Current Status of the Borexino experiment

C. Galbiati for the Borexino collaboration

@ Neutrino 2004Paris, Monday June 14 2004

Talk Outline

Borexino at a glance

- Detector Status and Commissioning
- Borexino physics: an update
- Background issues & goals, projected sensitivity
- Borexino @ Gran Sasso: what is the future?

Borexino at a glance

- Electron scattering in organic scintillator
- Scintillator 300 tons,
 fiducial 100 tons
- Two buffers 900 tons;
 water 2200 tons
- 2200 PMTs, optical coverage 30%
- Muon flux 1/m²/hr;
- \odot 250 KeV threshold (¹⁴C)

Spectrum

Note: Arbitrary Units U, Th 10⁻¹⁶ g/g

Detector Status

 Borexino operating in a restricted mode since incident on August 16 2002

Structures finished

Ø Purification plants completed

Inner PMTs installed and tested

Electronics commissioned and calibrated

Air Run with Rn source Dec 2003

Air Run with Rn Source Dec 2003

Detector Status

Stainless
 Steel Sphere
 closed on
 June 9

 Last section of muon veto will soon be installed

Detector Commissioning

July 30 2004

Borexino Physics Goals

- Real time observation of low energy neutrinos: only 1/2000 of solar flux measured in real time so far... New stuff at low energy?
- ⁷Be measurement fundamental for comparison of photon luminosity to neutrino luminosity of sun. Check for non-standard energy mechanism in the sun
- Probe the transition matter-vacuum oscillation transition expected (2-3 MeV) in favoured MSW-LMA
- New results on background 1-2 MeV: opportunity for pep+CNO observation
- Super Novae neutrinos
- Geo anti-neutrinos (20 events/yr expected)

Expected ⁷Be Signal

- Theoretical uncertainty of SSM on ⁷Be is 12% (BP04)
- Large experimental uncertainty of ⁷Be flux:
 - Ø 0.91+0.24-0.61 of BP04 (Bahcall-Peña "Roadmap")
- Scattering cross section (v−e) 5 times larger for electron v @ ⁷Be energy
- Reduced interaction rate (v-e) expected at 66% of SSM prediction

MSW-LMA Scenario Signal & projected sensitivity 30 ev/day above threshold Well positioned from statistical point of view: I1000 ev in 1 yr (1%) 22000 ev in 2 yrs (0.7%) 44000 ev in 4 yrs (0.5%) Accuracy of Borexino measurement most likely determined by background and systematics

Background Classes

In increasing order of difficulty... Background from long-lived isotopes (U, Th, K) Noble Gases (⁸⁵Kr, ³⁹Ar) Radon Daughters (²¹⁰Bi-Po-Pb) Cosmogenic Background

Goal: keep each source below 1 ev/day in fiducial mass

U-Th Background

Feasibility of 10⁻¹⁶ g/g U, Th contamination first demonstrated in CTF (@limits of apparatus sensitivity)

Highly desirable reduction of background at level of 10⁻¹⁷ g/g U, Th

ø precision ⁷Be measurement

open pep observation

 Collaboration focus on cleanliness & development of purification methods

⁸⁵Kr & ³⁹Ar

- Present in air, traces in LN₂ (ubiquitous in purification processes)
- Possible systematic problem: diffusive, penetrates thin plastics over time; need to address overall contamination in detector & leaks over time
- Goal: < 1ev/day ~ 100 nBq/m³ ~ 0.3 ppm Ar, 0.1 ppt Kr -> 10⁴ higher than standard LN₂
- Strategy:
 - Search commercial LN₂ compliant with specs: Achieved!
 - Implement global purge of all detector

Radon Daughters ²¹⁰Bi-Po-Pb

Air-borne contamination

Deposits on exposed surfaces; Possible washoff over time; Cross-contamination?

Goal of < 1 ev/day... very ambitious!</p>

Helps vessel built in clean conditions

 Further testing needed in CTF for purification and cross-contamination

OCTF sensitivity far from Borexino ultimate needs

Cosmogenic Background

- Cosmogenic nuclides production related in fundamental way to of neutron production rate
- Fast decaying cosmogenic background almost completely removed by tagging with muon
- Cosmogenic nuclides removed include problematic ¹¹C
 - 30 min, positron, 1–2 MeV spectrum):
 - a 14 ev/day fiducial mass
 - tagged in three-fold coincidence with parent muon and neutron capture

pep+CNO neutrinos

Recent results: ¹¹C reduced to < 0.5 ev/day by coincidence tagging

pep+CNO neutrinos: 2 ev/day [0.8-1.3 MeV]
Internal Bgd 0.6 ev/day @ 10⁻¹⁷ g/g U, Th
External Background:

1 ev/day in 100 tons
0.1 ev/day in 70 tons

Opportunity for real-time observation of one of two basic reactions of (4p->He) cycle

Filling Strategy

- How to check ultimate background before committing to fill detector?
- Collaboration decided to fill with water first
- Water displaced top down and replaced with PC
- Allows "early screening" of PC with 4π shielding
- Cost in time, benefit in background checks & vessel wash

Gran Sasso Situation

- Preventive sequestration of entire Hall C on May 29 2003, upon discovery of mixing between waste and aqueduct water on Lab site and lacking authorizations
- Government declated state of emergency; strong committment to repair lab facilities
- Contracts for Lab repairs assigned early May
- Fixing of Hall C to start middle of June, 3mos expected
- Back at work with PC by year's end
- Collaboration strongly engaged & optimistic
- Agencies strongly committed

Spare Stuff