Multi-pion production - status and issues in Hall B

CLAS: <u>CEBAF Large Acceptance Spectrometer (Hall B)</u>

Super-conducting toroidal magnet with six kidney-shaped coils 5 m diameter, 5 m long, 5 M-Amp-turns, max. field 2 Tesla

CLAS Single Event Display

WIII Brooks - Nulnt02

Missing Mass (GeV)

Jupiter: <u>JLab Unified Program to Investigate Nuclear</u> <u>Targets and Electroproduction of Resonances</u>

Hall B part of JUPITER program: look at exclusive final states in eA data in hydrogen and nuclear targets (C and Fe). Produce results useful for tuning MC models used in current and next-generation vA experiments

Bob Bradford

Jennifer Cano (Univ. Virginia undergraduate, summer 2006)

Ian Kleckner (UR undergraduate)

Steve Manly

David Sher (John's Hopkins undergraduate, summer 2005)

Coming from RHIC, this has to be easy ...

Neutrino interaction ID and energy reconstruction MINERVA

Calorimetric

ic

Sampling fraction varies

MINOS

Cerenkov

$$E_{\nu} = \frac{m_N E \mu - m_{\mu}^2 / 2}{m_N - E_{\mu} + p_{\mu} \cos \theta_{\mu}}$$

For QE/E, with source known

Estimates for MINOS- like detector

D. Harris et al., hep-ex/0410005

Momentum distributions for charged pions in 1- π and 2- π events (E, Q², A=H,C,Fe)

Momentum and angular distributions for charged protons in $0,1,2-\pi$ events (E, Q², A=H,C,Fe)

Allows neutrino MC tuners to take into account nuclear effects like transparency and absorption in a brute force way. They can look at data for vector part and appropriate q² only.

How often do you see proton from QE/elastic event? (Affects E_{vis} and event categorization.)

How often do you lose a pion in a resonance or inelastic event? (Affects E_{vis} and event categorization)

MINER_VA event display

π^{o} / π^{+} ratio, π^{-} / π^{+} ratio (E, q², A) E_{vis} vs. W

Neutral and charged pions look different in v detectors.

The reconstructed neutrino energy is a critical quantity for neutrino expts. They can tune MC's with CLAS results presented appropriately.

i.e., K2K result, E_v is important

Oscillations

- > Dotted line is x-section without nuclear corrections
- ➤ Broken-line curve is the x-section including nuclear corrections with averaging approximation
- ➤ Solid line is x-section with exact transport problem (no averaging)

Would be nice to test/tune the model to best extent possible on electroproduction ...

Paschos, Schienbein, Yu, hep-ph/0408148

ANP model calculations

ep \rightarrow ep $\pi^{\circ} \rightarrow$ ep π^{+} below 2π threshold

Coherent neutral pion production background needs to be understood in neutrino experiments. Pizeros can mimic electron neutrinos. How often does charge exchange happen? Is there an A dependence?

Identify events with specific resonances, in, say $p\pi$ Look at single π yields $d^5\sigma/d\Omega$ 'dE'd Ω^* π Integrated $d\sigma/dw$, $d\sigma/dq^2$ for each resonance

Helpful for model builders trying to understand the resonance region (Paschos).

Okay ... time for a reality check.

 π° acceptance, π° detection usually done through missing mass, does this work at all for A .neq. 1?

Need MC to estimate purity and efficiency

Would like to have everything acceptance and radiatively corrected.

Yikes!

FERMI smearing

Field orientation affects particle acceptance

what is E_{vis} ? Is it Ech+, Ech, $E_{ch}+E_{\pi}$ if π^{o} is seen in missing mass?

© KURT JONES 2003

Hydrogen data from Run e1c, E=4.462 GeV Carbon data from Run e2a, E=4.462 GeV

Our first look at the data

Figure 1. Initial Magnitude of Hadronic Mass W. Hydrogen solid line, carbon dotted line.

Raw W distribution using SEB group and CLAS software for initial particle ID (H from run 17746, C from run 018018)

Cleaning up the electrons

Sampling fraction cut, E/p be near 1 for electron hypothesis

Demand 60 MeV in inner electromagnetic calorimeter

Demand electrons lose no more than 20% of initial energy, y<0.8

Figure 2. Sampling fraction for hydrogen data. Cuts indicated by vertical lines.

Uncorrected z vertex distributions

Hydrogen

Follows cuts done in Carman and Raue, "Hyperon Electroproduction in CLAS"

carbon

Cleaning up the electrons

Raw data

With sampling fraction cut, mass cut, Z-vertex cut, EC-fiducial cuts, y<0.8.

Cleaning up the hadrons

Time-of-flight cuts for protons in hydrogen target data

Momentum corrections -

Use PittsMomCorr (for e1c H data), also applied to our e2a carbon data

hydrogen

carbon

Missing mass squared in Δ (1232) resonance region

Events in the elastic region – transverse opening angle between the e- and proton

hydrogen

carbon

Know incoming e- four-vector and outgoing e- and p four-vectors, calculate magnitude of incoming p momentum due to Fermi smearing

Can use momentum and energy conservation and try to correct for Fermi smear on event-by-event basis. Sort of works but imperfect due to off-shell kinematics.

Can we use thresholds in W?

ep+0 π threshold

$ep+1\pi$ threshold

ep+0 π threshold

Near future

Fermi smearing and radiative corrections ~cancel

Fermi smearing and radiative corrections ~cancel

Expect to be able to add a graduate student to effort by 2007, maybe a little sooner...

This summer ... pizeros

MC, radiative corrections

Able to isolate topologies in eA in narrow regions of W

Open to suggestions for tricks to pull out resonances

Open to suggestions for useful observations that are realistic about the difficulty of identifying topologies and resonances