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1, Introduction Except for the factor ¥, K coincides with the
electrostatic Green function in the duct., After
The space charge field in a beam duct is Fourier transforms we have
expanded in a power series of a parameter o¢ which )1 B‘
is proportional to the square root of wall resis- %2 372 )C#)k" - ~5— (2.5)
tivity, The leading term in the expansion is the ¢
field in a duct of perfect conductor, The self- (h‘l(zq)_ Ikh(xgl)(Y) Ph,()(Y)dde (2.6)
defocusing force of the space charge is modified
by the induced charge on the wall, Generally, and so on, where subscript h means the follow-
the induced charge gives a longitudinal focusing ing: +oo
force, while it invariably is accompanied by
trangverse defocusing forces (Earnshaw's theorem), ]Lh<r‘i)= J -j(xgz) e
Beside these, the whole space charge is attracted -
::lgw:rd the wall when the charge distribution has j('(”“.ﬁz)- 2 f 'l‘ (xg)e Ah 2.7
ymmetry around the axis, This contributes J
to the orbit distortion and the instability of .
the orbit with respect to transverse displacements, For a circular cylinder of radius @,
The second term in the expansion gives a g
decelerating force for the charge, which makes k(rgz’ E@Z')
up for the energy dissipation in the duct wall ©
together with transverse forces, which are res;)on- = .1. )} OM{:)J- O"rg)‘ ( K)\.le-Z[)
sible for resistive instabilities, 2ra 2 Aol Jl:(?(ce)
In the following, Section 2 to 4 deal with puit “JM(A.,Q-E)I..()\..Q%)MM(O ®)0"P( Y).Nz—Zl)
the field of traveling charge in a cylindrical == Ty T2y gy

7!0»
duct of perfect conductor, The expansion of the w5 Ame Tty Omd)

field in the parameter o< and the effects of the K( )
wall resistivity are discussed in Section 5, kh(ro(k®)=5;|e{'[o(%n)l<oc% ) In(haL(hr)L(hE}
2, Field Equations il Z {IM(IM )Km(l?ﬁ) ;“((Zmﬂ)I"'(wr)IM(L:JR)}MM(e@)’

The scalar potential ¢ of a space charge (2.8)
field satisfies the wave equation

where Aml is the £-th zero of Bessel function

LR = P d = =R or r, =R ry,=r
( A — E°}”°§E=) 4; =-z. (2.1) Jm(w), and r, = r, T, 1 =R, 2
° according to r ¢ R or R {( r, Profiles of the
Assuming uniform structure of the wall and axially symmetric part of (2.8) are illustrated
uni form velocity <~ of the charge traveling down in Fig. 1. Numerical tables of various Green
the duct, we have % = ‘Vr and functions will be published elsewhere,
2* 2
(az=+a32 ’BZZ)¢ Potential
\ (2,2) 3. Potential
= 1 e = (3’:
with the boundary condition for a perfect Using (2,.3) potential $ is computed for
conducting wall, ¢ = o, three types of ellipsoidal charge. Y=1 is
The solution of the differential equation assumed in this section,

(2,2) is given in terms of Green function K

i, Uniform density over the region
¢"<‘12>=—SHK("'F'[XYZ)(°(XYZ)4X°‘Y°‘Z (2.3) rz z2 ) ,
_— + = < 3.1
with A TR 2L
r o3t i, Statistical distribution, Uniform
(;—;,+9T,*‘a-:, z—za) K(’l‘}Z[YYZ:)=-§\(7<-)<)N‘]—Y)5(1-Z) density over a hyper-ellipsoid in
6-dimensional phase space
y* 2> _ R L <1
2,4 _— =+ + —
¢ ) 5+ B,z z .Dz €2 - (3.2)
XYz =0 £ ( the bound R 4
K( y ‘XYZ} ) or (x,y) on the boundary A/=\f’§:A, B=\]?;-B
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i, Gaussian distribution

rz2 a2
= M — —— - —
P (o('_ P( A»? B-!), (3.3)

K =ZA, B=/ZB,

The total amount of the charge in each ellipsoid
is normalized to 10'® electron charge = 1,602 x
109 coulomb. The sizes A', A", B', B", are so
determined that the distributions ii and iii
have common second moments around the axis as the
distribution i . The results of computation are
presented in Fig, 2 (equipotentials) and Fig. 3
(potential on the axis)., In these figures the
potential of the same ellipsoid in free space is
shown together, The difference between the duct-
field and the free space-field is noticeable par-
ticularly in the axial direction,

4, Fields and Forces

The vector potential /\ satisfying
- -
(A‘Eo)"oa'at‘a)A =,/A°I'
2
Bt B M= T

az; 351 (4.1)

is shown to be
A1=A|j=0, A2=E°)‘D'U¢-
Field E and B derived from 4-potential (¢ ,A)
E’:-?mo\4}—5a£//\, lB=W*4q,
give Lorentz force on a unit charge
=12
}z E&-—WTBS = Kﬁb ¢
5y = E&’”’Bx"?ﬁ?d’
fz =E, "Eﬁii ¢
|
f=-prad.
Integratibn of the product F]f gives the fotal
force F on the charge system, Consider a well-

defined bunch of charge with a reference point,
say the center of gravity, at (xo, Vo, Zs).

Plryzt) = P(2-Xo, Y=yo,2-2:), 2z, =0t

]

(4.2)

The x component of the force [ 1is

Fo=h I £ 46 oo
. ﬁ nf fp(w,z)l((xqzw\’z ) PIXYZ)
dxdy dz aXaydZ,

Consider Green function in free spacé

|
bty b -2}

(4.3

F(Z\jZIYYZ)—4I{

and a function G = K - F representing the field
of the induced charge. The integral

[ £ FP dxdydr dxdYdz

does not depend on the  location (x,, ¥,, 2Zo) of
the bunch and does not contribute to the force F .
Therefore, with a potential

U 0 z= s, £ G p dxdyda dyayaz

\ * 4)
one can write
F=-9radU, (4.5)

Similarly the generalized force F. for a coordi-
nate x; of any particular mode of charge defor-
mation is derived from - U,

2
F=-%U. (4.6)
Note F; = - —U 0 for a uniform duct.

The function U 1is given below for a charge
filament of effective length 2¢ and total charge

q:
Plxyzt) = 7—(—[‘) 818 y-%) (4 4,
Zo =t

b ), oot
(4.8)

| { kg st -
{JM:Ei—:(-t-)e dt §,(e)= 04353

T + 2u£ _
jtz(u)zzijt-j (t)I(t) dt, f,(e)= 10027,
Functions f,(u) and f£,(u) are shown in Table

I and Fig. 4. Note fs(u)~>log uw/(2ru) and £,(u)
—» 1/%u when u-»e@, For infinitely long fila-
ment with line density T, we have

2
U r) "'5’7?';? G (r80113 6¢)

T2 a2-v32
4m e, 3'2 g a

per unit length.
(4.9)

42

Using the force constant 1(5937'—?‘/5:_(5750)/”’
we have the equation of transverse motion of the
charge

as —_

Mz{n-kspni %M fo =0, (4,10)
where M is the total mass of the filament and
ktund = 2fq I—B dz represents the effect of

the quadruple nagnetic field, Stability of the
solution rq(t) sets the upper bound for k5P
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Consider, for example, the first tank of a
proton linac, with drift tube bore @ =1 cm, f =
200 Mc, ff;eydz = 15000 gauss alternating tube
by tube, The current limit thus imposed is
something around 3 ampere, when u = ¥{/a = 1.
The first term of the series (4.8) represents
the effect of the electrostatic force at the en-
trance of the drift tube. The moving charge
obtains kinetic energy -U when entering the bore
and gives it back when leaving. With the typical
machine parameters above and I = 0.2 ampere, this
energy amounts to 0,7 keV per particle,

5. Resistive Forces

Using the time factor é”wt and the complex
permeability €' = € +i0/W we write Maxwell
equations in a material of finite conductivity o
as following,

~-igwkE
LpwH,

rot H
vt E

or

(A+E'/Aw7-)4)=0

' 2 _
(a+ Epwi)A=o. (5.1)
Fourier transform (2,7) in the coordinate =z
gives
B
('{fx oy~ x 4"1 =0
ot h? (5,2)
(225 M=o,
where

L= - gpy

I
-— - 1_‘m
= - Epyt-tL k
hvr = w,

We need 4-potential (¢;v, Ak ) satisfying (2,5)
and (4.1) in the vacuum and (5,2) in the wall, ,
Consider power series of a parameter &= an’/f'f,

4)#:.: 4>:+ ot ﬁa— o(‘(i):‘[+—»---

© 1 K
An= Apt o Ant o A== (5.3)
0 °
éh;AAn are the potentials obtained in the
preceedlng sections for a perfect wall duct.

d;,{ 4)M-_-- and /Ah’ Mp,---- satisfy homo-
geneous equations

2
aaxz 35:, )d>h. =0
o> -
(ot 2= ) Br=o (5.0

div Ap - i Ee .,kvcb.ﬁO,

- ho2

and so on., In the range of practical. interest,
the following is a good approximation for h/¥’
and . We take the liberty of having Re (h/y’)

>0 and M=,

%:xEﬂWW(wW
¥ g for h 2 O.
% _,E_} (‘ ) i3 1) (5,5)

X is the characteristic wave number of the wall
material,
)
o2
= 6 (—
X ( Eo) 9 (5.6)
with which the skin-depth §
'

$=(G5):

is related as

From the discussions in the preceeding
sections, we know f:o, AZ‘L =0 at the bounda-
ry, and Ak =Ayh =0 everywhere. The 4-po-

tential in the wall is approximated as following

h
’ -~ (r-a)
by (ro) = dyea0) e A

,(r-a) (5.7)

M (r,0) = By (a,0) € ¥

¢ and /A are continuous across the wall surface,
while their normal derivatives satisfy particular

boundary conditions, Thus from Hgz = Hp', and
Hy = Hy we have
I -
Aok =0
| o J°
1
Ah = — = bu (5.8)
Yho 27

on the boundary. Meanwhile Lorentz condition in

the wall gives ¢;= 0, ensuring
I
¢h=0 (5.9)
on the wall surface, Let ¢h and ¢n be two
solutions of the first equation of (5,4), with

the boundary consitions

2 4° t_
Lbu:‘ﬁ‘cph ) Sl?q’h = aarascb“
respectively, Then the set of first order

potentials satisfying (5.4), (5.8), (5.92) are
shown to be

% =o

U

I - P 2t

AX*LEL% (b—zq'h+5§q‘“) (5.10)
1 - 1

/A\’h = hzu. (354)&\ BI )

/AZIh == th d(h .



Lorentz force on a unit charge in the field of
the above potential is

11 1_ )2
tck= Exn ~VBy= —3—'_"_ az"bh
1 I 1 3
= Eywvaxﬁ-“';;g%

(5.11)
fzh 2'\ =- L d“”

The resistive force ﬁ is obtained after
Fourier transform of (5.,11). It is expressed in
terms of a potential ¥

res
ﬁ = ——'— 9Yad g
- .
] [+% uzh,
¢=2 _L‘Edhe dk,
where tllh is given as a Dirichlet's integral

Yu(xy) =,<}(;i Ki(xylre) 2 ¢y (ro)ade

r=4

+ g Hi (e XY) B (xY)dxay

(5.,12)

(5.13)

with
3
Hh(‘x'jl)(‘{): § gfkh (xglre),?;lﬁ.(ralxﬂ MO, (5.14)
Y\-_-'
Using (2,8) we ha\?;e

I,(%,r)l,(%kz \

B S LR
H, volRB)= na The) w32 (ha

(5.15)

and for h - O

H.(ro |e®)= Fia + o,

The resistive force acts for a traveling
bunch of charge in several ways. To give the
general notion f;'s for the charge distribution
(4.7) in a circular cylinder is shown below.

(Ya'i) wmo-H) 5.16)

3
{rfs(rz) = —2333,

h
X r(’)?) J.z(%a)

For r = 0, we have

Nf—-
%
~
Wit
=
~
fb

hfmh(z 2ol A h(z-z.)% h
(5.17)

ves sz’pi
“(0,2) = C(u W)+ S(u,w)
e " eyt "”‘G’Qz{ ‘ (5.18)
where u = ¥l/a ,w= ¥(z-2.)/a The

functions C, S, and C + S are illustrated in
Fig. 5, The first terms in { of (5.,18) repre-
sents a decelerating force for the charge, while
the second term gives a longitudinal focusing
force, According to Earnshaw's theorem, the
latter should always be accompanied by defocusing
forces in transverse direction, As the resistive
focusing and defocusing forces are usually much
smaller than the corresponding electrostatic
forces of previous sections, they need no further

oy mi(o-£))

consideration, The decelerating force shows up
as the result of Ohmic potential drop along the
duct due to the wall current, The net decelerat-
ing force Fre‘ is obtained after integrating

[2 f“‘ . The moving charge performs work U F¢
against this force, making up for the energy
dissipation in the wall. The net force szef
for the charge (4 7) is

..-rez = Zzﬁﬁ’ fza Clw) R U= b’e/ﬂ,

Fe (rea)t 4mc
(5.19)
Clu)= I {Itf)§ze Cto) = 0.3822

Function c(u) is shown in Table I and Fig,., 4.
Note c(u) =» 1/(4{2Ru®) when u»o0o . Thus in a
stainless steel tube (X = 4.2 x 10%/meter) of
radius @ = 1 cm, 10'? protons forming a bunch
of length 20 = 2 cm receive decelerating field
of 0.10 kV/meter when 7 —» o0 ,

For a generalized coordinate X{ of charge
deformation, the resistive force on the charge
system is conveniently derived from a pseud-
potential V,

res 2
F = achV |
*
ol
V= mew [ % EHL G axayaxdten
(5,20)
USing (5 5) we have
L¥!
= 2z 41t€ X'{‘f.-/ lhl"‘fl’»HkPhdu"Adedh
° (5,21)

Apparently the function V does not exist for
a uniform beam with h = O component only,
Nevertheless the part of V attributed to a
perturbation of any wave number can be obtained
with this formula., Should the imaginary part of
the resistive force can supply enough energy to
a particlular mode of oscillation with this wave
number, +the oscillation builds up with time
resulting in an instability of the beam.””
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Table I, Functions fo(u), fo(u) and c(u).

u fo(u) £5(0) c(u)
0.0 0.4353 1,0027 0,3822
0.1 00,3989 0.8225 0,3019
0.2 00,3686 0,6909 0,.2440
0.3 0.3430 0.5917 0.2012
0.4 0,3211 0,.5149 0,1687
0.6 0.2856 0,4051 0,1235 _
0.8 0,.2579 0.3314 0.9449 x 10
1.0 0.2356 0.2790 00,7479
2.0 0.1677 0,.1527 00,3199
3.0 0,1325 0.1040 - 0.1831
4,0 o.1106 _, | 0.,7868x 10 | 0.1213 _
6,0 0.8439 x 10 0.5278 0,6700x 10
8,0 0.6899 00,3967 0.4376
10 00,5873 0.3177 0.3139
20 0,.3487 0.1591 0.,1114 _
30 0.2540 0.1061 Py 00,6067 x 10
40 0.2019 0,7957 x 10 0.3941
60 0.1454 0.5305 0.2146
80 0.1148 0.3979 0.1394
-2 —4
100 0.9535x 10 0,3183 0,9973x%x 10

R=04

(b)

Fig, 1 (a) - (c).

Axially symmetric part of Green function K (rozi E@Z)‘
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Total charge = 10'%e = 1,602 x 10~?

coulomb,
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Fig, 4. Functions f,(u), f,(u) and c(u).

(b)

Fig. 5. Functions C(u,w), S(u,w) and C(u,w) + S(u,w).
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