

MINOS Results from the First Year of NuMI Beam Operation

Jeff Nelson William & Mary

(for the MINOS Collaboration)

Neutrino 2006 Santa Fe, NM June 17th, 2006

The MINOS Experiment

A large detector at Soudan

> The "far detector" or FD

A smaller detector at Fermilab

> The "near detector" or ND

Measure the beam and neutrino energy spectrum near the source

> See how it differs far away

Talk Outline

- > Introduction to MINOS
- > Detector and beam performance and modeling
- > Oscillation Analysis
- > Future prospects

MINOS has been collecting data with the NuMI beam since 3/05

- > Data from 1.27×10²⁰ protons on target (POT) was accumulated under nominal beam conditions
- > Previous MINOS results from 0.93×10²⁰ POT

We report for the first time preliminary results from the full 1.27×10²⁰ POT sample

> These results supersede our previously reported results

MINOS Collaboration

Argonne • Athens • Benedictine • Brookhaven • Caltech • Cambridge • Campinas • Fermilab College de France • Harvard • IIT • Indiana • ITEP-Moscow • Lebedev • Livermore Minnesota-Twin Cities • Minnesota-Duluth • Oxford • Pittsburgh • Protvino • Rutherford Sao Paulo • South Carolina • Stanford • Sussex • Texas A&M Texas-Austin • Tufts • UCL • Western Washington • William & Mary • Wisconsin

- Test the $v_{\mu} \rightarrow v_{\tau}$ oscillation hypothesis
 - > Precisely measure oscillation parameters $\Delta m_{32}^2 = m_3^2 - m_2^2$ and $\sin^2 2\theta_{23}$
- Search for sub-dominant $v_{\mu} \rightarrow v_e$ transitions
- High statistics studies of neutrino-nucleus interactions
- Search for/constrain exotic phenomena
- Atmospheric neutrino oscillations
 - > First physics paper Phys. Rev. D73, 072002 (2006)

Look for a deficit of v_{μ} events at a distance...

The NuMI beam at Fermilab

Design parameters

- > 120 GeV protons from the Main Injector
- Main Injector can accept up to6 booster batches per cycle
- > 1.87s minimum cycle time
- > 4×10¹³ protons/pulse
- > 0.4 MW
- > 10µs extraction
- Averages from 10/05 to 1/06
 - > 170 kW
 - > 2.3×10¹³ protons/pulse
 - > 2.2 s cycle

2

The NuMI beamline

Water-cooled segmented graphite target

• 47 2.0 cm segments; total length of 95.4 cm

2 parabolic horns carrying

- Up to 200 kA current provides up to 3T fields
- Target can be positioned up to 2.5m upstream of the first horn to change beam energy

The NuMI neutrino beam

Majority of running in the LE-10 configuration

- Beam composition: 98.7% $v_{\mu} + \overline{v_{\mu}}$ (5.8% $\overline{v_{\mu}}$), 1.3% $v_e + \overline{v_e}$
- Collected data in 5 other beam configurations for systematics studies (roughly 5% of the total exposure)

MINOS Detectors

Near Detector 1 kton 3.8 × 4.8 × 15 m³ 282 steel planes 153 scintillator planes

Iron and Scintillator tracking calorimeters Fa 2.54 cm thick magnetized steel planes = 1.2T 1×4.1 cm² scintillator strips Multi-anode PMT readout GPS time-stamping to synchronize FD data to ND/Beam Software triggering in DAQ PCs Main Injector spill times sent to the FD for a beam trigger

Far Detector 5.4 kton $8 \times 8 \times 30 \text{ m}^3$ 484 planes

MINOS Calibration system

ND & FD response

- > Light Injection system (PMT gain)
- > Source scan (within a strip)
- > Cosmic ray muons (strip to strip)
- Stopping cosmic ray muons (detector to detector)
- > Overall energy scale (Test beam)

Energy scale errors

- > 5.7% absolute
- > 2% ND/FD relative

A blind analysis

Far detector blinding

- > Unknown fraction of FD events were hidden
 - Blinded as a function of event length and energy
- > The "Open" FD data used to check data quality

All near detector data was open

> Used to study beam properties, cross sections, and detector systematics

Analysis procedures defined prior to box opening

Near detector events

- High event rate in the near detector
 - > Over 1×10^7 events in the fiducial volume
- Multiple interactions per main injector spill
 - > 10 µs beam spills
- Events are separated by topology and 19ns timing
 - > Linear response to increasing intensity

Number of events vs intensity

A 2 GeV v_{μ} event

Track Energy 2.04 GeV Shower energy 0.20 GeV $q/p = -0.52 \pm 0.03$

v_{μ} CC event pre-selection cuts

- At least one good track
- Fitted track with negative charge
- Track vertex within the fiducial volume
 > ND r < 1m from beam center
 > FD r < 3.7m

Event selection performance

Charged current events are selected using a likelihood procedure

- > Combine probability density functions for 3 low level variables to differentiate CC & NC interactions
- > Efficiency is reasonably flat vs visible energy over most of the energy range
- > NC contamination is limited to the lowest bins (below 1.5 GeV)

Hadron production tuning

Weights applied

- Varying the dependence on p_T and x_F in FLUKA05
- Also allow small changes in ullet
 - > Cross section parameters
 - Horn focusing >
 - Neutrino energy scale >

Start with near detector data & extrapolation to the far detector

- > Use Monte Carlo to provide corrections due to energy smearing and acceptance
- > Encode pion decay kinematics & the geometry of the beamline into a matrix used to transform the ND spectrum into the FD energy spectrum

This is the primary method used in our analysis

Different methods of predicting the FD spectrum

ND fit methods

- >2 types of fits made to all 6 beams
 - ND fit to E_v distribution
 - 2D fit to (E_v, y) grid
- >The MC is then used to produce the extrapolation FD spectrum

ND data extrapolation methods

- >2 types of fit used
 - Beam matrix
 - F/N ratio
 - Events in each ND energy bin are scaled via
 MC into a number of FD events in the same bin

The methods are robust to different categories of systematics

Selecting far detector beam induced events

GPS time stamping both detector sites

> FD trigger reads out 100µs of activity around beam spills

FD neutrino events have distinctive topology

- > They point to Fermilab
- > Easily separated from cosmic muons with 60° cut around the beam axis

Backgrounds estimated from "fake" triggers

- > 2.6 million triggers
- > 0 events survived cuts
- > Upper limit of 0.5 events

This analysis uses data collected from 20 May, 2005 to 3 March, 2006

Data sample	Data	Expected (Matrix Method; Unoscillated)	Data/MC (Matrix Method)	Expected (Fit Method; Unoscillated)
<i>v_µ</i> (<30 GeV)	215	336±21	0.64±0.08	332.8
<i>v_µ</i> (<10 GeV)	122	239±17	0.51±0.08	237.7
v_{μ} (< 5 GeV)	67	168±12	0.45±0.09	168.6

A large energy dependent deficit

- > Below 10 GeV the significance of the deficit is 5.9σ (stat+syst)
- > Preliminary result from the 1.27×10²⁰ POT sample

MINOS best-fit spectrum for 1.27x10²⁰ POT

FD distributions

Predicted no oscillations (solid) Best fit (dashed)

Allowed region

Allowed region

Allowed region

Systematic errors

Preliminary Uncertainty	Δm ² (10 ⁻⁴ eV ²)	sin²2θ
Near/Far normalization ± 4%	0.03	0.000
Muon momentum scale ± 2%	0.35	0.003
Near/Far shower energy scale ± 2%	0.10	0.003
NC contamination ± 50%	<u>0.88</u>	0.038
CC cross-section uncertainties	0.16	0.004
Intranuclear re-scattering / absolute energy scale (±6%)	<u>0.83</u>	0.018
Reconstruction	0.13	0.005
Fit bias	0.10	0.010
Beam uncertainties	0.25	0.005
Total Systematic (summed in quadrature)	1.31	0.044
Statistical sensitivity	3.6	0.12

Projected sensitivity of MINOS

Input parameters $\left|\Delta m_{32}^{2}\right| = 2.72 \times 10^{-3} \text{eV}^{2}$ $\sin^{2}2\theta_{23} = 1.00$

Statistical errors only 90% C.L.

2nd year of MINOS running in the NuMI Beam is underway

The first FD beam event in the new run

> A muon from an interaction in the cavern rock

MINOS Summary

Preliminary results from the first year of accelerator neutrino exposure

- > Our exposure to date is 1.27×10²⁰ POT
- > Disfavors no oscillations at 5.9 σ (rate only)
- > It is consistent with v_{μ} disappearance with the following parameters

 $\left|\Delta m_{32}^{2}\right| = 2.72_{-0.25}^{+0.38} (stat) \pm 0.13 (stat) \times 10^{-3} eV^{2}$ sin²2 θ_{23} = 1.00 (stat) ± 0.04 (syst)

> A fit constrained to the $sin^2(2\theta)=1$ boundary yields

$$\left|\Delta m_{32}^{2}\right| = 2.72_{-0.25}^{+0.25} \times 10^{-3} \,\mathrm{eV}^{2}$$

The systematics are under control

- > Many systematics are data driven and will improve with increasing statistics and further analysis
- > We should be able to make significant improvements in precision with a substantially larger dataset

Dedication

