

Future Atmospheric Neutrino Experiments

Naba K Mondal Tata Institute, Mumbai

Need for new Atmospheric Neutrino Detectors

- Experimental field of Neutrino Physics has moved to the phase of decisive and precision measurement of oscillation parameters.
- New and planned long base line experiments will provide bulk of the data necessary to achieve this.
- Is there still need for new atmospheric neutrino experiments?

Physics with Atmospheric Neutrinos

- It span a large range of L/E .
- Oscillation can be seen as a function of L/E.
- Possibility of observing matter effect .
- Sensitivity to the sign of Δm_{23}^2
- Measuring θ_{13} .
- CP Phase measurement.

Magnetised Iron Tracking Calorimeter

India-based Neutrino Observatory (INO) initiative

Goal: A large mass detector with charge identification capability

• Two phase approach:

R & D and Construction Phase I Physics studies, Detector R & D, Site survey, Human resource development Phase II Construction of the detector **Operation of the Detector**

Phase I Physics with Atmospheric Neutrinos Phase II Physics with Neutrino beam from a factory

Choice of Neutrino Source and Detector

- Neutrino Source
 - Need to cover a large L/E range.
 - Large L range
 - Large E_v range
 - Use Atmospheric neutrinos as source.
- Detector Choice
 - Should have large target mass (50-100 KT)
 - Good tracking and Energy resolution (tracking calorimeter)
 - Good directionality (<= 1 nsec time resolution)
 - Ease of construction
 - Modularity
 - Complimentarity with other existing and proposed detectors
 - Use magnetised iron as target mass and RPC as active detector medium.

INO Detector Concept

Construction of RPC

Two 2 mm thick float Glass Separated by 2 mm spacer

2 mm thick spacer

ICAL Detector Specifications

No of modules	3
Module dimension	16 m X 16 m X 12 m
Detector dimension	48 m X 16 m X 12 m
No of layers	140
Iron plate thickness	6 cm
Gap for RPC trays	2.5 cm
Magnetic field	1.3 Tesla
RPC unit dimension	2 m X 2 m
Readout strip width	3 cm
No. of RPCs/Road/Layer	8
No. of Roads/Layer/Module	8
No. of RPC units/Layer	192
Total no of RPC units	27000
Nonof Electronic shannels	3.6 X 10 ⁶

RPC R & D

- Built RPCs of different sizes
 - 30 cm X 30 cm
 - 120 cm X 90 cm

RPC Efficiencies and Timing

RPC working in Streamer mode

Cosmic Muon Test

- Streamer mode (R134a=62%, Argon=30% and the rest Iso-Butane)
- Recording hits, timing, noise rates etc

Stack of 10 RPCs

Location of the Underground Laboratory

- Studies were performed on two potential sites.
 - Pykara Ultimate Stage Hydro Electric Project (PUSHEP) at Masinagudi, Tamilnadu
 - Rammam Hydro Electric Project Site at Darjeeling District in West Bengal
- INO Site Selection Committee after thorough evaluation have now recommended PUSHEP at Tamilnadu as the preferred site for the underground lab.

Underground Cavern

Physics using atmospheric neutrinos during Phase I

- Improved measurement of oscillation parameters.
- Search for potential matter effect in neutrino oscillation.
- Determining the sign of Δm_{23}^2 using matter effect.
- Is θ_{23} maximal ? If not $\theta_{23} < \pi/4$ or $> \pi/4$?
- Probing CPT violation in neutrino sector.
- Ultra high energy muons in cosmic rays.

Physics with Neutrino beam from NUFACT – Phase II

- Determination of $\theta_{13.}$
- Determining the sign of $\Delta m_{23.}^2$
- Matter effect in $v_{\mu} \rightarrow v_{\tau}$ oscillation.
- **Probing CP violation in leptonic sector.**

Disappearance of v_{μ} vs. L/E

The disappearance probability can be measured with a single detector and two equal sources:

Precision Measurement of Oscillation Parameters

Matter Effect

R. Gandhi et al PRL 94, 051801, 2005

Total no. of v_{μ} charge current events:

$$N_{\mu} = N_{n} \times M_{Y} \int dE \int d\cos\theta_{z} \left[\frac{d^{2}\phi_{\mu}}{dEd\cos\theta_{z}} P_{\mu\mu}(E,L) + \frac{d^{2}\phi_{e}}{dEd\cos\theta_{z}} P_{e\mu}(E,L) \right] \sigma_{\mu}(E)$$

Neglecting Δ_{21}

$$P^{vac}(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} (1.27\Delta_{31}L/E)$$

 $P^{mat}(v_{\mu} \rightarrow v_{e}) = \sin^{2} \theta_{23} \sin^{2} 2\theta^{m}_{13} \sin^{2}(1.27\Delta^{m}_{31}L/E)$

Mass Hierarchy from matter induced asymmetry

Deviation from maximality of θ_{23}

CPT Violation

The expression for survival probability for the case of CPTV 2-flavour oscillations

$$P_{\mu\mu}(L) = 1 - \sin^2 2\theta \sin^2 \left[\left(\frac{\delta_{32}}{4E} + \frac{\delta b}{2} \right) L \right] \qquad \text{and}$$

$$\Delta P_{\mu\mu}^{CPT} = P_{\mu\mu} - P_{\overline{\mu}\overline{\mu}} = -\sin^2 2\theta \sin\left(\frac{\delta_{32}L}{2E}\right) \sin(\delta bL)$$

Future water Cherenkov detectors

Hyper-Kamiokande

~1 Mton water Cherenkov detector at Kamioka

Why this design has been chosen ?

- Water depth < 50 m (If the present 20-inch PMT or similar one will be used.)
- Linear dimensions for light path < 100 m
- Optimization of M_{FID}/M_{TOTAL}
- Rock stability
 - Avoid sharp edges. Spherical shape is the best.
- solution: Tunnel-shaped cavity
- Single Cavity or Twin Cavities?
 - Single Cavity
 - M_{FID}/M_{TOTAL} is better
 - Cost is lower
 - Larger area of stable rock mass needed.
 - Twin Cavities
 - Two detectors are independent. One detector is alive when the other is calibrated or maintained.
 - Both cavities should be excavated at the same time. But staging scenario is possible for the later phase of the detector construction.
- solution: Twin cavities

UNO

Neutrino

-> a very large Laboratory to allow the installation of a Megaton-scale Cerenkov Detector ($\approx 10^6 \text{ m}^3$)

Physics reach of Megaton scale Water Cherenkov Detectors

Octant of θ_{23}

Nonzero θ_{13}

δСР

oscillation effects in Ve

Pares and Smirnov hep-ph/0309312 (at Sub-GeV range)

$$\begin{array}{l} \underline{\Psi(ve)}{\Psi_{0}(ve)} -1 \cong P_{2}(r \cdot c_{23}^{2} - 1) & \text{IMA} \\ \hline -r \cdot \widetilde{s}_{13} \cdot \widetilde{c}_{13}^{2} \cdot \sin 2\vartheta_{23}(\cos \delta_{CP} \cdot R_{2} - \sin \delta_{CP} \cdot I_{2}) & \text{interference} \\ + 2 \widetilde{s}_{13}^{2}(r \cdot s_{23}^{2} - 1) & \mathcal{G}_{13} \text{ resonance} \end{array}$$

$$\begin{array}{l} \mathbf{r} \quad : \ \mu/\text{e flux ratio } (\sim 2 \text{ at low energy}) \\ P_{2} = |A_{e\mu}|^{2} : 2\nu \text{ transition probability } \nu_{e} \rightarrow \nu_{\mu\tau} \text{ in matter} \\ R_{2} = \text{Re}(A^{*}_{ee}A_{e\mu}) \\ I_{2} = \text{Im}(A^{*}_{ee}A_{e\mu}) \\ A_{ee} : \text{ survival amplitude of the } 2\nu \text{ system} \\ A_{e\mu} : \text{ transition amplitude of the } 2\nu \text{ system} \end{array}$$

Effect of θ_{23} after v interactions

Discrimination of θ_{23} octant

Discrimination of θ_{23} **octant**

 $\sin^2\theta_{23}$

Discrimination of *θ*₂₃ **octant, SKx80yrs**

With 80yrs SK, discrimination is better and possible for many test points.

Significance for nonzero θ₁₃

Positive signal for nonzero θ_{13} can be seen if θ_{13} is near the CHOOZ limit and $s^2\theta_{23} > 0.5$

Neutrino 2006, Santa

CP phase could be seen if θ 13 is close to the CHOOZ limit.

Summary

- A large magnetised detector of 50-100 Kton like INO is needed to achieve some of the very exciting physics goals using atmospheric neutrinos.
- It will complement the existing and planned water cherenkov detectors.
- Can be used as a far detector during neutrino factory era.
- R & D for setting up such a detector in India is in progress.
- If θ_{13} is close to the CHOOZ limit, then next generation water Cherenkov detectors could give us precious information on;
 - $-\quad \text{octant of } \theta_{23}$
 - $-\quad nonzero \ \theta_{13}$
 - δCP