SUPERNova Neutrino Detection

With present & future detectors

Kate Scholberg
Boston University
June 20, 2000
OUTLINE

- The Core Collapse ν Signal
- Supernova ν Detection with Current & Future Detectors
- What Can We Learn from a Galactic SN ν Signal?
 - ν physics
 - Core Collapse Physics
 - Early Alert
- SNEWS: the Inter-Experiment Network
- Current Status & Future
SUMMARY OF THE SUPERNova NEUTRINO SIGNAL

\[\Delta E_b \sim \frac{G M_{\text{core}}^2}{R_{\text{nsstar}}} \sim 2 \times 10^{53} \text{ ergs} \]

\[\begin{cases} \lesssim 1\% & \text{kinetic energy, em radiation} \\ 99\% & \text{\(\nu \)'s of all flavors} \end{cases} \]

\[\begin{cases} \nu_e \text{ from 'breakout' } \sim 1\% \\ \nu \bar{\nu} \text{ from cooling } 99\% \end{cases} \]

NEUTRINO ENERGIES

\[\langle E_{\nu_e} \rangle \sim 12 \text{ MeV} \]
\[\langle E_{\nu_e} \rangle \sim 15 \text{ MeV} \]
\[\langle E_{\nu_{\mu,\tau}} \rangle \sim 18 \text{ MeV} \]

DEEPER \(\nu \)-SPHERE \rightarrow HOTTER \(\nu \)'S

TIMESCALE

\[\Delta t \sim 10\text{'}s \text{ of seconds} \]
\[\sim 50\% \text{ in first second} \]

PROMPT after core collapse

Possible sharp \(\nu \) cutoff if BH forms
SUPERNova NEUTRINO DETECTORS

- Need $M \sim 1$ kton for ~ 100 interactions
- Must have bg rate \ll rate in ν burst

Also want:
- timing
- energy resolution
- pointing
- flavor sensitivity (NC)

DETECTOR TYPES:

- scintillator C_nH_{2n}
- water Cherenkov H_2O
- heavy water D_2O
- long string H_2O
- “high Z” Pb, Fe

...
SCINTILLATION DETECTORS

Liquid scintillator "CnH2n" volume viewed by PMTs

\[\bar{\nu}_e + p \rightarrow \nu^+ + n \]
\[Ee^+ = E_{\bar{\nu}_e} - 1.3 \text{ MeV} \]
\[180 \mu s \rightarrow n + p \rightarrow d + \gamma \]
\[2.2 \text{ MeV} \]

INVERSE BETA DECAY

\[\text{CC} \quad \bar{\nu}_e + p \rightarrow e^+ + n \]

NC EXCITATION OF }^{12}\text{C}

\[\text{NC} \quad \nu_x + ^{12}\text{C} \rightarrow \nu_x + ^{12}\text{C}^* \]
\[\rightarrow ^{12}\text{C} + \gamma \]
\[15.1 \text{ MeV} \]
\[\sim 5\% \]

ELASTIC SCATTERING

\[\text{NC, CC} \quad \nu_x + e^- \rightarrow \nu_x + e^- \]
\[\sim \text{few \%} \]

(Almost) **NO POINTING**

Examples: Mont Blanc, Baksan, Palo Verde, Chooz, MACRO, LVD, Borexino, KamLAND
WATER CHERENKOV DETECTORS

Volume of clear water viewed by PMTs

\[\bar{\nu}_e + p \rightarrow e^+ + n \]
still dominates

Also:

\[
\begin{align*}
&\bar{\nu}_e + ^{16}O \rightarrow ^{16}F + e^- \\
&\bar{\nu}_e + ^{18}O \rightarrow ^{18}F + e^- \\
&\bar{\nu}_e + ^{16}O \rightarrow ^{16}N + e^-
\end{align*}
\]

NC, CC \(\nu_x + e^- \rightarrow \nu_x + e^- \)
few percent

POINTING \(\Delta \theta \sim 25^\circ \)

Kamiokande, IMB, Super-Kamiokande, part of SNO

\(\gtrsim 5000 \) events
@ 8.5 kpc
HEAVY WATER DETECTORS

D_2O viewed by PMTs + neutron detection

$$\begin{align*}
CC & \begin{cases}
\nu_e + d \rightarrow p + p + e^- \\
\bar{\nu}_e + d \rightarrow n + n + e^+
\end{cases} \\
NC & \begin{cases}
\nu_x + d \rightarrow n + p + \nu_x \\
\bar{\nu}_x + d \rightarrow n + p + \bar{\nu}_x
\end{cases}
\end{align*}$$

VERY GOOD NC SENSITIVITY.
⇒ sensitivity to ν mass, osc

SNO: 1 kton D_2O , few hundred each of $\overline{\nu}_e p$, NC, CC breakup for collapse @ 8.5 kpc
LONG STRING WATER CHERENKOV DETECTORS

\~ km long strings of PMTs in very clear ice or water

Nominally multi-GeV energy threshold

\[\bar{\nu}_e \]

burst of Cherenkov photons from \(\bar{\nu}_e \)-induced positrons

BUT: may see burst of low energy \(\bar{\nu}_e \)'s (\cite{Hamaguchi2009}) as COINCIDENT INCREASE in PMT singles rates!

\[M_{\text{eff}} \sim 0.4/\text{pmt} \] (No pointing, energy resolution)

AMANDA, Antares, Baikal, Nestor

low noise promising (\(\sim 10 \) kpc sensitivity)
OTHER SN ν DETECTORS

- HIGH Z/NEUTRON DETECTORS

 Large quantity of high Z material + neutron counters

 NC \[\nu_x + (A,Z) \rightarrow (A-1,Z) + n + \nu_x \]

 CC \[\begin{align*}
 \nu_e + (A,Z) & \rightarrow (A-1,Z+1) + n + e^- \\
 \overline{\nu}_e + (A,Z) & \rightarrow (A-1,Z-1) + n + e^+
 \end{align*} \]

 e.g. OMNIS, LAND (Fe/Pb) (Pb)

- LIQUID ARGON

 CC $\nu_e + {}^{40}\text{Ar} \rightarrow {}^{40}\text{K}^* + e^-$

 e.g. Icanoe

- RADIOCHEMICAL

 Homestake $\nu_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^-$

 Gallium $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$

 NOT REAL TIME, but may register counts

 \Rightarrow perform prompt extractions

 $+\$ gravitational radiation from asymmetric explosions (\sim unknown signal)
Summary of SN Neutrino Detector Types

<table>
<thead>
<tr>
<th>Detector type</th>
<th>Material</th>
<th>Energy</th>
<th>Time</th>
<th>Point</th>
<th>Flavor</th>
</tr>
</thead>
<tbody>
<tr>
<td>scintillator</td>
<td>C,H</td>
<td>y</td>
<td>y</td>
<td>n</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>water Čerenkov</td>
<td>H$_2$O</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>heavy water</td>
<td>D$_2$O</td>
<td>NC: n</td>
<td>y</td>
<td>n</td>
<td>all</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CC: y</td>
<td>y</td>
<td>y</td>
<td>$\nu_e, \bar{\nu}_e$</td>
</tr>
<tr>
<td>long string water Čerenkov</td>
<td>H$_2$O</td>
<td>n</td>
<td>y</td>
<td>n</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>liquid argon</td>
<td>Ar</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>ν_e</td>
</tr>
<tr>
<td>high Z/neutron</td>
<td>Fe, Pb</td>
<td>n</td>
<td>y</td>
<td>n</td>
<td>all</td>
</tr>
<tr>
<td>radio-chemical</td>
<td>37Cl, 127I, 71Ga</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>ν_e</td>
</tr>
</tbody>
</table>

- primary sensitivity to $\bar{\nu}_e$
- NC for heavy water, neutron
- pointing for water Ch., heavy water, argon
- all real-time except radio-chemical
- all have energy resolution except long string neutron, radio-chemical
SUMMARY OF SPECIFIC SN NEUTRINO DETECTORS

<table>
<thead>
<tr>
<th>Detector</th>
<th>Type</th>
<th>Mass (kton)</th>
<th>Location</th>
<th>No. of events @8.5 kpc</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super-K</td>
<td>water Čeren.</td>
<td>32</td>
<td>Japan</td>
<td>5000</td>
<td>running</td>
</tr>
<tr>
<td>SNO</td>
<td>H₂O, D₂O</td>
<td>1.4</td>
<td>Canada</td>
<td>300</td>
<td>running</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>MACRO</td>
<td>scint.</td>
<td>0.6</td>
<td>Italy</td>
<td>150</td>
<td>running</td>
</tr>
<tr>
<td>LVD</td>
<td>scint.</td>
<td>0.7 (1 σ)</td>
<td>Italy</td>
<td>170</td>
<td>running</td>
</tr>
<tr>
<td>KamLAND</td>
<td>scint.</td>
<td>1</td>
<td>Japan</td>
<td>300</td>
<td>2001</td>
</tr>
<tr>
<td>Borexino</td>
<td>scint.</td>
<td>0.3</td>
<td>Italy</td>
<td>100</td>
<td>2000</td>
</tr>
<tr>
<td>Baksan</td>
<td>scint.</td>
<td>0.33</td>
<td>Russia</td>
<td>50</td>
<td>running</td>
</tr>
<tr>
<td>AMANDA</td>
<td>long string</td>
<td>Meff ~ 0.4/pmt</td>
<td>Antarctic</td>
<td></td>
<td>running</td>
</tr>
<tr>
<td>OMNIS</td>
<td>high Z Pb/Fe</td>
<td>10(Fe) +4(Pb)</td>
<td>USA</td>
<td>~1000</td>
<td>proposed</td>
</tr>
<tr>
<td>LAND</td>
<td>high Z Pb</td>
<td></td>
<td>Canada</td>
<td></td>
<td>proposed</td>
</tr>
<tr>
<td>Icanoe</td>
<td>liquid argon</td>
<td>9</td>
<td>Italy</td>
<td></td>
<td>2005</td>
</tr>
</tbody>
</table>

~ Galactic sensitivity
WHAT CAN WE LEARN FROM A GALACTIC SN ν SIGNAL?

- NEUTRINO PHYSICS
 - ν absolute mass from t.o.f. delay
 - ν oscillations from spectra

- CORE COLLAPSE PHYSICS
 - explosion mechanism
 - proto n star cooling
 - black hole formation

- ASTRONOMY FROM EARLY ALERT
 - hours of warning before visible SN
 - some pointing w/ν's
 - progenitor & environment info
 - unknown early effects?
NEUTRINO PHYSICS with SN NEUTRINOS

\(\nu \) ABSOLUTE : time of flight delay
\(\nu \) MASS

Look for:
\[
\begin{align*}
&\text{energy-dependent time spread} \\
&\text{flavor-dependent delay}
\end{align*}
\]

\(\nu \) OSCILLATION : distortion of energy spectra
\(\nu \) (hot \(\nu_e, \bar{\nu}_e \))

(in core)

Look for: NC vs. CC detected rates
\[\begin{align*}
\text{e.g., Fuller et al., astro-ph/9809169} \\
\text{Dighe & Smirnov, hep-ph/9907223}
\end{align*} \]

Also:
\(\nu \) lifetime
\(\nu \) charge
No of \(\nu \) flavors
\(\nu \) magnetic moment

CAVEAT : Always at least some core-collapse model-dependence
MEASURING ABSOLUTE ν MASS WITH A SN BURST

Time of flight $\Delta t(E) = 0.515 \left(\frac{m}{E} \right)^2 D$

$[m:\text{eV}, E:\text{MeV}, D:\text{10 kpc}]$

Spread in arrival time & correlation with energy \Rightarrow non-zero ν mass

But: due to finite emission Δt \Rightarrow only get upper limit on m_{ν}

SN1987A $m_{\nu_e} \lesssim 20 \text{ eV}$ w/ reasonable assumptions

Next SN in Galaxy: will get $m_{\nu_e} \lesssim 3 \text{ eV}$ e.g. T. Totani astro-ph/9801104

NOT BETTER THAN LAB!

PROMISING APPROACH FOR $\nu_{\mu,\tau}$

Use detectors with NC sensitivity \Rightarrow look for relative delay of $\nu_{\mu,\tau}$ wrt ν_e
STRATEGY: tag NC & CC events
and measure relative delay

e.g. Beacom & Vogel hep-ph/9806311

Delay of SNO NC wrt SK $\bar{\nu}_e$

MC Simulation of 10^4 SN'S

10 kpc

Limit 30 ev for no observed delay

Get $\sim 30-50$ ev limits ($\nu_{\mu, \tau}$) with SK+SNO
Better than lab! \{ $m_{\nu_{\mu}} < 0.17$ MeV, $m_{\nu_{\tau}} < 18$ MeV \}
Core collapse resulting in black hole formation (fraction: 50%?) \Rightarrow sharp cutoff of ν_x luminosity

$t = 0$ for tof delay measure

Use ν energy info e.g. SK $\bar{\nu}_e p$

\Rightarrow limit on $\bar{\nu}_e$ mass: ~ 1.8 eV

Using NC in OMNIS-like detector:

~ 6 eV for $\bar{\nu}_\mu, \bar{\nu}_e$ mass limit
AN EARLY ALERT for astronomers

~ hours of warning (depends on stellar envelope)

Early light actually not helpful for SN explosion theory (ν's are)

BUT:
- environment near progenitor probed by initial stages
- UV/soft x-ray flash @ shock breakout predicted

+ possible unknown early effects!

Early light observations very rare for extragalactic

⇒ Supernova Early Warning System

Computer(s) receive 'blind' alert messages from ν detectors;
automated alert if coincidence
SNEWS IMPLEMENTATION

Alarm datagrams sent by individual experiments to server(s)
Now running @ Super-K site

SERVER
on central machine
10 second coincidence by UT time stamp

CLIENT Super-K
Alarm datagram

CLIENT SNO

CLIENT MACRO
Alarm datagram: (experiment UT time)

CLIENT LVD

alert to astronomical community
{ optical satellites HST amateurs

MACRO, LVD, Super-K: automated alarms

Next: SNO, Amanda
New server @ LNGS

Automated alerts to astronomers within the year
POINTING with ν's

Beacom & Vogel astro-ph/9811350

ASYMMETRIC REACTIONS in a single detector may be the best bet

\[\nu_x + e^- \rightarrow \nu_x + e^- \]

few % of SK events

\[\Delta \Theta \sim 25^\circ \]

\[\frac{\delta \Theta}{\sqrt{N}} \sim \frac{25^\circ}{\sqrt{N}} \]

\{ correction factor of \sim 2 - 4 due to centroiding on isotropic bg

SK \sim 5^\circ, SNO \sim 20^\circ for SN @ Galactic center

TRIANGULATION using relative timing of signals

2 exp'ts: circle on sky
3 exp'ts: 2 blobs
4 exp'ts: point to spot

\[\cos \alpha = \frac{c \Delta T}{d} \]

\[\delta(\cos \alpha) = \frac{c \delta(\Delta T)}{d} \]

(registration error)

Statistics for current detectors poor...

SK-SNO \[\delta(\cos \alpha) \sim 0.5 \@ 10 \text{ kpc} \]

for realistic pulse shapes (\+
practical problems for prompt answer)

Still worth a try...
SUMMARY

• Several \(\nu \) detectors with Galactic sensitivity online now

 Super-K
 SNO
 MACRO
 LVD
 AMANDA
 Borexino
 KamLAND
 OMNIS

• Core collapse will yield a bonanza of information!

 \(\nu \) physics: absolute mass limits
 \[\bar{\nu}_e \leq 3 \text{ eV} \]
 \[\bar{\nu}_\mu,\tau \leq 30 \text{ eV} \]
 better for BH collapse?
 • oscillation info
 • etc.
 \(\Rightarrow \) Core collapse models
 \(\Rightarrow \) SNEWS: early alert from coincidence

Hoping for SN2XXX soon!