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Outline of Talk

1. Overview
2. Muon neutrinos from:

� a) diffuse sources
� b) point sources
� c) Gamma ray bursts

3. Electron Neutrinos: Cascades
4. Tau Neutrinos
5. The surface component: IceTop
6. Detector: Optical sensor
7. Summary



IceCube has been designed as a 
discovery instrument with improved:

� telescope area
� detection volume
� energy measurement of secondary muons

and electromagnetic showers
� identification of neutrino flavor
� angular resolution



IceCube

1400 m

2400 m

AMANDA

South Pole

IceTop

Skiway

� 80 Strings
� 4800 PMT 
� Instrumented 

volume: 1 km3 

(1 Gt)



Project status

� Approved by the National Science Board
� Startup funding is allocated.
� Construction is in preparation (Drill, OM 

design, OM production, DAQ and test 
facilities). 

� Construction start in 04/05; possibly a few 
initial strings in 03/04.



ν - flavours and energy ranges

� Filled area:  
particle id, 
direction, energy

� Shaded area: 
energy only

� Detect neutrinos of 
all flavours at 
energies from 107

eV (SN) to 1020 eV

Neutrino flavor

νµ

ντ

νe

Log(ENERGY/eV)
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Neutrino sky as seen by AMANDA

Monte Carlo methods 
are verified on data.

cos(θ)

  Data
Atmospheric n MC

0

5

10

15

20

25

30

35

40

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

cos θ

events

Methods are  not yet optimized and 
fully developed for high energies.



Signals and Background rejection

&& Time Stamp 
(GRB: secs, AGN: h,d)

3. Burstlike Point Sources                      
(GRB or AGN with time 

structure)

&&  Direction2. Point Sources (AGN, 
WIMP)

Up/Down: <1E-8
and energy*

1. Diffuse source (AGN, 
GRB, ..)

Rejection methodType of Neutrino 
source

*At very high energies (>≈PeV), the 
downgoing signals can be accepted

Backgrounds: 
Atmospheric neutrinos
Cosmic ray muons (misreconstructed downgoing)



Track reconstruction in low noise 
environment 

� Typical event: 30 - 100 PMT 
fired

� Track length: 0.5 - 1.5 km
� Flight time: ≈4 µsecs 
� Accidental noise pulses: 

10 p.e. / 5000 PMT/4µsec

AMANDA-II

1 km

10 TeV



Angular resolution < 1° (med)

� Resolution ≈ 0.8 
deg (median)

� Improves slightly 
with energy

� Better near 
horizon: ≈0.7° 
(Sample more 
strings)
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Search bin ≈ 1.0°
Solid angle: 2π/6500



Effective area for muons

� Trigger: allows non 
contained events

� Quality cuts: for 
background rejection

� Point source selection: 
soft energy cut for atmos. 
neutrino rejection 
(Assumed spectrum: E-2, time 
of exposure 1 year)

QuickTime� and a
GIF decompressor

are needed to see this picture.

Geometric detector area = 1km2
Eff. area = Agen* (Ndet./Ngen)
Efficiency ≈ effective area/km2
Muon energy is the energy 
at closest approach to
the detector

log10(E/GeV)



Effective Area vs. cos(θ)

QuickTime� and a
GIF decompressor

are needed to see this picture. Note that the detector is 
sensitive to downward 

going muons
at energies above 1 PeV 

Muon energy
Effective areas are given 
after quality  cuts 
(including up/down 
separation where needed)



Point sources: event rates

5.3 x 10-96100.911 year: Nch > 32

1370

2300

AGN* (E-2)

2.3 x 10-90.823 year: Nch > 43 
(7 TeV)

-20Search bin/year

-100,000All sky/year
(after quality cuts)

Sensitivity
(E-2/(cm2 sec GeV))

Atmospheric
Neutrinos

Flux equal to current AMANDA limit
dN/dE = 10-6*E-2/(cm2 sec GeV)



Compare to 
Mrk 501 gamma ray flux

Sensitivity of 
3 years of IceCube

Field of view:
Continuous     
24 h x 2 πsr

(northern sky)
AMANDA
prelim.  limit



Point source sensitivity
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Search for diffuse ν-fluxes 

Method:
� Assume a diffuse neutrino flux 

(Hypothesis), e.g. the current 
AMANDA limit:    
dN/dE = 10-6*E-2/(cm2 sec GeV
sr)
--> 11,500 events /year

� The background is the 
atmospheric neutrino flux (after 
quality cuts): = 100,000 
events / year

� Apply energy cut.

Atmospheric νννν

E-2 flux

True neutrino energy



Eµ=10 TeV ≈ 90 hits Eµ=6 PeV  ≈ 1000 hits

Energy reconstruction
Small detectors: Muon energy is difficult to measure because of fluctuations in dE/dx
IceCube:            Integration over large sampling+ scattering of light reduces the 

fluctutions energy loss.



Event rates before 
and after energy cut

Note: 
Neutrinos from Charm production included 
according to: Thunman, Ingelmann, Gondolo,
Astropart. Phys. 5:309-332,1996



Diffuse flux, 3 years of IceCube

� Optimize energy cut.
� Sensitivity of IceCube after 3 

years of operation (90% c.l.): 

dN/dEνννν ≤  4.8 x 10-9 * E-2/(cm2

sec GeV)

QuickTime� and a
GIF decompressor

are needed to see this picture.



1 pp core AGN (Nellen)
2 pγ core AGN

Stecker & Salomon)
3 pγ �maximum model�

(Mannheim et al.)
4 pγ blazar jets (Mannh)
5 pγ AGN

(Rachen & Biermann)
6 pp AGN  (Mannheim)
7 GRB 

(Waxman & Bahcall)
8 TD (Sigl)

from 
Mannheim & Learned,2000

Macro
Baikal

IceCube
Sensitivity after 3 years

Amanda

Example: Diffuse Fluxes - Predictions and Limits



WIMPs from Sun/Earth
Look for excess of muons from the direction of the sun or the center of the earth



WIMPs from the Sun with 
IceCube

� IceCube will  
significantly improve 
the sensitivity.

� Similar sensitivity to 
GENIUS, �

J. Edsjö, 2000



Neutrinos from 
Gamma Ray Bursts

Reject background by:

� Energy (number of fired PMT)
� Angle (circular bin of 1º radius)
� Time (≈ 10 sec/ GRB, coincident to known GRB, 

gamma ray signal, e.g. from satellite detector) 



Neutrinos from 
Gamma Ray Bursts

Essentially background free detector:
Only 200 GRB needed to detect standard 
fireball prediction (Waxman/Bahcall 99)

For 1000 GRB observed:

� Expected signal: 11 upgoing muon events
� Expected background: 0.05 events



Cascade 
event

Energy = 375 TeV

ννννe + N --> e- + X
�The length of the actual cascade, 
≈ 10 m, is small compared to the 
spacing of sensors
�==> ≈ roughly spherical density 
distribution of light
�1 PeV ≈ 500 m diameter
�Local energy deposition = good 
energy resolution of neutrino 
energy



Event rates of cascades (νe)
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Assumed flux: dN/dE = 10-7*E-2/(cm2 sec GeV sr)

Rates at trigger level
Effective volume after 
background rejection:
1 km3 for E>30TeV



ντ     �
Double Bang

ννννττττ + N --> ττττ- + X

ννννττττ + X   (82%)

E << 1PeV: Single cascade
(2 cascades coincide)

E   ≈ 1PeV:     Double bang
E >> 1 PeV: partially contained

(reconstruct incoming tau track 
and cascade from decay)

Regeneration makes Earth quasi 
transparent for high energie ντ;
(Halzen, Salzberg 1998, �)
Also enhanced muon flux due to 
Secondary µ, and νµ
(Beacom et al.., astro/ph 0111482)

Learned, Pakvasa, 1995



ντ at E>PeV: Partially contained
� The incoming tau

radiates little light.
� The energy of the 

second cascade can 
be measured with high 
precision.

� Signature: Relatively 
low energy loss 
incoming track: would 
be much brighter than 
the tau (compare to the
PeV muon event 
shown before)

Photoelectron density 

Timing, realistic spacing

Result: high eff. Volume;
Only second bang needs to 
be seen in Ice3

10-20 OM early hits measuring the incoming τ-track



Density profile of double bang event
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Capture Waveform information (MC)

� Complex 
waveforms 
provide 
additional 
information 

E=10 PeV

0 - 4 µsec

Events / 
10 nsec

String 1 String 2 String 3 String 4 String 5



DAQ design: Digital Optical Module
- PMT pulses are digitized in the Ice

Photomultiplier

Design parameters:
� Time resolution:≤ 5 nsec 

(system level)
� Dynamic range: 200 

photoelectrons/15 nsec
� (Integrated dynamic range: > 

2000 photoelectrons)
� Digitization depth: 4 µsec.
� Noise rate in situ: ≤500 Hz

33 cm

DOM

For more information
on the Digital Optical Module:
see poster by R. Stokstad et al.



Coincident events
� Two functions

� veto and calibration
� cosmic-ray physics

� Energy range:
� ~3 x 1014 -- 1018 eV
� few to thousands of muons per 

event
� Measure:

� Shower size at surface
� High energy muon component 

in ice
� Large solid angle

� One IceTop station per hole
� ~ 0.5 sr for C-R physics with 

�contained� trajectories
� Larger aperture as veto

IceTop



Schematic of IceTop detector
� Two Ice Cherenkov tanks at top of each IceCube hole

� Each 3.6 m2; local coincidence for muon vs. shower 
discrimination

� Calibration with single muons @ ~1KHz per tank 

� Integrated into IceCube
� construction
� trigger
� data acquisition

� Heritage:
� Haverah Park
� Auger

Single µ



Expectation for coincident events

� ~109 IceTop-IceCube
coincidences/year

� Calibration beam for 
IceCube

� ~100/day with multi-TeV 
µ in IceCube

� Air shower physics to 
1018 eV

50400018

500070017

5*10513016

5e72015

Events/ 
year

Log(Nµ)
(1500m)

Eshower
log(E/eV)

Some numbers: 
Shower energy
Number of muons / shower
Number of events / year



SPASE - AMANDA: Energy resolution of air 
shower primary

1 PeV - 10 PeV

Entries            1798
Constant   3057.
Mean -0.3207E-01
Sigma  0.6900E-01

log(E_reconstructed)-log(E_true)
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Measuring mass and energy 
of cosmic ray primary particle

Unfolding energy 
and mass using 

SPASE and AMANDA
AM
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Supernova detection in IceCube

� νe + p   -->    n + e+ (10-40 
MeV)
� Low PMT noise (<500Hz) 
increase due to the positrons
� AMANDA/IceCube  records 
noise on the  PMTs over 0.5 
sec and summing up total rate 
over 10 sec intervals.
�Detectors to be connected to 
Supernova Early Warning 
System

AMANDA IceCube

MC



Construction: 11/2003-01/2009

FY04:6

FY05:12FY06:16

FY07:16

FY08:16 FY09:14

AMANDA

SPASE-2 South Pole

Dome
Skiway

100 m

Grid 
North

IceCube



South Pole

Dark sector

AMANDA

IceCube

Dome

Skiway



Project status

� Approved by the National Science Board
� Startup funding is allocated.
� Construction is in preparation (Enhanced 

Hotwater Drill, OM design, OM production 
facilties, DAQ and test facilities). 

� Construction start in 04/05; possibly a few 
initial strings in 03/04.

� Then 16 strings per season, increased rate 
may be possible.



Summary

� IceCube array allows
� Very good event reconstruction (E,θ,ϕ).
� High sensitivity to muon-, electron-, tau-

neutrinos.
� Particle identification over wide energy range.

� IceCube is a multipurpose detector covering 
a wide range of energies, signals, discovery 
potentials.

� Size and quality of information provides 
sensitivity in discovery range.

� Construction is in preparation.


