Magnet Workshop Summary

P. Wanderer vlhc Annual Meeting June 28-30, 1999

HEPAP SUBPANEL ('98)

"The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC."

- coordinated (⇒ workshops)
- identify design concepts
- economically and technically viable

Focus of talk

- "Snapshot" magnet r&d last fall
 - new ideas

- "Context"
 - historical (highlights of magnet R&D)
 - related technical (accelerator physics ...)

vlhc Magnet Workshop - 11/98

- Port Jefferson NY
- 74 attendees
- 2 1/2 days + ...
- 5 magnet groups/ideas
- Very different idea:
 - full-energy injector
 - ⇒ DC collider rings

- Other experts:
 - accelerator physics
 - accelerator systems
 - magnet mfgr. (2)
 - superconductor:
 - R&D labs (4)
 - manufacturers (3)

Magnet R&D + Accel. Physics:

size of magnetic field errors

Look back:

- SSC aperture increase 40 mm ⇒ 50 mm
- LHC aperture increase 50 mm ⇒ 56 mm
- ⇒ early discussion with accelerator physics

Look ahead:

- do systematic errors dominate randoms?
- if so, accelerator analysis much easier

Magnet R&D + Accel. Systems

- High fields (~12T) ⇒ synchrotron rad.
 - relaxed tolerance on systematic errors
 - heat
 - gas desorption
- Low fields (2T)
 - low heat leak
 - control of long cryogenic loops
- ⇒ Early study of integrated system

Magnet R&D + SC Experts

- Look back: developing NbTi (flexible)
 - "zebra" cable (Tevatron)
 - current capacity increased
 - DOE annual conductor workshops
 - R&D at labs, especially U. of Wisc.
- Look ahead: new conductors (B>10T)
 - Nb₃Sn, High Temp Superconductor (HTS)
 - strain sensitive, larger filaments
 - ⇒ early development of conductor

Nb₃Sn "context"

- ITER production:
 - good news:
 - one specification, several vendors, lots made
 - bad news:
 - AC specifications not a focus
 - conductor specifications frozen early
- Status:
 - R&D needed for HEP specifications

HTS: High risk/high reward

- Commercial work: BSCCO
 - HEP: leads for Tevatron, LHC magnets
 - transmission lines, motors, ...
 - current density low, increasing with time
- Laboratory scale: YBCO
 - current density high enough for HEP
 - YBCO small fraction of support matrix

Five New Magnet Ideas

- Minimize $$/T.m \Rightarrow 2T$, NbTi
- Near-term high field material + 2 layer cosθ experience ⇒ 12T, Nb3Sn
- Near-term high field material + segmented conductor support ⇒ 16T, Nb3Sn
- High field material + simple coils + 2 apertures ⇒ 12T, Nb3Sn & 12T, HTS

Magnet R&D Underway 11/98

Institution	Magnet type	Bo (T)	Conductor
BNL	Common coil	12.5	HTS
Berkeley	Common coil	12.5	Nb3Sn
Fermilab –	Cos theta	11	Nb3Sn
high			
Fermilab –	Transmission	2	NbTi or
low	line/pipetron		•••
Texas	Block/Stress	16	Nb3Sn
A&M	management		

Common Coil Design (The Original Concept)

- Simple 2-d geometry with large bend radius (no complex 3-d ends)
- Conductor friendly (suitable for brittle materials - most are, including HTS tapes and cables)
- Compact (compared to single aperture D20 magnet, half the yoke size for two apertures)
- Block design (for large Lorentz forces at high fields)
 - Efficient and methodical R&D due to simple & modular design
- Minimum requirements on big expensive tooling and labor
 - Lower cost magnets expected

Magnet work at BNL

- Focus on HTS tape (eventually YBCO?)
- HTS BSCCO tape, successful coil test,
 - 30 cm racetrack coils
 - 30 cm quad coils made in industry
- Common coil magnet (1 m):
 - NbTi coils produced ~ 6T background field
 - Nb₃Sn coils reached expected current
 - Nb₃Sn, HTS tape: same size, strain tolerance

BNL Common Coils

- HTS coil (30 cm)
 - tape
- Nb₃Sn coils (1 m)
 - tape
- NbTi coil (1 m)
 - background field
 - SSC cable

BSCCO-2223 coil (30cm)

Magnet work at Berkeley

- Common coil design, Nb₃Sn cable
 - wind and react
- First magnet (existing material): reach conductor limit (~ 6T) - no training
- Immediate future: better Nb₃Sn, 14T
- Further off: HTS
- Common coil "system": a booster?

A Common Coil Magnet System for VLHC

(May Eliminate the Need of a High Energy Booster)

Inject here at low field and A 4-in-1 magnet for accelerate to medium field a 2-in-1 ring Superconductor Transfer here at medium field and accelerate to high field Iron yoke Conductor dominated aperture Good at high field (1.5-15T) 91873 nodes 472 regions Iron dominated aperture Good at low field (0.1-1.5T) -50'0 50'0 150'0 250'0 350'0 450'0 550'0 3/Nov/1993 12:10:22 Page 6 Compact size

Ramesh Gupta

BERKELEY LAB

Innovative Magnet Designs for Future Colliders

High-field work at Fermilab

- Decision to reenter magnet R&D
- Nb₃Sn only feasible high field material
 - two-layer magnet (cost effective)
 - $-B_0 \sim 11 T \Rightarrow$ some radiation damping
- Activities (10 FTE's):
 - purchase improved superconductor
 - facility work: conductor test, reaction oven
 - study magnet designs, materials

FNAL High Field, Cosθ

 Use lessons learned in previous cos θ magnets (mostly NbTi)

- Brittle materials:
 - wind & react vs react& wind
 - coil impregnation

Low-field work at Fermilab

- Goal: minimize \$/T m
- Superferric (warm iron)
- Single turn excites both apertures
- Issues:
 - Ring circumference:
 - 500 650 km (vs. 100 km)!
 - Aperture (field quality, vacuum)

Transmission Line Magnet

Stress management at Texas

- 16 T not possible with cosθ design
 - azimuthal Lorentz forces accumulate
- Design structure to prevent accumulation of forces (stress) ⇒
 - straight-section: block coils
 - ends: bend midplane coil in low B region
- Status (11/98): component development

Texas A&M 16T Dipole

- Stress management
 - ribs and plates take the cumulative load
- Dual/single aperture
- Graded conductor
 - wind/react Nb₃Sn
 - improved Nb₃Sn
 - NbTi

Texas A&M Building Block

- "Devil is in details"
- Laminar spring
 maintains preload
 under all conditions
 (warm, cold, power)
- Mica slip plane⇒ no stick-slip motion
- Quench protection heater

Magnet R&D in Brief

- Short magnets tested:
 - LBL
 - -BNL
- Magnet design, development underway:
 - Fermilab high field
 - Fermilab low field
 - Texas A&M