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Introduction

The normal amplitudes Ven(t) and Vbn(t) satisfy
the differential equation7:

Steady-state cavity excitation and beam
loading in standing wave linacs have been ana
lyzed by a number of authors. 1 - 6 More recently,
Nishikawa7- 9 extended the analysis to include
transient behavior of these phenomena. In all of
the analyses to date, constant beam velocity and
identical cavity cells are assumed. These
assumptions, however, become less valid for low
energy linac cavities such as those at the be
ginning of the Conversion linac. In this paper,
the amplitude of the beam induced field is calcu
lated. The analysis takes into account the
changes in the beam velocity and cavity cell
length along the linac. The method of analysis
follows closely that of Nishikawa given in Ref. 7.
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The effects of beam loading can be characterized
by the beam interaction integral

Under the approximation that the beam veloc
ity varies linearly with the distance along the
accelerator cavity, the value of the beam induced
field is proportional to a constant N, which is
given by V(L) - V(O)/V(Lo) - V(O), where V is the
beam velocity, Lo is the length of the first
cavity cell, and L is the length of the cavity
tank. The expression for the beam induced field
differs from that for an identical cell cavity by
a constant multiplying factor K, which is given
by N V(O)/N Vb, where N is the number of cavity
cells and Vb is the constant beam velocity as
sumed.
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source function due to cavity excita
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source function due to beam loading.

(2.2)

Method of Analysis

The field in a cavity, in general, can be
taken to be

E(r,e,z,t) = Ee(r,e,z,t) + Eb(r,e,z,t)

wher~ Ee is the field due to cavity excitation
and Eb is the field due to beam loading. In
terms of the normal mode fields of the cavity

E (r,e,z,t) =L V (t) E (r,e,z)
e en nn

and

E
b

( r, e, z , t) =1: Vbn(t) E (r,e,z)
nn

*Work performed under the auspices of the U. S.
Atomic Energy Commission.

which is related to the source function by

fbn(t) = - 1 iL J (t)e dt n
-->

where J is the beam current density.

Let Ek be the resonant mode of the cavity and
consider

Ek( r , e,z ) = 1. ashs ( r , e, z)
s

where [hs } a set of orthogonal functions (modi
fied space harmonics) which has the following
properties: hp is synchronous with the beam for
some p and [hsl reduces to the space harmonics in
the limit of identical cells.

Since coupling between the beam and the
cavity field comes largely from interaction of
the beam with the synchronous space harmonics,

Isynchronous
harmonics

(p)
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- Under these conditions, the beam induced field is
given by

Under these conditions, the set of modified
space harmonics is given by

with

(2.3)

,... 1 d, J-
~ Vbk(t) = - ; dt L ap J. h dv

p p

In particular, for the Conversion linac, k
and p = ± 1.

(2.4)

o

which satisfies the orthogonal condition

2L

J
o

Beam Induced Field in a Linac Cavity

For a periodic structure, the normal mode
field can be expanded 7 as

Thus, for E an even function of z,n
N

a =~S En cos [( ~TI + 2TIs
ns

0

) u ] du

s=-oo

where

resonant nor
may be charac-

elsewhere

thz in the k gap

gk = width of the k
th

gap

Lk length of the kth cell

where

For the Conversion linac, the
mal mode field along the beam axis
terized7 by

E =l;~ ::
o 0

and So(r) gives the radial dependence of the
field. Furthermore, we assume that the time re
quired for the beam to travel across each gap is
the same. Then

ans cos [( n; + 2TIS ) U ]

dz'
V(z')

rf frequency of the beam.

2TI
W

z

u=~S
o

T

w

u ~

L
0

N number of cells in the cavity

L length of each cavity cello
0

Analogous to this expansion, for a nonperi
odic structure, we take

where-

-

which can readily be Fourier analyzed to give

,....

-

Let the time required for a beam to cross each
cell be T, i.e.,

I dz'
V(z I) = T

cell

so that

L I

I v~= I) = NT
o

and assume

E=
o

for k = 0,1. •• ,N-l

o elsewhere

So sin ( TIS
go )L

(-1) s 0a os
/2 ( go )

TIS L
0

-
v(z) = V( Iz I) for - L < z < 0

where L = length of the cavity tank.

where (T~u) = time required to cross a gap, i.e.,
~u = go/Lo ' Figure 1 shows some graphs of the
function Eo. Hence, the resonant mode field
along
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r------""I ACCELERATOR CAVITY
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~+ =+- As an approximation to the beam velocity, we takeBEAM

CELL # 1 2 3

cos (2TTS u) du

V(z) - V(O) = Az

(3.1)

t
Eo (z)

NORMAL MODE FIELD DISTRIBUTION
ALONG BEAM AXIS

where A is a constant (see Fig. 2).
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Fig. 1. Cavity normal mode field distribution
along beam axis.

o 246
DISTANCE ALONG ACCELERATOR CAVITY.

~ig. 2. Beam velocity versus distance along
accelerator cavity (linac tank No.1).

Then

I
I...,

the beam axis for the Conversion linac cavities
is given by

L
s=O

aos cos [
2TTS JZ dz ' J

T V(Zi)
o

- l Y.W.u(z) - AT tn V(O)

so that for u = (t - tb)/T
,
j,....

where aos is given above.
V

For a particle of charge q' entering the
.cavity at t = tb, the beam cavity interaction
integral is given by

, (Xl L [l dz' ~Jo(t,tb) .L
laos S 0 ]T TV(z') - T

8=0 0 0

z

cos [ 2~s J d ' JV(: ') dz
a

Using this result, the integral given by Eq. (3.1)
may be evaluated, yielding

\" (~)laos cos \ 2TTS T

s=O

for 0 < t - t b < NT.
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The beam-cavity interaction integral for a
bunch can now be found by summing the interaction
integral for each particle over all the particles
in the bunch. For a short bunch of uniform charge
distribution, we obtain

so that

J ( -) ~ q V(O) eA(t - tb)o t,tb .-

(3.2)

where

where q is the total charge in the bunch, otb is
the length of a bunch, fb is the time the center of
the bunch enters the cavity and

o < t - t
b

< T

\' a fL os s
s=O

(
t T- t b )cos 2TTS

(3.2)

sin ( go )TT -
L

0

( TT
go )L

0

sin (
Ot

b )TT --
T

(
otb

TT T)

transit time factor

bunch length form
factor.

Terms of the order of AT (~ liN) have been
neglected in Eq. (3.2).

N-l

Jo(t,t
b

) ~ aolflqV(O) I eA(t-tb+kT)

k=O

From the symmetry of the system, the beam
interaction integral with the synchronous harmonic
summed over all bunches inside the cavity has
periodicity T. Thus, performing this summation,
we find

Finally, the amplitude of the beam induced
field can be found by solving Eq. (2.1) combined
with Eq. (3.2). This solution yields

(3.3)
t > t

o

t < t
o

SoTlf l N q Q V(O) [ -~ (t-t )
l-e 2Q 0 ]

/2 e w

ejw(t-tb)

o

for the condition that there is no beam before
t = to. The quantity Q is the loaded Q of the
cavity. Derivation of this solution is given in
the appendix. The beam induced field can be found
from Eq. (2.3):

(
otb )

sin TTS T

(TTS O:b)

f
s

-
-

-
[

2TT ]cos T (t - t b + kT)
(3.4)

-
-

or

Jo(t,tb) aolflN q V(O) eA(t-tb ) cos (
t-t b )~ 2TT -T-

(3.3)

where

N V(L) - V(O)
V(Lo) - V(O)

for 8 < t - t b < T.

A comparison of the result obtained here
with that given by Nishikawa 7 shows that they
differ by a multiplicative factor,* K, given by

K

Furthermore, if the change in beam velocity
across each cell is small, then

,/(

The values of K for cavity numbers 1 and 2 of

the Conversion linac are 2 YiQl
Vb

respectively.

and 1 4 YiQ2.
• Vb '

-
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where Vb is the constant beam velocity assumed by
Nishikawa. In particular, if we take

and Vb(O) = Vb(O) = O. Taking the Laplace trans
form of Eq. (A1) and solving for the transform of
Vb(T) gives

then

K

and both results have the same value.
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V(s) i (A2)2
(1 + ~s) ( 1 + ~ s +,L ). 2

w

where

of] ~
jW

P (1 + jk) 2~

K ..!L ejwto
2em

Inverting V(s) yields

Appendix

k = Loaded Q
Unloaded Q

under the condition that there is no beam before
t = to. Here H is the Heaviside function and

The value of J is given by Eq. (3.3), Which can
be expressed i& complex notation

J = K e jwt
o

W J1 - p2 T ][
-T/~ -pWTe - e cos

+ K W (l - new~ e -pWT dnwPT

J 1 - P (1 - 2p~ w + ~2w2) •

(A3)

Under these conditions

Since the value of Q for an accelerator
cavity is generally sufficiently high (l/Q « 1),
we have Ip2 1 « 1 and

2 2 1
1 - 2pT]w + ~ W ~ jQ

(2.1)1 d
- - -- J (t) H(t - t )

€ dt 0 0

The amplitude of the beam induced field in
the accelerator cavity satisfies the differential
equation:

[
d2 W d + 2 ]

dt2 + (1 + jk) Qdt W

where

K

The boundary conditions are taken to be V(to) and
V'(to) equal zero.

By a change of variable T = t - to, Eq. (2.1)
becomes

w
- [( 1 _ e - 2Q T ) e jWTVb(T) ~ - KwQ

w
1 - 2Q (l+jk)T ]

- 2Q e sin WT • (A4)

Neglecting the second term in this expression and
changing the variable from T back to t, we find

j
....

SO T1 f 1 N q Q V(O)

/2 € W

(Al)

(AS)

,
--
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