 (2, the rest of the sum) contribute
110%, (10%, 2%) of S at 0.6 MeV, 50% (25%,
37%) of S at 8 MeV.

r
At higher energy terms

with greater n become important, but the error
introduced by their neglection is less harmful
since in the difference equations the S are
multiplied by eV /2W and the kinetic e~rgy W
. 0
~ncreases.

Derivatives of S-coefficients are under
invesJigation and results will be given in
ref. 5 •

4. Difference Equations

Tables III to VI contain difference
equations for particle dynamics in an
accelerating gap. They have been slightly
correct3, in comparison with those published
earlier • Increments as needed in the thin
lens approximation are listed, e.g.
~~ = ~(q> - z dq>/ dz), ~(r - z dr/ dz)= ~r. For
example, the trajectory of the entering non­
relativistic (relativistic) particle is
extended for free motion up to the centre;
there is the thin lens, the coordinates are
incremented by ~W, ~~, ~r', ~r of Table III
(Table IV) and then sets in free motion with
these new values. The difference equations
of these Tables (III and IV) contain tre still
unknown mid-gap ~alues W, q>, r', r. The
difference equations of Table ~ ang VI for the
motion through the first half of the gap may
be used to determine them. As 8 matter of
experience, the corrections involving
S-coefficientsbecome less and less important
with increasing particle energy.

-
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All these difference equations have been
found by first orde3)~~rturbation theory as
described elsewhere )5). The action of the
gap field on the otherwise freely moving
particle is treated as a perturbation.
Solutions of the equations of motion are
expanded into power~ of ae. = e\l1 /(mWpz )
(= impact of the field during one perio~/free
particle momentum) and terms linear in de lea.d
to the difference equations. In the non­
relativistic equation only the electrical
field has been retained. In the relativistic
treatment are considered the magnetic field
and the mass variation too. The integral
representations (2) of the field are inserted
into the first order equations and z and r(i~

eE (z,r,<p)(e~ual the zero order solution <p 0)
<PJ~ and r 0 = r <p/w + r. The equations of
motion can then b2 solved ~y quadratures.
Afterwards the integrals in k are evaluated
by Cauchy's residue theorem. zFor integrals
across the whole gap there are only dynamical
poles at k = + k (poles at J (av ) = °z - 0 I
correspondlng to the evanescent wave guide
modes can be neglected) rendering the terms in
Tables III and IV. They cut out from the
continuous spectrum of waves in (2) the partial
waves whose phase velocity equals the particle
velocity. For the half gap difference
equations the trajectory ends at the gap centre.
In the k -plane appear additional poles at
k = + 2~n/p, n = 0,1,2, •• They describe
standIng waves as they exist within the gap
and yield the simple series in n contained in
the S-coefficients.
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Table I - Series Expansion of the Gap Field

U(z,r) = - r H~(z,r) = 2 E
1

EW r p x

E (z,r) = (ewr)-1 aU(z,r)/ar
z

E (z,r) - (aor)-1 aU(z,r)/az
r

- Table II - Expressions for T- and S-coefficients

- T (k,r) = T (k) k 1 1(k r)/k
r 0 r r

T (k,r) = T (k) 1
i

(k r)/km 0 r r

-
-

Jo(kor) 00 pk B I (Il rip)
Sl(k,r) - ctg(kp/2) T I (k r) + - 4 J (k a) ~ n o n

0 o r pk/2 o 0 2 2 I ( Il alp)n=, (21tn) - (kp) o n

(kp) (~2 !, B (-1) n 00 Jo(jvr / a ) exp(-nvp/2) jv
- 8 J (k a) n

~.o 0 1 + 5 Jj (j v) 2 2 2 2no v=, (kp) + (T'Jvp) (21tn) + ( T'Jvp)

,--

S (k,r)
r

00

ctg(kp/2) T (k) k .T. (kr)/k + 4 J (k a) ~o , r roo

Bn (21tn)2 1

(21tn)2 _ (kp)2 Iln

-
J1 (~r/a) exp(-T'Jvp/2) (T'Jvp)2

J1 (,1, ) (kp) 2+ (TV p) 2 ( kp) 2+ (T'J vP ) 2

1
- S (k,r)p m

-
-

00 B (_1)n 00 J1 (.:iv r/a) exp( -fJv p/2) 1
- 8 J (k a) kp ..£ ~ n ~

o 0 a 1 + 0 no J.t (,1,) (kp)2+ (ivp)2 2 2
n=, V=: , (2rm) + ( T'Jv p )

[(21tn)2 _ 2 J1/2
Il = (kop)n

- 413 -



Table III - Nonrelativistic change of longitudinal kinetic energy, reduced phase, radial slope

and reduced radial position across a gap

..

b.W eV T I coscp + eV d/dk(T k 11 ) r' sincp
0 0 0 0 o r

b.q, ak d/dk(T I ) sincp - ak d2/dk2(T k 11 ) r' coscpo 0 o r

b.r' - a (T k ~ /k ) sincp + a [d/dk(Tok 1') ToI~J r' coscpo r

/).'i: - a d/dk(T k J1 /k ) coscp - a [ d
2
/dk

2
(T ok ~') d/dk(T I U r' sincp .""o r o 0

Table IV - Change of the Same Quantities in the Relativistic Case

r'sincp ] 3[(T k I 1/k )o rb.W
r

b.- /( _A 2)1/2
CPr 1 t-'o r'coscp

r'coscp

~ Adding the term in the square brackets gives the gain in total kinetic energy. -
Table V - Change of Kinetic Energy, Reduced Phase, Radial Slope and Reduced Radial Position along

the First Half of the Gap

b.W
1

b.W/2 + (eV /2) [ Sl sincp - d/ dk asl/ar r' coscp ]
0

[ dSl/dk sincp ]
wrI.

b.~1 b.q,/2 (ak/2) coscp + d2/dk
2

asl/ar r'

b.r1' b.r'/2 - (a/2) [ S coscp + (d/dk8sjar + Sl) r' sinq> ]r

b.r1 b.r/2 + (a/2) [ dSjdk sincp - (d2/ dk2 a sjo r + dS/dk) r' coscp ]
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-
Table VI - Change of the Same Quantities in the Relativistic Case

D.W /2r + _(.!. <lSI [_ S J )
ar dk r r' cosqJ J

-

-

D.r'
r1

k
2

k ( T I [ dS dS ] )Joex ,or m
k 2 "'2 r ~ cosqJ - dk + k dk r' sinqJ

~ Adding the term in the square bracket gives the gain in total kinetic energy.

Common to Tables III to VI

-
ex

W

eV / (2W)
o

m/2 (dz/ dt )2
o

(m/2) z2
o

m rest mass

k
2
/k

2
o

~2
o

- The argument k = w /z of T (k), k r of the modified Bessel functions I (k r) and k, r oo 0 ron r

been dropped. In all the expressions of Tables III to VI all these parameters refer to mid-gap--
of Sl(k,ro)' S (k,r ), S (k,r )rom 0

and the subscript
o

of and r' = (dr/dz)
o 0

have

-

values.
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