Neutrino Oscillations Beyond Two Flavours

E. Akhmedov

IST, Lisbon/Kurchatov Inst., Moscow

3 neutrino flavours are known to exist $-\nu_e$, ν_{μ} , ν_{τ} If LSND is right \Rightarrow light $\nu_{sterile}$

But:

Until recently - All analyses in 2-flavour framework

Reasons:

- (1) Simplicity
- (2) Hierarchy of Δm^2

2f analyses of solar and atm. ν data a good first approximation – a consequence of smallness of $|U_{e3}|$ and $\Delta m_{\odot}^2 \ll \Delta m_{\rm atm}^2$

These days:

- The data more accurate
- LMA favoured the hierarchy of Δm^2 may be not too strong
- ullet Effects specific to ≥ 3 flavour u oscillations widely discussed

3f (4f) analyses becoming a must!

Some theoretical issues pertaining to ≥ 3 – flavour neutrino oscillations

- 3-flavour oscillations in matter approximate analytic descriptions
- Matter effects in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations
- 3f effects in atmospheric, solar, and reactor ν oscillations and in LBL experiments
- 3f effects in oscillations of supernova neutrinos
- CP and T in ν oscillations in vacuum
- CP and \mathcal{F} in ν oscillations in matter
- The problem of U_{e3}
- 4f oscillations

Lepton mixing and neutrino oscillations in vacuum

$$u_a = U_{ai} \, \nu_i$$

 ν_a – flavour eigenstates, ν_i – mass eigenstates

Transition probability:

$$P(
u_a
ightarrow
u_b; t) = \left| \sum_i U_{bi} \ e^{-iE_i t} \ U_{ai}^* \right|^2$$

Can be obtained from the evolution equation

$$irac{d}{dt} \left(egin{array}{c}
u_a \
u_b \
\vdots \
\vdots \
\vdots \
\end{array}
ight) = U \left(egin{array}{ccc} E_1 & & & & & \\ & E_2 & & & & \\ & & & & \ddots \
\end{array}
ight) U^\dagger \left(egin{array}{c}
u_a \
u_b \
\vdots \
\end{array}
ight)$$

2-flavour case:

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

$$P(
u_a
ightarrow
u_b; t) = \sin^2 2 heta \cdot \sin^2 \left(rac{\Delta m_{ij}^2}{4E} L
ight)$$

Neutrino oscillations in matter (3f)

$$i\frac{d}{dt}\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{bmatrix} U\begin{pmatrix} E_1 & 0 & 0 \\ 0 & E_2 & 0 \\ 0 & 0 & E_3 \end{pmatrix} U^\dagger + \begin{pmatrix} V(t) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$$

$$E_i = \sqrt{p^2 + m_i^2} \simeq p + \frac{m_i^2}{2p}; \qquad t \simeq r$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_1} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_1} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$V(t) = [V(\nu_e)]_{CC} = \sqrt{2}G_FN_e(t)$$

$$[V(
u_e)]_{NC}=[V(
u_\mu)]_{NC}=[V(
u_ au)]_{NC}$$
 – do not contribute

But: Radiative corrections induce a tiny ν_{μ} – ν_{τ} potential difference $\simeq 10^{-5}\,V$ – may be important for supernova neutrinos! (Botella, Lim & Marciano, 1987)

For constant-density matter closed form solutions can be found (Barger, Whisnant, Pakvasa & Phillips, 1980; Zaglauer & Schwartzer, 1988; Ohlsson & Snellman, 1999; Xing, 2000; Kimura, Takamura & Yokomakura, 2002)

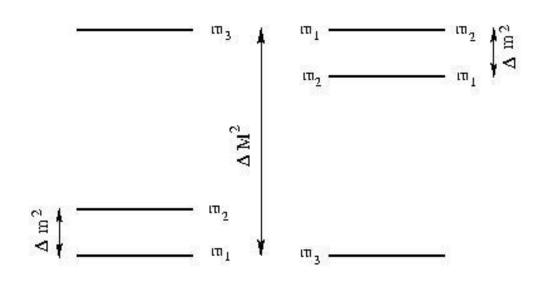
But: Expressions rather complicated and not easily tractable For a general $N_e \neq const$ no closed form solutions exist Approximate analytic solutions desirable

Two kinds of approximations, use

NORMAL

(1)
$$\frac{\Delta m_{\odot}^2}{\Delta m_{\text{atm}}^2} = \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \lesssim 0.1$$

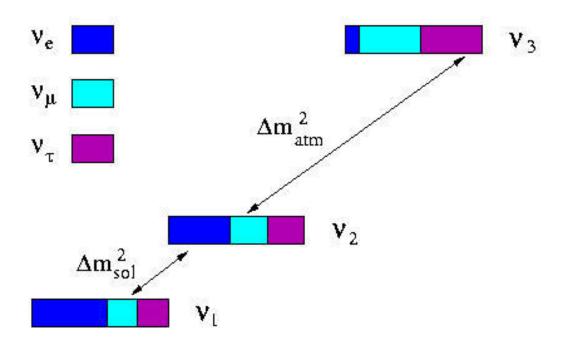
(2)
$$|U_{e3}| = |\sin \theta_{13}| \lesssim 0.2$$
 (CHOOZ)



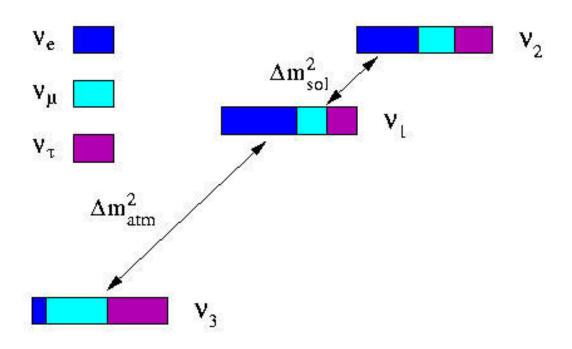
 $\Delta m^2_{21} = 0$ or $U_{13} = 0$ - effective 2f limits

INVERTED

Normal hierarchy:



Inverted hierarchy:



Constant-density matter

- (a) Expansion in $\alpha \equiv \Delta m_\odot^2/\Delta m_{\rm atm}^2$ (Yasuda, 1999; Freund, Lindner, Petcov & Romanino, 1999; Freund, 2001; Freund, Huber & Lindner, 2001; Mocioiu & Shrock, 2001)
- (b) Expansion in both α and $\sin \theta_{13}$ (Cervera et al., 2000)

$$\begin{split} P(\nu_e \leftrightarrow \nu_\mu) \sim s_{23}^2 P_2(\Delta m_{31}^2, \theta_{13}) + c_{23}^2 P_2(\Delta m_{21}^2, \theta_{12}) \\ + \text{ interference term} \end{split}$$

Interf. term (linear in α and $\sin \theta_{13}$) – genuine 3-flavourness!

Matter of constant density – a good first approximation for LBL experiments (neutrinos traverse Earth's mantle). Not very useful for solar, atmospheric and supernova neutrinos

Different approach: matter with arbitrary density profile, reduce the problem to an effective 2-flavour one + easily calculable 3f corrections

- (a) $\alpha \ll 1$ (E.A., Dighe, Lipari & Smirnov, 1998)
- (b) $|\sin\theta_{13}|\ll 1$ (Peres & Smirnov, 1999; E.A., Huber, Lindner & Ohlsson, 2001; Peres & Smirnov, 2002)

Matter with arbitrary density profile, adiabatic approximation (Kuo & Pantaleone, 1987; Ohlsson & Snellman, 2001)

3f effects in oscillations of solar neutrinos

What do the solar \(\nu_e\) oscillate to?

From
$$|U_{e3}| \ll 1$$
: $\nu_3 \simeq s_{23} \nu_{\mu} + c_{23} \nu_{\tau}$

 \Rightarrow From unitarity of U: Solar ν oscillations between

$$u_e$$
 and $u' = c_{23} \, \nu_\mu - s_{23} \, \nu_ au$

 \Rightarrow Solar ν_e oscillate into a superposition of ν_μ and ν_τ with almost equal weights

Oscillation probability

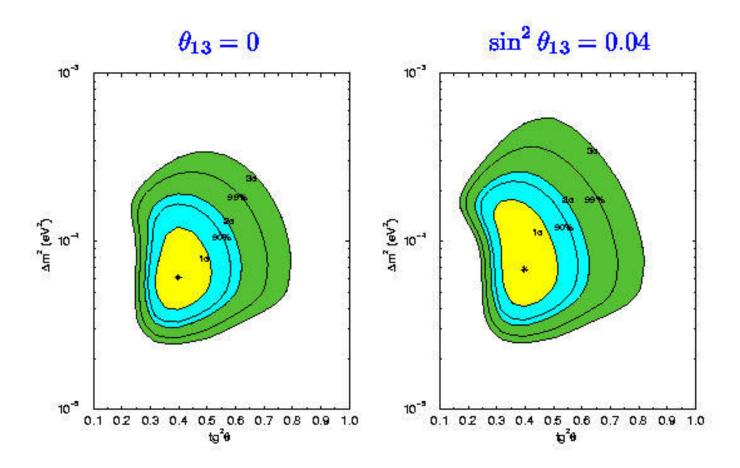
At low E ν_{μ} and ν_{τ} experimentally indistinguishable \Rightarrow all observables depend just on $P(\nu_{e} \rightarrow \nu_{e})$

Averaging over fast oscillations due to large $\Delta m^2_{\mathrm{atm}} = \Delta m^2_{31}$:

$$P(
u_e o
u_e) \simeq c_{13}^4 ilde{P}_{2ee}(\Delta m_{21}^2, heta_{12}, V_{
m eff}) + s_{13}^4 \; ,$$
 $V_{
m eff} = c_{13}^2 \, V_{
m CC} \quad {
m (Lim, 1987)}$

 $s_{13}^4\lesssim 10^{-3}$ – negligible. But: c_{13}^4 may differ from 1 by as much as ~ 5 – $10\,\%$ (E – independent suppression) – with high precision solar data must be taken into account!

LMA allowed region $(\Delta m^2_{21}\,,\, an^2 heta_{12})$ (de Holanda & Smirnov, 2002)



3f effects in atmospheric neutrino oscillations

(1) Dominant channel $\nu_{\mu} \leftrightarrow \nu_{\tau}$

In 2f case – no matter effects (neglecting tiny $V_{\mu\tau}$ caused by rad. corrections). Independent from the sign of Δm_{31}^2 (direct vs inverted hierarchy). In 3f case – weak sensitivity to matter effects, sign of Δm_{31}^2

(2) Subdominant channels $\nu_e \leftrightarrow \nu_{\mu,\tau}$

Contribution to μ – like events: subleading, difficult to observe In 2f limits – suppression of oscillation effects on e-like events:

• $\Delta m^2_{21}
ightarrow 0$ (E.A., Dighe, Lipari & Smirnov, 1998) :

$$rac{F_e - F_e^0}{F_e^0} = ilde{P_2}(\Delta m_{31}^2, \, heta_{13}, V_{\rm CC}) \cdot (r \, s_{23}^2 - 1)$$

• $s_{13} \rightarrow 0$ (Peres & Smirnov, 1999):

$$rac{F_e - F_e^0}{F_e^0} = ilde{P_2}(\Delta m_{21}^2, \, heta_{12}, V_{\rm CC}) \cdot (r \, c_{23}^2 - 1)$$

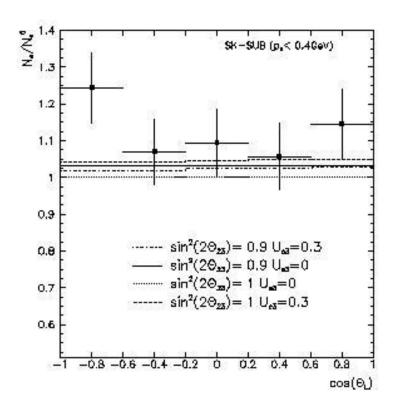
At low energies $r \equiv F_{\mu}^0/F_e^0 \simeq 2$; also $s_{23}^2 \simeq c_{23}^2 \simeq 1/2$ – a conspiracy to hide oscillation effects on e-like events! Results from a peculiar flavour composition of the atmospheric ν flux.

Breaking the conspiracy – 3f effects in u_{atm} oscillations

(Peres & Smirnov, 2002)

$$egin{array}{lll} rac{F_e - F_e^0}{F_e^0} &\simeq & ilde{P}_2(\Delta m_{31}^2,\, heta_{13}) \cdot (r\, s_{23}^2 - 1) \\ &+ & ilde{P}_2(\Delta m_{21}^2,\, heta_{12}) \cdot (r\, c_{23}^2 - 1) \\ &- & 2s_{13}\, s_{23}\, c_{23}\, r\, \mathrm{Re}(ilde{A}_{ee}^* ilde{A}_{\mu e}) \end{array}$$

Interference term not suppressed by the flavour composition of the $\nu_{\rm atm}$ flux; may be responsible for observed excess of upward-going sub-GeV e-like events



3f effects in oscillations of reactor antineutrinos

• CHOOZ, Palo Verde, ... $(L \lesssim 1 \text{ km})$

$$\overline{E} \sim 2 \ \text{MeV} \, ; \qquad \frac{\Delta m^2_{31}}{4E} \, L \sim 1 \, ; \qquad \frac{\Delta m^2_{21}}{4E} \, L \ll 1 \,$$

One mass scale dominance (2f) approximation:

$$P(\overline{
u}_e
ightarrow \overline{
u}_e; L) = 1 - \sin^2 2 heta_{13} \cdot \sin^2 \left(rac{\Delta m_{31}^2}{4E} \ L
ight)$$

But: for LMA solution, at high C.L. Δm_{21}^2 can be comparable to $\Delta m_{31}^2 \Rightarrow$ Full 3f analyses necessary.

- \Rightarrow Constraints on $|U_{e3}|$ from CHOOZ slightly more stringent (Gonzalez-Garcia, Maltoni, Peña-Garay & Valle, 2000; Bilenky, Nicolo & Petcov, 2001; Gonzalez-Garcia & Maltoni, 2002) less likely with new SNO data (large Δm_{21}^2 disfavoured)
- KamLAND $(\overline{L} \simeq 170 \text{ km})$

$$\frac{\Delta m_{31}^2}{4E}L\gg 1\;;\qquad \frac{\Delta m_{21}^2}{4E}L\gtrsim 1 \quad \text{(for LMA)}$$

Averaging over fast oscillations due to $\Delta m^2_{\mathrm{atm}} = \Delta m^2_{31}$:

$$P(\overline{\nu}_e \to \overline{\nu}_e) = c_{13}^4 P_{2\,\overline{e}\,\overline{e}}(\Delta m_{21}^2, \theta_{12}) + s_{13}^4$$

Can differ from 2f probability by as much as $\sim 10\%$.

3f effects in LBL experiments

ullet 3f corrections to u_{μ} disappearance probability up to $\sim 10\%$

$$\sin^2(2\theta_{\mu\tau})_{\text{eff}} = c_{13}^4 \sin^2 2\theta_{23}$$

Also, subdominant $\nu_{\mu} \rightarrow \nu_{e}$ contribution; small matter effects in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ – similar to effects in $\nu_{\rm atm}$

- No suppression of $\nu_e \leftrightarrow \nu_{\mu, \tau}$ due to flavour composition of the original flux
- 3f effects especially important for precision measurements (ν factories!)
- For $3 \cdot 10^{-3} \lesssim \theta_{13} \lesssim 3 \cdot 10^{-2}$ competition between two channels $(\Delta m_{31}^2, \theta_{13} \text{ and } \Delta m_{21}^2, \theta_{12})$ in $P(\nu_e \leftrightarrow \nu_\mu)$
- Dependence on CP-violating phase δ_{CP} (both ~ sin δ_{CP} and ~ cos δ_{CP}) comes from the interference term – pure 3f effect!

Matter effect in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations:

• Pure 3f effect (neglecting $V_{\mu\tau}$); vanishes only when both Δm_{21}^2 and U_{e3} vanish

3f effects in supernova neutrino oscillations

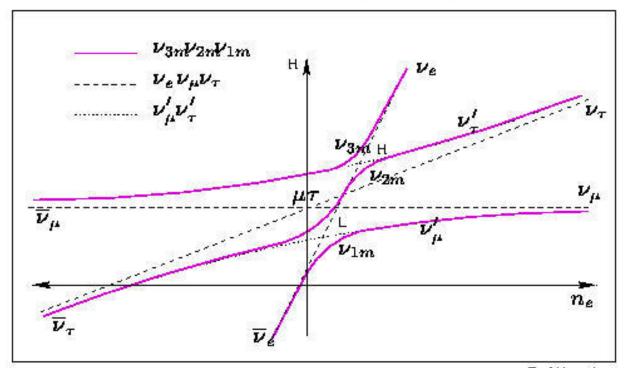
Matter density varies in a wide range – conditions for three MSW resonances satisfied $(V_{\mu\tau} \neq 0)$

Hierarchy of Δm^2 – approximate factorization of transition dynamics at the resonances: Effectively 2f transitions

But: observable effects depend on transitions between all 3 neutrino species

Earth matter effects on SN neutrinos can be used to measure $|U_{e3}|$ to a very high accuracy ($\sim 10^{-3}$) and to determine the sign of Δm_{31}^2 (Lunardini & Smirnov, 2000, 2001; Minakata & Nunokawa, 2000; Barger, Marfatia & Wood, 2002)

The transitions due to tiny $V_{\mu\tau}$ caused by rad. corrections may have observable consequences if originally produced ν_{μ} and ν_{τ} fluxes are not exactly the same (E.A., Lunardini & Smirnov, 2002)



\mathbb{CP} and \mathcal{X} in ν oscillations in vacuum

 $\nu_a \rightarrow \nu_b$ oscillation probability:

$$P(
u_a,t_0
ightarrow
u_b;t) \,=\, \left|\sum_{m i} U_{bm i}\,e^{-m i E_{m i}(t-t_0)}\,U_{am i}^*
ight|^2$$

(1) CP:
$$\nu_{a,b} \leftrightarrow \overline{\nu}_{a,b} \Rightarrow U_{ai} \rightarrow U_{ai}^* \quad (\{\delta_{\mathrm{CP}}\} \rightarrow -\{\delta_{\mathrm{CP}}\})$$

(2) T:
$$t \rightleftarrows t_0 \Leftrightarrow \nu_a \leftrightarrow \nu_b$$

$$\Rightarrow U_{ai} \rightarrow U_{ai}^* \quad (\{\delta_{\text{CP}}\} \rightarrow -\{\delta_{\text{CP}}\})$$

T-reversed oscillations ("backwards in time") ⇔ oscillations between interchanged initial and final flavours

CP and \mathcal{X} - absent in 2f case, pure $N \geq 3f$ effect!

(3) CPT:
$$\nu_{a,b} \leftrightarrow \overline{\nu}_{a,b}$$
 & $t \rightleftarrows t_0 \quad (\nu_a \leftrightarrow \nu_b)$
$$P(\nu_a \to \nu_b) \to P(\overline{\nu}_b \to \overline{\nu}_a)$$

$$\mathbb{CP} \Leftrightarrow \mathbb{X} \quad \text{- consequence of CPT}$$

Measures of CP and T - probability differences:

From CPT:

3f case

One \mathbb{CP} Dirac-type phase $\delta_{\mathbb{CP}}$ (NB: Majorana phases do not affect ν oscillations!) \Rightarrow one \mathbb{CP} and \mathbb{Z} observable:

$$\Delta P_{e\mu}^{\mathrm{CP}} = \Delta P_{\mu\tau}^{\mathrm{CP}} = \Delta P_{\tau e}^{\mathrm{CP}} \equiv \Delta P$$

$$egin{align} \Delta P &= -4 s_{12} \, c_{12} \, s_{13} \, c_{13}^2 \, s_{23} \, c_{23} \, \sin \delta_{\mathrm{CP}} \\ & imes \left[\sin \left(rac{\Delta m_{12}^2}{2E} L
ight) + \sin \left(rac{\Delta m_{23}^2}{2E} L
ight) + \sin \left(rac{\Delta m_{31}^2}{2E} L
ight)
ight] \end{aligned}$$

Vanishes when

- At least one $\Delta m_{ij}^2 = 0$
- At least one $\theta_{ij}=0$ or 90°
- In the averaging regime
- In the limit L o 0 (as L^3)

Very difficult to observe!

CP and X in ν oscillations in matter

(1) CP:
$$\nu_{a,b} \leftrightarrow \overline{\nu}_{a,b} \Rightarrow U_{ai} \rightarrow U_{ai}^* \ (\{\delta_{\mathrm{CP}}\} \rightarrow -\{\delta_{\mathrm{CP}}\})$$

$$V(r) \rightarrow -V(r)$$

(2) T:
$$t \rightleftarrows t_0 \Leftrightarrow \nu_a \leftrightarrow \nu_b$$

$$\Rightarrow U_{ai} \to U_{ai}^* \quad (\{\delta_{\mathrm{CP}}\} \to -\{\delta_{\mathrm{CP}}\})$$

$$V(r) \to \tilde{V}(r)$$

$$ilde{V}(r) = \sqrt{2} G_F ilde{N}(r)$$

 $ilde{N}(r)$: corresponds to interchanged positions of u source and detector

Symmetric matter density profiles: $ilde{N}(r) = N(r)$

The very presence of matter violates C, CP and CPT! [assuming (# of particles) \neq (# of antiparticles)]

⇒ Fake (extrinsic) CP which may complicate the study of fundamental (intrinsic) CP

♦ CP in matter

Exists even in 2f case (in \geq 3f case exists even when all $\{\delta_{\rm CP}\}=0$) due to matter effects:

$$P(\nu_a \to \nu_b) \neq P(\overline{\nu}_a \to \overline{\nu}_b)$$

E.g., MSW effect can enhance $\nu_e \leftrightarrow \nu_\mu$ and suppress $\overline{\nu}_e \leftrightarrow \overline{\nu}_\mu$ or vice versa.

Survival probabilities are not CP-invariant:

$$P(\nu_a \to \nu_a) \neq P(\overline{\nu}_a \to \overline{\nu}_a)$$

To disentangle fundamental CP from the matter induced one in LBL experiments – need to measure energy dependence of oscillated signal or signal at two baselines – a difficult task

(Difficult) alternatives:

- Low-E LBL experiments ($E\sim 0.1$ 1 GeV, $L\sim 100$ 1000 km) (Koike & Sato, 1999; Minakata & Nunokawa, 2000, 2001);
- Indirect measurements:
 - (A) CP-even terms $\sim \cos \delta_{\rm CP}$ (Lipari, 2001)
 - (B) Area of leptonic unitarity triangle (Farzan & Smirnov, 2002; Aguilar-Saavedra & Branco, 2000; Sato, 2000)

CP cannot be studied in SN ν experiments because of experimental indistinguishability of low-energy ν_μ and ν_τ

CPT not conserved in matter \Rightarrow CPT and \mathcal{X} are not related!

- Matter does not necessarily induce \mathcal{X} (only asymmetric matter with $\tilde{N}(r) \neq N(r)$ does)
- There is no
 \(\mathbb{T}\) (either fundamental or matter induced)
 in 2f case − a consequence of unitarity:

$$P_{ee} + P_{e\mu} = 1$$
 $P_{ee} + P_{\mu e} = 1$ $P_{e\mu} = P_{\mu e}$

In 3f case – only one T-odd probability difference for ν's
 (and one for ν̄'s) irrespective of matter density profile – a
 consequence of unitarity in 3f case (Krastev & Petcov, 1988):

$$\Delta P_{e\mu}^T = \Delta P_{\mu\tau}^T = \Delta P_{\tau e}^T$$

Matter-induced X :

- (1) An interesting, pure 3f matter effect; absent in symmetric matter (e.g., N(r) = const)
- (2) Does not vanish in the regime of complete averaging
- (3) May fake fundamental T and complicate its study
- (4) Vanishes when either $U_{e3} = 0$ or $\Delta m_{21}^2 = 0$ (2f limits) \Rightarrow doubly suppressed by both these small parameters
- ⇒ Perturbation theory can be used to get analytic expressions

General structure of T-odd probability differences:

$$\Delta P_{e\mu}^{T} = \underbrace{\sin \delta_{\text{CP}} \cdot Y}_{\text{fundam}, \ \mathcal{X}} + \underbrace{\cos \delta_{\text{CP}} \cdot X}_{\text{matter-ind}, \ \mathcal{X}}$$

In adiabatic approximation: $X = J_{\text{eff}} \cdot \text{(oscillating terms)}$,

$$J_{\text{eff}} = s_{12} c_{12} s_{13} c_{13}^2 s_{23} c_{23} \frac{\sin(2\theta_1 - 2\theta_2)}{\sin 2\theta_{12}}$$

(E.A., Huber, Lindner & Ohlsson, 2001)
Compare with the vacuum Jarlskog invariant:

$$J = s_{12} c_{12} s_{13} c_{13}^2 s_{23} c_{23} \sin \delta_{\rm CP}$$

$$\Rightarrow \qquad \qquad \sin \delta_{\mathrm{CP}} \iff \frac{\sin(2\theta_1 - 2\theta_2)}{\sin 2\theta_{12}}$$

To extract fundamental X need to measure:

$$\Delta P_{ab} \equiv P_{\rm dir}(
u_a
ightarrow
u_b) - P_{
m rev}(
u_b
ightarrow
u_a) \propto \sin \delta_{
m CP}$$

Even survival probabilities P_{aa} ($a=\mu, \tau$) can be used! (Fishbane & Kaus, 2000)

$$P_{\rm dir}(\nu_a \to \nu_a) - P_{\rm rev}(\nu_a \to \nu_a) \sim \sin \delta_{\rm CP} \quad (a \neq e)$$

In 3f case P_{ee} does not depend on $\delta_{\rm CP}$ (Kuo & Pantaleone, 1987; Minakata & Watanabe, 1999) – not true if $\nu_{\rm sterile}$ is present!

Matter-induced \mathcal{T} in LBL experiments due to imperfect sphericity of the Earth density distribution cannot spoil the determination of δ_{CP} if the error in δ_{CP} is > 1% at 99% C.L. (E.A., Huber, Lindner & Ohlsson, 2001)

No need to interchange positions of ν source and detector!

Experimental study of \mathcal{T} difficult because of problems with detection of e^{\pm}

Matter-induced 7 :

- Negligible effects in terrestrial experiments
- Cannot be observed in supernova ν oscillations due to experimental indistinguishability of low E ν_{μ} and ν_{τ}
- Can affect the signal from ∼GeV neutrinos produced in annihilations of WIMPs inside the Sun (de Gouvêa, 2000)

The problem of U_{e3}

- The least known of leptonic mixing parameters
- Discriminates between various neutrino mass models (Barr & Dorsner, 2000; Tanimoto, 2001)
- Unexplained smallness (related to $\Delta m_{\odot}^2/\Delta m_{\rm atm}^2$?)
- Important for measuring the sign of Δm^2_{31} in future LBL experiments (neutrino factories!) direct vs inverted ν mass hierarchy
- Governs subdominant oscillations of atmospheric neutrinos
- Governs the Earth matter effects on supernova neutrino oscillations
- The only opportunity to see the "canonical" MSW effect (strong matter enhancement of small mixing)?

4f neutrino oscillations

If LSND is right \Rightarrow 3 different Δm^2 necessary:

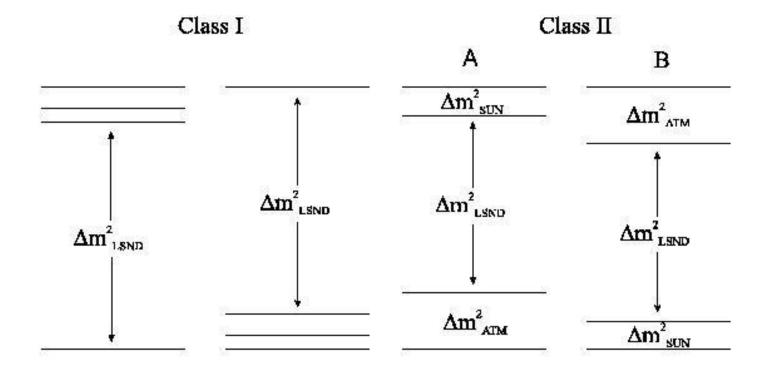
$$\Delta m_{\odot}^2$$
, $\Delta m_{
m atm}^2$, $\Delta m_{
m LSND}^2$

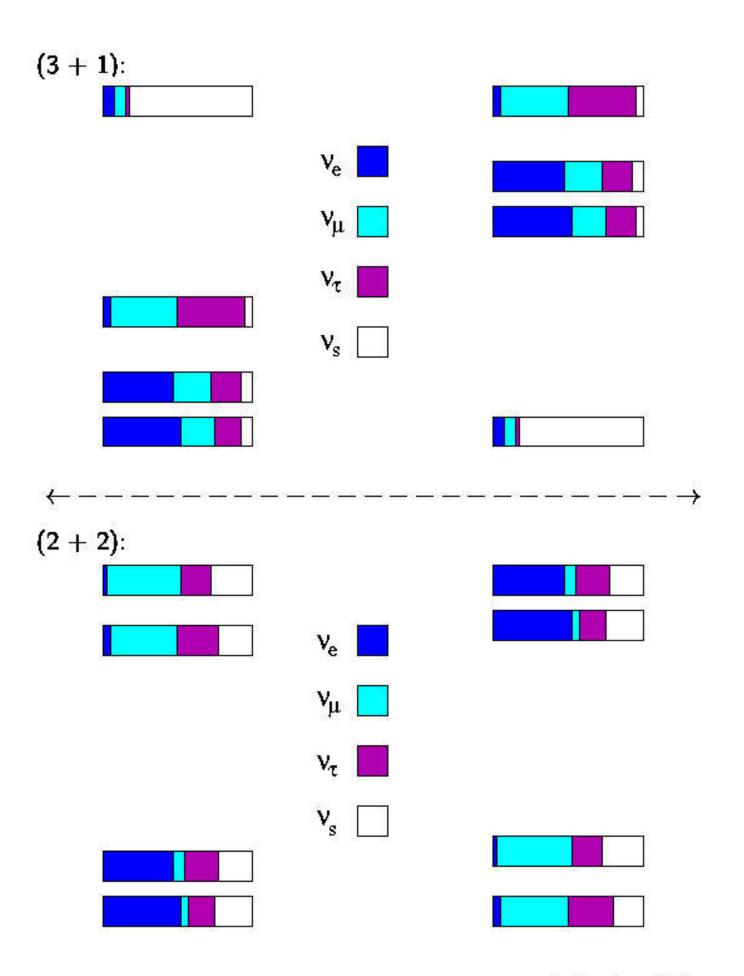
 \Rightarrow 4 light neutrino species: ν_e , ν_μ , $\nu_ au$, ν_s

(An alternative: strong CPT violation in neutrino sector, $(\Delta m^2)_{\nu\nu} \neq (\Delta m^2)_{\overline{\nu}\overline{\nu}}$ – Murayama & Yanagida, 2000; Barenboim, Borissov, Lykken & Smirnov, 2001; Barenboim, Beacom, Borissov & Kayser, 2002)

4 flavours \Rightarrow 6 mixing angles θ_{ij} , 3 Dirac-type CP phases

A simplification: Only 2 classes of 4f schemes can fit the data, (3+1) and (2+2)





(3+1) schemes:

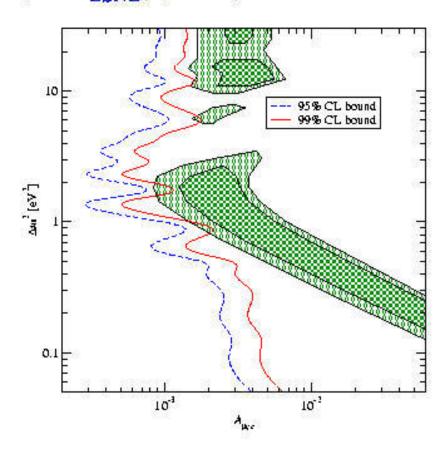
$$\nu_4 \simeq \nu_s + \mathcal{O}(\epsilon) \cdot (\nu_e, \nu_\mu, \nu_\tau), \quad \epsilon \ll 1$$

 $(\nu_1, \ \nu_2, \ \nu_3)$ – usual linear combinations of $(\nu_e, \ \nu_{\mu}, \ \nu_{\tau})$ + small $(\sim \epsilon)$ admixtures of ν_s .

$$\sin^2 2\theta_{\rm LSND} = 4 |U_{e4} U_{\mu 4}|^2 \sim \epsilon^4$$

Strong upper bounds on $|U_{e4}|$ and $|U_{\mu4}|$ from $\overline{\nu}_e$ and ν_{μ} disappearance experiments \Rightarrow difficult to fit LSND data

LSND-allowed and SBL-excluded regions on $(\sin^2 2\theta_{\rm LSND}, \ \Delta m^2_{\rm LSND})$ plane (Maltoni, Schwetz & Valle, 2001):



But: different stat. analysis gives bigger overlap

(2+2) schemes:

 ν_e predominantly in the pair responsible for ν_{\odot} oscillations, ν_{μ} in the pair responsible for $\nu_{\rm atm}$ oscillations:

$$u_{
m atm}$$
 osc.: $u_{\mu} \leftrightarrow
u'$, $u' \simeq c_{\xi} \,
u_{\tau} + s_{\xi} \,
u_{s} + \mathcal{O}(\epsilon) \cdot
u_{e}$, u_{\odot} osc.: $u_{e} \leftrightarrow
u''$, $u'' \simeq -s_{\xi} \,
u_{\tau} + c_{\xi} \,
u_{s} + \mathcal{O}(\epsilon) \cdot
u_{\mu}$, $\sin^{2} 2\theta_{\mathrm{LSND}} \sim \epsilon^{2}$

Involvements of ν_s in ν_\odot and $\nu_{\rm atm}$ oscillations – sum rule (Peres & Smirnov, 2000):

$$|\langle \nu_s | \nu'' \rangle|^2 + |\langle \nu_s | \nu' \rangle|^2 = c_{\xi}^2 + s_{\xi}^2 = 1$$

SK atm. data: $\sin^2 \xi < 0.25$ (90% C.L.); < 0.36 (99% C.L.) (Messier, 2001)

(Pre-SNO NC) solar ν data:

 $\sin^2 \xi > 0.3$ (Lisi, 2000; Giunti, 2000); $\sin^2 \xi > 0.7$ (90% C.L.); $\sin^2 \xi > 0.48$ (99% C.L.) for LMA (Gonzalez-Garcia, Maltoni & Peña-Garay, 2001; Maltoni et al., 2001)

⇒ (2+2) scenarios strongly disfavoured

Matter effects on 4f oscillations: (Dooling, Giunti, Kang, Kim, 1999) \mathbb{CP} : several observables; large effects possible (in general, no suppression due to small Δm_{\odot}^2); also large \mathbb{Z} effects possible

Conclusions

- Solar and atm. ν data imply oscillations between 3 neutrino flavours, ν_e , ν_μ and ν_τ ; with LSND $\Rightarrow \nu_s$ should exist
- 2f analyses give a good first approximation due to $|U_{e3}| \ll 1$, $\Delta m_{21}^2 \ll \Delta m_{31}^2$. But: increasing accuracy of the data makes \geq 3f description necessary
- 3f effects in solar, atm., reactor and LBL accel. experiments may be quite important ⇒ up to ~ 10% corrections to oscillation probabilities + specific ≥ 3f effects
- Manifestations of ≥ 3 flavours in neutrino oscillations:
 - ♦ Fundamental CP and X
 - ♦ Matter-induced **X**
 - \Diamond Matter effects in $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations
 - Specific CP and T conserving interference terms in oscillation probabilities
- U_{e3} plays a very special role
- In 4f case large CP and (both fundamental and matter-induced) T effects possible. But: 4f scenarios disfavoured by the data