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MULTIMODE AND RESONANCE EFFECTS IN TRANSVERSE BEAM BLOW-Upt

The difference equati~ for Hjm) ,
the field amplitude of the .jth mode
after the passage of t~e ~ beam pulse
through the cavity, is

H(m+l) i8j _ H(m) = _ H(m)
j e j E j j

results were approximately the same.
In the present work the effect of re­
sonances between the frequencies of
the cavity modes and multiples of the
beam pUlse frequency was explored,
yielding a rather elaborate structure
for the dependence of the starting cur­
rent on the frequency of transverse
bands in the vicinity of these reson­
ances. The details of this structure
are explained, but the previous result
still appears to be valid: The starting
current is reduced by ~t most a factor
of two compared with the result for a
single non-resonant mode.

Difference EquationII.

R. L. Gluckstern and S. C. Prasad
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ABSTRACT
The usual estimate of the current

at which tran~verse beam blow-up occurs
is made under the assumption of a single
transverse mode not in resonance with
the beam frequency. For a single mode
the starting current decreases by less
than a factor of two at resonance. We
have treated the case of several modes
numerically, using an eigen-mode method,
and find considerable structure in the
dependence of the starting current on
the frequency of the transverse band.
Specifically we find reductions of up
to a factor two as the frequencies of
the main mode and the adjacent modes
pass through resonance with the beam
frequency. Furthermore, there are ad­
ditional variations exactly midway be­
tween these resonances. Typical nu­
merical results of this eigen-mode
method are presented. In addition, the
particular features of each anomaly are
derived from art analysis of which modes
are most important at each frequency.
Our analysis and results once again
confirm the fact that the starting
current never decreases below half of
the value for a single non-resonant
mode.

-

-

-

-

-

,...

--

I. Introduction

In previous workl ,2 the interac­
tion of a bunched beam with a standin~

wave linac cavity was analyzed in terms
of the amplitudes of the various reson­
ant transverse modes of the cavity. Dif­
ference equations were derived for the
change in these amplitudes with each
beam pulse. A limit to the current is
set by the requirement that the solution
of these equations should not contain
a runaway component. This was explored
numericallyl where it was found neglect
of all but a single mode gave a reason­
able approximation to the results with
several modes. The calculations were
repeated with greater accuracy2 by
obtaining the eigenvalues of the homo­
geneous difference equations and the

where the parameters are defined in
references 1 and 2. The parameter Sk
is proportional to the current, E is
the fractional decrease in field jampli­
tude due to r-f losses from one beam
pulse to the next, 8j = Wj~t is a meas­
ure of the resonance between the jth
mode and the beam pUlse frequency, l/~t,

and Wjk ' Wjk are dimensionless para-
meters depending on aj and ak, the slip
of the jth and kth modes with respect
to the beam bunch.

The solution of Equation (1) can
be found by setting Hjm) = HjAm and
solving the resulting secular deter­
minant for A. If we assume that E and
S are nearly the same for all modes,
one has
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The starting current is then that value
of S which makes the largest value of
IAI equal to 1. Above this value of S
the solution of (1) will have an expon-
entially growing component, correspond­
ing to a runaway solution.

In general the largest IAI occurs
for the mode, j, where the slip aj' of
the wave behind the beam bunch, is ap­
proximately n as the cavity is trans­
versed. The neighboring modes exert
diminishing influence on the starting
current. For this reason, numerical
solutions to Equation (2) have been
obtained for a given set of parameters
assuming that only a finite number of
modes, centered at the mode with slip
approximately n,contributes. The number
of modes is then taken as 1,3, 5, ...
until it becomes clear that the depen­
dence of starting current on other
parameters is insensitive to the choice
of the number of modes.

III. Numerical Results

We have explored a typical case
for which resonance effects are expected
to be important. The cavity is taken
to have 40 cells, an accelerating mode
of 800 Mc, and a beam bunch frequency
of 200 Mc. Numerical studies are then
made for the dependence of S (starting
current) on the width and location of
the transverse band (assumed to be near
1200 Mc which is the 6th harmonic of the
beam bunch frequency). The loss para­
meter e: is taken to be 10-3.

Figure 1 shows the variation of S
with the central frequency of transverse
band for a band width of 20 Mc, where
we have taken into consideration 1, 3,
and 5 modes. It is clear from the
curves that the inclusion of several
modes introduces considerably more
structure into the dependence of S on

the frequency of the transverse band.
This will be interpreted in the next
section in terms of resonances between
the various modes and the beam bunch
frequency.

Figure 2 gives the corresponding
results for a band width of 10-Mc. One
notices a strong similarity in structure
to the results in Figure 1, but here the
features are compressed in frequency by
a factor of 2 compared with Figure 1.
Computations for other band widths also
show the same structure, spread by an
amount proportional to the band width.

The trends in the curves indicate
that only minor changes (less than a few
percent) will be introduced by including
additional modes. The reason for this
will also be clear in the next section.

IV. Analysis of Results

It is possible to understand the
structure in Figures 1 and 2 in terms
of resonances with the beam bunch fre­
quency for one or another of the con­
tributing modes. We shall first con­
sider the effect of a single mode and
then modify the results because of the
contribution of one or another of the
modes in the secular determinant of
Equation (2).

A. Single Mode - no resonance

It is clear that, for e: and S each
of similar small magnitude (~ 10-3 in
our present considerations), the roots
of Equation (2) will also be distinct
as long as each of the 8j is not also
similarly small. In fact these roots
are given to order e: 2 b y 2

i8
A

j
~ e j(l - e: + SW

jj
), (3)

and the largest value of S (for which
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or 1
S

max
E

Using these approximations, one
finds Ull ~ 1, VII ~ 0, IWlll ~ ~/4.

Equation (7) then yields

, 2 2 2 1/2
1-[(~/4) -(81/E) (1-(~/4) )J

(10)

1

C. Double mode resonances

1_(~/4)2

for I81/E I < ~/4

meters, one has

)

Equation (10) corresponds to region I
on the upper curve in Figures 1,2, and
this resonance is clearly the explana­
tion of the structure in this region.

In the vicinity of resonance, 8j is of
order E, so that all the aj are very
close to multiples of~. We will set
these a's to be exactly multiples of ~

and will take j=6l to be the central
mode, j=60, 62 to be the nearest modes,
j=59, 63 to be the next nearest modes,
etc. As a further simplification in
notation we will designate modes 59,
60, 61, 62, 63 by the sUbscripts -1,0,
1,2,3, as we have already done in Equa­
tions (5)-(7).

A single mode resonance also exists
when 8_ 1 ~ 0, 80 ~ 0, 82 ~ 0, 83 ~ 0 etc.
However, the only one for which the cor­
responding Smax is less than E/Ull ~ E
is mode 60, for which we have Doo ~ 0,

Voo ~ _~3/24, IWool ~ ~3/24. This leads
to

whichever is lower. This is plotted as
the upper curve in region II and is
clearly the explanation for the structure
in this region. Note that this structure
does not occur unless mode 60 is included
in the numerical studies.

The remaining structure corresponds
to an interaction between a pair of modes
and the beam. In particular, the roots
of the secular determinant in Equation
(2) will depart from the single mode
values if combinations such as 81 + ej

( 4)

(6)

(8)

o (5)

* i8 1
l-E+SWII-Ae

E

-*-SWll

or

IAI = 1) is that given by

Smax ~ U;j

where Ujk and Vjk are the real and imag­
inary part of WOk' The result in Eq. (4)
is then expecte~ to be valid as long as
the values of ej are not small, i.e. as
long as there is no resonance.

If there is resonance between this
mode and the beam bunch frequency, ej
will be small and the root corresponding
to Equation (3) comes from the 2x2 sub­
determinant of Eq. (2), namely

-ie
l

l-E+SWII-Ae SWll

B. Single mode - resonance

For small 81 , one writes for the root
with largest IAI

IAI ~ 1 - E + SUll

+ Re ;lS21Wll12 - (8 1 + SVll )2: (7)

It is clear from Equation (4) that
the lowest Smax corresponds to the high-
est Ujj which occurs, as previously men­
tioned, for a slip of approximately ~

(this is similar to the result for a
traveling wave amplifier, as pointed out
by P. B. Wilson 3 ). For our numerical
value, this corresponds to mode 61.

One can further simplify the appearance
of these results by using approximate
values of W. For our choice of para-

The dependence of Smax on 81 corresponds
to setting IAI = 1. The result is a
combination of an ellipse and the straight
line of Equation (4), whichever produces
a lower Smax' In fact the lowest Smax
can be seen from Equation (6) to be that
corresponding to a purely real value of
the quantity in square brackets, and
is
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are of order E. In this case the roots
are given by the 2 x 2 sub-determinant

i(8 j -81 )/2
p = >..e , e12 = (e l +e j )/2 (13)

one finds, for small 8ij' that the ab­
solute value of the roots can be written
as

-*-SWjl

Setting

-SWlj

* ie jl-E+SW ->..ejj

o (12)

and band width of the first transverse
band in the vicinity of a resonance of
the transverse mode frequencies with
a multiple of the beam bunch frequency.
This dependence shows unusually complex
structure. However, it is possible to
understand each feature of the structure
in terms of a resonance with individual
modes in the band or with a pair of
such modes. No further complexity is
expected when additional modes are con­
sidered beyond the central mode and
two nearest neighbors on each side.
Despite the structure, it is still true
that the starting current never falls
below 60% of its value for non-resonant
conditions, which has formed the basis
for previous estimates.

...

-

2
~)

The greatest deviation from Smax ~ E
occurs for j=O (corresponding to mode 60).
In this case

- -* n
2 1

WIOWOl ~ (~ - 2

The maximum value of S occurs for Ipl = 1,
and Equation (14) leads directly to the
upper curve in Figures 1,2 in region III,
in agreement with the more elaborate nu­
merical results as long as mode 60 is
included. This corresponds to a reson­
ance between the average frequency of
modes 60 and 61, and the 6th harmonic
of the beam bunch frequency.

Similar results apply for j=2 (re­
gion V which occurs only when mode 63
is included), and j = -1 (which occurs
only when mode 59 is included, but over­
laps with the resonance in region II).
In these cases we use

-* (t +
2

U22
~ 0, V22

~
n W12W21

~ i %)"8"'

1 -* !)
2

U33
V

33 0, W13W31
~ (~227' 9

to obtain the upper curves in the
corresponding regions.

V. Conclusions

We have explored the dependence
of starting current on the frequency
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Figure 1. Starting current vs. frequency for a band width of 20 Mc. The

calculations have been performed for a 40 cell tank, with the
-3

loss parameter € = 10 • The lowest three curves are the result

of a calculation involving matrix inversion using the indicated

participating modes. The upper curves represent the analytic

prediction on the basis of one-and two-mode resonances with the

beam frequency.
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Figure 2. Starting current vs. frequency for a band width of 10 Mc. The

calculations have been performed for a 40 cell tank, with the
-3

loss parameter e = 10 . The lowest three curves are the result

of a calculation involving matrix inversion using the indicated

participating modes. The upper curves represent the analytic

prediction on the basis of one-and two-mode resonances with the

beam frequency.

-
-

- 394 - ...


