The Chorus Search for $v_{\mu} \rightarrow v_{\tau}$ Oscillation

Lucio Ludovici University of Rome "La Sapienza" and INFN

Neutrino 2000 - Sudbury, Canada - 16-21 June 2000

Outline

- The Chorus search for Oscillation
- The experimental layout
- The analysis strategy
- Results from the "first round" analysis of the full 1994-97 data sample
- Prospects for the final "second round" analysis result

Experimental Principles

- Search for v_{τ} appearance on a "pure" v_{μ} beam
- High design sensitivity $P(v_{\mu} \rightarrow v_{\tau})=10^{-4}$ for $\Delta m^2 \approx 1-10 eV^2$ (relevant for cosmology & DM)
- The high background rejection calls for an unambiguous appearance signature
- A v_τ is detected observing the τ⁻ produced in a CC interaction and its subsequent decay vertex in an active nuclear emulsion target

1 m

Chorus Layout

- Showers energy, missing P_t
- lead&fibers "spaghetti" calorimeter ΔE/E=32%/√E (hadrons) ΔE/E=14%/√E (electrons) Δθ_{hadr}~60 mrad @10 GeV
- Muon ID, sign and momentum
- iron-core muon spectrometer
 Δp/p~10%-15% (p<70 GeV)

The Chorus τ "signature"

- The τ lepton is identified by the three-fold simultaneous observation of:
 - 1 the neutrino CC interaction vertex 2 the short τ^- path, $c\tau=87\mu$ m, γ ~O(10) 3 the τ^- decay topology: kink

Neutrino Beam

Cern SPS-WANF: 5.10¹⁹ PoT \rightarrow 840,000 ν_{μ} CC

 ν_{μ} : $\overline{\nu}_{\mu}$: ν_{e} : $\overline{\nu}_{e}$ 1.00 : 0.05 : 0.017 : 0.007

 v_{τ} prompt contamination (from Ds decaying in the proton target) well below the Chorus sensitivity: v_{τ} CC ~3.3·10⁻⁶ v_{μ} CC

Analysis Strategy Electronic detector reconstruction

pre-selection of events and tracks to reduce the scanning load

Event location in emulsion

 location of tracks in the interface emulsion sheets and follow-up to the interaction vertex (Scanback)

Kink finding

- Several "automatic" algorithms → confirmation by operator eye-scan
- (NETscan: search for all tracks in 1.5x1.5x6.3 mm³)

Post-scanning analysis

 Kinematic study, kink Pt cut, precise momentum measurement with ET

Pre-Selection

(electronic detector only)

Automatic Emulsion Data Taking (pioneered by the Nagoya Chorus group)

Scanning speed

- Impressive progress of the automatic scanning speed since the Chorus start
- Almost one order of magnitude every two years

- Scanning a large emulsion volume with automatic systems is now feasible
- Emulsion data taking \rightarrow database of measured tracks

1.5 mm

Not passing through

Automatic Vertex Location

- Fiber Tracker \rightarrow Interface emulsion \rightarrow Target emulsion
- 100 μm most upstream of each target plate are scanned

- Follow-up track, plate by plate to the vertex
- Define the vertex plate as the first plate out of two consecutive plates were a track segment is not found

Kink Finding (Parent Search) (Large Angle-Long Path kinks)

 100 µm most upstream of the vertex plate are searched for all track segments in a cone of width = 1/P(GeV/c)

- Segments with small impact parameters w.r.t. the follow-up track are candidates track parent
 - \rightarrow Kink signature

→ Manual scanning measurements

Manual Scanning

Operator computer-assisted measurements for about 3% of located vertices which are kink candidates after automatic scanning processing \rightarrow detailed study of the kink topology

Data Flow

	5.06 [·] 10 ¹⁹	
	~93%	
	2,305 K	
1 m	Events with 1 negative muon and vertex predicted in emulsion	713,351
	P _{muon} < 30 GeV/c and angular cuts	477,625
	Events scanned	359,506
	Vertices located and kink search	136,357
	Event with vertex predicted in emulsion	335,398
Om	1 negative track with P[-20,-1] GeV/c and angular cuts	122,412
	Events scanned	82,551
	Vertices located and kink search	20,081

Expected Background Events	1μ	Ομ
Charm from $\overline{\nu}$ CC with missed primary lepton $\overline{\nu}_{\mu/e} N \rightarrow D^- X \mu^+/e^+$ $\rightarrow \mu^-/h^- + neutrals$	0.11	0.03
Charm from v CC with μ^+/h^+ wrong charge	< 0.03	0.69
Associated charm production in NC D^+/D^0 missed, associated to $D^- \rightarrow \mu^-/h^-$ + neutrals	< 0.05	
Hadronic "White kinks elastic scattering with no recoil or nuclear breakup		2.8
Prompt beam v_{τ}	< 0.1	

No kine cuts, only Pt>250MeV/c, Ldecay<5plates(1µ), 3plates(0µ)

White Kinks Evaluation

- Poor previous knowledge of $\lambda_{WK}(P,P_t)$. Difficult to extrapolate (sensitive to the operative definition of "whitness")
- Direct background evaluation from the 26 WK found in 243m of hadron tracks measured in Chorus \rightarrow WK measurement in the signal-free "side-band" L_{decay} > 3 plates (2.8mm)
- MC development to tune the cuts against the WK background
 - Fluka to model the hadron interactions in emulsion
 - Cuts to reproduce the minimum observable activity (the white-gray transition) in the Chorus emulsions

White Kinks Data vs MC We measured $\lambda_{WK}(P_t > 250 MeV/c) = 21.3\pm7 m$ This corresponds to 2.8±0.8 WK expected with a distance from the vertex L<3plates (2.8 mm)

Further WK Reduction

- Θ_t cut: τ opposite to the shower in the transverse plane
- Ldecay cut: τ flight length shorter and correlated with Phad

Cuts Optimisation

	L _{decay} effic	WK Charm neutrino	Charm			Φ_t cut		Exclusion	
			neutrino	antineut	BG _{tot}	N _{observ}	BG _{tot}	N _{observ}	v 10 ⁴
L _{3plates}	0.87	2.82	0.69	0.03	3.54	4	1.57	2	3.80
	0.90	2.56	0.69	0.04	3.29	6	1.46	2	3.78
	0.80	1.89	0.52	0.03	2.44	1	1.08	0	3.72
	0.70	0.96	0.52	0.02	1.50	1	0.66	Ο	3.75
	0.60	0.90	0.46	0.01	1.37	0	0.60	0	3.85
	0.50	0.65	0.23	0.01	0.88	0	0.39	0	3.92

Cuts optimisation by the a-priori criteria of maximising the exclusion power, independently from data.

Limit Evaluation

$$\boldsymbol{P}_{mt} = \sin^2 2\boldsymbol{q}_{mt} \cdot \sin^2 \left(\frac{1.27 \cdot \Delta m_{mt}^2 \cdot L}{E} \right)$$

$$P_{\mu t} = \frac{N_t}{\sum_{i=\{1\mu,0\mu\}} BR_i \cdot N_i \left\langle \frac{\boldsymbol{s}_t^{CC}}{\boldsymbol{s}_\mu^{CC}} \cdot \frac{A_i^t}{A_i^m} \cdot \boldsymbol{e}_i^{\text{kink}} \right\rangle}$$

$$m{s}_{t}^{CC}/m{s}_{m}^{CC} = N_{1\mu} = \left\langle A_{1\mu}^{t}/A_{1\mu}^{m} \right\rangle = e_{1\mu}^{kink} = N_{0\mu} = \left\langle A_{0\mu}^{t}/A_{0\mu}^{m} \right\rangle = e_{0\mu}^{kink}$$

0.53 143,742 0.97 0.39 20,081 2.3 0.13

Systematics

- Dominant sources are:
 - 1 Reconstruction and location efficiency
 - 2 Kink detection efficiency
 - largely cancels in the ratios
 - From MC, with cross-check on charm events and hadron interactions (80 founds, 84.4 expected)

$$P_{\mu t} = \frac{N_t}{\sum_{i=\{1\mu,0\mu\}} BR_i \cdot N_i \left\langle \frac{\boldsymbol{s}_t^{CC}}{\boldsymbol{s}_{\mu}^{CC}} \cdot \frac{\boldsymbol{A}_i^t}{\boldsymbol{A}_i^{tm}} \cdot \boldsymbol{e}_i^{kink} \right\rangle}$$

Systematics

 $\Delta \sigma_{\rm CC} = 10 \%$

- $\Delta \epsilon_{kink} = 15 \%$ for 1 μ , 20% for 0 μ
- $\Delta N_{WK} = 30\%$

 $\Delta N_{charm} = 30\%$

Exclusion Plot

 $P_{\mu\tau} < 3.4 \cdot 10^{-4}$ Or, for large Δm² sin²2θ_{μτ} < 6.8 \cdot 10^{-4}

Our exclusion power (sensitivity) is: $P_{\mu\tau} = 3.7 \cdot 10^{-4}$

Using a different approach^[2] to CL intervals we could have quoted $P_{\mu\tau} = 2.2 \cdot 10^{-4}$

[1] T.Junk, NIM A434 (1999) 435
[1] G.J.Feldman and R.D. Cousins, Phys.Rev. D57 (1998) 3873

$\nu_e \rightarrow \nu_{\tau}$ Exclusion Plot

Chorus Phase II Analyis

- New scanning methods (Netscan,...) with higher kink finding efficiency (also charm physics)
- Improved reconstruction (tracking, vertex finding, muon ID,momentum)
- Additional vertices located

Conclusions

- We have completed our first run of data analysis (phase I)
- We expected 0.11 background events in the 1 μ channel and 1.08 in the 0 μ channel with an exclusion power (sensitivity) of P $_{\mu\tau}$ =3.7.10⁻⁴ (including systematic)
- We observed no candidates, and we interpreted this in an excluded CR at 90%CL for $\nu_{\mu} \rightarrow \nu_{\tau}$ and for $\nu_{e} \rightarrow \nu_{\tau}$ oscillation.
- We have started our phase II analysis with the aim of reaching our design sensitivity of $P_{\mu\tau} = 10^{-4}$