Borexino at Gran Sasso

A real time detector for low energy solar neutrinos

Gioacchino Ranucci

Neutrino 2000

Sudbury 6 - 16 - 2000

Summary

- Description of the detector
- Physics program
- Radiopurity issues
- Status of the installation
- •Conclusions

Borexino Collaboration

- ✓Belgium

 I.R.M.M. European Joint Research Centre Geel
- ✓ France
 College de France
- ✓ Germany
 Max-Planck-Institut Für Kernphysics Heidelberg
 Technische Universität München
- ✓ Hungary
 KFKI-RMKI Budapest
- ✓Italy
 Dipartimento di Fisica e INFN Genova
 Lab. Naz. INFN del Gran Sasso
 Dipartimento di Fisica e INFN Milano
 Dipartimento di Fisica e INFN Pavia
 Dipartimento di Fisica e INFN Perugia
- ✓ Poland: Jagellonian University Krakow
- ✓Russia
 JINR Dubna
 Kurchatov Intitue Moscow
- ✓ United States

 Bell Laboratories, Lucent Technologies

 Massachusetts Institute of Technology

 Princeton University

 Virginia Polytechnic Institute

Borexino

A real time, calorimetric, scintillation detector, for low energy solar neutrinos, under installation at the Gran Sasso underground Laboratory, aimed at the detection of the monoenergetic ⁷Be neutrinos, through scattering off the electrons of the scintillator

Main Components: Detector

Scintillator

Nylon (Inner and Outer) Vessels

Buffer Liquid

Stainless Steel Sphere

support of PMT's

containment of the buffer (zero

buoyancy for the nylon vessels)

PMT's

Concentrators

Muon veto

Calibration equipments

Water Tank

Electronics and DAQ

Main components: Plants

Storage Vessels

Scintillator Purification systems

Water extraction

Distillation

Column purification

Nitrogen sparging

N₂ PLANT
Fluid Handling System

Water Purification System

Clean room

Scintillator

Solvent: Pseudocumene

Solute: PPO (1.5 g/l)

Light yield: 11000 ph/MeV

Att. Length (@420): 30 m

Scatt. length (@420 nm): 7 m

Decay Time (fast component): 3.5 ns

Good a / B properties

Photomultipliers

8" Electron Tubes Limited 9351 type

P/V : 2.5

Transit Time Spread: 1 ns

Dark Count rate: 1kHz

Afterpulsing < 3%

Low radioactive glass and internal parts

Light Concentrators

Truncated string cone design

Optimized to collect the light from the inner vessel and 20 cm beyond it

Material: anodized aluminum

Mesured quantities

The electronics measures and provides for each triggered event:

- the photomultipliers pulse height
- energy measurement
- the photoelectrons arrival time
 (0.3 ns resolution)
- location identification
- · the absolute time of the event

Expected detector performances

Effective Coverage: 30%

Photoelectron yield: 400 pe/MeV

Energy resolution (@1MeV): 5 %

Position resolution (@ 1 MeV): 10 cm

Calibrations

A variety of calibration and monitoring systems are planned:

- ✓ Laser pulses distributed to all PMT's with a fiber optics splitting system
 - timing calibration
 - •gain adjustment via detection of the single photoelectron peak
- ✓External sources (Th) located in the S.S.S close to the light cones
 - check of the stability in time of the overall detector response
- ✓Internal sources inside the scintillator
 - position calibration
 - energy calibration
 - α/β PSD determination

Calibrations

- ✓ Laser beams with different wavelengths through the buffer and laser excitation of the scintillator
 - stability monitoring of optical properties
- ✓Blue LEDs on the external tank for the outer muon veto detector
- ✓ Active tags of trace impurities in the scintillator
 - cross check of the absolute energy scale determination
 - additional stability monitor
- ✓ Calibration of the overall detector response via a sub-MeV v-source (51Cr)

Neutrino Detection in Borexino

Detection through the scattering reaction

$$v + e^- \rightarrow v + e^-$$

off the electrons of the scintillator

The high luminosity and high radiopurity

of the scintillator lead to a low detection threshold: 250 keV.

It is possible to detect the recoil electrons produced by the monoenergetic (0.861 MeV) 7Be v.

Maximum recoil energy: 0.66 MeV

SSM prediction: 55 ev/d for 100 T F. V

The Borexino program

- First direct measurement of 7Be flux

Expected rates (ev/d) in a F.V. of 100 T

Recoil Energy S window MeV	SSM	LMA	SMA	ТОМ	OA
		$\Delta m^2 = 1.8 \times 10^{-5}$ eV ²	$\Delta m^2 = 5.4 \times 10^{-6}$ eV ²	$\Delta m^2 = 1.8 \times 10^{-5} \Delta m^2 = 5.4 \times 10^{-6} \Delta m^2 = 7.9 \times 10^{-8}$ eV ² eV ²	
		sin20=0.76	$\sin^2\theta = 5.5 \times 10^{-3}$ $\sin^2\theta = 0.96$	sin ² 0=0.96	
0.25 - 0.8	55.2	30.7	11.7	29.0	
				day/night	seasonal

- Probing vacuum oscillations via seasonal variation of the flux
- In absence of other time variations, demonstration of the solar origin of the signal through the 7% variation due to the Earth-Sun distance variation during the year
- Background ~ 15 ev/d

Other capabilities

≈ 8B spectrum in the unique energy window 1.5-5 MeV

→ Antineutrino Science

$$\bar{\nu} + p \rightarrow n + e^{+}$$
 th=1.8 MeV
 $\downarrow 200 \,\mu s$
 $n + p \rightarrow {}^{2}_{1}H + \gamma$ (2.2 MeV)

Search for solar \bar{v}_e Geophysical \bar{v}_e from the Earth \bar{v}_e from Type II Supernovae Long-baseline \bar{v}_e from European reactors

Radiopurity of the scintillator

Main issue for the feasibility of the experiment

Purity requirements for ²³⁸U and ²³²Th in the range of 10⁻¹⁶ g/g

Laboratory measurements on small samples: 2-3 x 10⁻¹⁵ g/g manly limited by impurities leached from the wall of the vessels

Needed a direct measurement on some tons of scintillator with a sensitivity level at least $5 \times 10^{-16} \text{ g/g} \rightarrow \text{CTF}$

Further high sensitivity measurements performed with Neutron Activation Analysis

Achievements of CTF

1 - Demonstration of unprecedented purity levels

$$^{14}\text{C}/^{12}\text{C} = (1.94 + /-0.09) \times 10^{-18}$$

 $^{232}\text{Th} < (4.4 + /-1.5) \times 10^{-16}$

2 - Demonstration of the effectiveness of the planned purification methods for Borexino

Purity levels confirmed with Neutron Activation Analysis

$$^{238}U < 2 \times 10^{-16}$$

CTF has been recently reinstalled for quality control of the scintillator prior to detector filling

Status of the experiment preparation

Scintillator components (PC and PPO): manufacturers identified, contracts under finalization

Nylon (Inner and Outer) Vessels: test prototypes already produced, material selection almost completed

Stainless Steel Sphere: construction completed, final surface treatments in progress

PMT's:

bare devices: 90% ready

PC/water proof encapsulation: designed, tested for 6 months in the "two liquid test tank"

Prototype of the Inner Nylon Vessel

Stainless Steel Sphere inside the Water Tank

Installation of the Two-Liquid Test Tank

PMs & optical fibers mounted in the TLTT

Status of the experiment preparation

Water tank: completed

Electronics and DAQ: hardware and software ready, final integration in progress

Muon veto: dedicated PMT's and electronics in preparation

Concentrators: under production

Calibration equipments: in preparation; optical fiber system tested in the "two liquid test tank"

Status of the experiment construction

Storage Vessels: completed

Scintillator Purification Systems: in advanced phase of installation, test foreseen in the next fall with CTF, for column purification test already started

Fluid Handling System: ready by the Fall

Clean room: under construction, to be completed by end of August.

Conclusions

- √The design of all the experiment subsystems has been finalized
- ✓ Major installations have been already completed in Hall C
- ✓ All the other equipments to be installed are in preparation/installation phase
- ✓Borexino ready for filling by middle of next year
- ✓CTF rebuilt, ready for qualification of the scintillator and for test of the purification system