Neutrino'2000

Neutrino Factories: Accelerator Facilities

E. Keil, CERN

~/MuMu/Doc/Sudbury/talk.pdf

Neutrino'2000 June 14, 2000

Proton Sources

Goals

- A few short high-intensity bunches and not many long low-intensity bunches
- Small proton losses for hands-on maintenance, avoiding remote handling
- Beam power W a few MW
- π/μ production insensitive to energy $2 \le E \le 30$ GeV at given beam power
- At given W proton flux $\dot{N} \propto 1/E$

Solutions

- Inspired by existing synchrotrons and spallation neutron sources
- SC linear accelerator with circular pulse compressor favoured at CERN
- Rapid-cycling synchrotron(s) favoured elsewhere
- Lower energy synchrotrons can cycle faster
- All synchrotrons have equal numbers of protons N in a cycle if frep E and W are constant
- Synchrotrons dominated by space charge

Neutrino'2000

Targetting and Capture Issues

- Target material: Solid graphite or liquid Hg jet
- Magneto-hydrodynamic effects on moving conductor in magnetic field
- Field level and lifetime of Bitter solenoid surrounded by s.c. solenoid
- Radiation damage & heating & stresses in coils shielding & dump
- Choice between solenoid channel and magnetic horns
- Maximum $p_{\perp} \approx 250 \text{ MeV/}c$ in solenoid given by field and aperture
- Maximum p_{\perp}/p_{\parallel} in horn given by outer radius
- ullet Capture μ with 200 MeV/ $c < p_{||} < 400$ MeV/c
- ullet Use correlation between p_{\parallel} and t for "phase rotation", i.e. to reduce energy spread either with induction linac at FNAL or with RF systems at CERN
- This correlation makes p bunch length ≈ 1 ns desirable

Targetry experiment E951 at BNL

- · Approved experiment coordinated by Kirk McDonald Princeton U
- Goals
 - Demonstrate performance of 1 MW target in high-field solenoid
 - Measure particle yield and compare to Monte Carlo codes
 - Demonstrate lifetime of solid and liquid targets
- R&D activities
 - Complete beam line A3 at BNL
 - Assess mechanical behaviour of target by thermal calculations
 - Develop 20 T solenoid and 70 MHz high-gradient RF cavity
 - Test solid target in beam
 - Test liquid Hg jet in high magnetic field at NHMFL in Florida
 - Complete tests with beam at 1014 p/pulse
- Tests of Hg jet at High Magnetic Field Laboratory in Grenoble?
- Particle production experiment HARP at CERN to include 2.2 GeV protons

μ Cooling

ullet Equation for cooling of normalised transverse emittance $arepsilon_n$ with characteristic scattering energy $E_s pprox 13.6$ MeV and radiation length L_r

$$\frac{\mathrm{d}\varepsilon_n}{\mathrm{d}s} = -\frac{\varepsilon_n}{\beta^2 E} \frac{\mathrm{d}E}{\mathrm{d}s} + \frac{\beta_\perp E_s^2}{2\beta^3 m_\mu c^2 L_r E}$$

- Liquid H₂ absorbers with Al or Al-Be alloy windows 4 MeV
- Challenging fluid dynamics and thermal modelling of absorber heating 100 W
- Compensate ionization loss by high-gradient RF system with Be windows or grids of Al tubes across beam aperture
- Surround absorber and RF cavities with solenoid focusing to achieve small β_{\perp}
- Muon scattering experiment at TRIUMF by U Birmingham IC RAL Riken UCLA collaboration aims at distinguishing between scattering theories
- · Everybody I know believes that ionization cooling works

Neutrino'2000 June 14, 2000

Cooling Simulation

225

ε₁ (mm) 10 8 6 4 2

Z (m)

Transverse Emittance

Longitudinal Emittance ε_z (mm) 70 60 40 30 20 10 0 225 275 Z (m) 325 375

- Particles with large ε_{\parallel} lost at entrance of cooling channel
- Constant ε_{\parallel} downstream
- Cooling of ε_{\perp} by factor ≈ 5 is less than hoped for
- Improve cooling

Cooling Experiments

- MUCOOL experiment at FNAL originally planned to demonstrate cooling at low emittance needed for μ⁺μ⁻ collider, adaptation to high emittance under way
- Any cooling experiment will be difficult because of needed accuracy of tracking devices
 - Expected emittance reduction is a few %
 - RMS scattering angles ≈ 1 mrad
 - Straggling small compared to 4 MeV
 - Mimimum material in tracking devices
- Some cooling demonstration essential for NF
 - MUCOOL was once proposed and funding agencies know about it
 - Provides focus for activity of study
 - Serves as basis for design of cooling section in NF
 - Demonstrates diagnostics for setting up real NF, not only cooling
- · Failure of experiment would be a severe blow for NF

Neutrino'2000 June 14, 2000

μ Acceleration

 Accelerating with a linear accelerator and one or more recirculating linear accelerators RLA similar to CEBAF is expensive

- RLA1 and RLA2 at CERN have 0.7 and 3.8 km of linear accelerators and 1 and 5 km circumference
- · Super-conducting RF only way of avoiding too large peak RF power
- R&D towards desirable higher gradient: smaller RLA, smaller decay losses, less beam loading, but also shorter bunch trains
- ullet Larger normalised emittance and/or lower injection energy implies lower $f_{
 m RF}$
- Larger initial energy spread implies fewer passes in RLA
- Severe beam loading at repetition rates of few tens of Hz
- Alternatives
 - An-isochronous RLA accelerating off crest of RF waveform
 - Isochronous RLA accelerating on crest of RF waveform

μ Storage Ring Parameters

	FNAL	CERN	
Energy	50	50	GeV
Shape	Racetrack	Triangle or Bowtie	
Distance to detector(s)	≈ 3000	1000 & 3000	km
Year	$2 \cdot 10^7$	107	s
Design ν fluence/detector	$2\cdot 10^{20}$	$2.8\cdot 10^{20}$	1/y
Normalised emittance ϵ_{xn}	3.2	1.67	mm
Relative RMS energy spread σ_e	1.0	0.5	%
Circumference	1753	2075 or 2008	m

- ullet CERN designs aim for 2.8 times the u fluence/s of FNAL design
- CERN designs are more demanding than FNAL design on p source, targetting, collection, cooling, shielding
- CERN designs are less demanding on emittance ε_{xn}, momentum spread σ_e, physical and dynamic aperture for acceleration and storage

Geometries of $\mu SR - (x, z)$ -Projection

Table name = TWISS

Neutrino'2000

Energy Deposition along μ SR

- All muons arriving in μ SR decay there
- Power in μ^{\pm} beam ≈ 0.8 MW, hence power in $e^{\pm} \approx 0.28$ MW or ≈ 140 W/m or 70 kW from 500 m of straight section in CERN design
- Warm W liner inside super-conducting arc magnets absorbs most of this power
- Shower simulations by Mokhov show about 7 W/m in cold mass mass at FNAL
- Possible local enhancement of power deposition at entrance of arcs, because e[±] travel through long straight section and get lost in dipoles at entrance of arcs by energy loss due to synchrotron radiation
- · Simulations for CERN design show that
 - 45 kW deposited in long straight section at room temperature
 ⇒ use water cooled vacuum chamber with thick walls or absorbers
 - 21 kW deposited in matching section with mixture of room temperature and super-conducting magnets ⇒ use absorbers
 - 3.5 kW deposited in 3 or 4 first ⇒ special dipoles of dispersion suppressors
 - Negligible extra power beyond 140 W/m deposited in remainder of arcs

μ Storage Ring Issues

- First cycle of optical work essentially done
- Tracking realistic distributions of more than 10⁴ muons through acceleration and storage ring for full life time is easy
- Automated generation of data with Mathematica procedures that guarantee correct geometry, thin-element strengths for most optical modules, and feed data into optical programs for finite-element matching, tracking, etc., implemented
- Engineers study components and their packaging, recommend magnetic fields B, propose cheaper alternatives, etc.
- Reconsider values for normalised emittance ε_n, relative momentum spread δ, muon fluence N, etc.
- Another round of optical studies, using results of engineering and optimisation, and decisions on ν-factory and detector sites

Status of Neutrino Factory Studies

Parameter	pjk	FNAL	CERN	Units
Proton beam power	4	1	4	MW
Proton beam energy	24	16	2.2	GeV
Conversion factor	0.004	0.0011	0.0023	μ/p·GeV
Year	107	$2 \cdot 10^7$	107	8
Observed muon fluence into μ SR	10^{21}	$1.6\cdot 10^{20}$	$5.8\cdot 10^{20}$	1/a
Expected muon fluence into μ SR	10^{21}	$5.3\cdot 10^{20}$	10^{21}	1/a

- Preliminary CERN figures
- \bullet High-performance ν factory study launched at BNL

Future Neutrino Factory R&D

- Assume that proof of principle will be achieved soon
- Put less emphasis on existence proofs and internal optimisation of modules
- Put more emphasis on optimisation across modules
- · Consider shifting module boundaries
- Vary muon energy E
- Overall optimisation including detector(s), using product IM of muon fluence I and fiducial detector mass M far away
- ullet Consider building NF in stages, increasing muon fluence I and energy E in steps
- · R&D for NF offers wide scope for collaboration on global scale