Theory and phenomenology of neutrino oscillations

Evgeny Akhmedov
KTH, Stockholm & Kurchatov Institute, Moscow
Theory and phenomenology of neutrino oscillations

Evgeny Akhmedov
KTH, Stockholm & Kurchatov Institute, Moscow
Theory and phenomenology of neutrino oscillations

Evgeny Akhmedov
KTH, Stockholm & Kurchatov Institute, Moscow
Idea of neutrino oscillations: First put forward by Pontecorvo in 1957. Suggested possibility of $\nu \leftrightarrow \bar{\nu}$ oscillations by analogy with $K^0 \bar{K}^0$ oscillations.
Idea of neutrino oscillations: First put forward by Pontecorvo in 1957. Suggested possibility of $\nu \leftrightarrow \bar{\nu}$ oscillations by analogy with $K^0 \bar{K}^0$ oscillations.

Flavor transitions first considered by Maki, Nakagawa and Sakata in 1962.
A bit of history...

Idea of neutrino oscillations: First put forward by Pontecorvo in 1957. Suggested possibility of $\nu \leftrightarrow \bar{\nu}$ oscillations by analogy with $K^0 \bar{K}^0$ oscillations.

Flavor transitions first considered by Maki, Nakagawa and Sakata in 1962.
I. Theory
Leptonic mixing

For \(m_\nu \neq 0 \) weak eigenstate neutrinos \(\nu_e, \nu_\mu, \nu_\tau \) do not coincide with mass eigenstate neutrinos \(\nu_1, \nu_2, \nu_3 \)

Diagonalization of leptonic mass matrices:

\[
e_L \rightarrow V_L e_L, \quad \nu_L \rightarrow U_L \nu_L \ldots \quad \Rightarrow
\]

\[-\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}}(\bar{e}_L \gamma_\mu V_l^\dagger U_L \nu_L) W^\mu + \text{diag. mass terms}\]

Leptonic mixing matrix: \(U = V_l^\dagger U_L \)

\(\diamond \quad |\nu^a\rangle = \sum_i U^*_a i |\nu^\text{mass}_i\rangle \)
Oscillation probability in vacuum

For relativistic neutrinos: \[E \approx p + \frac{m^2}{2p}, \quad L \approx t, \]

\[P_{\nu_a \rightarrow \nu_b}(L) = \left| \sum_i U_{bi} e^{-i \frac{m_i^2}{2p} L} U_{ai}^* \right|^2 \]

– standard oscillation formula. For 2-flavor oscillations (good first approximation in many cases):

\[|\nu_e\rangle = \cos \theta |\nu_1\rangle + \sin \theta |\nu_2\rangle \]
\[|\nu_\mu\rangle = -\sin \theta |\nu_1\rangle + \cos \theta |\nu_2\rangle \]

\[P_{tr} = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2}{4E} L \right) \]
Modes of neutrinos oscillations

Depend on the character of neutrino mass terms:
Modes of neutrinos oscillations

Depend on the character of neutrino mass terms:

- Dirac mass terms \(\bar{\nu}_L m_D N_R + h.c. \):
 - active - active oscillations \(\nu_{aL} \leftrightarrow \nu_{bL} \) \((a, b = e, \mu, \tau) \)
 - Neutrinos are Dirac particles
Modes of neutrinos oscillations

Depend on the character of neutrino mass terms:

- **Dirac mass terms** \(\bar{\nu}_L m_D N_R + h.c. \):
 - active - active oscillations \(\nu_{aL} \leftrightarrow \nu_{bL} \) \((a, b = e, \mu, \tau) \)
 - Neutrinos are Dirac particles

- **Majorana mass terms** \(\bar{\nu}_L m_L (\nu_L)^c + h.c. \):
 - active - active oscillations \(\nu_{aL} \leftrightarrow \nu_{bL} \)
 - Neutrinos are Majorana particles
Modes of neutrinos oscillations

Depend on the character of neutrino mass terms:

- **Dirac mass terms** \(\bar{\nu}_L m_D N_R + h.c. \):
 - active - active oscillations \(\nu_aL \leftrightarrow \nu_bL \) \((a, b = e, \mu, \tau)\)
 - Neutrinos are Dirac particles

- **Majorana mass terms** \(\bar{\nu}_L m_L (\nu_L)^c + h.c. \):
 - active - active oscillations \(\nu_aL \leftrightarrow \nu_bL \)
 - Neutrinos are Majorana particles

- **Dirac + Majorana mass terms**
 \[\bar{\nu}_L m_D N_R + \bar{\nu}_L m_L (\nu_L)^c + \bar{N}_R M (N_R)^c + h.c. \]:
 - active - active oscillations \(\nu_aL \leftrightarrow \nu_bL \)
 - active - sterile oscillations \(\nu_aL \leftrightarrow (N_bR)^c \equiv (N_b^c)_L \)
 - Neutrinos are Majorana particles
Would observation of active - sterile ν oscillations mean that neutrinos are Majorana particles?

– Not necessarily!

In principle one can have active - sterile oscillations with only Dirac - type mass terms at the expense of introducing additional species of sterile neutrinos with opposite L.
The MSW effect (Wolfenstein, 1978; Mikheyev & Smirnov, 1985)

Matter can change the pattern of neutrino oscillations drastically
Neutrino oscillations in matter

The MSW effect (Wolfenstein, 1978; Mikheyev & Smirnov, 1985)

Matter can change the pattern of neutrino oscillations drastically

Resonance enhancement of oscillations and resonance flavour conversion possible
Neutrino oscillations in matter

The **MSW effect** (Wolfenstein, 1978; Mikheyev & Smirnov, 1985)

Matter can change the pattern of neutrino oscillations drastically

Resonance enhancement of oscillations and resonance flavour conversion possible

Responsible for the flavor conversion of solar neutrinos (LMA MSW solution established)
Neutrino oscillations in matter

The MSW effect (Wolfenstein, 1978; Mikheyev & Smirnov, 1985)

Matter can change the pattern of neutrino oscillations drastically

Resonance enhancement of oscillations and resonance flavour conversion possible

Responsible for the flavor conversion of solar neutrinos (LMA MSW solution established)
Neutrino oscillations in matter

Coherent forward scattering on the particles in matter

\[V_{CC}^{e} \equiv V = \sqrt{2} G_F N_e \]

2f neutrino evolution equation:

\[
i \frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} -\frac{\Delta m^2}{4E} \cos 2\theta + V \\ \frac{\Delta m^2}{4E} \sin 2\theta \\ \frac{\Delta m^2}{4E} \sin 2\theta \\ \frac{\Delta m^2}{4E} \cos 2\theta \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}
\]
Mixing in matter

\[\sin^2 2\theta_m = \frac{\sin^2 2\theta \cdot (\frac{\Delta m^2}{2E})^2}{\left[\frac{\Delta m^2}{2E} \cos 2\theta - \sqrt{2}G_F N_e \right]^2 + (\frac{\Delta m^2}{2E})^2 \sin^2 2\theta} \]
Mixing in matter

\[\sin^2 2\theta_m = \frac{\sin^2 2\theta \cdot \left(\frac{\Delta m^2}{2E}\right)^2}{\left[\frac{\Delta m^2}{2E} \cos 2\theta - \sqrt{2}G_F N_e\right]^2 + \left(\frac{\Delta m^2}{2E}\right)^2 \sin^2 2\theta} \]

Mikheyev - Smirnov - Wolfenstein (MSW) resonance:

\[\sqrt{2}G_F N_e = \frac{\Delta m^2}{2E} \cos 2\theta \]
Mixing in matter

\[\sin^2 2\theta_m = \frac{\sin^2 2\theta \cdot \left(\frac{\Delta m^2}{2E} \right)^2}{\left[\frac{\Delta m^2}{2E} \cos 2\theta - \sqrt{2} G_F N_e \right]^2 + \left(\frac{\Delta m^2}{2E} \right)^2 \sin^2 2\theta} \]

Mikheyev - Smirnov - Wolfenstein (MSW) resonance:

\[\sqrt{2} G_F N_e = \frac{\Delta m^2}{2E} \cos 2\theta \]

At the resonance: \(\theta_m = 45^\circ \) (\(\sin^2 2\theta_m = 1 \)) – maximal mixing
Mixing in matter

\[\sin^2 2\theta_m = \frac{\sin^2 2\theta \cdot \left(\frac{\Delta m^2}{2E} \right)^2}{\left[\frac{\Delta m^2}{2E} \cos 2\theta - \sqrt{2} G_F N_e \right]^2 + \left(\frac{\Delta m^2}{2E} \right)^2 \sin^2 2\theta} \]

Mikheyev - Smirnov - Wolfenstein (MSW) resonance:

\[\sqrt{2} G_F N_e = \frac{\Delta m^2}{2E} \cos 2\theta \]

At the resonance: \(\theta_m = 45^\circ \) (\(\sin^2 2\theta_m = 1 \)) – maximal mixing

\[|\nu_e\rangle = \cos \theta_m |\nu_{1m}\rangle + \sin \theta_m |\nu_{2m}\rangle \]

\[|\nu_{\mu}\rangle = -\sin \theta_m |\nu_{1m}\rangle + \cos \theta_m |\nu_{2m}\rangle \]

\(|\nu_{1m}\rangle, |\nu_{2m}\rangle \) – eigenstates of \(H \) in matter (matter eigenstates)
Mixing in matter

\[\sin^2 2\theta_m = \frac{\sin^2 2\theta \cdot \left(\frac{\Delta m^2}{2E} \right)^2}{[\frac{\Delta m^2}{2E} \cos 2\theta - \sqrt{2}G_FN_e]^2 + \left(\frac{\Delta m^2}{2E} \right)^2 \sin^2 2\theta} \]

Mikheyev - Smirnov - Wolfenstein (MSW) resonance:

\[\sqrt{2}G_FN_e = \frac{\Delta m^2}{2E} \cos 2\theta \]

At the resonance: \(\theta_m = 45^\circ \) \((\sin^2 2\theta_m = 1) \) – maximal mixing

\[|\nu_e\rangle = \cos \theta_m |\nu_{1m}\rangle + \sin \theta_m |\nu_{2m}\rangle \]

\[|\nu_\mu\rangle = -\sin \theta_m |\nu_{1m}\rangle + \cos \theta_m |\nu_{2m}\rangle \]

\(N_e \gg (N_e)_{\text{res}} : \theta_m \approx 90^\circ \)

\(N_e = (N_e)_{\text{res}} : \theta_m = 45^\circ \)

\(N_e \ll (N_e)_{\text{res}} : \theta_m \approx \theta \)

\(|\nu_{1m}\rangle, |\nu_{2m}\rangle \) – eigenstates of \(H \) in matter (matter eigenstates)
Adiabatic flavour conversion

Adiabaticity: slow density change along the neutrino path

$$\frac{\sin^2 2\theta}{\cos 2\theta} \frac{\Delta m^2}{2E} L_\rho \gg 1$$

L_ρ – electron density scale height:

$$L_\rho = \left| \frac{1}{N_e} \frac{dN_e}{dx} \right|^{-1}$$
Simple and useful formula for 2f conversion probability averaged over production/detection positions (or small energy intervals) (Parke, 1986):

\[P_{tr} = \frac{1}{2} - \frac{1}{2} \cos 2\theta_i \cos 2\theta_f (1 - 2P') \]

\(\theta_i, \theta_f \) — mixing angles in matter in the initial and final points,
\(P' \) — hopping probability.

\(P' : \left\{ \begin{array}{ll} \ll 1 & \text{in adiab. regime} \\ \sin^2(\theta_i - \theta_f) & \text{in extreme non - adiab. regime} \end{array} \right. \)
Analogy: Spin precession in a magnetic field

\[
\frac{d\vec{S}}{dt} = 2(\vec{B} \times \vec{S})
\]

\[
\vec{S} = \{ \text{Re}(\nu_e^* \nu_\mu) , \text{Im}(\nu_e^* \nu_\mu) , \nu_e^* \nu_e - 1/2 \}
\]

\[
\vec{B} = \{(\Delta m^2 / 4E) \sin 2\theta_m , \ 0 , \ V/2 - (\Delta m^2 / 4E) \cos 2\theta_m \}
\]
Analogy: Two coupled pendula

Mechanical model of the MSW effect
Analogy: Two coupled pendula

Mechanical model of the MSW effect
Analogy: Two coupled pendula

Mechanical model of the MSW effect
Analogy: Two coupled pendula

Mechanical model of the MSW effect
Evidence for the MSW effect

Matter Interaction Effect: LMA

Current Data for ν_e Survival

$$V(x) \Rightarrow a_{\text{MSW}} V(x); \quad a_{\text{MSW}} = 1 \text{ strongly favoured}$$

(Fogli et al. 2003, 2004; Fogli & Lisi 2004)

More on MSW effect: talk of A. Friedland
II. Phenomenology
All current ν data except LSND can be explained in terms of oscillations between the 3 known neutrino species (ν_e, ν_μ, ν_τ).
3ν vs $N_{\nu} \geq 4$ oscillation schemes

All current ν data except LSND can be explained in terms of oscillations between the 3 known neutrino species (ν_e, ν_μ, ν_τ).

LSND: most likely would require ≥ 1 light sterile neutrinos ν_s

(though some exotic scenarios exist: CPT violation, violation of Lorentz invariance, MaVaN, shortcuts in extra dimensions, decaying ν_s, ...)
All current ν data except LSND can be explained in terms of oscillations between the 3 known neutrino species (ν_e, ν_μ, ν_τ).

LSND: most likely would require ≥ 1 light sterile neutrinos ν_s (though some exotic scenarios exist: CPT violation, violation of Lorentz invariance, MaVaN, shortcuts in extra dimensions, decaying ν_s, ...)

MiniBooNE to confirm or refute the LSND result – an answer expected very soon!
3ν vs \(N_\nu \geq 4 \) oscillation schemes

All current \(\nu \) data except LSND can be explained in terms of oscillations between the 3 known neutrino species \((\nu_e, \nu_\mu, \nu_\tau) \).

LSND: most likely would require \(\geq 1 \) light sterile neutrinos \(\nu_s \)
(though some exotic scenarios exist: CPT violation, violation of Lorentz invariance, MaVaN, shortcuts in extra dimensions, decaying \(\nu_s \), ...)

MiniBooNE to confirm or refute the LSND result – an answer expected very soon!

But: even if the LSND result is not confirmed, this would not exclude the possibility of light sterile neutrinos and \(\nu_a \leftrightarrow \nu_s \) oscillations – an intriguing possibility with implications to particle physics, astrophysics and cosmology

More on sterile neutrinos: talk of A. Kusenko
For 3 neutrino species: mixing matrix \tilde{U} depends on $\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}, \sigma_{1,2}$. Majorana-type CP phases can be factored out in the mixing matrix:

$$\tilde{U} = UK , \quad K = \text{diag}(1, e^{i\sigma_1}, e^{i\sigma_2})$$

\Rightarrow Majorana-type phases do not affect neutrino oscillations.

The relevant part of the mixing matrix:

$$U = \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13} e^{-i\delta_{CP}} \\
0 & 1 & 0 \\
-s_{13} e^{i\delta_{CP}} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$= O_{23} \left(\Gamma_{\delta} O_{13} \Gamma_{\delta}^\dagger \right) O_{12} , \quad \Gamma_{\delta} \equiv \text{diag}(1, 1, e^{i\delta_{CP}})$$
$U = \begin{pmatrix}
c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{CP}} \\
-s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{CP}} & c_{13}s_{23} \\
s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta_{CP}} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{CP}} & c_{13}c_{23}
\end{pmatrix}$

Normal hierarchy:

Inverted hierarchy:
2f and effective 2f approximations

2f description: A good 1st approximation in most cases.
Reasons:

- Hierarchy of Δm^2: $\Delta m^2_{\text{sol}} \ll \Delta m^2_{\text{atm}}$
- Smallness of $|U_{e3}|$.

Exceptions: $P(\nu_\mu \leftrightarrow \nu_\tau)$, $P(\nu_\mu \rightarrow \nu_\mu)$ and $P(\nu_\tau \rightarrow \nu_\tau)$ when oscillations due to the solar frequency ($\sim \Delta m^2_{\text{sol}}$) are not frozen.

In any case, corrections due to 3-flavorness can reach $\sim 10\%$ -- cannot be ignored at present

Also: a number of pure 3f effects exist ⇒

◊ 3f analyses are a must!
Effective 2f approximations

For oscillations driven by $\Delta m^2_{\text{sol}} \nu_3$ essentially decouples. Still a “memory” of ν_3 through unitarity \Rightarrow powers of c_{13}. Examples:

Survival probability of solar ν_e (Lim, 1987)

(the same for reactor $\bar{\nu}_e$ in KamLAND):

$$
\diamond \quad P(\nu_e \rightarrow \nu_e) \simeq c_{13}^4 P_{2ee}(\Delta m^2_{21}, \theta_{12}, c_{13}^2 V) + s_{13}^4,
$$

3f effects for Day-Night effect for solar ν_e:

While $P_D(\nu_e) \propto c_{13}^4$,

$$
P_N(\nu_e) - P_D(\nu_e) \propto c_{13}^6
$$

(Blennow, Ohlsson & Snellman, 2004; E.A., Tortola & Valle, 2004)

Deviations from 2f results: $(1 - c_{13}^4) \leq 0.1$, $(1 - c_{13}^6) \leq 0.13$
Reactor $\bar{\nu}_e$ oscillations

$\bar{\nu}_e$ survival probability:

\[
P_{\bar{\nu}_e \bar{\nu}_e} \approx 1 - \sin^2 2\theta_{13} \cdot \sin^2 \left(\frac{\Delta m^2_{31}}{4E} L \right) - c^4_{13} \sin^2 2\theta_{12} \cdot \sin^2 \left(\frac{\Delta m^2_{21}}{4E} L \right)
\]

- CHOOZ, Palo Verde, Double CHOOZ, ... ($L \lesssim 1$ km)

\[
\bar{E} \sim 4 \text{ MeV} ; \quad \frac{\Delta m_{31}^2}{4E} L \sim 1 ; \quad \frac{\Delta m_{21}^2}{4E} L \ll 1
\]

One mass scale dominance (2f) approximation:

\[
P(\bar{\nu}_e \rightarrow \bar{\nu}_e; L) = 1 - \sin^2 2\theta_{13} \cdot \sin^2 \left(\frac{\Delta m_{31}^2}{4E} L \right)
\]

(Note: Term $\sim \sin^2 2\theta_{12}$ cannot be neglected if $\theta_{13} \lesssim 0.03$, which is about the reach of currently discussed future reactor experiments)
Reactor $\bar{\nu}_e$ oscillations – contd.

- KamLAND ($\bar{L} \simeq 170$ km): $\frac{\Delta m^2_{21}}{4E} L \gtrsim 1$; $\frac{\Delta m^2_{31}}{4E} L \gg 1$

- $P(\bar{\nu}_e \rightarrow \bar{\nu}_e) \simeq c_{13}^4 P_{2\bar{e}e}(\Delta m^2_{21}, \theta_{12})$

N.B.: Matter effects a few % – can be comparable with effects of $\theta_{13} \neq 0$!
Genuine 3f effects
\(\mathcal{CP} \) and \(\mathcal{T} \) in \(\nu \) oscillations in vacuum

- \(\mathcal{CP} : \ P(\nu_a \to \nu_b) \neq P(\bar{\nu}_a \to \bar{\nu}_b) \)
- \(\mathcal{T} : \ P(\nu_a \to \nu_b) \neq P(\nu_b \to \nu_a) \)

CPT invariance: \(\diamond \ P(\nu_a \to \nu_b) \to P(\bar{\nu}_b \to \bar{\nu}_a) \)

\[\mathcal{CP} \Leftrightarrow \mathcal{T} \text{ – consequence of CPT} \]

Measures of \(\mathcal{CP} \) and \(\mathcal{T} \) – probability differences:

\[\Delta P_{ab}^{\mathcal{CP}} \equiv P(\nu_a \to \nu_b) - P(\bar{\nu}_a \to \bar{\nu}_b) \]

\[\Delta P_{ab}^{\mathcal{T}} \equiv P(\nu_a \to \nu_b) - P(\nu_b \to \nu_a) \]

From CPT:

\[\diamond \quad \Delta P_{ab}^{\mathcal{CP}} = \Delta P_{ab}^{\mathcal{T}}; \quad \Delta P_{aa}^{\mathcal{CP}} = 0 \]
3f case

One Dirac-type phase $\delta_{\text{CP}} \Rightarrow$ one \mathcal{CP} and \mathcal{T} observable:

\[\Delta P_{e\mu}^{\text{CP}} = \Delta P_{\mu\tau}^{\text{CP}} = \Delta P_{\tau e}^{\text{CP}} \equiv \Delta P \]
3f case

One Dirac-type phase \(\delta_{\text{CP}} \Rightarrow \) one \(CP \) and \(T' \) observable:

\[\Delta P_{e\mu}^{\text{CP}} = \Delta P_{\mu\tau}^{\text{CP}} = \Delta P_{\tau e}^{\text{CP}} \equiv \Delta P \]

\(\Delta P = -4s_{12} c_{12} s_{13} c_{13}^2 s_{23} c_{23} \sin \delta_{\text{CP}} \)

\[\times \left[\sin \left(\frac{\Delta m_{12}^2}{2E} L \right) + \sin \left(\frac{\Delta m_{23}^2}{2E} L \right) + \sin \left(\frac{\Delta m_{31}^2}{2E} L \right) \right] \]
One Dirac-type phase $\delta_{\text{CP}} \Rightarrow$ one \mathcal{CP} and T' observable:

\[\Delta P_{e\mu} = \Delta P_{\mu\tau} = \Delta P_{\tau e} \equiv \Delta P \]

\[\Delta P = -4s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta_{\text{CP}} \]

\[\times \left[\sin\left(\frac{\Delta m_{12}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{23}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{31}^2}{2E}L\right) \right] \]

Vanishes when

- At least one $\Delta m_{ij}^2 = 0$
- At least one $\theta_{ij} = 0$ or 90°
- $\delta_{\text{CP}} = 0$ or 180°
- In the averaging regime
- In the limit $L \to 0$ (as L^3)
3f case

One Dirac-type phase $\delta_{\text{CP}} \Rightarrow$ one \mathcal{CP} and \mathcal{T}' observable:

\[
\begin{align*}
\diamond \quad \Delta P_{e\mu}^{CP} &= \Delta P_{\mu\tau}^{CP} = \Delta P_{\tau e}^{CP} \equiv \Delta P \\
\Delta P &= -4s_{12}c_{12}s_{13}c_{13}^2s_{23}c_{23}\sin\delta_{\text{CP}} \\
&\quad \times \left[\sin \left(\frac{\Delta m_{12}^2}{2E} L \right) + \sin \left(\frac{\Delta m_{23}^2}{2E} L \right) + \sin \left(\frac{\Delta m_{31}^2}{2E} L \right) \right]
\end{align*}
\]

Vanishes when

- At least one $\Delta m_{ij}^2 = 0$
- At least one $\theta_{ij} = 0$ or 90°
- $\delta_{\text{CP}} = 0$ or 180°
- In the averaging regime
- In the limit $L \rightarrow 0$ (as L^3)

Very difficult to observe!

See talk of O. Mena
Normal matter \([\text{(\# of particles)} \neq \text{(\# of anti-particles)}]\):

The very presence of matter violates C, CP and CPT

\(\Rightarrow\) Fake (extrinsic) CP. Exists even in 2f case. May complicate study of fundamental (intrinsic) CP.
CP and T in \(\nu \) oscillations in matter

Normal matter [(# of particles) \(\neq \) (# of anti-particles)]:
The very presence of matter violates C, CP and CPT
\[\implies \text{Fake (extrinsic) CP. Exists even in 2}\!f\!\!:\text{case. May}
\text{complicate study of fundamental (intrinsic) CP.}
\]

Matter with density profile symmetric w.r.t. midpoint of neutrino trajectory does not induce any fake T. Asymmetric profiles do, but only for \(N \geq 3 \) flavors – an interesting 3f effect.
\(CP \) and \(T \) in \(\nu \) oscillations in matter

Normal matter \([(\# \text{ of particles}) \neq (\# \text{ of anti-particles})]\):
The very presence of matter violates C, CP and CPT

\(\Rightarrow \) Fake (extrinsic) \(CP \). Exists even in 2f case. May complicate study of fundamental (intrinsic) \(CP \)

Matter with density profile symmetric w.r.t. midpoint of neutrino trajectory does not induce any fake \(T \). Asymmetric profiles do, but only for \(N \geq 3 \) flavors – an interesting 3f effect.

◊ May fake fundamental \(T \) and complicate its study (extraction of \(\delta_{CP} \) from experiment)
$\mathbb{C}P$ and \mathcal{T} in ν oscillations in matter

Normal matter \([\text{(# of particles)} \neq \text{(# of anti-particles)}]\):
The very presence of matter violates C, CP and CPT

\[\Rightarrow \quad \text{Fake (extrinsic) } \mathbb{C}P\text{. Exists even in 2f case. May complicate study of fundamental (intrinsic) } \mathbb{C}P\]

Matter with density profile symmetric w.r.t. midpoint of neutrino trajectory does not induce any fake \mathcal{T}. Asymmetric profiles do, but only for $N \geq 3$ flavors – an interesting 3f effect.

\[\diamond \quad \text{May fake fundamental } \mathcal{T}\text{ and complicate its study (extraction of } \delta_{CP} \text{ from experiment)}\]

Induced \mathcal{T}: absent when either $U_{e3} = 0$ or $\Delta m_{\text{sol}}^2 = 0$ (2f limits)

\[\Rightarrow \quad \text{Doubly suppressed by both these small parameters – effects in terrestrial experiments are small}\]
In 2f approximation: no matter effects on $\nu_\mu \leftrightarrow \nu_\tau$ oscillations

$[V(\nu_\mu) = V(\nu_\tau) \text{ modulo tiny rad. corrections}].$

Not true in the full 3f framework! (E.A., 2002; Gandhi et al., 2004)

$\Delta m^2_{31} = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 \theta_{13} = 0.026$, $\theta_{23} = \pi/4$, $\Delta m^2_{21} = 0$, $L = 9400 \text{ km}$

Red curves – w/ matter effects, green curves – w/o matter effects on $P_{\mu\tau}$
Another possible matter effect
Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves.
Parametric resonance in neutrino oscillations

Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves.
Parametric resonance in neutrino oscillations

Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves.

\[\Omega \]
Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves.

For small-ampl. osc.:

$$\Omega_{\text{res}} = \frac{2\omega}{n}$$

$$n = 1, 2, 3, ...$$
Different from MSW eff. – no level crossing!

Resonance condition:

\[X_3 \equiv - (\sin \phi_1 \cos \phi_2 \cos 2\theta_{1m} + \cos \phi_1 \sin \phi_2 \cos 2\theta_{2m}) = 0 \]

\[\phi_{1,2} \text{ – oscillation phases acquired in layers 1, 2} \]
Earth’s density profile (PREM model):
Earth’s density profile (PREM model):

![Graph showing Earth's density profile](image)
Fulfilled for $\nu_e \leftrightarrow \nu_{\mu,\tau}$ oscillations of core-crossing ν's in the Earth for a wide range of energies and zenith angles!

Intermed. energies

$\cos \Theta = -0.89 \quad \sin^2 2\theta_{13} = 0.01$

(Liu, Smirnov, 1998; Petcov, 1998; EA 1998)

High energies, $\cos \Theta$ - dependence

(EA, Maltoni & Smirnov, 2005)
Parametric resonance of ν oscillations in the Earth:
can be observed in future atmospheric or accelerator experiments if θ_{13} is not much below its current upper limit
Some recent developments
Oscillations of low-E neutrinos in matter

Equivalently: Oscillations in low-density matter ($V \ll \frac{\Delta m^2}{2E}$). Matter effects small – can be considered in perturbation theory. Implications: oscillations of solar and SN neutrinos in the Earth.

In 3f framework

$$P_{2e}^{+} - P_{2e}^{(0)} = \frac{1}{2} c_{13}^4 \sin^2 2\theta_{12} \int_0^L dx V(x) \sin \left[2 \int_x^L \omega(x') dx' \right]$$

where

$$\diamond \quad \omega(x) = \sqrt{[\cos 2\theta_{12} \delta - c_{13}^2 V(x)/2]^2 + \delta^2 \sin^2 2\theta_{12}} , \quad \delta = \frac{\Delta m^2_{21}}{4E}$$

2f case ($\theta_{13} = 0$): de Holanda, Liao & Smirnov, 2004; Ioannisian & Smirnov, 2004;

3f case: E.A., Tórtola & Valle, 2004
Attenuation effect

Perfect energy resolution

Finite energy resolution: effects of density variation far from detector suppressed. Attenuation length d:

$$d \simeq l_{osc} \frac{E}{\Delta E}$$

(de Holanda et al., 2004)
Oscillations above the MSW resonance

Equivalently: oscillations in dense matter \((V > \delta \equiv \frac{\Delta m^2}{4E})\)

Oscillation probability in matter of arbitrary density profile:

\[
P = \delta^2 \sin^2 2\theta \left| \int_0^L dx e^{-2i\phi(x)} \right|^2, \quad \phi(x) = \int_0^x dx' \omega(x') - \text{adiab.phase}
\]

E.A., Maltoni & Smirnov, 2005
Unsettled issues?

A number of issues in ν oscillation theory still being debated

- Equal energies or equal momenta?

- Evolution in space or in time?

 Claim: evolution in time is never observed.

- Is wave packet description necessary?
A number of issues in ν oscillation theory still being debated

- Equal energies or equal momenta?
 - Neither equal E nor equal p exact. But: for relativistic neutrinos, both give the correct answer

- Evolution in space or in time?

 Claim: evolution in time is never observed.

- Is wave packet description necessary?
Unsettled issues?

A number of issues in ν oscillation theory still being debated

- Equal energies or equal momenta?
 - Neither equal E nor equal p exact. But: for relativistic neutrinos, both give the correct answer

- Evolution in space or in time?
 - Both are correct and equivalent for relativistic neutrinos
 - Claim: evolution in time is never observed.

- Is wave packet description necessary?
A number of issues in ν oscillation theory still being debated

- Equal energies or equal momenta?
 - Neither equal E nor equal p exact. But: for relativistic neutrinos, both give the correct answer

- Evolution in space or in time?
 - Both are correct and equivalent for relativistic neutrinos
 - Claim: evolution in time is never observed.
 - Incorrect. Examples: K2K, MINOS

- Is wave packet description necessary?
Unsettled issues?

A number of issues in ν oscillation theory still being debated

- Equal energies or equal momenta?
 - Neither equal E nor equal p exact. But: for relativistic neutrinos, both give the correct answer

- Evolution in space or in time?
 - Both are correct and equivalent for relativistic neutrinos
 - Claim: evolution in time is never observed.
 - Incorrect. Examples: K2K, MINOS

- Is wave packet description necessary?
 - Yes, if one wants to rigorously justify the standard oscillation probability formula. Once done, can be forgotten unless the issues of coherence become important.
Unsettled issues?

Do charged leptons oscillate?
Do charged leptons oscillate?

– No, they don’t
Unsettled issues?

• Do charged leptons oscillate?
 – No, they don’t

• Is the standard oscillation formula correct?
Do charged leptons oscillate?
– No, they don’t

Is the standard oscillation formula correct?
– Yes, it is. In particular, no extra factors of two in the oscillation phase. But: theoretically interesting and important to study the limits of applicability.
Unsettled issues?

- Do charged leptons oscillate?
 - No, they don’t

- Is the standard oscillation formula correct?
 - Yes, it is. In particular, no extra factors of two in the oscillation phase. **But**: theoretically interesting and important to study the limits of applicability.

A number of subtle issues of oscillation theory remain unsettled (e.g., rigorous wave packet treatment, limits of applicability of standard formula, oscillations of non-relativistic neutrinos, …). At present, this is (rightfully) of little concern for practitioners.
Future tasks

- Search for best strategies for measuring neutrino parameters
- Study of subleading effects and effects of non-standard neutrino interactions
- Study of the domains of applicability and limitations of the current theoretical framework

Future experimental results may bring some new surprises and pose more challenging problems!
General properties of P_{ab}

3 flavours $\Rightarrow 3 \times 3 = 9$ probabilities

$$P_{ab} = P(\nu_a \rightarrow \nu_b),$$

plus 9 probabilities for antineutrinos $P_{\bar{a}\bar{b}}$.

Unitarity conditions (probability conservation):

$$\sum_b P_{ab} = \sum_a P_{ab} = 1 \quad (a, b = e, \mu, \tau)$$

5 indep. conditions $\Rightarrow 9 - 5 = 4$ indep. probabilities left.

Additional symmetry: the matrix of matter-induced potentials $\text{diag}(V(t), 0, 0)$ commutes with O_{23} \Rightarrow additional relations between probabilities.
Define

$$\tilde{P}_{ab} = P_{ab}(s_{23}^2 \leftrightarrow c_{23}^2, \sin 2\theta_{23} \rightarrow -\sin 2\theta_{23})$$

(e.g., $\theta_{23} \rightarrow \theta_{23} + \pi/2$). Then

$$P_{e\tau} = \tilde{P}_{e\mu} \quad P_{\tau\mu} = \tilde{P}_{\mu\tau} \quad P_{\tau\tau} = \tilde{P}_{\mu\mu}$$

2 out of 3 conditions are independent $\Rightarrow 4 - 2 = 2$

indep. probabilities (e.g., $P_{e\mu}$ and $P_{\mu\tau}$) \Rightarrow

◊ **All 9 neutrino oscillation probabilities can be expressed through just two!** (E.A., Johansson, Ohlsson, Lindner & Schwetz, 2004)

$$P_{\bar{a}\bar{b}} = P_{ab}(\delta_{CP} \rightarrow -\delta_{CP}, V \rightarrow -V) \Rightarrow$$

◊ **All 18 ν and $\bar{\nu}$ probab. can be expressed through just two**
General dependence on δ_{CP}

Another use of essentially the same symmetry: rotate by

$$O'_{23} = O_{23} \times \text{diag}(1, 1, e^{i\delta_{\text{CP}}})$$

From commutativity of $\text{diag}(V(t), 0, 0)$ with O'_{23} ⇒

General dependence of probabilities on δ_{CP}:

$$P_{e\mu} = A_{e\mu} \cos \delta_{\text{CP}} + B_{e\mu} \sin \delta_{\text{CP}} + C_{e\mu}$$

$$P_{\mu\tau} = A_{\mu\tau} \cos \delta_{\text{CP}} + B_{\mu\tau} \sin \delta_{\text{CP}} + C_{\mu\tau}$$

$$+ D_{\mu\tau} \cos 2\delta_{\text{CP}} + E_{\mu\tau} \sin 2\delta_{\text{CP}}$$

(Yokomakura, Kimura & Takamura, 2002)
3f effects in atm. ν oscillations

$\Delta m_{21}^2 \rightarrow 0$ (E.A., Dighe, Lipari & Smirnov, 1998):

$$\frac{F_e - F_e^0}{F_e^0} = P_2(\Delta m_{31}^2, \theta_{13}, V_{CC}) \cdot (r s_{23}^2 - 1)$$

$s_{13} \rightarrow 0$ (Peres & Smirnov, 1999):

$$\frac{F_e - F_e^0}{F_e^0} = P_2(\Delta m_{21}^2, \theta_{12}, V_{CC}) \cdot (r c_{23}^2 - 1)$$

At low energies $r \equiv F_\mu^0/F_e^0 \sim 2$; also $s_{23}^2 \sim c_{23}^2 \sim 1/2$ – a conspiracy to hide oscillation effects on e-like events!

Reason: a peculiar flavour composition of the atmospheric ν flux.

(Because of $\theta_{23} \sim 45^\circ$, $P_{e\mu} \sim P_{e\tau}$; but the original ν_μ flux is ~ 2 times larger than ν_e flux \Rightarrow compensation of transitions from and to ν_e state).
Breaking the conspiracy – 3f effects

\[
\frac{F_e - F_e^0}{F_e^0} \approx P_2(\Delta m_{31}^2, \theta_{13}) \cdot (r s_{23}^2 - 1) \\
+ P_2(\Delta m_{21}^2, \theta_{12}) \cdot (r c_{23}^2 - 1) \\
- 2s_{13} s_{23} c_{23} r \text{Re}(\bar{A}_{ee} \bar{A}_{\mu e})
\]

Interference term not suppressed by the flavour composition of the ν_{atm} flux; may be (partly) responsible for observed excess of upward-going sub-GeV e-like events

Interf. term may not be sufficient to fully explain the excess of low-E e-like events – a hint of $\theta_{23} \neq 45^\circ$? (Peres & Smirnov, 2004)
Evolution in the rotated basis

Evolution matrix $S(t, t_0)$: $\nu(t) = S(t, t_0) \nu(t_0)$. Satisfies

\[i \frac{d}{dt} S(t, t_0) = H S(t, t_0) \quad \text{with} \quad S(t_0, t_0) = 1. \]

\[
H = (O_{23} \Gamma_\delta O_{13} \Gamma_\delta^+ O_{12}) \text{diag}(0, \delta, \Delta) (O_{12}^T \Gamma_\delta O_{13}^T \Gamma_\delta^+ O_{23}^T) + \text{diag}(V(t), 0, 0)
\]

\[
= (O_{23} \Gamma_\delta O_{13} O_{12}) \text{diag}(0, \delta, \Delta) (O_{12}^T O_{13}^T \Gamma_\delta^+ O_{23}^T) + \text{diag}(V(t), 0, 0)
\]

where

\[
\delta \equiv \frac{\Delta m_{21}^2}{2E}, \quad \Delta \equiv \frac{\Delta m_{31}^2}{2E}
\]

Oscillation probabilities:

\[
P_{ab} = |S_{ba}|^2
\]

Define

\[
O'_{23} = O_{23} \Gamma_\delta
\]

The matrix $\text{diag}(V(t), 0, 0)$ commutes with O'_{23} \Rightarrow go to the rotated basis
\[\nu = O'_{23} \nu', \quad \text{or} \quad S(t, t_0) = O'_{23} S'(t, t_0) O'_{23}^\dagger, \]

In the rotated basis \(H' = O'_{23} H O'_{23}^\dagger \). Explicitly:

\[
H'(t) = \begin{pmatrix}
 s_{12}^2 c_{13}^2 \delta + s_{13}^2 \Delta + V(t) & s_{12} c_{12} c_{13} \delta & s_{13} c_{13} (\Delta - s_{12}^2 \delta) \\
 s_{12} c_{12} c_{13} \delta & c_{12}^2 \delta & -s_{12} c_{12} s_{13} \delta \\
 s_{13} c_{13} (\Delta - s_{12}^2 \delta) & -s_{12} c_{12} s_{13} \delta & c_{13}^2 \Delta + s_{12}^2 s_{13}^2 \delta
\end{pmatrix}
\]

Dependence on \(\theta_{23} \) and \(\delta_{\text{CP}} \) can be obtained in the general case by rotating back to the original flavour basis. Also: easy to apply PT approximations

- If \(\frac{\Delta m_{21}^2}{2E} L \ll 1 \) – neglect \(\delta = \frac{\Delta m_{21}^2}{2E} \)
- If \(\theta_{13} \) is very small – neglect \(s_{13} \)

or use expansion in these small parameters