Tau Neutrino Mass

J.M. Roney University of Victoria

$e^+e^- \rightarrow t^+t^-$ Production

Neutrino 2000

t Decay

resonance decay modes

t Detection

Neutrino 2000

J.M. Roney

τ decays for m_v measurement

- high-multiplicity, high mass hadronic: single n & phase-space suppressed
- reject non backgrounds: e⁺e⁻* e⁺e⁻,
 e⁺e⁻* hadrons, e⁺e⁻* e⁺e⁻ + hadrons
- reject ♦ decay backgrounds: ⅓
 convers'ns, mid-ID p⁰ ♥ ⅓₀ ⅓₀ from hadronic interactions
- topology and experiment dependent purities (80%-99%) and

Measurement method $m_n^2 = (E_{\text{heam}} - E_{\text{h}})^2 - (\vec{p}_t - \vec{p}_{\text{h}})^2$ $= m_{t}^{2} + M_{h}^{2} - 2E_{beam}E_{h} + 2\sqrt{E_{beam}^{2} - m_{t}^{2}}\sqrt{E_{h}^{2} - M_{h}^{2}} \cos q_{ht}$ Eh / Ebeam For fixed m (a) kinematic limit at (b) Event 2 (c) $\cos q_{\rm h\tau} = \pm 1$ Event 1 (d)0.95 Analysis in (a) $m_{\nu} = 0 \text{ MeV}/c^2$ E_h/E_{beam} vs M_h (b) $m_{\nu} = 30 \text{ MeV}/c^2$ (c) $m_{\nu} = 50 \text{ MeV}/c^2$ 0.9 plane (d) $m_{\nu} = 100 \text{ MeV}/c^2$ Neutrino 2000 1.65 1.6 1.7 1.75 1.8 $M_{\rm h} (GeV/c^2)$

Fit method

Event-by-event probability:

 $\mathcal{O}_{i}(\mathbf{m}_{n}) = \mathbf{P}(\mathbf{M}_{h_{i}}, \mathbf{E}_{h_{i}} | \mathbf{m}_{n}) \otimes \Re(\mathbf{M}_{h_{i}}, \mathbf{E}_{h_{i}}, \mathbf{S}_{\mathbf{M}_{i}}, \mathbf{S}_{\mathbf{E}_{i}}, \mathbf{r}_{i}) \otimes \mathbf{e}(\mathbf{M}_{h_{i}}, \mathbf{E}_{h_{i}})$

 $\mathbf{P}(\mathbf{M}_{\mathrm{h}}, \mathbf{E}_{\mathrm{h}} | \mathbf{m}_{\mathbf{n}}) \propto \left[\left| \mathbf{M} \left(\mathbf{M}_{\mathrm{h}}, \mathbf{E}_{\mathrm{h}} | \mathbf{m}_{\mathbf{n}} \right) \right|^{2} \mathbf{g} \mathbf{P} S(\mathbf{M}_{\mathrm{h}}, \mathbf{E}_{\mathrm{h}} | \mathbf{m}_{\mathbf{n}}) \right] \otimes \mathbf{I} \mathbf{S} \mathbf{R} (\mathbf{E}_{\mathrm{beam}}, \mathbf{E}_{t})$

$$\mathbf{L} = \prod_{i=1}^{N} [\mathcal{O}_i(\mathbf{m}_n) + \mathcal{O}_{\text{backgd}}(\mathbf{M}_{h\,i}, \mathbf{E}_{h\,i})]$$

 $\mathcal{O}_i(\mathbf{m_n})$ and $\mathcal{O}_{\text{backgd}}(\mathbf{M}_{h\,i}, \mathbf{E}_{h\,i})$ determined with Monte Carlo or analytically

Neutrino 2000

No. of decays in fits Z^0 $\Upsilon(4s)$ ARGUS CLEO ALEPH OPAL 2×10^{5} 2×10^{5} $3-4\times10^{5}$ $4-5\times10^{6}$ $N_{\tau\tau}$ ('96, '98) ('98, '00) (1998)(1992)Year published 2939 2514 $3\mathbf{p}^{\pm}\mathbf{n}_{t}$ $3\boldsymbol{p}^{\pm}\boldsymbol{p}^{0}\boldsymbol{n}_{t}$ 16577 **55**^{*} 20 36 22 $5\mathbf{p}^{\pm}(\mathbf{p}^{0}*)\mathbf{n}_{t}$ $3p^{\pm}2p^{0}n_{+}$ 19

Neutrino 2000

CLEO $3p^{\pm}p^{0}n_{t}$

16577 decays in fit 543 within $m_h / m_t > 0.925$ Background: 3% q \overline{q} and 7% t**Dominant systematics:** \mathbf{p}^0 energy scale: 3.7MeV/c² tracking p scale: $3.3 MeV/c^2$ Spectral funct'n: 4.0MeV/c^2 [*r*(1700) M, Γ, amplitude]

CLEO $3p^{\pm}p^{0}n_{t}$

dependence on 543 event sample less sensitive to chance fluctuations

Neutrino 2000

OPAL $t^- \rightarrow 3p^- 2p^+ n_t$

22 decays in fit

5 sensitive i.e.: $m_v < 100 MeV/c^2$

background events: $0.5 \ q\overline{q}$ and $0.1 \ t$ cf 22 obs effective background events: $0.05 \ q\overline{q}$ and $0.01 \ t$ cf 5 obs

Dominant systematics: non-Gaussian tails: 3.5MeV/c² resolution funct'n: 0.5MeV/c²

Neutrino 2000

OPAL $t^- \rightarrow 3p^- 2p^+ n_t$

Excluding systematic errors: $m_n < 39.6 MeV/c^2$

Including systematic errors: dominated by resolution modelling (3.5MeV/c^2) $m_n < 43.2 \text{MeV/c}^2$

Combining with 3*p* analysis likelihood:

 $m_n < 27.6 MeV/c^2$ @ 95% CL

Neutrino 2000

ALEPH $t^- \rightarrow 2p^-p^+n_t$

Excluding systematic errors: $m_n < 21.5 MeV/c^2$

Including systematic errors: Dominated by energy-mass resolution (3.1MeV) and calibration(2.6MeV) $m_n < 25.7 MeV/c^2$

Combining with ALEPH 5*p* analysis likelihood:

 $m_n < 18.2 MeV/c^2$ @95%CL

J.M. Roney

E_{3*} / Ebeam

2nd

Gaussiar

0.9

0.8

1.1

1st Gau

issiai

таі

0.6

ALEPH

1.8

 $M_{3\pi}$ (GeV/c²)

2

1.2

1.4

1.6

п

пп

0.8

fitted region

ALEPH

$$t^- \rightarrow 3p^- 2p^+(p^0)n_t$$

Excluding systematic errors: $m_n < 22.3 MeV/c^2$

Including systematic errors: Dominated by modelling of resolution (0.6MeV); t background (0.3MeV); and energy-mass calibration(0.3MeV) $m_n < 23.1 MeV/c^2$

Neutrino 2000

Spectral function models

M_h description is model dependent (e.g. a_1), effects mitigated by high sensitivity to E_h

Systematic error in 3 pm from

 a_1 , r and r' M and Γ : 0.3MeV/c²

Analogous concern in 5p is less important.

Systematic error in 5 pm from

various models : <0.1MeV/c²

J.M. Roney

Neutrino 2000

95% CL Limits (MeV/c ²)				
	Υ(4s)		Z ⁰	
	ARGUS	CLEO	ALEPH	OPAL
$3\mathbf{p}^{\pm}\mathbf{n}_{t}$			25.7	35.3
$3\boldsymbol{p}^{\pm}\boldsymbol{p}^{0}\boldsymbol{n}_{t}$		28		
$5\boldsymbol{p}^{\pm}(\boldsymbol{p}^{0} *)\boldsymbol{n}_{t}$	31	33.9	23.1 [*]	43.2
$3\boldsymbol{p}^{\pm} 2\boldsymbol{p}^{0}\boldsymbol{n}_{t}$		35.9		
Combined	31	28&30	18.2	27.6
ARGUS used the M _h spec Neutrino 2000	trum only J.N	И. Roney		17

Cosmological limits

Neutrino 2000

Each experiment provides the likelihood distributions which can be combined The dominant systematic errors in each are uncorrelated Combining systematics-corrected likelihoods yields: m_{nt}< 15.5 MeV/c² @95%CL

long lifetime cosmological loophole is not closed

Neutrino 2000

Combining measurements

J.M. Roney

Future prospects

- BABAR and BELLE are now taking data and each expect ~12/fb in 2000 and ~30/fb in 2001
- Repeat of CLEO 3π[±] π⁰ measurement gives 7MeV/c² limit from statistics alone and 12MeV/c² with systematics, assuming ρ(1700) parameters known
- To get to 3MeV/c² requires 300/fb (~1x10³⁴cm⁻²s⁻¹ luminosity machine) and smaller systematic errors

Neutrino 2000

SUMMARY

- Direct limit: m_{■♦}<18.2MeV/c²
 @95%CL from ALEPH
- New limit from CLEO m_s<28MeV/c²
 with new higher statistics channel
- Some improvement in limit when likelihoods combined, but loophole remains
- Reasonable prospects for reaching 3MeV/c² at BABAR and BELLE

Neutrino 2000