
STEADY-STATE BEAM LOADING OF A STANDING WAVE LINAC RF SYSTEM*

M. J. Lee
Brookhaven National Laboratory

Upton, New York

Introduction

Fig. 1. Equivalent Circuit of a Linac Rf System.
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where V is the peak value of the required cavity
voltage. This condition is illustrated in Fig. 2.

Assuming the phase and amplitude control
systems are operating correctly, in steady state,
the phase angle* between the beam current and the
cavity voltage is kept equal to ~s. The ampli
tude of the cavity voltage is also kept constant.
Thus, taking the voltage across the cavity, V,
as the phase reference, we have

The effects of steady-state beam loading on
a linac rf system have been studied by many au
thors. l -S The rf system is composed of an rf
generator feeding an accelerator cavity via a sec
tion of transmission line and a coupling loop.
In particular, Murin and Kvasha l have investiga
ted methods of stabilizing the amplitude and
phase of the accelerating cavity voltage by
proper choice of circuit parameters and rf supply
operating conditions. It was shown theoretically
that for different beam current values constancy
in both amplitude and phase of the cavity voltage
can be maintained by altering the value of the
internal resistance of the generator.

Alternately, steady-state beam loading
compensations can be obtained by varying the
amplitude and phase of the generator output and
not 'altering the generator resistance. More
recently, however, Murin et a13 demonstrated ex
perimentally the possibility of finding values
for the system parameters so that only amplitude
variation is required for beam loading compensa
tion. In this paper, a method of selecting opti
mum values for the system parameters under these
conditions is considered and some requirements on
the steady-state beam loading compensations are
described.

Model of the Linac Rf System
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For the accelerator cavities, the power
required by the beam, Pb' and the power loss in
the cavity walls, Pw' are specified from

Fig. 2. Effective Cavity Voltage and Beam
Current Waveforms.

Figure 1 shows a circuit diagram of the rf
system6 to be studied. The linac cavity is rep
resented as a parallel RLC network characterized
by an admittance G2 + jB2. (For a loop-coupled
cavity, the resistive loss and self-inductance of
the loop are included in G2 and B2, respectively.)
The gen~rator is represented by an ideal current
source I g in parallel with an admittance Gg + jBg•
Power from the generator is delivered to the
cavity via a section of a lossless transmission
line of length ~ and an ideal transformer of
turns ratio (l:n). The beam is taken to be an
ideal current source fb~connected across the
cavity. The value of Ib is given by the product
of the transit time factor and the fundamental
Fourier component of the beam current.

*Work performed under the auspices of the U. S.
Atomic Energy Commission.

*At low beam current, ~s is equal to the syn-
chronous phase angle.
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MESSYMESH calculations. 7 In terms of the cavity
voltage and current
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where

RZ = Gl = effective cavity resistance.
Z

Equating these two expressions for Ytm and solving
for n2 and B2 , we obtain:

G
g

Thus, the effective cavity voltage and resistance
are given by

where V and I b are peak values.

Conditions for Maximum Power Transfer
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w = frequency of the generator,

1
Wo = /DC = undamped natural frequency of the

cavity.
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The value of B2 as given by Eq. (11) repre
sents the susceptance of the LC resonant network
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where Yim is the cavity admittance as seen by the
generator at maximum beam current. This condition
is satisfied if the cavity admittance as seen at
the end of the line, Y~m' is given by

The rf power required for particle accelera
tion is proportional to the beam current. Thus,
maximum beam current is limited by the maximum
available power which can be delivered to the
cavity from the generator. This occurs when the
cavity admittance as seen by the generator is
equal to the complex conjugate of the generator
admittance. In the design of the rf system, the
values of the system parameters such as the cavi
ty coupling, cavity detuning and the line length
may be chosen so that the maximum power transfer
condition is satisfied at maximum beam current:-

-

If we let

w = w + l:!J.»
o

for w F:;j wo ' we find

which corresponds to detuning of the cavity
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where

B.W. bandwidth = w/Q

Q cavity Q.

In order to minimize the interaction of the
phase and amplitude control systems, zero de
tuning of the cavity may be desirable. In that
case, an external susceptance Bex must be added
to the end of the line to provide the same load
susceptance to the line. Reflecting B2 across
the transformer gives the value for Bex :

(15)

This situation is illustrated in Fig. 3.

where

A 1
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D = n cos ~

There are two quantities which are of par
ticular interest. One is the VSWR on the line,
S, and the other is the power dissipated in the
generator, Pd. At maximum beam current, due to
the matching procedure used, Sand Pd are inde
pendent of the values of t. However, at other
values of beam current
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Fig. 3. Equivalent Circuit of a Linac Rf System
for Cases in which the Cavity Resonant
Frequency is Equal to the Rf Excitation
Frequency (Wo =w).

Equations (10), (11) and (15) show that the
maximum power transfer requirement alone does
not determine uniquely the values of the system
parameters n, 0, and Bex• The values of these
parameters depend upon the value of the length of
the transmission line used in the design. A
criterion for the selection of line length is
considered in the next section.

= n
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Solving for Vg and substituting the result in
Eq. (18) gives
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In particular, Pd and S can be evaluated for zero
beam current: Pdo and So.

Choice of Line Length

In steady states, the generator voltage and
current are related to the cavity voltage and beam
current by:

V • 2 Q9
S1n IJ'V (B V
Y 2 + I b

o
sin cp ) }s

(21)

;
....

Finally, we come to the question of choosing
the line l*ngth. One approach is to calculate the
quantities n, 0, Bex , So, Pdo for systems having

*For the special case of Yg = Yo' the only quanti-
ty which varies with t is Pdo. An experimental
procedure for the adjustment of nand Bex may be
found in Ref. 6.
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In particular, for the case of Bg = B2
=0, the value of t satisfies the cond~tion:

G Y 2
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Thus, the amplitude and phase of I g are given
by:
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and
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and

The changes required in the amplitude and phase of
I g for beam loading compensation are given by:, (22)

I
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GO )
g

provided that the right-hand side of this equa
tion has an absolute value less than unity,~e.,

different values of t and select those for which
the values of these quantities are acceptable. A
criterion in this selection may be to make the
value of n large in order to reduce the inductance
and losses in the coupling loop, while making the
values of 6, Bex ' So' and Pdo small.

-

-
In particular, for the maximum power trans

fer design, substitution of Eqs.(10) and (11)
into the above equations yields:

1

(29)
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(ab + cd)

Beam Loading Compensations

In the operation of the linac, the generator
current is adjusted so that the cavity voltage
reaches its steady-state value. Just before the
beam pulse is turned on, the generator current is
increased to provide additional rf power to the
cavity to compensate for beam loading. This
change in the generator current is made in such a
way that the steady-state value of the cavity
voltage is the same before and during the beam
pulse (after the transients due to turning-on of
the beam and the compensating rf pulse have
faded). The variations in the values of the
generator current required for producing this
condition are considered in this section.

The corresponding value of n is given by Eq. (10)
with Bg = O.

-
-

-
-

Substituting the expressions for A, B, C, and
D in Eq. (16) and rearranging terms, we find

(24)

where,
G n G B2

a = nF(t)GZ + -:- cos I3t - yg sin ~
o

It may be noted that the values of these quanti
ties do not depend on t and Bg• Thus, the same
compensations are required for systems having the
same value of generator conductance, Gg• Further
more, the phase compensation, 6cpg, is the same
regardless of th~ value of Gg , and the amplitude
compensation, 61 I g l, is proportional to /Gi.

Conditions for Zero Phase Compensation

n G
d = nF(t) sin CPs +~ sin ~ cos CPs

o

n G
b = nF(~) cos CPs - ~ sin ~~ sin CPs

o

From Eq. (28), the condition for zero phase
compensation is given by

In practice, it may be desirable to compen
sate for beam loading by varying only the value
of the amplitude of I g but not its phase. This
possibility is invest~gated in this section.

(30)ad - bc = 0

sin I3t
G GZ Y

g +...2.)
Y n

o

B + ( nc = nF(t)BZ + ~ cos ~t

-
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Equation (29), however, shows that the condition
for zero phase compensation and the condition for
maximum power transfer are mutually exclusive.
Therefore, for a system designed for zero phase
compensation, the maximum beam current will always
be less than that for a system designed for maxi
mum power transfer.

Four special cases are considered here. In
each case, the value of one of the system param
eters is adjusted to satisfy Eq. (30). We take
for Case i: Bex adjustable, Case ii: Bg adjust
able, Case iii: t adjustable* and Case iv: n
adjustable.

G
2

( ) Y20 ]-& - 1 sin 2"-e,
y2

o

cos CPs

(...
t....

Case iv: n adjustable

Real solutions for this equation exist provided
that the condition

The values of line length required (-e,') must
satisfy Eq. (31) with B~x replaced .by Bex and -e,
replaced by -e,'. Real-valued solution for -e,' may
not always exist.

(

..,J

,
I

.J

....

(33)2
a2 - 4al a3 > 0

is satisfied.

Case iii: -e, adjustable

Case i: Bex adjustable

The value of Bex required to obtain zero
phase compensation is given by:

B'
ex
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Case ii: Bg adjustable

The values of Bg are solutions of the equa
tion:

The value of coupling coefficient (n') re
quired for obtaining zero phase compensation is
given by:

G2

Y [ i sin f3t cos ~0

{ G
2

1
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y, 0n tan G
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a2 = yl [ ( Yo cos 2~ - n
2

B2 sin 2~ ) cos CPs
o

provided that the quantity under the square root
sign is positive.

Example

.,
,J

2 ]+ n G2 sin 2~ sin cP
s

*This condition has been experimentally demonstrated
by Murin et al. (Ref. 3).

In the design of an rf system, the values of
V and R2 are first calculated from the power
requirements given by Eqs. (5) and (6). Then for
a selected value of ~, the values of nand Bex
are calculated from Eqs. (10), (11), and (15)
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Fig. 5. Cavity Detuning (0) for Systems Having
Different Line Length.
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TIL = Bunch width/rf period = 0.04

G = 0.015 0-
1 (Ref. 9)
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o

Q = 60,000

= 300

For this example, we take:

and the values of So, Pd , IIgl and 6~g from
Eqs. (17), (21), and (25) - (28). The values of
B~x, B', t' and n' required for zero phase com
pensatfon are determined from Eqs. (31) - (34).
This design procedure is illustrated by an
example below:

I (max) = 100 rnA (current average over a pulse)
p

giL = Gap width cell length = 0.4 (Ref. 8)

,....

-

-

-

-

Pw 2.75 MW (Tank 5) (Ref. 8)
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Fig. 6. Matching Susceptance (Bex) for Systems
Having Different Line Length.

(35)

2.4 MW (Tank 5) (Ref. 8)

Ibm 1.51 A

R2 245 MO

V = 36.7 MV

Using Eqs. (5), (6), and (35), we find:

For a uniformly bunched beam, the effective
cur~ent is given by

2 sin ( ~ ) sin

(~) (r;

-

-
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4

3l--_--;-~

2

6

5

1 (Bg =0.015)

1.5

3.0
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2.5

... 2.0
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The quantities n, 0, Bex , So, and Pdo have
been calculated for systems having different
values of ~t. The results are given in Figs. 4-8
for three cases: Case 1, 2, and 3 for Bg = + 0.015,
0.0 and - 0.015 0-1, respectively.

-

30 60

/3l

180

Fig. 4. Cavity Coupling Coefficient (n) for Sys
tems Having Different Line Length.

Fig. 7. VSWR (So) for Systems Having Different
Line Length (Ib = 0).

-
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Fig. 8. Power Dissipated in Generator (Pdo) for
Systems Having Different Line Length
(Ib = 0).

Fig. 11. The Change in Load Susceptance (~Bex)

Required for Z~ro Phase Compensation
~Bex = Bex - Bex where the Values for
Bex are Given in Fig. 6.

I I
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00
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50 100
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Fig. 9. Amplitude of Generator Current Required
to Compensate Steady-State Beam Loading
for Different Values of Beam Current
(Ip =Avg. Beam Current Over a Pulse).
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. I
Generator Susceptance Required (Bg) for
Zero Phase Compensation. The Corre
sponding 9hange in Bg is Given by
LiBg =- Bg•

Plots of IIgl and ~~g required for beam
loading compensations as functions of beam current
are shown in Figs. 9 and 10. Since the values of
these quantities are independent of both t and
Bg, the plots are the same for all systems. The
generator current is 612 A and 786 A for I Q = 0
and 100 rnA (Ibm = 1.51 A), respectively. The
change in ~g required is 10 degrees.*

Fig. 12.

Figures 4 - 6 show that as the value of ~
is varied over a 1800 range, minimum variations
in the corresponding values of the system param
eters n, 6 and Bex occur for the case of Bg = O.
In particular, the condition Bg = Bex = B2 = 0
[Eq. (22)J is satisfied for ~ = 1350 •

10050
I p (mA)

8

6

4

12

10

Fig. 10. Phase Change of Generator Current Required
to Compensate Steady-State Beam Loading
for Different Values of Beam Current.

*
~~g = 1.50 for a change of I p from 0 to 30 rnA
has been observed in the existing AGS Linac by
K. Batchelor et al. (Ref. 10).
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The adjustments required for zero phase com
pensation for Case 2 have been calculated and the
results are shown in Figs. 11 and 12. It is
found that, for this case, the zero phase condi
tion cannot be obtained by varying the line length
or cavity coupling coefficient alone. In addition,
for 200 < ~ < 95 0 , no real solution for B~
exists as shown in Fig. 12. For the other values
of ~, two solutions for B~ are possible. In the
neighborhood of ~ = 0 and 1150 , the absolute
value of one of these solutions becomes large,
while the other reaches a minimum.

A sununary of results for the special case of
~ = 135 0 is given below:
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System n (10
3

) B B Remarksex g

A 1.6 0 0 System designed for maximum power transfer
(Ibm = 1.51 A).

i 1.6 -1.1 0 System A with Bex adjusted for zero phase
compensation.

ii 1.6 0 2.0 System A with Bg adjusted for zero phase
-1.2 compensation,

iii No solution System A with t adjusted for zero phase
compensation.

*iv No solution System A with n adjusted for zero phase
compensation.

*It may be shown that it is impossible to obtain zero phase compensation by
adjusting the cavity coupling alone in a system designed for a maximum power
transfer.

Summary

Two criteria which take into account the
effects of steady-state beam loading have been
considered theoretically for the design of a 1inac
rf system. In one, the power transferred to the
linac cavity is maximized for maximum beam current.
In the other, the system is designed so that
phase compensation for beam loading is not re
quired. In general, it is not possible to have a
system which meets both criteria.

It has been shown that for any system, zero
phase compensation is always obtainable provided
that the load susceptance is adjustable. How
ever, zero phase compensation is not always
attainable for a system in which the generator
susceptance, line length or cavity coupling
coefficient is the only adjustable parameter.
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