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3.1 The New Standard PDF Sets

The standard set of parton distributions in the MS scheme, referred to as CTEQ6M, provides an

excellent global fit to the data sets listed in Sec. 2.1. An overall view of these PDF’s is shown in

Fig. 1, at two scales Q = 2 and 100 GeV. The overall χ2 for the CTEQ6M fit is 1954 for 1811

data points. The parameters for this fit and the individual χ2 values for the data sets are given in

Appendix A. In the next two subsections, we discuss the comparison of this fit to the data sets, and

then describe the new features of the parton distributions themselves. Quantitative comparison of

data and fit is studied in more depth in Appendix B

Fig. 1 : Overview of the CTEQ6M parton distribution functions at Q = 2 and 100 GeV.

3.1.1 Comparison with Data

The fact that correlated systematic errors are now fully included in the fitting procedure allows a

more detailed study of the quality of fits than was possible in the past. We can take the correlated

systematic errors into account explicitly when comparing data and theory, by using the procedure

discussed in Sec. B.2 of Appendix B. In particular, based on the formula for the extended χ2

function expressed in the simple form Eq. (11), we obtain a precise graphical representation of the

quality of the fit by superimposing the theory curves on the shifted data points {D̂i} containing

the fitted systematic errors. The remaining errors are purely uncorrelated, hence are properly

represented by error bars. We use this method to present the results of our fits whenever possible.

Figure 2 shows the comparison of the CTEQ6M fit to the latest data of the H1 experiment

[14]. The extensive data set is divided into two plots: (a) for x < 0.01, and (b) for x > 0.01. In

order to keep the various x bins separated, the values of F2 on the plot have been offset vertically

for the kth bin according to the formula: ordinate = F2(x,Q2) + 0.15 k. The excellent fit seen

in the figure is supported by a χ2 value of 228 for 230 data points. Similarly, Fig. 3 shows the

comparison to the latest data from ZEUS [15]. One again sees very good overall agreement.
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Significant advances in determination of quark and gluon 
distributions at small x in recent years
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Valence quarks

Nucleon structure at intermediate & large x
dominated by valence quarks
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and models of the nucleon is through valence quarks 



Valence quarks

At large x,  valence u and d distributions extracted
from p and n structure functions
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Valence quarks

Ratio of d to u quark distributions particularly
sensitive to quark dynamics in nucleon
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Valence quarks

Ratio of d to u quark distributions particularly
sensitive to quark dynamics in nucleon
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Valence quarks

scalar diquark dominance
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Valence quarks

hard gluon exchange
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Valence quarks

BUT  no free neutron targets!
(neutron half-life ~ 12 mins)                                            

use deuteron as ‘‘effective neutron target’’

However:  deuteron is a nucleus, and F d
2 != F

p
2

+ F
n
2

nuclear effects (nuclear binding, Fermi motion, shadowing)
obscure neutron structure information                                                           

“nuclear EMC effect”



Nuclear ‘‘EMC effect’’
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Fig. 3.1. The structure function ratio FA
2 /F d

2 for 40Ca and 56Fe. The data are taken from NMC
[71], SLAC [72], and BCDMS [73].

Figure 3.1 presents a compilation of data for the structure function ratio FA
2 /F d

2 over
the range 0 ≤ x ≤ 1. Here FA

2 is the structure function per nucleon of a nucleus with
mass number A, and F d

2 refers to deuterium. In the absence of nuclear effects the ratios
FA

2 /F d
2 are thus normalized to one. Neglecting small nuclear effects in the deuteron, F d

2 can
approximately stand for the isospin averaged nucleon structure function, FN

2 . However, the
more detailed analysis must include two-nucleon effects in the deuteron. Several distinct
regions with characteristic nuclear effects can be identified: at x < 0.1 one observes a
systematic reduction of FA

2 /F d
2 , the so-called nuclear shadowing. A small enhancement is

seen at 0.1 < x < 0.2. The dip at 0.3 < x < 0.8 is often referred to as the traditional
“EMC effect”. For x > 0.8 the observed enhancement of the nuclear structure function is
associated with nuclear Fermi motion. Finally, note again that nuclear structure functions
can extend beyond x = 1, the kinematic limit for scattering from free nucleons.

• Shadowing region
Measurements of E665 [76,77,78] at Fermilab and NMC [71,75,79,80,81,82] at CERN
provide detailed and systematic information about the x- and A-dependence of the
structure function ratios FA

2 /F d
2 . Nuclear targets ranging from He to Pb have been

used. A sample of data for several nuclei is shown in Fig.3.2. While most experiments
cover the region x > 10−4, the E665 collaboration provides data for FXe

2 /F d
2 [76] down

to x " 2 · 10−5. Given the kinematic constraints in fixed target experiments, the small
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EMC effect in deuteron

Nuclear  “impulse approximation’’

incoherent scattering 
from individual nucleons
in deuteron

A!"#$k ,q %!i$q2&!"k#"$k2#m2%&!"q#

#2$k!&kq#"#k"&kq#!%%, $8c%

A!"#'$k ,q %!#im$q2g!#g"'"2q#$k!g"'#k"g!'%%.
$8d%

Here k is the interacting quark four-momentum, and m is its

mass. We use the notation &!"kq(&!"#'k
#q'. $The com-

plete forward scattering amplitude would also contain a

crossed photon process which we do not consider here, since

in the subsequent model calculations we focus on valence

quark distributions.% The function H(k ,p) represents the soft
quark-nucleon interaction. Since one is calculating the

imaginary part of the forward scattering amplitude, the inte-

gration over the quark momentum k is constrained by )
functions which put both the scattered quark and the nonin-

teracting spectator system on-mass-shell:

dk̃(
d4k

$2*%4
2*)+$k"q %2#m2,2*)+$p#k %2#mS

2,

$k2#m2%2
,

$9%

where mS
2!(p#k)2 is the invariant mass squared of the

spectator system.

Taking the trace over the quark spin indices we find

Tr+Hr!",!A!"#H
#"A!"#'H

#', $10%

where H# and H#' are vector and tensor coefficients, respec-

tively. The general structure of H# and H#' can be deduced

from the transformation properties of the truncated nucleon

tensor Ĝ!" and the tensors A!"# and A!"#' . Namely, from

A!"#* (k ,q)!A"!#(k ,q) and A!"#( k̃ , q̃)!#A!"#(k ,q), we

have

H#$p ,k %!#PH#$ p̃ , k̃ %P†, $11a%

H#$p ,k %!$TH#$ p̃ , k̃ %T †%*, $11b%

H#$p ,k %!-0H
#†$p ,k %-0 . $11c%

Similarly, since A!"#'* (k ,q)!A"!#'(k ,q) and A
!"#'( k̃ , q̃ )

!A!"#'(k ,q), one finds

H#'$p ,k %!PH#'$ p̃ , k̃ %P†, $12a%

H#'$p ,k %!#$TH#'$ p̃ , k̃ %T†%*, $12b%

H#'$p ,k %!-0H
#'†$p ,k %-0 . $12c%

With these constraints, the tensors H# and H#' can be pro-

jected onto Dirac and Lorentz bases as follows:

H#!p#-5$p” g1"k”g2%"k#-5$p” g3"k”g4%
"i-5./0p

/k0$p#g5"k#g6%"-#-5g7

"i-5./#$p/g8"k/g9%, $13a%

H#'!$p#k'#p'k#%./0p
/k0 f 1"$p#./'#p'./#%

$$p/ f 2"k/ f 3%"$k#./'#k'./#%$p/ f 4"k/ f 5%

".#' f 6"&/0#'p
/k0-5$p” f 7"k” f 8%

"&/0#'-5-
0$p/ f 9"k/ f 10%, $13b%

where the functions g1•••9 and f 1•••10 are scalar functions of
p and k .

Performing the integration over k in Eq. $7% and using
Eqs. $13%, we obtain expressions for the truncated structure
functions G (i) in terms of the nonperturbative coefficient

functions f i and gi . The explicit forms of these are given in

Appendix I. From Eq. $4% we then obtain the leading twist
contributions to the truncated nucleon tensor Ĝ!" . It is im-

portant to note that at leading twist the non-gauge-invariant

contributions to Ĝ!" vanish, so that the expansion in Eq. $4%
is the most general one which is consistent with the gauge

invariance of the hadronic tensor.

III. NUCLEAR STRUCTURE FUNCTIONS

Our discussion of polarized deep-inelastic scattering from

nuclei is restricted to the nuclear impulse approximation, il-

lustrated in Fig. 1. Nuclear effects which go beyond the im-

pulse approximation include final state interactions between

the nuclear debris of the struck nucleon +17,, corrections due
to meson exchange currents +18–20, and nuclear shadowing
$see +21–24, and references therein%. Since we are interested
in the medium- and large-x regions, coherent multiple scat-

tering effects, which lead to nuclear shadowing for x%0.1,
will not be relevant. In addition, it has been argued +6, that
meson exchange currents are less important in polarized

deep-inelastic scattering than in the unpolarized case since

their main contribution comes from pions.

Within the impulse approximation, deep-inelastic scatter-

ing from a polarized nucleus with spin 1/2 or 1 is then de-

scribed as a two-step process, in terms of the virtual photon-

nucleon interaction, parametrized by the truncated

antisymmetric nucleon tensor Ĝ!"(p ,q), and the polarized

nucleon-nucleus scattering amplitude Â(p ,P ,S). The anti-

FIG. 1. DIS from a polarized nucleus in the impulse approxima-

tion. The nucleus, virtual nucleon, and photon momenta are denoted

by P , p , and q , respectively, and S stands for the nuclear spin

vector. The upper blob represents the truncated antisymmetric

nucleon tensor Ĝ!" , while the lower one corresponds to the polar-

ized nucleon-nucleus amplitude Â .

896 54G. PILLER, W. MELNITCHOUK, AND A. W. THOMAS

d

N

γ
∗

nucleon momentum distribution

F d
2 (x) =

∫
dy fN/d(y) FN

2 (x/y)

off-shell correction

+ δ
(off)

F
d
2 (x)



Nucleon momentum distribution in deuteron

relativistic dNN vertex function
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Nucleon momentum distribution in deuteron

relativistic dNN vertex function
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Wave function dependence only at large |y-1/2|

not very well known

sensitive to large p components of wave function

Nucleon momentum distribution in deuteron

relativistic dNN vertex function

fN/d(y) =
1

4
Md y

∫ p2

max

−∞

dp2
Ep

p0

∣∣Ψd(!p
2)

∣∣2

EMC effect in deuteron



Nucleon off-shell correction
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Off-shell correction
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Larger EMC effect (smaller d/N ratio)

F
n

2
underestimated at large x

FIGURES

FIG. 1. FD
2 /FN

2 ratio as a function of x for the off-shell model of Refs. [4,5] (solid) and the
on-shell model of Ref. [6] (dotted).

In Refs. [4,5] the structure function F N
2 was modeled in terms of relativistic quark–

nucleon vertex functions, which were parametrized by comparing with available data for
the parton distribution functions. The off-shell extrapolation of the γ∗N interaction was
modeled assuming no additional dynamical p2 dependence in the quark–nucleon vertices.
This enabled an estimate of the correction δ(off)F D

2 to be made, which was found to be quite
small, of the order ∼ 1−2% for x <∼ 0.9. The result of the fully off-shell calculation from Ref.
[4] is shown in Fig.1 (solid curve), where the ratio of the total deuteron to nucleon structure
functions (F D

2 /FN
2 ) is plotted. Shown also is the result of an on-mass-shell calculation from

Ref. [6] (dotted curve), which has been used in many previous analyses of the deuteron data
[7,8]. The most striking difference between the curves is the fact that the on-shell ratio has
a very much smaller trough at x ≈ 0.3, and rises faster above unity (at x ≈ 0.5) than the
off-shell curve, which has a deeper trough, at x ≈ 0.6− 0.7, and rises above unity somewhat
later (at x ≈ 0.8).

The behavior of the off-shell curve in Fig.1 is qualitatively similar to that found by
Uchiyama and Saito [9], Kaptari and Umnikov [10], and Braun and Tokarev [11], who also
used off-mass-shell kinematics, but did not include the (small) non-convolution correction
term δ(off)F D

2 . The on-shell calculation [6], on the other hand, was performed in the infinite
momentum frame where the nucleons are on their mass shells and the physical structure
functions can be used in Eq.(1). One problem with this approach is that the deuteron
wave functions in the infinite momentum frame are not explicitly known. In practice one
usually makes use of the ordinary non-relativistic S- and D-state deuteron wave functions
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Unsmearing

Note:  calculated d/N ratio depends on input Fn

2

extracted n depends on input n ...  cyclic argument

Solution:  iteration procedure 

smear       with         : F
p

2
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2
≡ Sp F p

2

extract neutron via 2. Fn
2 = Sn(F d

2 − F p
2
/Sp)

starting with e.g. Sn = Sp

3. smear      with         to get new fN/dF
n

2
Sn

4. repeat 2-3 until convergence

subtract              from d data: 0. F
d
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d
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this section, we examine the accuracy of this assumption.

The off-shell dependence of F2
N is, as a matter of principle,

not measurable, since one can always redefine the nuclear

spectral function to absorb any p2 dependence in the bound

nucleon structure function. However, off-shell effects can be

identified once a particular form of the interaction of a

nucleon with the surrounding nuclear medium is specified.

The discussion of off-shell modification of the nucleon struc-

ture function in the nuclear medium is therefore understood

to be within the framework of the nuclear spectral functions

defined in Sec. III.

In convolution models, off-shell corrections can arise both

kinematically, through the transverse motion of the nucleon

in the nucleus, and dynamically, from modifications of the

bound nucleon’s internal structure. Kinematical off-shell ef-

fects are essentially model independent, as discussed in Ref.

!35", while dynamical off-shell effects do depend on descrip-
tions of the intrinsic deformation of the bound nucleon struc-

ture and are therefore model dependent. The latter have been

modeled, for instance, in a covariant spectator model !33", in
which the DIS from a bound nucleon is described in terms of

relativistic vertex functions which parametrize the nucleon-

quark-spectator ‘‘diquark’’ interaction. The dependence of

the vertex functions on the quark momentum and the diquark

energy is constrained by fitting to the on-shell nucleon #pro-
ton$ structure function data, while the additional dependence
on the virtuality of the off-shell nucleon can be constrained

by comparing the calculated nuclear structure function with

the inclusive F2
A data.

Taking the nucleon’s off-shellness into account, the bound

nucleon structure function in Eq. #8$ can be generalized to
!33,35,46"

F2
A#x ,Q2$!! dy! dp2%#y ,p2,Q2$F2

N#x!,p2,Q2$,

#44$

where x!!x/y and the function %(y ,p2,Q2) depends on the

nuclear wave functions. In the absence of p2 dependence in

F2
N , the light-cone momentum distribution f (y ,Q2) in Eq.

#8$ would correspond to the p2 integral of %(y ,p2,Q2). In

the approach of Ref. !35", the medium modified nucleon

structure function F2
N(x!,p2,Q2) can be evaluated in terms

of a relativistic quark spectral function &N as

F2
N#x!,p2,Q2$!

x!2

1"x!
'
X

!
kmin
2

dk2

4#2($3
&N#k2#p $,pX

2 $,

#45$

where &N depends on the virtualities of the struck quark, k
2,

and spectator system, pX
2 , and the limit kmin!kmin(x!,p

2,pX
2)

follows from the positivity constraint on the struck quark’s

transverse momentum k!
2)0. The dependence of kmin on p

2

(*M 2) generates an off-shell correction which grows with A

due to the A dependence of the virtuality p2 of the bound

nucleon. This serves to enhance the EMC effect at large x in

comparison with naive binding model calculations which do

not take into account nucleon off-shell effects !45". Assum-
ing that the spectator quarks can be treated as a single system

with a variable mass mX
2 , the off-shell structure function in

Eq. #45$ can be related to the on-shell function by a

p2-dependent rescaling of the argument x!, namely !35",

F2
N#x!$"p2*M2→F2

N#x!#p2$#x!$"p2!M2. #46$

It is this #further$ rescaling in x that is responsible for the
larger effect at large x.

The effect of the off-shell correction on the ratio R, illus-
trated in Fig. 9, is a small ($1%) increase in the ratio at x
+0.6. Off-shell effects of this magnitude can be expected in
models of the EMC effect where the overall modification of

the nuclear structure function arises from a combination of

conventional nuclear physics phenomena associated with

nuclear binding, and a small medium dependence of the

nucleon’s intrinsic structure !1,33,46,78".
Other models of the EMC effect, such as the color screen-

ing model for suppression of pointlike configurations #PLC$
in bound nucleons !79", attribute most or all of the EMC
effect to a medium modification of the internal structure of

the bound nucleon, and consequently predict larger devia-

tions of R from unity !77". However, recent 4He(e! ,e!p! )
polarization transfer experiments !80" indicate that the mag-
nitude of the off-shell deformation is indeed rather small.

The measured ratio of transverse to longitudinal polarization

of the ejected protons in these experiments can be related to

the medium modification of the electric to magnetic elastic

form factor ratio. Using model-independent relations derived

from quark-hadron duality, the medium modifications in the

form factors were related to a modification at large x of the

deep inelastic structure function of the bound nucleon in Ref.

!81". In 4He, for instance, the effect in the PLC suppression

model was found !81" to be an order of magnitude larger
than that allowed by the data !80", and with a different sign
for x%0.65. The results therefore place rather strong con-
straints on the size of the medium modification of the struc-

ture of the nucleon, suggesting little room for large off-shell

corrections, and support a conventional nuclear physics de-

scription of the 3He/3H system as a reliable starting point for

nuclear structure function calculations.

FIG. 8. Neutron to proton structure function ratio extracted from

the F2
3He/F2

3H ratio via the iteration procedure. The input is F2
n/F2

p

!1, and the ratio after +3 iterations is indistinguishable from the

exact result.

DEEP INELASTIC SCATTERING FROM A!3 NUCLEI . . . PHYSICAL REVIEW C 68, 035201 #2003$

035201-11

Afnan, Bissey, Gomez, Liuti, WM, Thomas et al., 
Phys. Rev. C68 (2003) 035201

good convergence after several iterations
resulting       independent of starting assumptionsF

n

2

depends only on smearing function fN/d

Unsmearing



A similar result is also obtained in the treatment of Brodsky et al. [21] (based on
counting-rules), where the large-x behavior of the parton distribution for a quark polar-
ized parallel (∆Sz = 1) or antiparallel (∆Sz = 0) to the proton helicity is given by:
q↑↓(x) = (1 − x)2n−1+∆Sz , where n is the minimum number of non-interacting quarks
(equal to 2 for the valence quark distributions). In the x → 1 limit one therefore predicts:

F n
2

F p
2

→ 3

7
,

d

u
→ 1

5
[Sz = 0 dominance]. (11)

Note that the d/u ratio does not vanish in this model. Clearly, if one is to understand the dy-
namics of the nucleon’s quark distributions at large x, it is imperative that the consequences
of these models be tested experimentally.

The reanalyzed SLAC [7,22] data points themselves are plotted in Fig.3, at an average
value of Q2 ≈ 12 GeV2. The very small error bars are testimony to the quality of the SLAC p
and D data. The data represented by the open circles have been extracted with the on-shell
deuteron model of Ref. [6], while the filled circles were obtained using the off-shell model of
Refs. [4,5]. Most importantly, the F n

2 /F p
2 points obtained with the off-shell method appear

to approach a value broadly consistent with the Farrar-Jackson [20] and Brodsky et al. [21]
prediction of 3/7, whereas the data previously analyzed in terms of the on-shell formalism
produced a ratio that tended to the lower value of 1/4.

FIG. 3. Deconvoluted Fn
2 /F p

2 ratio extracted from the SLAC p and D data [7,22], at an average

value of Q2 ≈ 12 GeV2, assuming no off-shell effects (open circles), and including off-shell effects
(full circles).

The d/u ratio, shown in Fig.4, is obtained by inverting F n
2 /F p

2 in the valence quark
dominated region. The points extracted using the off-shell formalism (solid circles) are

7

Effect on n/p ratio

with binding 
& off-shell

Fermi motion only

without EMC effect in d,        underestimated at large xF
n

2

SU(6)

helicity

scalar
diquarks

retention

WM, Thomas
Phys. Lett. B 377 (1996) 11



again significantly above those obtained previously with the aid of the on-shell prescription.
In particular, they indicate that the d/u ratio may actually approach a finite value in the
x → 1 limit, contrary to the expectation of the model of Refs. [17,18], in which d/u tends
to zero. Although it is a priori not clear at which scale the model predictions [17,18,20,21]
should be valid, for the values of Q2 corresponding to the analyzed data the effects of Q2

evolution are minimal.

FIG. 4. Extracted d/u ratio, using the off-shell deuteron calculation (full circles) and using
on-shell kinematics (open circles). Also shown for comparison is the ratio extracted from neutrino
measurements by the CDHS collaboration [23].

Naturally it would be preferable to extract F n
2 at large x without having to deal with

uncertainties in the nuclear effects. In principle this could be achieved by using neutrino
and antineutrino beams to measure the u and d distributions in the proton separately, and
reconstructing F n

2 from these. Unfortunately, as seen in Fig.4, the neutrino data from the
CDHS collaboration [23] do not extend out to very large x (x <∼ 0.6), and at present cannot
discriminate between the different methods of analyzing the electron–deuteron data.

The results of our off-shell model are qualitatively similar [22] to those obtained using the
nuclear density method suggested by Frankfurt and Strikman [24]. There the EMC effect
in deuterium was assumed to scale with that in heavier nuclei according to the ratio of the
respective nuclear densities, so that the ratio F D

2 /FN
2 in the trough region was depleted by

about 4%, similar to that in Fig.1 (solid curve). This would give an F n
2 /F p

2 ratio broadly
consistent with 3/7.

We should also point out similar consequences for the spin-dependent neutron structure
function gn

1 , where the models of Refs. [17,18] and Refs. [20,21] also give different predictions
for gn

1 /gp
1 as x → 1, namely 1/4 and 3/7, respectively. Quite interestingly, while the ratio of

8

Effect on n/p ratio

F
νp

2
= 2x (d + ū) xF

νp

3
= x (d − ū)

F
ν̄p

2
= 2x (u + d̄) xF

ν̄p

3
= x (u − d̄)



mass difference. The Λ is isosinglet, so it features [ud]; while Σ, being isotriplet, features
(ud). The Σ is indeed heavier, by about 80 MeV. Of course, this comparison of diquarks
is not ideal, since the spectator s quark also has significant spin-dependent interactions. A
cleaner comparison involves the charm analogues, where Σc−Λc = 215 MeV. (Actually this
comparison is not so clean either, as we’ll discuss later. One sign of uncleanliness is that
there either Σc(2520)

3
2

+
or Σc(2455)

1
2

+
might be used for comparison; here I’ve taken the

weighted average.)
One of the oldest observations in deep inelastic scattering is that the ratio of neutron

to proton structure functions approaches 1
4 in the limit x → 1

lim
x→1

Fn
2 (x)

F p
2 (x)

→ 1

4
(1.1)

In terms of the twist-two operator matrix elements used in the formal analysis of deep
inelastic scattering, this translates into the statement

lim
n→∞

〈p|d̄γµ1

←→∇ µ2
· · ·←→∇ µn

d|p〉
〈p|ūγµ1

←→∇ µ2
· · ·←→∇ µn

u|p〉
→ 0 (1.2)

where spin averaging of forward matrix elements, symmetrization over the µs, and removal
of traces is implicit, and a common tensorial form is factored out, together with similar equa-
tions where operators with strange quarks, gluons, etc. appear in the numerator. Equation
(1.2) states that in the valence regime x → 1, where the struck parton carries all the longitu-
dinal momentum of the proton, that struck parton must be a u quark. It implies, by isospin
symmetry, the corresponding relation for the neutron, namely that in the valence regime
within a neutron the parton must be a d quark. Then the ratio of neutron to proton matrix

elements will be governed by the ratio of the squares of quark charges, namely
(− 1

3
)2

( 2

3
)2

= 1
4 .

Any (isosinglet) contamination from other sources will contribute equally to numerator and
denominator, thereby increasing this ratio. Equation (1.2) is, from the point of view of
symmetry, a peculiar relation: it requires an emergent conspiracy between isosinglet and
isotriplet operators. It is, from a general physical point of view, most remarkable: it is
one of the most direct manifestations of the fractional charge on quarks; and it is a sort
of hadron = quark identity, closely related to the quark-hadron continuity conjectured to
arise in high density QCD. It is an interesting challenge to derive (1.2) from microscopic
QCD, and to estimate the rate of approach to 0.

A more adventurous application is to fragmentation. One might guess that the formation
of baryons in fragmentation of an energetic quark or gluon jet could proceed stepwise,
through the formation of diquarks which then fuse with quarks. To the extent this is a
tunneling-type process, analogous to pair creation in an electric field, induced by the decay
of color flux tubes, one might expect that the good diquark would be significantly more
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Diquarks as Inspiration and as Objects

Frank Wilczek∗

September 17, 2004

Abstract

Attraction between quarks is a fundamental aspect of QCD. It is plausible that
several of the most profound aspects of low-energy QCD dynamics are connected to
diquark correlations, including: paucity of exotics (which is the foundation of the quark
model and of traditional nuclear physics), similarity of mesons and baryons, color su-
perconductivity at high density, hyperfine splittings, ∆I = 1/2 rule, and some striking
features of structure and fragmentation functions. After a brief overview of these issues,
I discuss how diquarks can be studied in isolation, both phenomenologically and numer-
ically, and present approximate mass differences for diquarks with different quantum
numbers. The mass-loaded generalization of the Chew-Frautschi formula provides an
essential tool.

1 Diquarks as Inspiration

1.1 Diquarks in Microscopic QCD

In electrodynamics the basic interaction between like-charged particles is repulsive. In
QCD, however, the primary interaction between two quarks can be attractive. At the
most heuristic level, this comes about as follows. Each quark is in the 3 representation, so
that the two-quark color state 3⊗3 can be either the symmetric 6 or the antisymmetric 3̄.
Antisymmetry, of course, is not possible with just 1 color! Two widely separated quarks each
generate the color flux associated with the fundamental representation; if they are brought
together in the 3̄, they will generate the flux associated with a single anti-fundamental,
which is just half as much. Thus by bringing the quarks together we lower the gluon field
energy: there is attraction in the 3̄ channel. We might expect this attraction to be roughly
half as powerful as the quark-antiquark 3⊗ 3̄ → 1. Since quark-antiquark attraction drives
the energy in the attractive channel below zero, triggering condensation 〈q̄q〉 %= 0 of qq̄
pairs and chiral symmetry breaking, an attraction even half as powerful would appear to
be potentially quite important for understanding low-energy QCD dynamics.

∗Solicited contribution to the Ian Kogan memorial volume, ed. M. Shifman.
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Folklore that experiment gives 1/4 limiting ratio...



uncertainty due to 
nuclear effects in neutron
(full range of nuclear models)

d distribution poorly 
known beyond x ~ 0.5



“Cleaner” methods of determining d/u

e∓ p → ν(ν̄)X need high luminosity

ν(ν̄) p → l∓ X low statistics

p p(p̄) → W±X need large lepton rapidity

!eL(!eR) p → e X low count rate

e p → e π± X need z ~ 1, factorization 

e
3He(3H) → e X tritium target



“Cleaner” methods of determining d/u

“Spectator Tagging”

  

! 

pS = E S ,
r 
p S( ) ; "S =

ES #
r 
p S $ ˆ q 

M D /2

  

! 

pn = M D "E S ,"
r 
p S( ) ; #n = 2"#S

  

! 

W
2 = pn + q( )

2
= pn

µ
pnµ + 2 (M D "Es )# "

r 
p n $

r 
q ( )"Q

2

% M *
2 +2M# (2"&S )"Q

2

! 

x =
Q
2

2pn
µ
qµ

"
Q
2

2M# (2$%S )

! 

W
2

= M
2

+ 2M" #Q
2

 *

target d

recoil p

e d → e p X

slow backward p

minimize rescattering

neutron nearly on-shell JLab Hall B experiment (‘‘BoNuS’’)
completed run Dec. 2005



Issues at large x
Target mass corrections

finite             effects (but leading twist!)M2/Q2 Georgi, Politzer, PRD14 (1976) 1829
Kretzer, Reno, PRD69 (2004) 034002

Higher twists
dynamical quark-gluon correlations,          suppressed             1/Q2

Quark-hadron duality

WM, Ent, Keppel, Phys. Rept. 406 (2005) 127

low-W resonances conspire to produce scaling function

Large-x resummation

Corcella, Magnea, hep-ph/050742; Vogelsang, AIP Conf. Proc. 747 (2005) 9
Sterman, NPB281 (1987) 310; Catani, Trentadue, NPB327 (1989) 323

extend validity of  pQCD by resumming large-x logs
arising from soft & collinear gluons



Issues at large x
Target mass corrections

r =
√

1 + 4x2M2/Q2

ξ =
2x

1 + r

FGP
2 (x, Q2) =

x2

r3
F (ξ) + 6

M2

Q2

x3

r4

∫ 1

ξ

dξ′ F (ξ′) + 12
M4

Q4

x4

r5

∫ 1

ξ

dξ′
∫ 1

ξ′

dξ′′ F (ξ′′)

Georgi-Politzer (GP) prescription

... and similar for other structure functions

“quark distribution function”

F (y) =
F2(y)

y2



numerically...
Christy et al. (2005)

no TMCTMC

TMCs significant at large          , especially for x2/Q2
FL



Threshold problem

if                          at largeF (y) ∼ (1 − y)β y

then since ξ0 ≡ ξ(x = 1) < 1

F (ξ0) > 0

FTMC
i (x = 1, Q2) > 0

is this physical?

problem with GP formulation?



Possible solutions

Johnson/Tung - modified threshold factor

Nachtmann moment

µn

2 (Q2) =

∫ 1

0

dx
ξn+1

x3

(
3 + 3(n + 1)r + n(n + 2)r2

(n + 2)(n + 3)

)
F2(x, Q2)

n → ∞, Q2
fixed

µn

2 (Q2) → ξn

0 (Q2) µ̃n

2 (Q2)

“regularized” amplitudes
(threshold-independent)

n fixed, Q2
→ ∞

µn
2 (Q2) → (lnQ2/Λ2)−λn An

An =

∫ 1

0

dξ ξn F (ξ)



Possible solutions

Johnson/Tung - modified threshold factor

Nachtmann moment

µn

2 (Q2) =

∫ 1

0

dx
ξn+1

x3

(
3 + 3(n + 1)r + n(n + 2)r2

(n + 2)(n + 3)

)
F2(x, Q2)

Bitar, Johnson, Tung
PLB 83B (1979) 114

ansatz µn
2 (Q2) = ξn

0 (Q2) (lnQ2/Λ2)−λn An

consistent with asymptotic pQCD behavior

not unique!



Possible solutions

Johnson/Tung - modified threshold factor

cf. exact expression

moreover, if identify      with An

µn

2 (Q2) = ξn

0 (Q2) Mn

2 (Q2)

Mn

2 (Q2) = µn

2 (Q2) +
nM2

Q2
Mn

2 + · · ·

Mn

2 (Q2) = µn

2 (Q2) +
n(n − 1)

n + 2

M2

Q2
Mn+2

2 + · · ·

inconsistency at low      ?    Q2

M
n

2 =

∫ 1

0

dx x
n−2

F2(x)



Possible solutions

Kulagin, Petti, NPA765 (2006) 126

Kulagin/Petti - expand expressions in 1/Q  2

has correct threshold behavior

Possible solutions

Kulagin/Petti - expand expressions in 

Kulagin, Petti

hep-ph/0412425

1/Q  2

that the target mass corrected inelastic structure functions FTMC
2 remain finite as x → 1

even if the LT terms vanish in this limit. Clearly, the region x close to 1 is beyond the appli-
cability of Eqs.(23). However, in the applications to nuclear structure functions at large x it
is important to meet the threshold condition. One possible way to deal with this problem is
to expand Eqs.(23) in power series in Q−2 and keep a finite number of terms. In particular,
keeping the LT and the 1/Q2 term we have

FTMC
T (x, Q2) = F LT

T (x, Q2) +

x3M2

Q2

(
2

∫ 1

x

dz

z2
F LT

2 (z, Q2) − ∂

∂x
F LT

T (x, Q2)

)
, (24a)

FTMC
2 (x, Q2) =

(
1 − 4x2M2

Q2

)
F LT

2 (x, Q2) +

x3M2

Q2

(
6

∫ 1

x

dz

z2
F LT

2 (z, Q2) − ∂

∂x
F LT

2 (x, Q2)

)
, (24b)

xFTMC
3 (x, Q2) =

(
1 − 2x2M2

Q2

)
xF LT

3 (x, Q2) +

x3M2

Q2

(
2

∫ 1

x

dz

z2
zF LT

3 (z, Q2) − ∂

∂x
xF LT

3 (x, Q2)

)
. (24c)

In this approximation the structure functions have a correct threshould behavior and vanish
in the limit of x → 1, provided that the LT terms and their derivatives vanish in this limit.

The target mass corrections should also be applied to the HT terms in the higher order
terms in the twist expansion (20). For this reason we do not consider 1/Q4 terms in the
TMC formula, which are small in the considered kinematical range. We also note, that the
target mass corrections for an off-shell target, i.e. when p2 #= M2, should be treated as part
of the nuclear effects and will be discussed in Sect. IVA6.

B. Structure function phenomenology

The twist expansion and PDFs as universal, process-independent characteristics of the
target are at the basis of extensive QCD phenomenology of high-energy processes. In phe-
nomenological studies, the PDFs are extracted from QCD global fits. A number of such
analyses are available [39, 40, 41]. In our studies of nuclear data described in Sect. VF
to VID we use the results by Alekhin [39] 2 who provides the set of the nucleon PDFs
obtained with coefficient and splitting functions calculated to the NNLO approximation.
Furthetmore, the HT terms and the PDF uncertainties have also been evaluated in [39].

It should be also remarked that the twist expansion and perturbative QCD apparently
breaks down at low Q2. Furthermore, the conservation of electromagnetic current requires
the structure function F2 to vanish as Q2 for Q2 → 0. The data seem to indicate the
presence of a transition region between perturbative and non-perturbative regimes at Q2

about 1 GeV2. In our studies of nuclear effects in the structure functions some data points

2 In our analysis we use PDFs obtained from new fits optimized in the low Q2 region and including additional

data with respect to [39]. This extraction of PDFs also takes into account the nuclear corrections to D

data described in the present paper (Section VG). Results from the new fits will be reported elsewhere.
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analyses are available [39, 40, 41]. In our studies of nuclear data described in Sect. VF
to VID we use the results by Alekhin [39] 2 who provides the set of the nucleon PDFs
obtained with coefficient and splitting functions calculated to the NNLO approximation.
Furthetmore, the HT terms and the PDF uncertainties have also been evaluated in [39].

It should be also remarked that the twist expansion and perturbative QCD apparently
breaks down at low Q2. Furthermore, the conservation of electromagnetic current requires
the structure function F2 to vanish as Q2 for Q2 → 0. The data seem to indicate the
presence of a transition region between perturbative and non-perturbative regimes at Q2

about 1 GeV2. In our studies of nuclear effects in the structure functions some data points

2 In our analysis we use PDFs obtained from new fits optimized in the low Q2 region and including additional

data with respect to [39]. This extraction of PDFs also takes into account the nuclear corrections to D

data described in the present paper (Section VG). Results from the new fits will be reported elsewhere.
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nucl-th/060314, PRC (2006)

ξ0

n-th moment       of distribution function An

An =

∫ ξmax

0

dξ ξn F (ξ)

what is        ?ξmax

GP use                                unphysicalξmax = 1, ξ0 < ξ < 1

strictly, should use                               ξmax = ξ0

Alternative solution



what is effect on phenomenology?

try several  “toy distributions”

q(ξ) = N ξ−1/2 (1 − ξ)3 , ξmax = 1

standard TMC (“sTMC”)

modified TMC (“mTMC”)

q(ξ) = N ξ−1/2 (1 − ξ)3 Θ(ξ − ξ0), ξmax = ξ0

threshold dependent (“TD”)

qTD(ξ) = N ξ−1/2 (ξ0 − ξ)3 , ξmax = ξ0

Alternative solution
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FIG. 3: The x dependence of the F2 structure function at Q2 = 1 GeV2 (upper) and 5 GeV2 (lower). The effects of TMCs
on the (input) scaling distribution (dotted curve) are illustrated for the sTMC (dashed) and mTMC (double-dot–dashed)
prescriptions, and compared with the effects on the (input) TD-distribution ξqTD(ξ) (dot-dashed) using the TD approach
(prescription C, solid).

the sTMC and mTMC prescriptions, the corrected structure function is significantly larger in magnitude than for the
TD prescription at intermediate and large x. For the sTMC case in particular, it is also seen to approach a nonzero
value in the x → 1 limit. This result suggests that the evaluation of the twist-two part of the longitudinal structure
function at low Q2 may also need to be reassessed in phenomenological analyses, especially at intermediate and large
x.

TMCs in F2

correct threshold behavior for “TD” correction
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FIG. 3: The x dependence of the F2 structure function at Q2 = 1 GeV2 (upper) and 5 GeV2 (lower). The effects of TMCs
on the (input) scaling distribution (dotted curve) are illustrated for the sTMC (dashed) and mTMC (double-dot–dashed)
prescriptions, and compared with the effects on the (input) TD-distribution ξqTD(ξ) (dot-dashed) using the TD approach
(prescription C, solid).

the sTMC and mTMC prescriptions, the corrected structure function is significantly larger in magnitude than for the
TD prescription at intermediate and large x. For the sTMC case in particular, it is also seen to approach a nonzero
value in the x → 1 limit. This result suggests that the evaluation of the twist-two part of the longitudinal structure
function at low Q2 may also need to be reassessed in phenomenological analyses, especially at intermediate and large
x.

TMCs in F2

effect small at higher Q2
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FIG. 5: Longitudinal structure function FL at Q2 = 1 GeV2 for the sTMC (dashed), mTMC (double-dot–dashed) and TD-
distribution (solid) prescriptions. Note that the scaling longitudinal distribution is zero.

structure functions at finite Q2, and produces vanishing structure functions as x → 1. This is true for both the F2

and FL structure functions.
The Nachtmann moments µn

2 of the F2 structure function, calculated with the threshold dependent distributions
qTD, agree with the moments An of qTD to within 1% for the n = 2, 4 and 6 moments for Q2 as low as 1 GeV2 and
even lower. In contrast, the deviation for the standard or modified TMC procedure (sTMC or mTMC prescriptions)
is more than an order of magnitude larger at the same Q2 values, and grows rapidly with increasing n. Furthermore,
for Q2 > M2 one can show analytically that, at least to O(1/Q6), the moments µn

2 and An are identical. Similarly,
for the longitudinal structure function FL, the Nachtmann moments µn

L with the threshold dependent distribution
are considerably smaller (i.e. closer to the asymptotic value of zero) than the moments in the sTMC or mTMC
prescriptions.

A consequence of our formulation is that the moments of the threshold dependent distributions will in general be
M2/Q2 dependent. This dependence is not associated with either perturbative QCD effects or higher twists, but
comes entirely from the leading twist, target mass effects. Our analysis suggests that it may be necessary to reassess
the interpretation of a parton distribution in the presence of the finite M2/Q2, or ξ, corrections, as well as the
implementation of the qTD distributions in the Q2 evolution equations. We will address these problems in future work
[15]. At the same time, our numerical results give impetus to investigating the impact of TMCs on phenomenological
fits to structure functions at low Q2 [16] and the extraction of twist-two parton distributions.
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from 0 to 1 (specifically, in the integrals for An, H(ξ) and G(ξ)). Here the normalization N ensures that the
distribution integrates to unity. We denote this prescription the “standard TMC” (sTMC).

(B) Integrate a modified distribution which vanishes for ξ > ξ0, as implied by Eq. (7)1:

q(ξ) = N ξ−1/2(1 − ξ)3 Θ(ξ − ξ0) . (19)

We denote this prescription the “modified TMC” (mTMC).
(C) Use a “threshold dependent” (TD) quark distribution which vanishes in the physical limit:

qTD(ξ) = N ξ−1/2(ξ0 − ξ)3 . (20)
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FIG. 1: Ratio of the n = 2 Nachtmann moment of the F2 structure function and the n = 2 moment of the quark distribution,
as a function of Q2. The curves correspond to prescriptions A [“sTMC”] (dotted), B [“mTMC”] (dashed) and C [“TD”] (solid).

Note that because of the upper limit in Eq. (7), An itself will be M2/Q2 dependent for prescriptions B and C. The
results for the ratio µn

2/An of the n = 2 moments are displayed in Fig. 1 for the three cases, with prescriptions A, B
and C corresponding to the dotted, dashed and solid curves, respectively. Comparing the sTMC and mTMC results,
one can see a reduced Q2 dependence when the integrals are restricted to ξ < ξ0. However, a much more dramatic
change occurs when the quark distribution is constrained to vanish at ξ0. This renders the Nachtmann moment almost
equal to the moment of the quark distribution for virtually all Q2 considered. Certainly for Q2 > 1 GeV2 there is no
visible deviation of the ratio from unity. Even for very small Q2, Q2 ∼ 0.3 GeV2, the ratio differs from unity by only
∼ 0.7% (of course the OPE itself may not be valid at such low values of Q2).

Similarly, the ratios for the n = 4 and n = 6 moments are shown in Fig. 2. The deviation of the ratio from unity
for the sTMC approach is between 10%− 20% for Q2 <

∼ 1 GeV2, while that for the modified TMC with prescription
B is of the order of 5% over the same Q2 region. On the other hand, for the threshold dependent prescription C, the
deviation from unity remains around 1% even at these low Q2 values.

A consequence of prescription C is that the moments of the parton distribution are Q2 dependent. This seems to
be an inevitable consequence if the Nachtmann moments of the structure function are to be equal to the moments of
the parton distribution for all Q2. Note that this Q2 dependence is not of higher twist or perturbative QCD origin,
but arises solely from kinematics. Nevertheless, this avoids the more serious problems which arise within the sTMC

1 We believe this was also the implication of De Rújula et al. [11]

Nachtmann     momentsF2

moment of structure function agrees with 
moment of PDF to 1% down to very low Q2
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FIG. 2: Ratios of the n = 4 (upper graph) and n = 6 (lower graph) Nachtmann moment of the F2 structure function and the
corresponding moments of the quark distribution, as a function of Q2. The curves are as in Fig. 1.

approach (prescription A), where the Nachtmann moments below Q2 ∼ 1 GeV2 start to deviate significantly from the
moments of the quark distributions. In addition, in the sTMC formulation one is faced with the so-called “threshold
problem”. Namely, if the moments An of the quark distributions are Q2 independent, then one should have:

∫ 1

0
dξ ξn F (ξ, Q2

1) =

∫ 1

0
dξ ξn F (ξ, Q2

2) (21)

for any two momentum scales Q2
1 and Q2

2. Since F (ξ, Q2) must vanish in the kinematically forbidden region ξ > ξ0,
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approach (prescription A), where the Nachtmann moments below Q2 ∼ 1 GeV2 start to deviate significantly from the
moments of the quark distributions. In addition, in the sTMC formulation one is faced with the so-called “threshold
problem”. Namely, if the moments An of the quark distributions are Q2 independent, then one should have:

∫ 1

0
dξ ξn F (ξ, Q2

1) =

∫ 1

0
dξ ξn F (ξ, Q2

2) (21)

for any two momentum scales Q2
1 and Q2

2. Since F (ξ, Q2) must vanish in the kinematically forbidden region ξ > ξ0,

Nachtmann     momentsF2

higher moments show much weaker Q2

dependence than sTMC & mTMC prescriptions
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approach (prescription A), where the Nachtmann moments below Q2 ∼ 1 GeV2 start to deviate significantly from the
moments of the quark distributions. In addition, in the sTMC formulation one is faced with the so-called “threshold
problem”. Namely, if the moments An of the quark distributions are Q2 independent, then one should have:

∫ 1

0
dξ ξn F (ξ, Q2

1) =

∫ 1

0
dξ ξn F (ξ, Q2

2) (21)

for any two momentum scales Q2
1 and Q2

2. Since F (ξ, Q2) must vanish in the kinematically forbidden region ξ > ξ0,

Nachtmann     momentsF2

µn

2 (finite Q2)

An(finite Q2
=

µn

2 (Q2
→ ∞)

An(Q2
→ ∞)

extract PDFs from structure function data
at lower Q2
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FIG. 4: Nachtmann moments of the longitudinal structure function for n = 2 (upper) and n = 4 (lower) as a function of Q2.

IV. CONCLUSION

In this work we have revisited the long-standing problem of target mass corrections to nucleon structure functions.
The standard procedure for implementing target mass effects suffers from the well known threshold problem, in
which the corrected, leading twist structure function does not vanish at x = 1. We have proposed a solution to this
problem by introducing a finite-Q2, “threshold dependent” parton distribution function that explicitly depends on the
kinematical threshold ξ0, which is smooth in the entire physical region, and approaches the ordinary, Q2-independent
parton distribution in the limit Q2 → ∞. Our prescription avoids any discontinuities in the parton distributions and
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IV. CONCLUSION

In this work we have revisited the long-standing problem of target mass corrections to nucleon structure functions.
The standard procedure for implementing target mass effects suffers from the well known threshold problem, in
which the corrected, leading twist structure function does not vanish at x = 1. We have proposed a solution to this
problem by introducing a finite-Q2, “threshold dependent” parton distribution function that explicitly depends on the
kinematical threshold ξ0, which is smooth in the entire physical region, and approaches the ordinary, Q2-independent
parton distribution in the limit Q2 → ∞. Our prescription avoids any discontinuities in the parton distributions and

FLNachtmann     moments

weaker      dependence for TD prescriptionQ2



Summary

d quark distribution poorly known at large x

(anti)neutrino data can help determine d/u ratio at large x
complement e scattering data (e.g. BONUS)

much faster approach to scaling for     dependent PDF

alternative formulation of  TMC in GP approach 
without threshold problem

ξ0


