ANTARES: A deep-sea neutrino telescope

Lee F. Thompson University of Sheffield on behalf of the ANTARES Collaboration

The ANTARES Collaboration

• France

- **CPPM Marseille**
- DSM/DAPNIA Saclay (CEA)
- IReS Strasbourg
- Universite d'Haute-Alsace
 Mulhouse
- Centre d'Oceanologie de Marseille
- Institut Francais de Recherche pour l'Exploitation de la Mer (IFREMER)
 - INSU-CNRS/IGRAP Provence

Spain IFIC Valencia

- University of Birmingham
 University of Oxford
 University of Sheffield
 Russia
 - ITEP Moscow

United Kingdom

- **Netherlands**
 - NIKHEF Amsterdam
- Italy
 - Universita di Bari
 - Universita di Bologna
 - Universita di Catania
 - LNS-Catania
 - Universita di Roma
 - Universita di Genova

ANTARES Detector Design

- 13 flexible strings of photosensors Strings are anchored at the sea-bed and held taut by their own buoyancy
- Each string is 450m high with the first 100m uninstrumented
- 30 storeys per string, 12m between storeys
- 3 PMTs per storey 60m between strings

- Power into the array and data readout is via a 40km electro-optical cable
- Each string is connected to the electro-optical cable via a Junction Box

Status and Timeline

1996 to 1999

Assessment of potential sites via the deployment of ~30 autonomous strings to measure

- optical water properties
 biofouling and sedimentation
 optical backgrounds due to bioluminescence and ⁴⁰K
 Test of electro-optical cable connection
- Verification of mechanical structures and deployment techniques

Deployment of demonstrator string to address

- mechanical issues
- acoustic positioning
- track reconstruction

1999 to 2003

Move into final design and construction phase Deployment of first string in summer 2001 Subsequent deployment of 0.1 km² array in 2002 and 2003

Optical Water Properties

Absorption length has been measured with blue light (466nm) as 60m, scattering length is seen to be > 100m for large angle

Optical background rate due to ⁴⁰K is typically **40kHz** (for an 8" PMT) with short bursts due to bioluminescent activity

Biofouling of the optical surfaces is less than 2% in one year for angles below the

horizontal

Sedimentation is negligible

Low energy

Neutrino oscillations via the modification in the energy spectrum due to observation of the first oscillation minimum

Medium Energy

Search for

neutralinos via their self-annihilation to products containing neutrinos at the centre of the Earth, Sun and Galaxy

High energy

Observation of neutrinos from (extra-)galactic sources such as GRB, AGN, Supernovae remnants, molecular

Angular Resolution

- At high energies the neutrino pointing accuracy is 0.4 degrees or better including scattering effects
- Note: at high energy error is dominated by reconstruction errors, at low energy error by the angle between the muon and neutrino

Energy Resolution

Different techniques are used in different energy regimes

At energies above 1 TeV the muon energy loss is dominated by catastrophic energy loss (bremsstrahlung, pair production) which increases with energy. A truncated mean parametrization is used

The corresponding energy resolution is typically a factor of 3 for E > 1 TeV Below 100 GeV the energy can be estimated from the range of the muon - this requires contained events

Use of the hadronic shower energy may improve energy resolution at medium and low

A Demonstrator String

 A part-instrumented line 340m in length
 Deployed in November 1999 at a site 40km from Marseille at 1100m depth
 Equipped with six 8" and one 10" hemispherical phototubes
 Also instrumented with assorted measuring devices including CTD, tiltmeters, acoustic positioning system, etc.
 Control and readout via 37km electro-optical cable

1999

- More than 50000 seven-fold co-incidences have been recorded

Operational from December

To be retrieved in June 2000

Demonstrator String Positioning

Position stability from compass data indicates no twist along the string - headings stable to within 2⁰ over one week of operation

Tilt stability monitored via top and bottom tiltmeters - stable to 0.2° over a one week period Reconstructed line shape from combined tiltmeter and compass data show a straight string inclined at 2.5° to the vertical

Demonstrator String Positioning

- 3 rangemeters on the string and 4 transponders around the demonstrator string at 200m distance from base
- Allow a test of the acoustic positioning system
- 12 distances, global fit performed and compared to tiltmeter data

Distances between rangemeters are determined with a s ~ 1cm Distances between transponders have a s ~ 1cm

rangemeter-transponder mean distances have a **s** of typically 5cm or less

Example of reconstructed down-going muon events with 7-fold coincidences in the demonstrator string

- curve shows result of a hyperbolic fit
- **boxed hits are background hits due to ⁴⁰K and have been identified by the reconstruction software**

Demonstrator String Results

- Over 50k 7-fold coincidences have been recorded
- Angular distribution comparing data with single + multi-muon MCs is in good agreement

Real data timing residuals - fit with 2 Gaussians for single and multimuons - agrees well with values from MC

more than 1350 reconstructed

Conclusion

- ANTARES has made excellent progress over the past 2 years:
- deployment and operation of first demonstrator string
 first down-going muons reconstructed
 move into construction phase for 0.1 km² detector
 test of undersea connection
 expanding collaboration
 First string will be deployed in summer 2001
 A 13 string, 0.1 km² detector will be fully deployed by the end of 2003
 This is the first step towards a 1 km³ detector in the
- **Mediterranean Sea**