## HIGH ENERGY GAMMA RAYS

# Reshmi Mukherjee Barnard College, Columbia University

muk@astro.columbia.edu



#### **OUTLINE:**

- Broad overview
- Scientific motivation
- Experimental techniques
- Results
- Future experiments

### **OVERVIEW**

Four "messengers" tell us about the Universe outside the Solar System:

- 1. Light
- 2. Cosmic Rays
- 3. Neutrinos
- 4. Gravity Waves
- 1. Cornerstone of Astronomy Historical expansion of astronomy from optical light to new wavebands
- 2. High energy processes occurring in our Galaxy
- 3. & 4. Relatively difficult to detect But great astronomical potential

In the future: Multiple messengers providing complementary information

This talk will summarize what we know about the high energy Universe using light at energies 30 MeV - 20 TeV.

## Why is high energy Astrophysics interesting?

- Exploratory, but rapidly developing phase.
- Astrophysical situations in which physics operates under extreme conditions - e.g. intense gravitational or magnetic fields.
- AGN studies: Extremely luminous, powered by gravitational potential contained in supermassive blackholes.
- ullet Origin of  $> 10^{17}$  eV cosmic rays is still a mystery. Are AGN sites of cosmic ray acceleration?
- ullet  $\gamma$ -rays could be used as probes for interstellar radiation fields.
- Probe novel astrophysical phenomena which could arise as a result of new physics beyond the standard model of particle interactions.
- Search for dark matter in the form of WIMPs through their characteristic annihilation radiation
- Progress in the last  $\sim 10$  years has put the field of high energy  $\gamma$ -ray astronomy on a solid foundation.

Compton Gamma-Ray Observatory.

**Ground-based VHE experiments** 

# Particle Astrophysics

- Probe novel astrophysical phenomena which could arise as a result of new physics beyond the standard model of particle interactions.
- ullet Eg: Widely believed that our galaxy is immersed in dark halo that outweighs the luminous components by  $\sim$  order of magnitude.
- Nature of dark matter is one of the greatest mysteries in particle astrophysics.
- One leading candidate for dark matter WIMPs.
- For e.g. in super symmetric extensions of the SM, the particle could be a neutralino – a linear combination of the SS partners of the photon, Z0 and Higgs bosons.
- Most plausible models of WIMP mass  $\sim 10$  300 GeV.
- If WIMPs exist in the Galactic halo could annihilate and produce photon of energies  $\sim$  WIMP mass.



High Energy Astrophysics:

30 MeV - 10 GeV.

**EGRET** ≡ Energetic Gamma Ray Experiment Telescope.

What have we learnt?

Very High Energy observations with current TeV telescopes
 (> 250 GeV):

What is the connection with the EGRET results?

 Future Observations: Ground based instruments in the 20-250 GeV range.

What is the scientific motivation?

Current status in development.

### EGRET PARAMETERS



- Energy range 30 MeV 30 GeV.
- At < 70 MeV: PSF deteriorates.</li>
- ullet At high energies better psf and energy res., but only a few photons detected > 5 GeV.
- Ang. resolution: 8° @ 60 MeV, 0.4° @ 3 GeV.
- ullet Threshold sensitivity:  $\sim 1 imes 10^{-7}$  ph cm $^{-2}$  s $^{-1}$ .
- Large FOV:  $\sim 40^{\circ}$ .

### Compton Gamma-Ray Observatory 1991 – 2000





CGRO re-entry into Earth's atmosphere - 2:10 am EDT, June 4, 2000

### **EGRET SOURCES**



Third EGRET Catalog





### Source count (Hartman et al. July 1999, ApJS)

| Source class | $\# > 5\sigma(> 4\sigma)$  | other references      |
|--------------|----------------------------|-----------------------|
| blazars      | 67 (94) <sup>1</sup> (35%) | Mukherjee et al. 1997 |
| pulsars      | 6 (2%)                     | Thompson et al. 1997  |
| unidentified | 170 (62%)                  | Hartman et al. 1998   |

1: 27 blazars have "marginal" identifications.

# Extragalactic Gamma-Ray Background



Sreekumar et al. 1998

- EGRET observations show the presence of an extragalactic diffuse emission above 30 MeV
- ullet A single power law spectrum ( $-2.1 \pm 0.03$ ) characterizes the emission from 30 MeV to 100 GeV
- Precise origin of the emission is not fully resolved

# Origin of the Extragalactic $\gamma$ -Ray Background



The extragalactic  $\gamma$ -ray background above 10 MeV is presumably made up of a combination of diffuse origin + unresolved sources

- Various theories of diffuse origin (Sreekumar et al. 1998)
- Gravity-induced shock waves → highly relativistic electrons which scatter microwave background photons (Loeb & Waxman 2000 – astro-ph)

#### Unresolved sources:

- AGN (1-100 GeV) (Stecker & Salamon 1996 (100%); Chiang
   Mukherjee 1998 (25%); Mücke & Pohl 1998)
- Normal Galaxies (Strong et al. 1976) (3 10%)
- Clusters of Galaxies (Dar & Shaviv 1995; Erlykin & Wolfendale 1995; Colafrancesco & Blasi 1998)

### General Characteristics of EGRET AGN

- Radio-loud, flat-spectrum sources ( $\alpha_{\rm r} > -0.6$ ).
- "Blazar" class of AGN (BL Lac objects, highly polarized (> 3%) quasars (HPQ), and optically violently variable (OVV) quasars.)
- High fraction are superluminal. (Evidence from VLBI).
- Non-thermal continuum spectrum, luminosity peaks in the IR.
- Dramatic peak at  $\gamma\text{-ray}$  energies indicates the importance of nonthermal processes in these objects. "Apparent" luminosity  $\sim 10^{48}~\rm ergs~s^{-1}$ .



### General Characteristics of EGRET AGN

• Strong variability  $\sim$  days to months.  $R < c \Delta t,$  where  $\Delta t = \Delta t_{\rm obs}/(1+z),$  is the corrected intrinsic variability in the cosmological time frame.

GALACTIC ANTICENTER MAPS: Crab & Geminga pulars with variable blazar PKS0528+134



Blazar PKS 0528+134 in the Galactic anticenter region

### **AGN Model Constraints from Observations**

- Rapid variability, high compactness, and superluminal motion  $\Rightarrow \gamma$ -ray emission originates in strongly beamed sources.
- Powered by accretion of matter onto a supermassive black hole.
- $\gamma$ -rays are beamed radiation from a collimated relativistic jet.
- Two Arguments for beaming:

#### Absence of intrinsic $\gamma \gamma$ pair absorption

- Optical depth for  $\gamma\gamma \to e^+e^- \propto$  source compactness  $\sim \sigma_T L/4\pi c < \epsilon > R$ .
- For isotropic emission from a uniform spherical source at rest, and intrinsic  $L>10^{48}$  ergs/s  $\Rightarrow$  optical depth is  $\gg 1$ .
- Incompatible with the observed  $\gamma$ -ray spectra of the source.

#### Violation of the Elliot-Shapiro relation:

- $\bullet$  For a spherically symmetric source in a steady state,  $L \leq L_{\rm Edd} < 1.3 \times 10^{38} (M/M_{\odot})$  ergs/s.
- $\bullet$  Min. intrinsic time scale of variation :  $\Delta t \geq R_s/c = 10^{-5} (M/M_{\odot})$
- $\log \Delta t_{\rm obs}/(1+z) \ge \log L_{48}.$  This condition is violated for several EGRET blazars.

### Blazar Models

#### **General Assumptions:**

- ullet A central supermassive black hole  $\sim 10^{10}~M_{\odot}$  surrounded by an accretion disk and possibly a gas and dust torus.
- Accretion energy powers a beamed jet of material with a high bulk Lorentz factor  $\gamma$ .
- Emitting region  $\sim$  sphere (blob) of constant radius R, with a homogeneous magnetic field B, ejected at a small angle  $\theta$  with the jet axis.
- Relativistic  $e^+$ ,  $e^-$ , p (?) are continuously injected at a certain rate. Injected particles are distributed in energy as power law,  $n(\gamma) \propto \gamma^{-s}$  and have a certain Lorentz factor  $\gamma$  in the rest frame of the blob.



### Spectral Energy Distribution of Blazars Leptonic Models

- Radio through optical/UV emission is due to synchrotron emission from the plasma in relativistic motion.
- High energy emission: Inverse Compton scattering.

Synchrotron-Self Compton (SSC): Soft photons are from within the jet.

External Radiation Compton (ERC): Soft photons are external to the jet (either accretion disk photons, photons reflected by the emission line clouds)



Mukherjee et al. 1999

#### Many Questions:

Nature of beam particles, Acceleration processes, Magnetic fields Seed photons, Emission zone(s) ...... ??

#### **Proton Blazar Models**

- SED explained in terms of acceleration of protons and subsequent cascading (PIC)
- Models of synchrotron radiation produced by  $\mu^\pm$  from  $\pi^\pm$  decay and by protons has been applied to the case of blazars Mrk 421 & Mrk 501 (Aharonian 2000)
- High energy neutrinos produced as a result of photoproduction? e.g.  $\pi^+ \to \mu^+ \mu_\mu$  followed by  $\mu^+ \to {\rm e}^+ \nu_{\rm e} + \bar{\nu}_\mu$  or Production and decay of charged kaons
- Some earlier models (Mannheim 1993, 1995) predict equal photon and neutrino energy fluxes.
- Mücke & Protheroe (2000) predict lower neutrino flux



Figure 8: Predicted spectra of  $\nu_e$ ,  $\bar{\nu}_e$ ,  $\nu_\mu$  and  $\bar{\nu}_\mu$  from Mkn 501. The contribution of  $\nu$ s due to pion production of the emerging cosmic rays while propagating through the cosmic background is not considered here.

### Atmospheric Cherenkov Telescopes

- At TeV energies, photon flux is severely limited (E<sup>-2</sup> spectrum).
- At VHE indirect γ-ray detection is possible.
- VHE  $\gamma$ -rays initiate cascades, or extensive air showers (EAS) of particles.
- A high energy ( $\sim$  100 GeV) cosmic ray or  $\gamma$ -ray interacts with the atmosphere (10 15 km), creates cascade showers.
- Relativistic charged particles in EAS emit Cherenkov radiation.
- Cherenkov photons are strongly beamed in the forward direction.
- Radiation is Calorimetric.
- · Light pool on ground is relatively uniform in density.
- Cherenkov light arrives with very tight time structure ( $\sim 5$  ns).

# γ-ray and CR techniques:



Cherenkov telescopes

Air shower experiments

R. ONG (1998)

# **PROPERTIES**

#### ATMOSPHERIC CHERENKOV TELESCOPES

| Experiment (Location)       | Mirrors | A (m <sup>2</sup> ) | PMTs | FOV (°) | $E_{ m th}$ (GeV) |
|-----------------------------|---------|---------------------|------|---------|-------------------|
| Cangaroo<br>(Cangaroo)      | 2       | 11                  | 256  | 3.0     | 1000              |
| CAT<br>(France)             | 1       | 18                  | 600  | 4.8     | 250               |
| Durham<br>(Australia)       | 3       | 42                  | 109  | 3.4     | 250               |
| GT-48<br>(Ukraine)          | 2       | 27                  | 37   | 2.7     | 900               |
| HEGRA-CT<br>(Spain)         | 6       | 9                   | 271  | 4.6     | 500               |
| Nooitgedacht<br>(S. Africa) | 4       | 7                   | 4    | 1.7     | 700               |
| Pachmari<br>(India)         | 25      | 4                   | 1    | 3.0     |                   |
| SHALON<br>(Russia)          | 1       | 10                  | 144  | 7.2     | 1000              |
| TACTIC<br>(India)           | 4       | 10                  | 349  | 2.8     |                   |
| Tel. Array<br>(USA)         | 3       | 6                   | 256  | 4.5     | 500               |
| Whipple<br>(USA)            | 1       | 75                  | 151  | 3.5     | 250               |

Compiled from Ong (1998).

Atmospheric Cherenkov Telescopes













### Results from Ground-based Instruments: Extragalactic Sources

#### Markarian 421

- First TeV detection of AGN:
   Mrk 421 by Whipple (1992)
- z = 0.031 (closest BL Lac)
- · TeV flux:
  - -Flare: 10 Crab
  - -Quiescent: ~ 0.3 Crab



#### Mrk 421: Flux Variability

- Rapid: < 15 min
- Entire flare lasted  $\sim 30$  min
- Fastest time-scale variability seen from any blazar at any γ-ray energy.



### Results from Ground-based Instruments: Extragalactic Sources

#### Markarian 501

• z = 0.034 (2nd closest BL Lac)

TeV flux:

-Flare: 6 Crab

-Quiescent:  $\sim 0.1-1.4$  Crab



17" 1716"59"16"57"16"55"16"53" 16"51" 16"49" 16"47" Right Ascension (J1996.2)

#### Mrk 501: Flux Variability

Rapid: < 2 hours</li>

Large-amplitude: Average flux >> Crab flux

• Baseline level present, but variable: 0.1 - 1.5 Crab



# **Spectral Energy Distributions**

Mrk 501



Kataoka et al. 1999

Mrk 421



## **Spectral Energy Distributions**

Mrk 421 & Mrk 501

#### Similarities:

- Both have a peak in the synchrotron emission at X-ray energies
- typical of X-ray selected BL Lacs.
- High energy peak of both lies in the 10-250 GeV range.
- Synchrotron and IC peaks are similar in power output (in contrast to EGRET FSRQs).
- During flare, X-ray spectrum of both tend to harden significantly. VHE spectrum is not observed to change.

#### Differences:

- Mrk 501: Significant (synch) peak shift to higher energies during a flare.
- Synchrotron spectrum extends well beyond 1 keV typical of X-ray selected BL Lac objects.
- During 1997 flare, peak was at ∼ 100 keV.
- $\bullet$  Mrk 421: Peak shift is not as significant. Peak was never observed beyond  $\sim$  1 keV. Not detected by OSSE.
- Power ouput of Mrk 501 in VHE range can be considerably less than in X-rays in low state.
- Mrk 421: similar power output in X-rays and TeV

# Comparison of the GeV & TeV Sky







#### TeV SOURCE CATALOG



## **Blazar Spectral Cutoffs**

- Most EGRET blazars are NOT detected at > 250 GeV.
- Cutoffs could be either due to intergalactic absorption or intrinsic absorption at the source.
- The opacity of intergalactic space to high energy  $\gamma$ -rays can be calculated as a function of redshift.
- The study of blazar spectra below 250 GeV is a physically interesting subject.
- Attenuation of γ-rays from source ~ optical depth τ.

$$I(\mathbf{E}) = I_0(\mathbf{E})e^{-\tau}$$
$$\tau \sim n_{IR}D\sigma_{\gamma\gamma}$$



#### **Opacity Calculation Models**

- Not much is known about CIR at present, nor how it developed over time
- Star formation is expected to be a major contributor to CIR (e.g. Madau et al. 1996; Primack et al. 1999)
- Density of starlight at any given epoch depends on the - unknown - cosmological history of star formation, metal production, etc.
- Determining the CIR background in turn allows us to model the evolution of the galaxies which produce it.
- Need to know SED (z) and  $n(\epsilon, z)$  of CIR background.

Example: Salamon & Stecker (1998) opacity model:



#### Effect of Absorption on Blazar Spectra



Mukherjee et al. 1999

 $\bullet$  Spectral cutoffs are expected in EGRET AGN spectra in the 10-250 GeV range.

### **Extragalactic Background Light**



Vassilev 2000

- $\bullet$  TeV  $\gamma\text{-rays}$  pair produce with  $\sim 0.03--1~\mu\mathrm{m}$  photons in travelling intergalactic distances.
- Spectra of Mrk 421 and Mrk 501 limit the density of EBL.
- Need more sources to improve limits or be confident of unfolding the EBL density spectrum.

# γ-ray Astrophysics

# Selected topics:

\* Pulsars: TeV γ-rays detected from nebulae.

No emission from pulsar?

\* SNRs: Detected SN1006: e acceleration

Origin of cosmic rays?

\* GRBs: Some bursts are cosmological.

What about other bursts?

What about HE component?

\* AGNs: Remarkable emission from a few

nearby blazars.

How do they work?

What about many other AGN?

\* Dark Need to carry out astrophysical

matter: searches.

### New instruments required to:

- 1. Explore region between 20 250 GeV
- 2. Achieve much greater sensitivity
- 3. Carry out all-sky surveys

# **Atmospheric Cherenkov Technique**

• Energy threshold :

$$E_{th} \propto \sqrt{\frac{B\Omega t}{A\epsilon}}$$

- ⇒ Larger collection area.
- ullet For  $E_{
  m th}\sim 20$  GeV,  $A\sim 10000$  m $^2$ .
- Single large steerable mirror is mechanically difficult.
- Either: Several small mirrors, each with a camera (eg. VERITAS).



 Direct many mirrors on an array of PMTs (eg. STACEE, CELESTE).



### STACEE CONCEPT



Using solar mirrors (heliostats) to detect Cherenkov light. The radiation is reflected by heliostats to a central tower. Secondary mirrors on tower focus light onto PMTs

STACEE: Solar Tower Atmospheric Effect Experiment (Sandia)

CELESTE: Cherenkov Low Energy Sampling and Timing Experiment (Pyrenees)

Solar Two (California)

#### **NSTTF Heliostats & Solar Tower**

- Site: National Solar Thermal Test Facility (NSTTF) at Sandia National Lab. (Albuquerque).
- 220 heliostats (37 m<sup>2</sup>) of which 32 are used.



### 1998-99 OBSERVING

\* STACEE-32 operational on Nov. 1

took steady data, > 60 clear nights! \* Nov-Apr:

lots of development work

\* Data

| Source   | Type     | Pairs taken |
|----------|----------|-------------|
| Crab     | Plerion  | 133         |
| Mrk 421  | z=0.03   | 14          |
| Mrk 501  | z = 0.03 | 16          |
| 1219+285 | z=0.51   | 24          |

On/Off method: 30 minute pairs

## Crab Luminosity



#### **STACEE**: Observations & Prospects

- Currently operating with 48 heliostats. Plans exist for 64 heliostats in the near future.
- Operated on most clear moonless nights since 1998 October.
   Data taken to verify performance and calibrations.
- Crab Nebula was observed from 1998 Nov. to 1999 Feb.
- STACEE detects the Crab at  $\sim +7\sigma$  in  $\sim 50$  hrs of observations. Oser et al. (1999, 26th ICRC).
- Monte Carlo studies indicate a trigger threshold  $\sim 150$  GeV. Observed  $\gamma$ -ray rate:  $\sim 2/\text{min}$ . (Covault et al. 1999, 26th ICRC)

#### **STACEE** Future Prospects

- Results from STACEE & CELESTE indicate "proof of principle":
   Clearly feasible to explore the 50-250 GeV regime using the solar mirror array experiments.
- STACEE should be able to detect sources at a fraction of the Crab intensity.
- Some of the key sources to study include AGN, pulsars, and SNRs.

# Projected Sensitivity of STACEE Effect of Absorption on EGRET BL LACs & FSRQ Spectra



| Some EGRET Blazars |                 |       |      |  |
|--------------------|-----------------|-------|------|--|
| Source             | Г               | z     | Туре |  |
| 0219+428           | $2.01 \pm 0.14$ | 0.444 | BLL  |  |
| 1219+285           | $1.73 \pm 0.18$ | 0.1   | BLL  |  |
| 1222+216           | $2.28 \pm 0.13$ | 0.4   | FSRQ |  |
| 1633+382           | $2.15 \pm 0.09$ | 1.8   | FSRQ |  |

# HIGH SENSITIVITY IMAGING CHERENKOV TELESCOPES







- Improve sensitivity by a factor of 10,
   Energy range 50 GeV 10 TeV
- MILAGRO (water Cherenkov detector) (See Atkins et al. 1999)
- Four new project starts:
   CANGAROO III (Australia)
   HESS (Namibia)
   MAGIC (La Palma)
   VERITAS (Arizona)

# Gamma-ray Large Area Space Telescope (GLAST)

Two possible technologies: Silicon, SciFi

Some Dimensions are Distorted for Clarity of Presentation Complete GLAST

Si-GLAST Option:



Greatly enlarge AGN sample:



# Sensitivities of future γ-ray experiments:



### What Went Unsaid

- Detector New and Future
- -Future Imaging: VERITAS (Catanese & Weekes 1999)
- -Water Cherenkov: Milagro (Atkins et al. 1999)
- Detections from telescopes other than the imaging ACTs
- -Mrk 501 by Milagro (Atkins et al. 1999)
- -Detection of Crab & Mrk 501 by Tibet Air Shower Array (Amenomori et al. 1999, 2000)
- -Gamma-ray Burst by Milagro (Mcenry et al. 1999)
- Pulsars and Supernova Remnants

EGRET pulsars (Thompson et al. 1997) Plerionic SNR, Shell-type SNRs (Catanese & Weekes 1999)

Unidentified sources

(Review Mukherjee et al. 1997)
Recent results: Grenier 2000, Gehrels et al. 2000

- Diffuse galactic radiation (Hunter et al. 1997)
- Gamma-ray bursts

### **SUMMARY**

- $\bullet$  Many reasons to be optimistic about the future of  $\gamma\text{-ray}$  astronomy
- Significant scientific progress made using space- and groundbased instruments
   Growing catalog of sources
- Discoveries raise new questions
- Order-of-magnitude gap exists between space and ground-based data
- Central tower solar power stations can be exploited at very modest costs to fill the gap
- Ever expanding panoply of experiments
   Cherenkov Telescopes, GLAST, AGILE