EVALUATION OF TITANIUM SUBLIMATION PUMPS

E. PRICE

AND

J. KLEN

1/21/85
Titanium Sublimation Pumps (TSP's) are to be used to attain the ultra high vacuum necessary to operate an accumulator. Tests were conducted to gain a "hands on" understanding of their operation, and evaluate the controllers and power supplies needed for their operation.

The test chamber consisted of a 270 litre/sec ion pump, two ion gauges, a variable leak valve and an 8" TSP chamber. (see Fig. 1)

The vacuum in the chamber was maintained at 10^{-7} TORR, during tests, by opening the variable leak valve, using dry N$_2$ as an inlet gas. This was done in order to achieve a pressure where changes in chamber pressure, due to pumping of TSP, could be observed. Pressure and filament current data were chart recorded. Filaments were activated for periods of 90 seconds at 15 minute intervals. Ion gauges were calibrated.

Constant Voltage Tests

A commercial control unit (Varian #922-0043), was used in conjunction with a Varian TSP cartridge, (916-0017). Two filaments were cycled just over 500 times before drops in pumping capability were observed. (see Fig. 2a and Fig. 2b) Surge and operating filament current values decreased proportionally throughout cycling. Surge current dropped after about 7 seconds to an operating current value. for each cycle. (Fig. 3)

Modification of TSP Cartridge for Constant Emission

In order to evaluate the constant emission system, which uses filament electron emission as a means of measuring titanium sublimation rate, modification of the cartridge was necessary to have a means of "collecting" the electrons emitted from the hot filament. This was accomplished by the replacement of the center filament with a 1/2" s.s. tube, collector of length approximately proportional to that of the filaments. (see Fig. 4)

Initial cycling of the modified cartridge showed that sublimed titanium would cause shorting between the filaments and the collector. To prevent this a ceramic shield was placed at the base of the collector. This protected the area surrounding the base from becoming coated with titanium; thus preventing shorting.

Additional cycling showed that poor electrical conductivity existed at the external connections of the cartridge. To remedy this the normally loose fitting s.s. sleeves were silver soldered to the 6 gauge braided wire.

Tests of Modified Cartridge Using Various Emission Currents

Tests were performed using various emission current values ranging from 4 ma to 20 ma. A Fermi constant electron emission controller was used in conjunction with the modified Varian cartridge (#916-0017). Emission values and corresponding filament currents are as follows.
Current & Current

<table>
<thead>
<tr>
<th>4 ma</th>
<th>36.6 Amps (RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>37.1</td>
</tr>
<tr>
<td>8</td>
<td>37.5</td>
</tr>
<tr>
<td>10</td>
<td>38.1</td>
</tr>
<tr>
<td>12</td>
<td>38.5</td>
</tr>
<tr>
<td>15</td>
<td>38.8</td>
</tr>
</tbody>
</table>

Values below 4 ma were not tested because of obvious losses in pumping capability. All filaments melted at 20 ma emission. An intermediate value of 10 ma was chosen as the optimum emission value, being the maximum sublimation rate for a minimum amount of current. Sublimation rate was based on rate of pressure rise in the vacuum chamber after sublimation was completed and all active titanium saturated. (see Table 1)

Filament Life

An additional four filaments were cycled at 10 ma emission at a pressure of 10^-7 TORR and 10^-15 TORR. All cycled over 1000 times showing little loss in pumping capability. After ~500 cycles, operating filament current began to rise as surge current continued to fall. This inverse relation continued to ~850 cycles. At this point the filament current seemed to become constant. The difference between surge and operating filament currents (I_s-I_o) decreased continually throughout cycling. This difference could possibly be used to determine filament life, as (I_s-I_o) approaches zero. (see Fig. 5 and Fig. 6)

Degas Testing

New filaments were observed through a port hole in the chamber while power was being applied. Degassing was achieved at 25 amps RMS with filaments connected in parallel. From first applying power, 90 seconds elapsed before a soft orange illumination of filament was observed. Outgassing continued for 30 minutes.

Estimation of Quantity Gas Pumped by TSP

Ion gauges were degassed and calibrated in order to calculated pumping speeds. Chamber pressure was kept at 10^-7 TORR at P_2. (see Fig. 1) TSP was cycled at 30 minute intervals with an ON time of 90 seconds. The interval between sublimations was increased to 30 minutes in order to insure total saturation of titanium between cycles. At 10^-7 TORR, it took approximately 20 minutes to saturate all of the titanium.

Using Fischer-Mommsen's method pumping speeds were calculated at times of peak sublimation and total saturation. (No active titanium-ion pump only!) The difference between the two, at various cycle times, gave an average pumping speed of 300 litre/sec at 10^-7 TORR for the TSP, given this particular chamber geometry and pump opening. (see Table 2)
The amount of gas pumped per filament over a 1000 cycle period was calculated to be 15.8 TORR litre.

Saturation Times at Various Emission Values

<table>
<thead>
<tr>
<th>Emission Current</th>
<th>Operating Current</th>
<th>Base Pressure Before Sublimation</th>
<th>Ultimate Pressure After Sublimation</th>
<th>Rate of Rise to Base Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 ma - 38.8 Amps RMS</td>
<td>5.2x10^-7(TORR)</td>
<td>2.2x10^-7(TORR)</td>
<td>8.7(min)</td>
<td></td>
</tr>
<tr>
<td>12 ma - 38.5</td>
<td>5.2x10^-7</td>
<td>2.2x10^-7</td>
<td>10.4(min)</td>
<td></td>
</tr>
<tr>
<td>10 ma - 38.1</td>
<td>5.2x10^-7</td>
<td>2.2x10^-7</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td>8 ma - 37.6</td>
<td>5.2x10^-7</td>
<td>2.2x10^-7</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>5 ma - 37.1</td>
<td>5.2x10^-7</td>
<td>2.3x10^-7</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>7 ma - 36.6</td>
<td>5.2x10^-7</td>
<td>2.3x10^-7</td>
<td>5.1</td>
<td></td>
</tr>
</tbody>
</table>

Effective Pumping Speeds (Litre/Sec)

<table>
<thead>
<tr>
<th># Cycles</th>
<th>SIOP+TSP</th>
<th>SION</th>
<th>SETSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>540 l/s</td>
<td>231 l/s</td>
<td>309 l/s</td>
</tr>
<tr>
<td>350</td>
<td>511 l/s</td>
<td>226 l/s</td>
<td>285 l/s</td>
</tr>
<tr>
<td>500</td>
<td>569 l/s</td>
<td>270 l/s</td>
<td>299 l/s</td>
</tr>
<tr>
<td>550</td>
<td>540 l/s</td>
<td>257 l/s</td>
<td>283 l/s</td>
</tr>
<tr>
<td>600</td>
<td>541 l/s</td>
<td>250 l/s</td>
<td>291 l/s</td>
</tr>
<tr>
<td>650</td>
<td>576 l/s</td>
<td>243 l/s</td>
<td>333 l/s</td>
</tr>
<tr>
<td>850</td>
<td>540 l/s</td>
<td>238 l/s</td>
<td>302 l/s</td>
</tr>
<tr>
<td>900</td>
<td>540 l/s</td>
<td>237 l/s</td>
<td>303 l/s</td>
</tr>
</tbody>
</table>

Average 300 l/s
Fischer-Mammel
Test done w/ TSP & Ion Pump

Variable Leak Valve

P - Ion Gauge

Orifice / Conductance of 10% -

Roughing Valve

P2

TSP Chamber

8"

270\% Ion Pump

Fig. 1
Constant Voltage Evaluation
After 5 Sublimation Cycles

Operating Current
$[I_{o}] = 45 \text{ A (RMS)}$

Pressure $\& P_a$
$
\rightarrow 0 \text{ Torr}$

Chart Speed
$
\rightarrow 5 \frac{\text{MM}}{\text{MIN}}$

Filament ON Time
Approximately 90 sec

Surge Current
$[I_{s}] = 99 \text{ A (RMS)}$
Constant Voltage Evaluation

After 500 Sublimation Cycles

Operating Current
\[I = 36.5 \text{ A (rms)} \]

Pressure and \(P_2 \)
\[P_2 = 7 \text{ TORR} \]

Chamfer Speed
\[\frac{\text{cm}}{\text{min}} \]

Pressure vs Time

Surge Current
\[I_s = 41.5 \text{ A (rms)} \]

Filament ON Time
Approximately 90 sec

Fig. 2b
Fig. 3

Constant Voltage
Filament Currents vs Cycles

Surge Current
Generating Current
Figure 4. Outline Drawing of Titanium Sublimation Cartridge
with Collector Modification for Constant Electron Emission System
Electron Emission Filament Currents vs. # Cycles

Cycles

Cycles

Operating Current

Source Current

Fig. 6