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I. Introduction
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where v~ y Zls are assumed to be symmetrical about
Ivl = 0.' Equation (3) means that the spatial dis
tribution will have a peak at the origin of the
coordinates and decrease towards each direction.
Inserting Eq. (2) into Eq. (1), we get

function of x, y, and z. At a spatial point
(x,y,z), this gives constant distribution inside a
rectangular box in the velocity space. The charge
density in the usual space can be given by

( 1)£1)=0,
o~

For this purpose, as has been discussed in
detail by Nielsen, Sessler and others for circular
machines,lO,ll we shall start from the reduced
Boltzmann equation, or the Vlasov equation, on the
transport problems in a collisionless assembly of
charged particles. Introducing the density dis
tribution in the phase space as W, we write the
Vlasov equation

A number of theoretical studies on beam
dynamics in proton linacs have been developed
for analyzing longitudinal-transverse coupling
effects,1,2 space-charge effects,3-9 etc. It is,
however, worthwhile to treat the various effects
in terms of a unified theory which gives physical
insight into the coupling mechanisms and the re
lations between those effects independently
discussed.

where the force Kis assumed to be independent of
the particle velocity and the motion of particles
is treated nonrelativistically.
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The coordinates moving with the synchronous
particle on the accelerator axis (z-axis) are
chosen as the reference system. The relativistic
correction can be made by using the longitudinal
and transverse masses for the motion of-z-direc
tion and x (or y)-direction, respectively. First,
we shall discuss the stationary state, for which
oW/at = 0, and then proceed to the time-varying
case by perturbation analysis.

II. Stationary State Boundary Equations
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This equation is identically satisfied inside the
boundary. In order to satisfy the Vlasov equation
at any point on the boundary, it is required that
each bracket term should be zero on the boundary,
or

where U is a step function which is unity for neg
ative arguments and zero otherwise. a is a con
stant and v~, v~ and v~ are boundary velocity
parameters, each of which is, in general, the

For a stationary state, we may assume the
charge distribution in a rather simple form.
Nielsen and Sessler lO assumed two-dimensional con
stant distribution within the region bounded by a
phase trajectory and zero outside. Kapchinsky
Kronrod3 and Morton,4 independently, applied
Nielsen-Sessler's method to the analysis on the
longitudinal space-charge effect in proton linacs.
To discuss the longitudinal and transverse motions
in a unified theory, we may assume constant distri
bution in the six-dimensional phase space as
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Using the relations as
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Equations (5) and (6) are the boundar~ equations
in the stationary state. A set of (vx ' v~, v~)
need not be the components of a single particle
velocity, so that these are not the trivial equa
tions of motion. It should be noted, however,
that the boundary velocity in each direction sat
isfies the equation of motion in that direction.

For example, we shall consider the transverse
motion. Usually, the gradients of Q-magnets are
chosen to be approximately B' ~ l/vs ' so that the
force in the smoothed approximation does not ex
plicitly depend on t. The rf defocusing force at
the synchronous phase angle, with neglection of
the slow damping of the amplitude, can also be
treated as a stationary force. Thus, including
the space-charge effect, we get the stationary
solution by writing Kx as

we can rewrite the above equations as
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or in the integrated form as
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III. Perturbation Treatment
on Nonstationary State

in the cylindrical coordinates. In this expres
sion, Ami is the i-th root of the m-th Bessel func
tion Jm(u), and Sm = 1 for m = 0 and Sm = 2 for
m ~ O. The self-consistent solutions will be ob
tained by combining Eqs. (3), (9), and (9') with
the boundary equations. It should be noted here*
that, if we disregard the space-charge potential,
the boundary equation (8) yields a square cross
sectional beam. In general, the beam shape is
determined from the boundary equations (6) in
cluding space charge, so that to obtain the self
consistent solutions we need to find the consistent
limits of the integral in Eq. (9). From an approx
imate calculation, however, (xB)max of 0.6 ~ 0.7 cm
is given for a 100 rnA beam with v s = 0.04c in the
typical (SNSN) focusing system. Such a beam will
also give a limit for the (SSNN) system.

*The author wishes to thank Dr. Lloyd Smith,
who read the first manuscript and made these valu
able comments on the beam shape.

ellipsoidal bunches. Analytically, the Green
function in a cylindrical metallic tube of radius
a is given by

In the perturbation treatment, the density
function in nonstationary state will be written as

v(;,;,t) = vo(;,;) + vl(;,;,t) ,

where the suffix 0 denotes the stationary-state
value. It is assumed that VI « WO' and the force
Kis also written as

(7)
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Using the equation for the stationary state,
and neglecting the higher-order terms, we get

where ~ is the smoothed force constant of beta
tron oscillations and V the space-charge potential.
Inserting Eq. (7) into (6-1), we get

(8)
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where IKII « IKOI.
(11)

..
For the case without space charge this gives the
usual elliptic boundary. The space-charge poten
tial can be written as

V(x,y,z) = : J G(x,y,z I x',y',z') X
o

p(x',y',z') dx'dy'dz' , (9)
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For convenience, we expand WI in terms of the
Fourier series contained in a finite box of the
phase space, and consider a component

by using the density function p(x,y,z) in Eq. (3)
and the Green function, or the kernel, G(x,y,z I
x',y',z'). In a recent work, Hirawaka12 has per
formed a numerical computation of the space-charge
potential in drift tubes for several typical

(13)

The perturbing force Kl may be divided into two
parts; the time-varying external force, Kl e , and
the perturbed space-charge force, Kl s , Kl s is
given by -
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where the stationary distribution in Eq. (2) is
used. Similar results can be obtained for Iy and

I z ·
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where d,- = dvxdvy1vz.-+ Equations (13) and (15)
yield V1 ~ exp j ~ . r.

As a result, Eq. (12) becomes

[ (_1)1, ~x

+ (_l)m ~ IvBI + (_l)n ~ IvBI ]
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We shall take the Laplace transform of Eq. (16),

If we neglect smaller oscillations within the
phase boundaries, we may concentrate our interests
into the long-wave components for which Ix.];B I ~ 1
and liL· ~B I ~ 1. Then, the integral is approxi
mated as

(21)
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Eliminating *p from Eqs. (17) and (18), we get

and W10 is the initial value of W1. Wp' Vp ' and
Kp

e are the Laplace transforms of W1, V1 and K1e ,
respectively. The Laplace transform of Eq. (15)
is

(22)
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It is noted that V has a pole at p = ± jWp • A
100 rnA beam bunchea in the volume of 10 cm3 has
the plasma frequency of about 4 Mc.

Now we shall ask how the phase-space boundary
will change with time. The boundary motion will
be investigated by considering the motion of par
ticles on the boundary. For the x-direction,

at the long-wave limit (Ipl »Iql). Using the
expression of the proton 01asma frequency, Wp

2

e2p/E:OM and neglecting W1 ' we get
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At the stationary state, this reduces to Eq. (4).
In the perturbation treatment, we again let

1
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In this expression, the terms due to W10 and each
component of Kp

e can be calculated independently
and be summed up afterwards.

The integral both in the denominator and
numerator in Eq. (19) is obtained as

B B B
vx(x,y,z,t) = vxo(x,y,z) + vx1 (x,y,z,t) (24)

and IV~ll «lv~QI. We also consider the particles
for which Ivyl, IVzl «Iv~ol. Neglecting higher
order terms, we get

I = I _1_ ( 0 *0 ) d,- = _G_ \' ( -1) irtm+n
x p+ q ov ~ ~ L

x y z t,m,n=1,2

(25)

X A tmn log A.Rmn (20)
BAgain, we take a Fourier component of vx1 and the

Laplace transform of Eq. (25), obtaining

- 397 -



B
v xp

p ±

oV
Ke _ e ---E

px ox

j(w ± /1,' Iv
B

O
I)

x x x

(26) K e
px cos ~s x

IV. Coupling Between Longitudinal and
Transverse Motions with Space Charge

where Wx is the angular frequency of the unper
turbed transverse oscillations and the relation

As an example, we shall consider the coupling
between the longitudinal and transverse motions
including space-charge effect. The term in Kixe

due to the coupling by rf field is written as

...

-
...

exp [p - j(± Wx ± wz) ] :0 },
(28)

V. Conclusion and Discussion

On the other hand, if we consider the second
term which gives the coupling through space charge,
then the perturbation is strongly enhanced and
built-up at Wx ~ wp . The resonant coupling will
also cause build-up oscillations even when the
phase oscillations are damped (Q' < 0). These are
explained in that the longitudinal oscillations
excite a sort of plasma oscillations, or a collec
tive motion of the particle assembly, and couple
to the transverse motion.

In these equations, we considered only the
term proportional to~. The nonlinear phase oscil
lations, however, will add to Kl

j
e the terms oscil

lating with the frequencies of Wx ± n wzl, where
n is an integer and the case of n = 2 is parti
cularly important.

Inserting Kp: thus obtained into Eqs. (221
and (26), we get coupling effects. Gluckstern
and Ohnuma2 investigate in detail the coupling
without space charge, which is given by the first
term of the numerator on the right-hand side of
Eq. (26). It is noted here that the so-called
resonant effect, which would occur when the condi
tion, Wz = Wx or 2Wx, are satisfied, will result
in damped oscillations due to the parameter change
during acceleration.

where feu) and y(u,v) are the gamma, and the
Legendre imperfect gamma functions, respectively.
The summation is taken for all possible combina
tions of ± Wx and ± Wz ; the suffix of xo corres
ponds to the sign before Wx and the suffix of ~O

to the sign before wz .

f(Q'+l)-Y(Q'+I, ~)

[p - j (± W
x

± wz)~

(27)
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(constant acceleration)
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x o e

v
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B
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is used. The initial value of V~l is assumed to
be zero. If vB has a pole higher than the first
order, then th~Pperturbationbuilds up and beam
will blow up during the acceleration. This will
occur if the numerator of the right-hand side has
a pole around Wx at the long wave limit. From
Eq. (22), it is shown that in a high-intensity
linac such a condition is particularly satisfied
as wp approaches to wx •

in a nonrelativistic and linear approximation.
~ = ~ - ~s is the phase of the longitudinal oscil
lations measured from the synchronous phase angle,
~s. In the first approximation, we may aSSume the
time dependence of the parameters as

Similar analysis can be made on the longitu
dinal component, but coupling between the longi
tudinal and the plasma oscillations will be much
stabilized due to the relatively fast change in
Wz during acceleration.

,Q'> -1

and constant for others. If we neglect the space
charge effect, then Q' ~ -3/4 is obtained from the
adiabatic approximation. With space charge Q' be
comes larger, although the damping may still
remain. 8 In general, frequencies of betatron
oscillations (Wx) and phase oscillations (wz) will
undergo slower changes with time. The Laplace
transform of Klx

e is given by

Using the Vlasov equation, we have discussed
the longitudinal and the transverse motions in
proton linacs in a six-dimensional phase space.
Although we made some simplified assumptions, a
unified theory is derived for the physical analy
sis on space-charge effects, longitudinal and
transverse coupling effects, and other high inten
sity effects. In particular, it is pointed out
that the coupling between the longitudinal and the
transverse motions will be considerably enhanced
through the collective motion of the particle

I-
....
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assembly. The following points should be noted
concerning the above-presented analysis.

1) In the perturbation analysis on space-charge
effects, we only discussed the long-wave limit of
plasma oscillations. Actually, however, the shape
and the charge distribution of bunches will show
complicated local fluctuations leading to a number
of higher modes of plasma oscillations with the
characteristic values of ~ and~. Thus a number
of possible poles will appear besides p = jwp in
Eq. (22). In addition, it is shown that some of
them may have a positive real part giving an ex
ponential build-up; a part of them, however, will
be cancelled out by the general effect of the
Landau damping in plasma oscillations.

2) There are some possible ways to stabilize the
build-up oscillations. In general, frequencies
of the phase and the betatron oscillations (wz and
Wx' respectively) will change during acceleration.
The plasma frequency, wQ' will also change corres
ponding to the change of the bunch shape and the
charge density. These effects will give the major
stabilizing mechanism. Effects of acceleration
will also result in some degree of reductions of
the rf defocusing force and the space-charge de
focusing force given by Eq. (7).

3) We have specifically discussed the effects of
longitudinal oscillations and space charge on the
transverse motion. It should be pointed out, how
ever, that any other effects on the transverse and
longitudinal motions can be treated in the pertur
bation method reported here. In particular, the
coupling of the x and y motion due to an imperfect
ness of the quadrupole focusing system may cause
such a build-up perturbation as discussed above on
the longitudinal and transverse coupling through
space charge. Finally, the dynamic beam instabi
lities due to the field imposed on the accelerator
cavity by beam can also be included in the present
theory as investigated by Sessler and others for
circular machines.
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