

Zornitza Daraktchieva for MUNU Collaboration NEUTRINO 2006, June 15, Santa Fe

MUNU collaboration

Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France

Institut de Physique, Neuchâtel, Switzerland

INFN, Padova, Italy

Physik Institut, Zürich, Switzerland

MUNU is an $\overline{V_e} - e^-$ elastic scattering experiment

$$\frac{d\sigma}{dT_e} = \left(\frac{d\sigma}{dT_e}\right)_W + \left(\frac{d\sigma}{dT_e}\right)_{EM}$$

$$\left(\frac{d\sigma}{dT_e}\right)_{EM} = \frac{\pi\alpha^2\mu_v^2}{m_e^2} \frac{\left(1 - \frac{T_e}{E_v}\right)}{T_e}$$

need low energy neutrino sourcereactor and low detection threshold to study neutrino magnetic moment

for reactor experiments L~0 and measured magnetic moment μ_e^{rea} depends only on the mixing matrix U_{ek} and μ_{ik} :

$$(\mu_e^{rea})^2 = \sum_j \left| \sum_k U_{ek} \mu_{jk} \right|^2$$

MUNU experiment

 $\overline{v_e}$ source - nuclear reactor (2800 MWth) Bugey, France

Neutrinos are mostly produced in the β decay of fission fragments of the following four fuel isotopes : 235U(54%),239Pu(33%),241Pu(6%),238U(7%)

distance =18m at 20 m.w.e

```
\Phi_{vlab}=10<sup>13</sup> v. cm <sup>-2</sup>. s <sup>-1</sup>
```

 $E_v = (0 \div 8 \text{ MeV})$

Neutrino spectrum:

 $E_v > 1.8 \text{ MeV}$: the spectrum is reconstructed from the measured β decay of fission fragments (ILL), 5 % uncertainty $E_v < 1.8 \text{ MeV}$: calculations (Vogel et al, Kopeikin), 20 % uncertainty

MUNU (Grenoble-Neuchâtel-Padova-Zurich)

The central tracking detector is a 1m³ Time Projection Chamber

acrylic vessel L =162 cm Φ = 90 cm

11.4 (3.8) kg CF_4 gas at 3 (1) bar pressure

Why CF4? •absence of free protons (no $\overline{\nu}_e + p \longrightarrow e^+ + n$) •high density (3.7 g /l at 1 bar) •low Z (less multiple scattering) The *xy* plane provides spatial information in *x* and *y* directions. The spatial information along *z*-axis is obtained from the time evolution of the signal

Selection of Neutrino Candidates

- Automatic filtering rejects Compton electrons, muons, α's discharges and uncontained electrons
- 2. Selection of good electron events

Neutrino candidate is every single electron with clearly distinguishable start and end of track (blob) inside of the fiducial volume (R<42 cm), with no energy deposition in the anti-Compton detector

Visual scanning analysis

Operator selects the contained single electrons and fits the first cm of the electron track by eye

from the fitting : θ_{rea} (scattering angle with respect to the reactor-detector axis)

from the Kinematics : incident neutrino energy E_{v} (Te, θ_{rea})

$$\theta_{rea} = \arccos \frac{\Delta y \cos \varphi_{drea} - \Delta x \sin \varphi_{drea}}{\sqrt{(\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2}}$$

$$E_{\nu} = \frac{m_e c^2}{\cos \theta_{rea} \sqrt{\frac{T_e + 2m_e c^2}{T_e} - 1}}$$

Examples of background events at 3-bar pressure

Examples of electron events at 3-bar pressure

•We can measure the angular distribution of electron tracks

•The signal and background are measured simultaneously which solves the problems with detector or source instability over long periods of data taking

•Moreover the TPC is absolutely symmetric between forward and backward directions with regards to the reactor-detector axis:

-it is positioned orthogonally to the reactor-detector axis, which coincides with the axis of symmetry between x-y strips in the pickup plane

-anode wires are rotated by 45° with respect to the x-y plane

Angular distributions of electron tracks

Forward –Normalized Background Analysis

Normalized Background =(Upward +Downward +Backward)/ 3 Signal = Forward – Normalized Background

Results 3-bar Forward –Normalized Background Analysis

Energy distributions of the background electrons 66.6 days reactor-on

Background electrons are 1154 ± 34 in total

Energy distributions of the forward (S+B) and normalized background electrons (B), 66.6 d reactor-on

Forward electrons are 455 ± 21

Normalized Background electrons are 385 ± 11

Energy distributions of the forward (B) and normalized background electrons (B) 16.7 days reactor-off

Forward electrons are 133 ± 11 Normalized Background electrons are 147 ± 7 -0.8 ± 0.8 cpd

Energy distribution of the forward – NB electrons 66.6 d reactor-on

70 events for 66.6 days 1.05 ± 0.36 cpd

Motivation:

- Better energy resolution
- Smaller background
- •To measure low energy electron events down to 100 keV
- •To measure not only the energy but also the direction of the recoil electrons above 150 keV

Calibrations with ⁵⁴Mn and ¹³⁷Cs

⁵⁴Mn

137**C**S

TPC energy resolutions at 1-bar and 3-bar

Energy resolution at 1-bar is about 2 times better then that at 3-bar

Examples of background events at 1-bar pressure

Examples of low energy electron events at 1-bar pressure

Results 1-bar Forward – Normalized Background Analysis

Energy distributions of the background electrons 5.3 d reactor-on

Background electrons are 326 ± 18 in total

Energy distributions of the forward (S+B) and normalized background electrons (B) 5.3 d reactor-on

Forward electrons are 124 ± 11

Normalized Background electrons are 109 ± 6

Energy distribution of the forward – NB electrons 5.3 days reactor-on

15 events for 5.3 days above 200 keV

This is the first measurement of the recoil electron spectrum from ve^{-} scattering down to 200 keV

The technology of *MUNU* can (almost!) be used for other applications in low energy neutrino physics.

solar neutrino spectroscopy, 200 m³ (4x50m³) TPC filled with CF4 at 1bar

reconstruct E_v from T_e , θ_e

 L_{drift} = 33 m at 2 bar for V_{drift} = 50 kV cm⁻¹bar ⁻¹ demonstrated

Problem: large area reliable read-out planes! (MUNU: 20 μm wires)

Reconstructed ¹³⁷Cs(662 keV) photopeak from the Compton scattering of γe^{-} , $E_{\gamma}(T_e, \theta_e)$, 1 bar of CF4

Neutrino energy E_{ν} can be reconstructed in the same way from $T_{e'}\theta_{e'}$

Results from measurements with Micromegas (L. Ounali)

use primary light for t₀ Neuchâtel-CERN: pure CF₄

Reduce attachement with Ar, Xe admixture

Results from measurements with SILEM (P. Weber)

SILEM (pixel version); holes diameter 300 µm

lons/electrons charge signals

Maxwell/Garfield simulation

Grid gain in ArCH4 gas