

Kevin McFarland University of Rochester

> Neutrino 2000 Sudbury, Canada 17 June 2000

NuTeV Collaboration

T. Adams⁴, A. Alton⁴, S. Avvakumov⁷, L. de Barbaro⁵, P. de Barbaro⁷, R. H. Bernstein³, A. Bodek⁷, T. Bolton⁴, J. Brau⁶, D. Buchholz⁵, H. Budd⁷, L. Bugel³, J. Conrad², R. B. Drucker⁶, B. T. Fleming², J. Formaggio², R. Frey⁶, J. Goldman⁴, M. Goncharov⁴, D. A. Harris⁷, R. A. Johnson¹, S. Koutsoliotas², J. H. Kim², M. J. Lamm³, W. Marsh³, D. Mason⁶, C. McNulty², K. S. McFarland^{3,7}, D. Naples⁴, P. Nienaber³, A. Romosan², W. K. Sakumoto⁷, H. Schellman⁵, M. H. Shaevitz², P. Spentzouris^{2,3}, E. G. Stern², M. Vakili¹, A. Vaitaitis², V. Wu¹, U. K. Yang⁷, J. Yu³, G. P. Zeller⁵ and E. D. Zimmerman²

¹University of Cincinnati, Cincinnati, OH 45221
²Columbia University, New York, NY 10027
³Fermi National Accelerator Laboratory, Batavia, IL 60510
⁴Kansas State University, Manhattan, KS 66506
⁵Northwestern University, Evanston, IL 60208
⁶University of Oregon, Eugene, OR 97403
⁷University of Rochester, Rochester, NY 14627

- 1. Anatomy of one High Energy Neutrino Experiment
- 2. NuTeV and Future Accelerator ν Experiments
- 3. Precision Measurements
 - Old Puzzles
 - New Puzzles
- 4. Searches for "Neu" Physics
- 5. Conclusions

• 3.2×10^{18} protons at 800 GeV on target $\triangleright \sim 2 \times 10^{6}$ fiducial events $\triangleright \langle E_{\nu} \rangle \approx 100$ GeV

$$\kappa = \frac{2\int x s(x)}{\int (u(x) + d(x))}$$

$$\kappa_{\nu} = 0.402 \pm 0.092 \pm 0.033 \quad (s(x))$$

$$\kappa_{\bar{\nu}} = 0.439 \pm 0.067 \pm 0.058 \quad (\bar{s}(x))$$

 $s-\bar{s}$ asymmetry is small.

Wrong Charge Muons (μ^-) in $\overline{\nu}$ Beam $\overline{\nu} \rightarrow \overline{\nu} c \overline{c} X$ highly suppressed

Sample is well-measured, little neutral-current charm

- However, $pp \rightarrow c\overline{c}X$, $c \rightarrow \nu_{\mu}\mu^{+}X$ in **BEAM** is uncertain
- Measure in this sample!

Backgrounds:

- Beam checked at low y
- Muon loss or misidentification is dominant background
- At $\langle E_{\nu} \rangle = 154$ GeV, (BR $(c \rightarrow \mu) = 9.9\%$) $\frac{\sigma(\nu N \rightarrow \nu c \overline{c} X)}{\sigma(\nu N \rightarrow \mu^{-} X)} = (2.1 \pm 1.6) \times 10^{-3}$

Conclusions:

• Physics backgrounds to $\nu_{\mu} \leftrightarrow \overline{\nu}_{\mu}$ at few 10^{-4} level in high energy beam

13.60.Hb

to a high degree

clear physics charge symmetry, and neutrons (simultaneously in

which interchanges

erchanging up ar

e CS

alyze the n which the ture of the

cleon Kaon-Hy nucleon is vi within a son cloud picture. In a low O2

Q² i e p n

11

Old Puzzles (cont'd)

• $\Delta xF_3 = xF_3^{\nu} - xF_3^{\overline{\nu}} = 2x(s + \overline{s} - c - \overline{c})$

- Previous CCFR analysis: Extract $F_2(m_c = 0)$ with $\Delta x F_3$, R constraints
- Model Independent Analysis of CCFR data: Fit for R, $\Delta x F_3$

- \triangleright Extract $F_2(m_c \neq 0)$
- \triangleright Extract also $\Delta x F_3$ at x < 0.1
- \triangleright Take R from external data
- \triangleright NLO calculations to predict F_2^{μ}/F_2^{ν}

- CCFR/NMC F_2 ratio well described by NLO theory
- CCFR F_2 now extracted without $\Delta x F_3$ prediction, charm mass correction
- Global fits should use revised CCFR F_2 for Tevatron, LHC predictions

80

79*.*8

140

160

- Global fit indicates preference for light Higgs:
 - $\triangleright M_{
 m Higgs} =$ 98 \pm_{38}^{57} GeV (C.V.)
 - $\triangleright M_{\rm Higgs} \le 235 \ (95\% \ {\rm CL})$

CDF

200

 $\frac{220}{M_{too}}$ (GeV/c²)²⁴⁰

FNAL Average

180

New Puzzles: NuTeV $\sin^2 \theta_W$ (cont'd)

$$R^{-} = \frac{\sigma_{NC}^{\nu} - \sigma_{NC}^{\overline{\nu}}}{\sigma_{CC}^{\nu} - \sigma_{CC}^{\overline{\nu}}}$$
$$= \left(\frac{1}{2} - \sin^{2}\theta_{W}\right)$$
$$= u_{L}^{2} + d_{L}^{2} - u_{R}^{2} - d_{R}^{2}$$

NuTeV measurement \rightarrow constraint on the Z⁰-quark couplings:

$$0.4530 - \sin^2 \theta_W =$$

$$0.2277 \pm 0.0022 =$$

$$0.8587u_L^2 + 0.8828d_L^2 - 1.1657u_R^2 - 1.2288d_R^2$$

NuTeV R⁻ constraint: $-0.0068 \pm 0.006 =$ $+ 1.6134\Delta u_L + 0.9972\Delta u_R$ $- 2.0631\Delta d_L - 0.5261\Delta d_R$

$\begin{aligned} & \mathsf{APV constraint:} \\ & (Q_W^{exp} - Q_W^{SM})/Q_W^{SM} = \\ & 0.014 \pm 0.006 = \\ & + 5.1436(\Delta u_L + \Delta u_R) \\ & + 5.7729(\Delta d_L + \Delta d_R) - 2\Delta g_A^e \end{aligned}$

• Neutrino detector provides particle ID for μ above ~ 3 GeV, π^{\pm} and e^{\pm} above ~ 5 GeV

• Backgrounds very low

- $\triangleright~\nu$ interactions in chambers: \sim 300, $15~{\rm two-track}$
- \triangleright Expected ν in helium: $\approx 10,\,0.5$ two track
- > Neutral punch-through into decay volume very low

New Neutrals (cont'd)

Currently extending search to high mass $(m_T > m_{D_s})$ (production mechanism unclear)

KARMEN time anomaly

• Hypothesis: due to decay at rest of $\pi^+ \to Q^0 \mu^+$, $Q^0 \to e^+ e^- \nu$ with $m_{Q^0} \approx m_{\pi^+} - m \mu$

At NuTeV:

• $E_{\pi^{\pm}} \sim 200 \ {\rm GeV}$ so Q^0 is relativistic

New Neutrals (cont'd)

- Look for forward e^+e^-
- Boost gives us high sensitivity to short τ_{Q^0} , but fewer π^+ than KARMEN

Conclusions

NuTeV is enjoying its data!

• Charm production $(c\overline{s}, c\overline{s}, c\overline{c})$

Future: Model independent results, NLO analysis

• F_2^{μ} (NMC) vs F_2^{ν} (CCFR) Resolved!

sin² θ^{νN}_W and Z' limits
 Future: NuTeV Structure functions
 Future: Increased sin² θ_W statistics

• Heavy Neutral searches: mixing model and Q^0 à la KARMEN

Future: Examine high mass region for NHL signal