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ABSTRACT

Many of the unexplained phenomena in particle physics and cosmology today, such as the

microphysical nature of dark matter, the strong CP problem, and the origin of the neutrino

masses, can be resolved by the existence of a light (∼ GeV), weakly-coupled hidden sector of

new physics. Such hidden sectors often predict the existence of “long-lived" particles (LLPs)

that travel a far distance from production before decaying into Standard Model particles.

Neutrino oscillation experiments, which combine intense particle beams with precise imaging

detectors, are well equipped to probe LLP models with new sensitivity. This thesis details a

search for a long-lived particle decaying to two muons with the ICARUS liquid argon time

projection chamber (LArTPC) neutrino detector in the Short-Baseline Neutrino program at

Fermilab. The calibration of the ICARUS time projection chamber (TPC) which enables

the search is also presented. Notably, the calibration measures an angular dependence in

electron-ion recombination in argon, a novel observation relevant for the detector physics of

LArTPCs. The search is performed using data taken with the Neutrinos at the Main Injector

(NuMI) beam, with an exposure of 2.41× 1020 protons on target. No significant excess over

background is observed, and we set world-leading limits on two new physics models that

predict this process: the Higgs portal scalar and a heavy axion model. We also present the

sensitivity in a model-independent way applicable to any new physics model predicting the

process K → π + S(→ µµ), for a long-lived particle S.
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CHAPTER 1

NEUTRINO OSCILLATIONS AND THE INTENSITY

FRONTIER

Neutrinos are the particle of big numbers. Amongst the zoo of fundamental particles uncov-

ered in the last century and a quarter since J.J. Thompson’s 1897 discovery of the electron,

the neutrino stands out for its ubiquity in nature and distance in scale from everyday matter.

About 100 trillion neutrinos travel through our bodies each second, originating from a vari-

ety of sources natural and man-made. Among these are counted: the sun, nuclear reactors,

the earth’s crust, bananas, and notably, outside Chicago, from acccelerator beams. These

large fluxes pass us by without notice due to the large distances a neutrino will travel before

interacting. A neutrino from a nuclear recator would travel through about 200 trillion miles

(30 light years) of water, on averge, before interacting. This extremely small interaction

strength led the scientist who originally suggested its existence, Wolfgang Pauli, to believe

it would never be detected [1].

The neutrino was detected, twenty-six years after its postulation, in 1956 by Clyde Cowan

and Fred Reines from a nuclear reactor source [2]. Today, a myriad number of neutrino

sources and detectors are paired to perform experiments studying the particle. Many of

these are directed towards studying the astounding property of neutrino oscillation: there

are three types, or “flavors” of neutrino, and left alone a neutrino particle will swing back and

forth between all three. Neutrino oscillation experiments require intense fluxes of neutrinos

to impinge on large, sensitive detectors. They therefore offer the opportunity to search for

new particles that would be as weakly coupled to normal matter as neutrinos are, or even

moreso. Such particles could explain some of the outstanding problems in particle physics

today, such as the microphysical nature of dark matter.
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1.1 Neutrino Oscillations

Neutrinos oscillate because they have mass, and their mass eigenstates differ from the flavor

eigenstates. These two bases can be related by a unitary matrix U

|να〉 =
∑
i

Uαi |νi〉 , (1.1)

where α ∈ e, µ, τ indexes the flavor states, i ∈ 1, 2, 3 indexes the mass state, and U is the

Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [3, 4, 5, 6]. Neutrinos are produced in

the weak interaction in a flavor eigenstate |να〉, which is a combination of mass eigenstates

given by equation 1.1. As the neutrino travels with 4-momentum pµ a 4-length xµ, each mass

eigenstate picks up a separate phase proportional to: pµxµ = Et−~p·~x ≈ (p+m2/2p)L−pL =

Lm2/2p ≈ Lm2/2E (in units where ~ = c = 1). The approximation is made that the

neutrino is nearly massless and travelling nearly at the speed of light. Thus after travelling

a distance L, a neutrino in an initial flavor eigenstate |να〉 will have oscillated into a state

given by

|ν(L)〉 =
∑
j

e
−iLm2

j/2EU∗αj |να〉 . (1.2)

When it is detected, it is projected into a flavor state β. The oscillation probability from

the state α→ β is

Pα→β =
∣∣〈ν(L)|νβ〉

∣∣2 =

∣∣∣∣∣∣
∑
j

U∗αjUβje
−iLm2

j/2E

∣∣∣∣∣∣
2

. (1.3)

In the simple case where there are only two oscillating states with flavors (α, β) and masses

m1,m2, the neutrino oscillation is described by the disappearance probability Pα→α and the

appearance probability Pα→β = 1− Pα→α. In this limit, the PMNS matrix is described by
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a single mixing angle θ

U =

cosθ −sinθ
sinθ cosθ

 . (1.4)

The appearance probability is (adding in numerical factors)

Pα→β = sin2 (2θ) sin2
(

1.27
∆m2

eV2

L

km
GeV
E

)
. (1.5)

Thus, in the two neutrino case, there are two measurable parameters: the mass difference

∆m2(≡ m2
1 −m

2
2), and the mixing angle θ. The mixing angle controls the amplitude of the

oscillation, while the mass difference determines its frequency. In the three neutrino case,

there are three mass differences and three mixing angles; one for each pair of neutrinos. Fur-

thermore, when there are three neutrinos the PMNS matrix also has an additional complex

phase δCP. This phase, if non-zero, would violate charge-parity (CP) symmetry: it would

cause neutrinos to oscillate in a different pattern than their anti-particle (anti-neutrino)

counterparts.

1.2 Neutrino Oscillation Experiments

The imprint of neutrino oscillation was first observed in the Homestake experiment pioneered

by Raymond Davis which detected, for the first time, the flux of neutrinos from the sun [7].

Collecting data over many decades, it observed a long running deficit of the expected number

of neutrinos by about two thirds. We now know that this is because the flux of solar neutrinos,

which when produced is entirely in the electron (e) flavor state, had partially oscillated into

the other two flavors muon (µ) and tau (τ). The detector was only sensitive to the electron

flavor component of the flux.

In the 1990s, new experiments collected increasingly convincing data supporting the

neutrino oscillation picture. The SNO experiment measured separately both the electron
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and total component of the solar neutrino flux. The electron component confirmed the

results of the Homestake experiment, while the total flux matched the expectation of the

rate from the sun [8, 9]. Alongside this evidence, the Super-Kamiokande experiment observed

the oscillation of neutrinos produced in the atmosphere as they travelled through the earth

[10]. The two experiments were together awarded the 2015 Nobel prize in physics for these

discoveries.

Further experiments have solidified this picture using artificial neutrino sources. Neu-

trinos can be produced in particle accelerators. In the “super-beam” technology, an intense

proton beam is directed to a fixed target. In the spray of produced particles, pions and kaons

decay to neutrinos which constitute the beam. Experiments using these sources are built

with a “near” detector, which is situated close to the source and measures the rate before

oscillation, and a “far” detector which measures the oscillated rate. This experimental design

has been employed with accelerator neutrino sources (such as by MINOS [11], T2K [12], and

NOvA [13]), as well nuclear reactor neutrino sources, to provide precise precise measure-

ments of neutrino oscillations which established the three neutrino, PMNS picture. The

mixing angles between the three flavor eigenstates are [14] (rounded to the nearest degree)

θ12 ∼ 33◦

θ23 ∼ 49◦

θ13 ∼ 9◦ .

(1.6)

The mixing angles are large and produce significant oscillation effects. They are much larger

than the equivalent mixing angles in the quark sector, which could be a clue of the fields

which give the neutrinos their mass [15]. The mass differences between the three mass
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eigenstates are [14] (rounded to two significant figures)

∆m2
21 ∼ 7.4× 10−5eV2

|∆m2
31| ≈ |∆m

2
32| ∼ 2.5× 10−3eV2 .

(1.7)

The signs of ∆m2
31 and ∆m2

32 are not known. For a 1 GeV neutrino, typical of the energy

of neutrinos in accelerator sources, the atmospheric mass splitting (∆m2
31,∆m

2
32) drives an

oscillation that reaches its maximum (i.e. its quarter cycle) at a baseline of 500 km, while

the solar mass splitting (∆m2
21) oscillation does so at a baseline of 16 000 km.

1.3 Experimental Questions in Neutrino Oscillations

There are a couple open questions left to resolve in the neutrino oscillation picture. First,

the CP-violating phase of the PMNS matrix has not been measured. The most recent

measurements from T2K and NOvA allow any value at the 3σ confidence level [14, 16, 17].

The neutrino mass hierarchy, as determined by the sign of ∆m2
31 and ∆m2

32, is also not

known. Finally, the three neutrino oscillation picture does not accommodate the results of all

neutrino experiments. A series of “short-baseline anomaly” measurements have found results

in tension with the three neutrino picture. These anomalies have found results indicative

of neutrino oscillations on a shorter baseline than what the three neutrino picture allows:

∼ 0.1−1 km, for a 1 GeV neutrino. An oscillation explanation for the anomalies therefore

would require a new oscillation period from an additional mass difference, and thus a fourth

neutrino state. The number of active (weakly-interacting) neutrinos is fixed very precisely

to three by the measurements of (e.g.) the Z boson width [18, 19], so this new neutrino state

would have to be sterile: not participating in the weak interaction. It would therefore only

be observable through its mixing with the active neutrino states.

The state of the short-baseline anomalies presents an evolving and muddled picture.
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Significant anomalies have been observed across a variety of neutrino sources such as accel-

erators [20, 21], radioactive nuclei [22, 23, 24], and nuclear reactors [25]. These anomalies

stand alongside other searches for short baseline oscillations that have found null results

[26, 27, 28], often in tension with the anomalies [29]. The anomalous results almost all rely

on an estimation of the neutrino interaction rate without the presence of a near-er detector

to calibrate the unoscillated rate. This estimation is a challenging exercise that is fraught

with possibility for experimenter error. Indeed, in the case of the reactor neutrino anomaly,

recent results have indicated such a mis-estimation of the expected rate was in fact the cause

[30, 31]. However, in the case of the radioactive nuclei sources, the anomaly has persisted

and strengthened with the results of the BEST experiment [24]. In the accelerator case,

the MicroBooNE experiment has found a null result [32] which is still limited in statistical

power compared to the size of the anomalies [33]. In a different vein, IceCube has performed

a search with high energy atmospheric neutrinos, which puts limits on some areas of the

parameter space but also finds its own (weak) anomaly, at the 90% CL [34].

There is today an ongoing, international program of neutrino experiments dedicated to

resolving these open questions. The long-baseline experiments T2HK in Japan [35] and

DUNE in the United States [36] will in the coming decades measure δCP with unprecedented

sensitivity and determine the neutrino mass ordering. Operating now, the Short-Baseline

Neutrino (SBN) program at Fermilab [37, 38] will probe the short-baseline anomaly with

an accelerator source. The program consists of the Short-Baseline Near Detector (SBND)

and the ICARUS far detector. The two detectors are placed at baselines necessary to do a

near-far oscillation search specifically for a short baseline oscillation. This thesis is the first

particle physics result to come out of the SBN program. It, however, does not address the

question of the short-baseline anomalies. Instead, it is a search for a different sort of new

physics that could also be visible at SBN.
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1.4 Searching for a Hidden Sector at the Short-Baseline Neutrino

Program

The set of particles we have discovered between the 1897 discovery of the electron and the

2012 discovery of the Higgs boson, as organized into the Standard Model of particle physics,

remains incomplete. There are a number of phenomena for which they do not account. One

of those is neutrino mass, its existence as indicated by neutrino oscillations. Neutrinos do not

necessarily obtain their mass from the Higgs field as do the other Standard Model particles,

and so there may be a new field which endows the particles with mass. In addition, the

existence of a neutrino mass requires that there be sterile, right-handed neutrino states in

addition to the active neutrinos of the Standard Model. The short-baseline anomalies are a

hint at a 1 eV sterile neutrino, but the new states could arise at any mass. In particular, the

type-I see-saw mechanism indicates the possibility of a sterile neutrino with a mass ∼1 GeV

and a mixing with active neutrinos ∼ 10−10 [39] (such a particle would by itself be in tension

with cosmological measurements of big bang nucleosynthesis [40]; these can be avoided with

the introduction of additional fields [41]). Such a sterile neutrino would be an example of a

“hidden sector” of new physics.

Sterile neutrinos are just one example of a possible hidden sector. Many of the unex-

plained phenomena in particle physics and cosmology today, such as the microphysical nature

of dark matter and the strong CP problem, in addition to the origin of the neutrino masses,

can be resolved by the existence of a light (∼ GeV), weekly-coupled hidden sector of new

physics [42, 43, 44, 45]. Such hidden sectors often predict the existence of “long-lived” parti-

cles (LLPs) which can be produced in intense particle beams and travel a far distance before

decaying into Standard Model particles. As will be described in detail in chapter 3, the SBN

program relies on sensitive liquid argon time projection chamber (LArTPC) detectors placed

in intense “super-beams” of neutrinos. This is the same combination of technologies that will

be applied in the long-baseline DUNE experiment in the coming decades. This combination
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enables sensitivity to a wide variety of LLP models [46, 47, 48, 49, 50, 51].

This thesis presents a search for a physics process that would be induced by LLPs:

kaon decay to a scalar LLP which decays to two muons. As is discussed in chapter 2, this

process is sensitive to a number of hidden sector models. The search is performed with the

ICARUS detector in the SBN program, which is introduced in chapter 3. This thesis also

includes the calibration and preparation of the ICARUS dataset necessary to perform the

LLP search. First, the application of the main source for these calibrations, cosmic muons,

are reviewed in chapter 4. This chapter includes the description of a new effect noted by the

author important for calibrating muon energy loss. The calibration of the ICARUS detector

is covered in chapters 5 and 6. Novel calibration techniques and a new effect of highly

ionizing particles in argon are noted. The results of the calibration are applied in an event

selection for di-muon LLPs, which is introduced in chapter 7. This event selection identifies

di-muon decays against backgrounds, which originate from neutrino interactions in ICARUS.

The event selection is validated in sideband samples, as covered in chapter 8. Systematic

uncertainties arise in the event selection from predictions of the neutrino background and

scalar signal rates. These are detailed in chapter 9, alongside the statistical procedure used

to identify any new physics signal and exclude LLP parameter space. Finally, the result of

the analysis is shown in chapter 10. Chapter 11 concludes the thesis.

The headline result of this thesis is the search for new physics in kaon induced LLPs.

The studies presented here also reach beyond just this core result. The calibration of the

ICARUS data which enables the search will also be used in the broader program of particle

physics performed by the detector. In particular, with the start of operation of the Short-

Baseline Near Detector (SBND), data from the two detectors can be combined to perform

the SBN search for short-baseline oscillations. The calibration of ICARUS includes new tech-

niques and describes novel phenomena in the detector physics of liquid argon time projection

chambers. This detector technology will also underlie future neutrino experiments such as
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DUNE, and thus the techniques we develop can be applied there. In addition, searching for

hidden portals at neutrino experiments is a recent phenomenon. The statistical methods we

apply in the LLP search include techniques novel, to our knowledge, in their application at

neutrino experiments (though they are well-trodden ideas for collider experiments). Future

neutrino experiments, such as DUNE, will be able to probe hidden sector physics with an

even greater sensitivity. The techniques that we explore and apply at SBN an be useful for

those future searches.
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CHAPTER 2

HIDDEN SECTOR MODELS FOR LONG-LIVED DI-MUON

RESONANCES IN KAON DECAY

In this chapter, we develop two hidden sector models that contain a new scalar particle that

would be produced in kaon decay and decay to two muons: the Higgs Portal Scalar (HPS)

[47], and axion-like particle (ALP) decay [48, 52, 53]. These are introduced in sections 2.1

and 2.2 respectively.

The range of new physics models that can be probed at beam dump and neutrino ex-

periments is an active area of research. Accordingly, we orient this search in a model-

independent way, sensitive to any new physics model that predicts a rate for the process

K → π + S(→ µµ), for some long-lived particle S [54]. Section 2.3 discusses this general

scenario.

2.1 Higgs Portal Scalar

In the Higgs Portal Scalar (HPS) model, a new scalar particle is introduced with couplings

to the Standard Model through a small mixing with the Standard Model Higgs Boson. This

mixing endows the scalar with couplings to all Standard Model particles proportional to

their Yukawa coupling. Such a scalar is a candidate for a mediator between the Standard

Model and a dark matter particle [55]. The existence of an additional mediator depletes

the population of dark matter in the early universe, which avoids the issue of thermal over-

production of dark matter in the case that the dark matter particle is light (.2 GeV) [56].

Below, we detail the HPS model and its associated branching ratio and decay widths. These

are also plotted in figure 2.1.
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Figure 2.1: (Left) Branching ratio for HPS production in kaon decay. (Right) Widths for
HPS decays.

The Lagrangian for this model is [47]

L ⊃ −1

2
m2
sS

2 + sinθ S2

2m2
W

v
W+
µ W

µ + +
m2
Z

v
ZµZ

µ −
∑
f

mf

v
f̄f

 , (2.1)

where S is the scalar field with mass mS and mixing θ, v is the Higgs vacuum expectation

value, W+
µ is the W boson, Z is the Z boson, and f indexes the Standard Model fermions.

In the NuMI beam, the HPS would be produced in the decays of charged and long kaons.

The decay width to the scalar is given by [47]

Γ
(
K± → S + π±

)
=

θ2

16πmK±

∣∣∣∣3V ∗tdVtsm2
tm

2
K±

32π2v3

∣∣∣∣2
√√√√λ

(
1,

m2
S

m2
K±

,
m2
π±

m2
K±

)

Γ
(
KL → S + π±

)
=

θ2

16πmK±
Re

(
3V ∗tdVtsm

2
tm

2
K±

32π2v3

)2
√√√√λ

(
1,

m2
S

m2
K±

,
m2
π±

m2
K±

)
,

(2.2)

where V is the CKM matrix and λ is the Kallen function (λ(a, b, c) = (a2 + b2 + c2 − 2ab−

2bc−2ac)). The decay proceeds through a penguin diagram, as shown in figure 2.2. The top

quark loop dominates the rate due to its large Yukawa coupling to the Higgs. The branching

ratio of decay is given by BR = τSMΓ, where τSM is the Standard Model lifetime of the kaon
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(either charged or long).

s
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Figure 2.2: Feynman diagram for production of Higgs portal scalar events in kaon decay,
from Ref. [47]. The top quark loop dominates the decay amplitude.

Scalars decay predominantly into pairs of electrons, muons, and pions in the mass region

relevant at ICARUS. The decay width to leptons is given by (` = e, µ)

Γ(S → `+`−) = θ2m
2
`mS

8πv2

(
1−

4m2
`

m2
S

)3/2

. (2.3)

The decay width to pions (either charged, π+π−, or neutral, π0π0) is given by

Γ (S → ππ) = θ2 3|Gπ(m2
S)|2

32πv2mS

(
1− 4m2

π

m2
S

)1/2

, (2.4)

where Gπ is a form factor. Below the QCD scale (relevant at ICARUS), it is fixed to

Gπ(s) = 2
9s + 11

9 m
2
π. Above the kaon mass, decays to other hadronic final states, including

strange and charm mesons, become available [57, 58]. However, these are not relevant for

this analysis.

2.2 Axion-Like Particles and the Strong CP Problem

Axion-like particles (ALPs) arise as Goldstone bosons in any theory with a Peccei-Quinn

symmetry, a spontaneously broken global symmetry that is anomalous with respect to the

Standard Model gauge interactions [59, 60, 61]. In the case that the axion couples to gluons,

12



it would resolve the strong CP problem [59, 62]: the observation that the continued non-

observation of any neutron electron dipole moment [63, 64] requires that the relevant CP-

violating QCD parameter governing its size be un-naturally small [65]. This special case is

called the “QCD axion”. The minimal realization of this phenomena (by the Peccei-Quinn

mechanism) leads to a light axion with a large decay constant, related by ma ' 5.7 meV

× (109GeV / fa). In such a model, the axion field receives large corrections from gravity,

an issue known as the quality problem [66, 67, 68]. Alternative realizations of the axion

can resolve the strong CP problem with a heavier axion particle (M ∼GeV) and a UV

completion that is less susceptible to corrections from gravity [69]. The model we detail in

this section is an example of such a “heavy” axion model, or axion-like particle (ALP).

The effective Lagrangian for the ALP, after spontaneous symmetry breaking, is given by

[48]

L ⊃ c3
αS

8πfa
aGG̃+ c2

α2

8πfa
aWW̃ + c1

α1

8πfa
aBB̃ +

∑
f

cf
∂µa

2fa
f̄γµγ5f, (2.5)

where a is the axion field with mass ma and decay constant fa, αS is the strong coupling,

α2 = α/sin2θW the is SU(2)L coupling (α is the fine structure constant), α1 = α/cos2θW

is the U(1) hypercharge coupling, γµ and γ5 are the gamma matrices, G is the gluon field

coupled to the axion by c3, W is the SU(2)L doublet coupled to the axion by c2, B is the

SU(1) field coupled to the axion by c1, and f indexes the Standard Model fermions, each with

an individual coupling cf to the axion. We consider a case where only the muon coupling

cµ is non-zero. This generates a decay of axions to two muons. In this chapter, we consider

three scenarios for the gauge boson couplings: gluon dominance (c3 = 1, c2 = c1 = 0), weak

dominance (c2 = 1, c3 = c1 = 0), and co-dominance (c3 = c2 = c1).

The coupling of axions to gluons in the mass regime relevant at ICARUS (ma ∼100 MeV)

is challenging to compute because it is close to the QCD scale. This is an active area of

research with ongoing refinement. We detail below the latest understanding of the gluonic

(section 2.2.1) and weak (section 2.2.2) production of axions in kaon decay, as well as the
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Figure 2.3: (Left) Branching ratio for ALP production in kaon decay. (Right) Widths for
ALP decays. The ALP production is shown for the co-dominance case. In the situation of
gluonic (weak) dominance, only the gluonic (weak) decay mode is present.

decays of the axion into Standard Model particles (section 2.2.3). The production rates and

decay widths are also plotted in figure 2.3.

2.2.1 Gluonic Production in Kaon Decay

Prior studies of the sensitivity of neutrino experiments to gluonic axion like particles have

focused on the role of mixing with psuedoscalar mesons (π0, η, η′) [48, 50, 70, 71]. In this case,

axions are produced in primary p− C interactions that produce a psuedoscalar meson that

transmutes to an outgoing axion through mixing. The rate of this process is proportional

to the axion-psudoescalar (P ) mixing |θaP |2. In the case of the π0, θaπ = 1
6
fπ
fa

m2
s

m2
a−m2

π
.

The thinking goes that the production of axion production in kaon decay, mixing with the

outgoing π0 also governs the rate. In this case, the production would also be proportional

to |θaπ|2. Since there are more pions produced in primary p−C interactions then there are

kaons, the psuedoscalar mixing dominates the rate.

However, a recent re-analysis of axion production in kaon decay has demonstrated that

this assumption does not hold. Rather, the K+ → a+ π+ decay is dominated by a different

set of operators (with a larger coupling) than that of K+ → π0 + π+ [72], an effect known
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as octet enhancement [73]. In particular, this makes kaon decay the dominant production

process for axions below the kaon decay mass threshold (ma < mK−mπ). This enhancement

is responsible for the significant sensitivity of this search to gluonic coupled axions.

The decay amplitude A
(
K± → a+ π±

)
in chiral perturbation theory is given by [72, 74]

iA
(
K± → a+ π±

)
=− 2

N8

fa
c3

(m2
K −m

2
π)(m2

K −m
2
a)

4m2
K −m2

π − 3m2
a

iA
(
KL

0 → a+ π±
)

=− iA
(
K± → a+ π±

)
,

(2.6)

where N8 = −GF√
2
V ∗udVusg8f

2
π comes from the weak chiral Lagrangian.1 It can be related to

short kaon decay by [75, 76]

Γ
(
K0
S → π+π−

)
=

N2
8

8πf2
π

(
m2
K −m

2
π

)2
m2
K

√
m2
K − 4m2

π . (2.7)

We use the convention that the pion decay constant fπ ≈ 130 MeV. The decay width

Γ =
|A|2
8π

√
λ(1,m2

a/m
2
K ,m

2
π/m

2
K)

2mK
is then equal to

Γ
(
K± → a+ π±

)
=Γ
(
K0
S → π+π−

) 2f2
πc

2
3

f2
a

(
m2
K −m

2
a

4m2
K − 3m2

a −m2
π

)2
√√√√λ(1,m2

π/m
2
K ,m

2
a/m

2
K)

1− 4m2
π/m

2
K

Γ
(
KL → a+ π±

)
=Γ
(
K± → a+ π±

)
.

(2.8)
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Figure 2.4: Feynman diagram for weak decay of kaons to axions through a penguin, from
Ref. [77].

2.2.2 Weak Production in Kaon Decay

The decay proceeds through a penguin diagram, as shown in figure 2.4. The decay widths

are [77]

Γ
(
K± → a+ π±

)
=
m3
K

64π

(
1− m2

π

m2
K

)2

|gasd|2
√
λ(1,m2

π/m
2
K ,m

2
a/m

2
K)

Γ
(
KL

0 → a+ π0
)

=
m3
K

64π

(
1− m2

π

m2
K

)2

Im(gasd)
2
√
λ(1,m2

π/m
2
K ,m

2
a/m

2
K) ,

(2.9)

where gasd = −3
√

2GFM
2
W c2α2

32π3fa

∑
α∈c,t

VαsV
∗
αdf(m2

α/m
2
W ) and f(x) ≡ x[1+x(logx−1)]

(1−x)2
2. In the

co-dominance case, the gluonic decay dominates over the weak decay by many orders of mag-

nitude. However, in the weak-dominance case, the Weak decay would be the only available

channel for axion production in kaon decay.

2.2.3 Decays

The decay width to two photons is given by [48, 78]

Γa→γγ =
α2|cγ |2m3

a

256π3f2
a
, (2.10)

1. There is also a contribution to the amplitude from 27-plet operators in the chiral Lagrangian, which
we neglect because it is small.

2. In the notation of Ref. [77], their gaW is equal to our c2α2/2πfa
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where α is the fine structure constant and cγ is the axion coupling to photons, which gains

contributions from all axion couplings once loop diagrams are included:

cγ = c3

(
−1.93 +

1

3

m2
a

m2
a −m2

π
+

8

9

m2
a − 4m2

π/9

m2
a −m2

η
+

7

9

m2
a − 16m2

π/9

m2
a −m2

η′

)
+

5

3
c1+c2+cµB(4m2

µ/m
2
a) ,

(2.11)

where B(x) = 1− xf(x)2 and

f(x) =


sin−1

(
1√
x

)
if x ≥ 1

π
2 + i

2 log
(

1+
√

1−x
1−
√

1−x

)
if x < 1 .

(2.12)

The decay width to two leptons with coupling c` to first order is given by

Γa→`` =
c2`mam

2
`

8πf2
a

√
1−

4m2
`

m2
a

(2.13)

There is also a γγπ decay kinematically available to the axion in the mass regime [78].

However, it is not significant for ma .0.4 GeV.

2.3 General Case

The two models we have enumerated, Higgs Portal Scalars and Axion-Like Particles, are

two cases of the general process we are sensitive to: K → π + S(→ µµ). This process is

specified by three numbers: the (psuedo-)scalar mass MS , the branching ratio (BR(K →

π+S)×BR(S → µµ)), and the (psuedo-)scalar lifetime τS . Physics models for this process

(such as HPS and ALP) specify the branching ratio and the lifetime given some coupling(s).

This picture is complicated somewhat by the fact that these new particles are produced

in both K± and KL decays, at different relative rates depending on the model. This is

studied in appendix B, which demonstrates that we can set the sensitivity on a suitable

linear combination of the branching ratio of the two kaon decays.
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CHAPTER 3

THE ICARUS DETECTOR IN THE SHORT-BASELINE

NEUTRINO PROGRAM

ICARUS is a liquid argon time production chamber (LArTPC) neutrino detector currently

taking data as part of the Short-Baseline Neutrino Program [37, 38]. The detector was

installed at Fermilab in 2020 after a previous run at Gran Sasso [79] and subsequent refur-

bishment [80]. Images of the installation of the ICARUS detector are shown in figure 3.1.

ICARUS sits at the intersection of two neutrino beams: it is on-axis to the Booster Neutrino

Beam (BNB) [81] and is 5.7◦ off-axis to the Neutrinos at the Main Injector (NuMI) beam

[82]. This thesis uses data from ICARUS physics data taking runs 1 and 2, which spanned

from June 2022 to July 2023.

Neutrinos are detected in ICARUS through their interactions with argon nuclei in the

detector bulk. Charged particles produced in these neutrino interactions propogate through

the detector and ionize electrons from argon atoms. The ionization electrons are used to

image the charged particle trajectories with high spatial resolution and precise calorimetry.

The electrons are drifted by a large electric field to to multiple planes of readout wires which

detect the charge. A diagram of this detection scheme for neutrino interactions is shown in

figure 3.2. Example images of two candidate neutrino events in ICARUS are shown in figure

3.3.

The same production and detection scheme for neutrinos also enables the detection of

possible long-lived particles (LLPs). In the NuMI beam, LLPs can be produced in kaon

decay [47, 52, 53]. The produced particles would travel a distance from the NuMI beam

to the ICARUS detector, where they would decay into Standard Model particles. These

particles would be imaged by the ICARUS LArTPC as in the case of neutrino interactions.

Figure 3.4 displays a schematic of the detection scheme. An event display of a simulated

di-muon decay from an LLP in ICARUS is shown in figure 3.5.
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Figure 3.1: Images of the installation of the ICARUS detector. Taken from Ref. [83].

ICARUS consists of 760 t of liquid argon in two modules. Both modules are a cryostat

with dimensions 3.6×3.9×19.6 m3. Both cryostats contain two TPCs divided by a central

cathode plane. The TPCs are all operated at a drift voltage of about 500 V cm−1. They

all have three planes of charge sensing wires: an unshielded front induction plane, a middle

induction plane, and a collection plane. The wires on the front induction plane are oriented

along the horizontal (beam) direction, and the wires on the middle induction and collection

plane are oriented at ±60◦ to the horizontal direction, depending on the TPC. The wires

on each plane are each spaced 3 mm apart and the wire planes are spaced 3 mm from each

other. In the nominal configuration, the wire bias is −250 V on the front induction plane,

−30 V on the middle induction plane, and 250 V on the collection plane. A diagram of the

layout of the four ICARUS TPCs is shown in figure 3.6.

Each TPC wire is instrumented to digitize the collected and induced charge signals with

minimal noise [85]. Signals are run through an offline signal processing chain which subtracts

noise that is coherent across wires in the same readout board and deconvolves the signal to

provide a Gaussian shape with further reduced noise [83]. These signals provide the input

to reconstruction algorithms which group together hits into tracks (from muons, protons, or

other charged hadrons) and electromagnetic showers (from electrons or photons) and form

three-dimensional particle trajectories. The reconstruction applied for this thesis is supplied

by the Pandora framework [86, 87], optimized for the ICARUS detector. The charge loss per

length (dQ/dx) along 3D trajectories can be computed after calibrating the detector response
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Figure 3.2: Diagram of the liquid argon time projection chamber (LArTPC) concept for
neutrino detection, from Ref. [84]. Neutrinos interact in the bulk argon and produce charged
particles. These charged particles traverse the argon and ionize electrons from argon atoms.
The ionization electrons are drifted by a large electric field to a set of multiple charge sensing
wire planes. The wire planes measure multiple two-dimensional views of the charge, which
can be combined to reconstruct the three-dimensional trajectory of each charged particle.

to charge (see chapter 5). The charge loss is turned into an energy loss (dE/dx) using a

measurement of recombination (see chapter 6). The energy loss, along with topological

features of the particle trajectory, are used to determine the particle type and energy for

phyics analysis.

In addition to the TPC, ICARUS is also augmented by two other detection subsystems:

an array of photo-multiplier tubes (PMTs) inside the argon and a set of scintillator pads

forming a cosmic ray tracker (CRT) outside the cryostat. Inside each ICARUS TPC, there

are 90 8" Hamamatsu P5912-MOD PMTs arrayed behind the wire planes. The PMTs detect

scintillation photons produced by charged particles as they traverse the bulk argon. The
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Figure 3.3: Candidate neutrino events in the ICARUS liquid argon time projection cham-
ber. The event displays show the two-dimmensional projection of particle trajectories as
observed by one plane (the collection plane) of charge-sensing wires. The horizontal direc-
tion shows the axis perpindicular to the wire plane direction, while the vertical direction
shows the drift (time) direction. The magnitude of collected charge is shown in a color
scale from blue (no charge), to green, yellow, and red (more charge). In the electron neu-
trino interaction on the left, two particles are detected: an electron which produces a diffuse
shower of ionization charge (bottom), and a proton which leaves a straight, highly-ionized
track of ionization (top). In the muon neutino interation on the right, a muon and proton
are detected. The muon track leaves a long, windy, minimum-ionizing track. The proton
produces a short, straight, highly-ionized track. From https://news.fnal.gov/2021/05/icarus-
gets-ready-to-fly/.

PMT glass is not transparent to the scintillation photon wavelength (128 nm), so each PMT

is coated with Tetra-Phenyl Butadiene (TPB) to shift the scintillation photons to visible

light [88]. An image of the PMT system inside one ICARUS TPC is shown in figure 3.7.

Operating nearly at the surface, ICARUS observes a ∼11 kHz rate of cosmogenic muons.

This corresponds to about 11 muon tracks observed in a 1 ms TPC readout. The ICARUS

cosmic ray tagger (CRT) provides ∼ 4π tagging of cosmic muon tracks that impinge the

detector. Other cosmogenic activity, such as hadrons and high energy photons, are almost

completely stopped by a 3 m concrete overburden. The CRT is split into separate top, side

and bottom systems. The top CRT consists of 123 modules covering a total surface of about

426 m2. It catches more than 80% of the cosmic muon flux. Each module is a 1.86×1.86 m2

box with two perpindicular layers of eight scintillator bars. The coincident observation of
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Figure 3.4: Diagram of the phenomenology of the Higgs portal scalar (see section 2.1) in the
NuMI beam (see section 3.1) at ICARUS. Scalars are produced in the NuMI beam in kaon
decay, travel to the ICARUS detector, and decay into standard model particles: electrons,
muons, or pions.

Figure 3.5: Example ICARUS Monte Carlo simulation event display of a Higgs Portal scalar
decaying to two muons. The mass of the simulated scalar is 260 MeV.
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Figure 3.6: Diagram of the layout and enumeration of the ICARUS TPCs. Not to scale.
The wire plane orientations are mirrored in opposite TPCs. The East and West cryostats
have the same layout.

scintillation light in both layers allows the position to be reconstructed. The side CRT uses

scintillator modules from the MINOS experiment [11]. Each module contains twenty adjacent

strips of 800 × 4 × 1 cm3 scintillator. On the South side of the detector (upstream to the

beam), two layers of modules are arrayed orthogonally to improve the spatial resolution. On

the East, West, and North sides, only one layer is installed. The bottom CRT consists of

14 scintillator modules, refurbished from the Double Chooz experiment [89] Each module

consists of 64 scintillator strips running in parallel.

The calibration and analysis work discussed in this thesis all exclusivly use measurements

made with the ICARUS time projection chamber. However, the PMT and CRT systems will

be applied in future results in ICARUS.

3.1 The Neutrinos at the Main Injector Beam

ICARUS receives neutrinos at a far-off-axis location from the Neutrinos at the Main Injector

(NuMI) beam [82]. The NuMI beam produces neutrinos from the interaction of 120 GeV

protons with a graphite target. A spray of mesons produced in these interactions decay to

neutrinos and source the beam.

The proton beam is accelerated to 120 GeV through the Fermilab accelerator complex
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Figure 3.7: Image of the PMT system inside one of the ICARUS TPCs. Taken from Ref.
[83].

(see figure 3.8). A linear accelerator (Linac) accelerates H− ions to 400 MeV. The ions are

converted into protons in the Booster, which accelerates them to 8 GeV. Protons are bunched

into 1.6 µs long batches, each consisting of a number of constituent 2 ns long bunches, each

spaced 18.9 ns apart. The batches are then fed into the Main Injector, a synchroton that

accelerates the beam to 120 GeV. The Main Injector can accelerate 6 batches from the

Booster at a time, which corresponds to a 9.6 µs total spill length.

A method called slip-stacking doubles the intensity of the NuMI beam. In this process,

a first set of six bunches are fed into the Main Injector. These are decelerated by one batch

length, and then another six batches are fed in. Slip-stacked batches thus have double the

protons of nominal batches. This version of the slip-stacking process has been in place at

NuMI since 2017 [90]. All ICARUS NuMI data is collected in this configuration.

The batches of 120 GeV protons in the Main Injector are directed at a graphite target.

Beam proton interactions in the target produce mesons that decay to neutrinos. The most

important meson decays for producing neutrions are:
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Figure 3.8: From Ref. [82]: diagram of the Fermilab accelerator campus.

π+ → µ+ + νµ (99.99%)

π− → µ− + ν̄µ (99.99%)
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K+ → µ+ + νµ (64%)

K+ → π0 + e+ + νe (5%)

K+ → π0 + µ+ + νµ (4%)

K− → µ− + ν̄µ (64%)

K− → π0 + e− + ν̄e (5%)

K− → π0 + µ− + ν̄µ (4%)

K0
L → π− + e+ + νe (20%)

K0
L → π+ + e− + ν̄e (20%)

K0
L → π− + µ+ + νµ (14%)

K0
L → π+ + µ− + ν̄µ (14%) .

Each decay is shown with the corresponding branching ratio on the right hand side. The

beam is predominantly νµ, with an important but sub-dominant component of νe from kaon

decays. A pair of magnetic focusing horns steer charged pions and kaons in the forward

direction to focus the neutrino beam. The horns can be run in forward horn current mode,

where positively charged mesons which source neutrinos are focused, or reverse horn current

mode, where negatively charged mesons which source anti-neutrinos are focused. The NuMI

beam and horn system is depicted diagramatically in figure 3.9. All of the NuMI beam data

for this result were take in forward horn current mode.

As is diagrammed in figure 3.10, ICARUS is situated far-off-axis to the NuMI beam

direction: 5.75◦. At this off-axis angle, the flux has very different characteristics to the on-

axis or near-off-axis case. The energy falls off quickly, so that at ICARUS 〈Eν〉 ∼1.5 GeV.

The source of the flux mostly comes from pions and kaons that are directly oriented at

ICARUS, as well as large-angle 3-body kaon decays. As a result, the focusing system does

not have much impact: nearly all of the relevant mesons decay before reaching the second

focusing horn. Thus, there is a significant component of anti-neutrino flux, even for the
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Figure 3.9: From Ref. [82]: diagram of the NuMI neutrino beam.

forward horn current data used in this thesis.

3.2 ICARUS Monte Carlo Simulation

ICARUS detector Monte Carlo simulation enables the generation of neutrino and scalar

decay signal events. This simulation emulates the full detection process: the production of

mesons in the NuMI beam, the production of neutrinos and LLPs in meson decay and their

interaction or decay in the argon, the propogation of particles produced in the interaction,

and the full detector response to these particles. Simulated cosmogenic activity (mostly

cosmic-ray muons) is also overlaid.

Meson decays in the NuMI beam source both neutrino and scalar events. The NuMI flux

is generated by the GEANT4-based package g4numi [91, 92, 93]. The g4numi package simulates

the interaction of 120 GeV protons on the graphite target, the production of mesons, and the

re-interaction and focusing of those mesons in the magnetic horns, as well as re-interactions

in other materials in the target hall. The flux is modified by the PPFX package [92, 93], which

corrects the flux and determines its systematic uncertainty, taking into account world data

on proton-Carbon and other relevant cross sections. ICARUS sits 5.75◦ off-axis to NuMI,

and so has a different flux from on or slightly off-axis detectors. The constraints have been

tuned for the ICARUS off-axis location which determines which on-axis constraints are and

are not applicable [94]. Unlike the on-axis case, neutrinos at ICARUS are mostly generated
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Figure 3.10: From Ref. [47]: elevation view of the relative locations of ICARUS and the
NuMI beam direction. Nearly all of the off-axis angle of ICARUS to NuMI is in the vertical
direction, as is shown in this figure.

by unfocused pions and large-angle kaon decays.

Neutrino interactions form a background to di-muon decays, so simulating their rate is

important to developing the analysis. The intrinsic µµ neutrino background to this signa-

ture, from neutrino tridents [95] and charm production [96], is negligible. However, there

is a non-intrinsic background from µπ production in muon neutrino charged current inter-

actions (mostly through resonant, deep inelastic, and coherent scattering). Pions cannot

be calorimetrically separated from muons in LArTPCs, although they can be identified in

cases where they inelastically scatter with an argon nucleus before stopping or exiting the

detector. Neutrino interactions are generated by GENIE [97]. The study done here uses the

SBN tune developed for SBN and DUNE oscillation analyses1.

As is shown in chapter 7, after event selection cuts the dominant residual neutrino back-

ground comes from muon-neutrino charged current coherent pion production (νµCC-Coh-π

1. Technical documentation for this tune does not exist, but is being developed.
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Figure 3.11: Feynman diagram of the νµCC-Coh-π interaction, from Ref. [98]. In this
process, a muon neutrino coherently upscatters off a nucleus (A) into a µπ final state. The
nucleus is left in its ground state. The diagram identifies two relevant momentum transfer
variables: t (see equation 3.1) and Q2 = −(pν − pµ)2.

) [99, 100]. A diagram of this process is shown in figure 3.11. The interaction comprises a

small fraction of the total neutrino rate in ICARUS (∼ 0.2%). However, it has characteris-

tics that make it hard to distinguish from di-muon decays. In this process, a muon neutrino

interacts coherently with an argon nucleus, up-scattering to a µ−π final state. It leaves the

argon nucleus in its ground state, not producing any other activity that can be used to veto

the interaction. Because the process is coherent, it occurs at small energy transfer to the

nucleus, as defined by

t = |pν − pµ − pπ|2 , (3.1)

where pν ,pµ, and pπ are the neutrino, muon, and pion 4-momenta, respectively. Di-muon

decays do not involve a nucleus, so they all occur at t = 0.

No data exists on argon to meaningfully constrain the process. The interaction has

been observed on argon by the ArgoNeuT experiment [101]. However, the measurement has

limited statistical power and was made at a different neutrino beam energy than is relevant

for ICARUS. GENIE applies the Berger-Sehgal model [100] for this process, and assigns a

100% uncertainty on the rate. To assess a more realistic central value and uncertainty for this
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process, its rate was tuned to a measurement made by the MINERvA experiment on carbon

and iron [102]. Figure 3.12 shows spectra of the νµCC-Coh-π process for the GENIE nominal

value compared to the result of the MINERvA tune. There is about a 60% uncertainty on

the interaction rate of this process after the tune. The uncertainty depends most strongly

on the pion energy, and gets much larger at low pion energies. The MINERvA measurement

has a much larger uncertainty in this area of phase space. In addition, there is a large

theoretical uncertainty on the interaction rate at this energy due to the uncertain impact

of the ∆ resonance on the cross section. Theoretical models that predict the νµCC-Coh-π

rate from pion-nucleus scattering differ when interpolating from deuterium [99] or carbon

[100]. Microphysical models of the process also provide different predictions [103, 104, 105].

The tune uncertainty does not explicitly account for this theoretical uncertainty, although

in effect it does reflect it.

Higgs portal scalar decays are generated with the MeVPrtl event generator2. This tool

generates decays of BSM particles such as the Higgs portal scalar [47], heavy neutral lepton

[46], and heavy axion [48] models. The MeVPrtl generator operates on beam mesons as input.

It simulates the meson decay to the BSM particle, which is propagated to the detector volume

and decayed into standard model particles. The MeVPrtl generator has also been validated

by verifying it against an independent, standalone simulation of the scalar decay process.

Cosmic muons are generated on top of scalar and neutrino events by the CORSIKA

generator [106]. No sample of cosmic-only simulation is used; off-beam data is instead used

to estimate the component of on-beam data where cosmic activity triggers the detector.

Generated particles are turned into simulated events using a robust simulation of the

ICARUS detector. Particles are propagated through the detector with a Geant4 simulation

configured for liquid argon [91]. Geant4 simulates the deposition of energy in the detector

by charged particles, which is recorded as ionization charge applying the ArgoNeuT mea-

2. Internal documentation on this tool exists inside the ICARUS collaboration. Work is ongoing to make
this public.
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Figure 3.12: Distributions of truth kinematic variables for νµCC-Coh-π interactions. The
variables are: neutrino energy, muon kinetic energy, pion kinetic energy, energy transfer to
the hadronic state (Q2 = −(pν − pµ)2), energy transfter to nucleus (equation 3.1), and the
invariant mass reconstructed with the di-muon hypothesis (Mµµ = |pµ +

mµ
mπ
pπ|). pν ,pµ,

and pπ are the neutrino, muon, and pion 4-momenta, respectively. Each plot compares
the nominal GENIE prediction and the result of the tune to MINERvA data. The percent
uncertainty in the MINERvA fit is also shown in the gray histograms using the right vertical
axis. The plot displays both the total uncertainty and the uncertainty in the first princi-
pal component (P.C.) of the covariance matrix. This component represents the dominant
systematic fluctuation encoded in the covariance.
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surement of electron-ion recombination [107]. Ionization charge is drifted to the wire plane

readout by the Wire-Cell simulation [108], which applies ionization field responses computed

by GARFIELD [109]. This simulation includes the effect of diffusion, and accounts for long-

range induction effects on wire signal shapes (charge induces a signal as far away as 3 cm,

or 10 wires). These simulated signal shapes are tuned to match the observed shapes in data

(see chapter 5).

3.2.1 Simulated Datasets

Monte Carlo simulation datasets are generated for NuMI neutrino and Higgs portal scalar

events. There are two datasets of neutrino interactions:

• The inclusive sample consists of NuMI neutrino interactions with CORSIKA cosmics.

Its statistics are 3− 4× the data POT.

• The Coh-Like sample consists of NuMI neutrino interactions enhanced in the type of

neutrino interactions that generate backgrounds in the signal region of the analysis.

The sample was generated by filtering events that had at least one neutrino interaction

with the following characteristics:

– At least two generated particles of µ, π±,Σ± 3

– No proton generated with a kinetic energy greater than 50 MeV

The sample was generated with ∼ 150× expected data statistics.

The inclusive and Coh-like samples are combined into a single sample after removing events

from the inclusive sample that overlap with the Coh-like definition.

Higgs portal scalar interactions are generated at a number of mass points (MS) and

mixing angles (θS) The events can be re-weighted from the nominal mixing (θS) to another

3. The Σ baryons predominantly decay to charged pions.
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mixing angle (θ′S) by applying a weight

θ′S
2

θ2
S

× exp(−`enter/d)− exp(−`exit/d)

exp(−`enter/d× θ2
S/θ
′
S

2)− exp(−`exit/d× θ2
S/θ
′
S

2)
, (3.2)

where `enter is the distance along the scalar ray to the front of the detector, `exit is the

distance along the scalar ray to the back of the detector, and d is the mean decay length of

the scalar.
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CHAPTER 4

COSMIC MUONS AS A CALIBRATION SOURCE

The calibration of the ICARUS TPC (as will be detailed in chapters 5 and 6) relies on the

copious number of cosmic ray muons available at the surface. Muon energy loss deposits

ionization charge in the detector which can be used to diagnose any non-uniformities in the

TPC, as well as to measure the channel gain. In the kinematic regime relevant at ICARUS,

the probability distribution governing particle energy loss observed by a readout wire channel

is the Landau-Vavilov distribution [110]. In the limit that the charged particle is relativistic

and the slice of the particle track that the channel is sensitive to is small (as is often the

case in a LArTPC), this distribution is well-approximated by the Landau distribution [111].

For both distributions, the mean energy loss per length (given by the Bethe-Bloch theory

[112]) is independent of the length of the charged particle trajectory observed by the channel.

However, the shape of the distribution depends strongly on this length.

The Landau and Landau-Vavilov distributions are governed by the cross-section of charged

particles incident on atomic electrons, which has a power law dependency on the energy

transfer. This behavior means that the mean energy loss is influenced by a small number of

large energy transfers to electrons well above the atomic excitation energy (δ-rays). When

the channel is only sensitive to a short enough length of the charged particle trajectory such

that it will not observe a δ-ray most of the time, the bulk of the distribution is below the

mean value of energy loss with a long tail extending out to high energy losses. The Landau

distribution is an appropriate approximation in this case. As the channel-sensitive length

increases, more of the delta rays get absorbed into the bulk of the distribution and the loca-

tion of the peak shifts up as the variance drops, until the distribution is better modeled by

a Landau-Vavilov distribution.

Due to the large fluctuations in particle energy loss as described by Landau-Vavilov

theory, the mean energy loss is challenging to measure. In ICARUS, we calibrate to the most-
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probable-value (MPV) of energy loss, which only depends on the peak of the distribution. In

this chapter, we review the derivation of the Landau distribution of particle energy loss and

the calculation of the MPV. This derivation reveals a new effect described by the author [113],

that diffusion of the ionization electrons perturbs the MPV of the Landau distribution in a

LArTPC. This derivation is covered in section 4.1, and the imapct on LArTPC calibration

is discussed in section 4.2. Following this derivation, in section 4.3 we state the mean energy

loss, which completes the specification of muon energy loss. The concepts developed in this

chapter underlie the calibrations detailed in chapters 5 and 6.

4.1 Landau Energy Loss in a LArTPC in the Presence of Diffusion

The Landau-Vavilov and Landau distributions are derived assuming that a detector is sen-

sitive to a discrete section of the charged particle trajectory: there is a region where the

channel detects all of the deposited energy, and a region where it detects none [111, 110]. In

the case of a LArTPC impacted by diffusion, this assumption does not hold. As is illustrated

in figure 4.1, a channel in a LArTPC is sensitive to a fractional amount of the particle energy

loss, dependent on its position. To parameterize this effect, we define the channel ionization

weight function w(x), which gives this fraction as a function of the particle position x. This

weight function defines the probability distribution of energy that the channel measures.

To obtain the distribution of energy loss for a general channel ionization weight func-

tion, we go through the usual derivation of the Landau-Vavilov distribution, keeping this

weight function along the way. Section 4.1.1 introduces the principles in this derivation. Sec-

tion 4.1.2 gives an analytic formula for the energy loss distribution. Section 4.1.3 discusses

the relativistic/thin-film limit for a weight function. Details of the derivation are given in

appendix A.
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Figure 4.1: Diagrams illustrating the effect of diffusion on the path length of a particle
track observed by channels in a LArTPC with a wire plane readout, from Ref. [113]. The
graphs on the left of both diagrams plot the weight function, w(x), describing the probability
that ionization energy is observed as observed by the central, pink wire as a function of the
position of the energy deposition along the particle track (this is also denoted by the color
of the particle track). Diffusion in the direction transverse to the wire orientation smears
charge in and out of the range each wire is sensitive to.

4.1.1 Principles of the Energy Loss Distribution

We construct the probability distribution of energy loss iteratively. We start from the simple

base case of the distribution over an infinitesimal length, and then build it up into the

distribution over finite length. Our tool in this construction is the convolution property:

given the probability distribution of observing a particle energy loss E over a length `,

p`(E), a convolution of p`(E) with itself doubles the length ` since a convolution represents

all the ways a particle can lose an amount of energy in two steps of `. Thus the convolution

property states that

p2`(E) =

∫
p`(E − E′)p`(E′)dE′ . (4.1)

The distribution of energy loss for an infinitesimal length is given by the limit that the
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particle travels a short enough distance such that it will scatter off at most one atomic

electron. In this case, the probability of energy loss is equal to the probability of colliding

with an atomic electron with precisely that amount of energy transfer. The probability of

no energy loss is equal to the probability of not interacting with an atomic electron. Thus,

lim
`→0

p`(T ) = (1− ρσ`)δ(T ) + ρ`
dσ

dT
, (4.2)

where ρ is the number density of electrons, dσ
dT is the differential cross section w.r.t. the

energy transfer T , σ =
∫ dσ
dT dT , and δ is the Dirac-Delta function.

In the case of heavy charged particles (such as muons and protons) elastically scattering

on bare electrons, the cross section is given by the Rutherford formula [114]

dσ

dT
=

2πr2
eme

β2

1− β2T/Tmax
T 2

, (4.3)

where re is the classical electron radius, me is the electron mass, β is given by the particle

velocity, and Tmax is the maximum energy transfer in a single collision,

Tmax =
2meβ

2γ2

1 + 2γme/M + (me/M)2
,

where M is the mass of the charged particle. The cross section for atomic electrons is

modified relative to the bare cross section at low energy transfer by atomic effects. A useful

quantity related to the cross section is

ζ = ρ
2πr2

eme

Tmaxβ2
. (4.4)

ζ is a quantity with units of inverse length that encodes the rate of scattering.

For the probability distribution of energy loss over an infinitesimal length, the channel

ionization weight function can always be assumed to be a constant w. In this case, for a
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channel to measure an energy deposition E the particle must deposit an amount E/w. So in

the presence of a weight function w, p`(E) transforms to 1
wp`(E/w) (the 1/w in front fixes

the normalization) when the length ` is small.

4.1.2 Analytic Form of the Distribution

To build the particle energy loss distribution, we discretize the weight function w(x) into

weights wi over infinitesimal steps dxi, and build up the probability distribution over the

full weight function by performing a product of convolutions:

pw(E) =

∫
dT1

∫
dT2 · · ·

∫
dTn

pdx0(E−Tn−···−T1w0
)

w0
×
pdx1(Tn−···−T1w1

)

w1
× · · · ×

pdxn( Tnwn )

wn
.

(4.5)

Appendix A.1 goes through the process of simplifying this into an algebraic expression for the

case of Rutherford scattering. In the process of this derivation, it is necessary to introduce

the mean energy loss E as an external input to the distribution. This is because atomic

effects modify the bare electron cross section at low energy transfer in a way that can be

accounted for through the mean energy loss using Bethe-Bloch theory. We obtain:

pw(E) =
1

2πζTmax

∞∫
−∞

dz exp

[
iz

ζTmax
(E − E) +

∫
dx ζ(1− e−iw(x)z/ζ)− izw(x)(1 + β2)+

(ζβ2 + iw(x)z)(−Ei[−iw(x)z/ζ] + log[iw(x)z/ζ] + γEM)

]
.

(4.6)

where γEM ≈ 0.577 is the Euler-Mascheroni constant and Ei is the exponential integral

function, Ei(x) = −
∞∫
−x

dt e−t/t. This is the probability distribution of particle energy loss

for a channel with a general ionization weight function w(x) as a function of the charged

particle position. Appendix A.3 shows that this distribution reduces to a Landau-Vavilov

distribution precisely when the channel ionization weight function is given by a step function.
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4.1.3 The Thin-Film/Relativistic Limit

To take the thin-film/relativistic limit, we take the case where the weight function is narrow

compared to the size of the scattering length 1/ζ (details in appendix A.2). In this limit,

the probability distribution of energy loss converges to

pw(E) =
1

2πiζTmaxp

i∞∫
−i∞

dz′ exp
[
z′
(
λ+ log|z′|

)]
, (4.7)

where λ = E−E
ζTmaxp

− logζp+ γEM− 1−β2 +
∫
dx w(x)log[w(x)]

p and p is defined as the pitch:

p ≡
∫
w(x)dx . (4.8)

Equation 4.7 can be recognized as the Landau distribution for a parameter λ, which has a

maximum at λMPV = γEM − 0.8 ≈ −0.22278 . . .[115]. Therefore:

EMPV = E + ζTmaxp

(
logζp + 0.2 + β2 −

∫
dx w(x)log[w(x)]

p

)
.

In the case where the weight function w(x) is a step function, EMPV reduces to the usual

result [114]. We can recast this result by defining the thickness

t ≡ pe−
∫
dx w(x)log[w(x)]/p . (4.9)

Then the formula for the MPV energy loss dE/dxMPV ≡ EMPV/p is

dE

dxMPV
=
dE

dx
+ ζTmax

(
logζt + 0.2 + β2

)
. (4.10)

This equation, with equation 4.9 as an input, is the main result of this derivation. In this

formula, all the dependence on the weight function w(x) is encoded in the t parameter. This

39



Figure 4.2: Diagram of relevant track angles for tracks in a LArTPC: θxw, γ, and φ.

is precisely the usual formula for the energy loss MPV dE/dx [114], just with the thickness

given by equation 4.9. The thickness and pitch transform under scaling and dilation of the

weight function as:

Scaling

w(x)→ a · w(x)

p→ a ·p

t → t

Dilation

w(x)→ w(x/a)

p→ a ·p

t → a · t.

(4.11)

4.1.4 The LArTPC Channel Ionization Weight Function

We now apply these results to the case of a LArTPC with a wire plane readout. LArTPC

readout wires detect charge from the induced current of ionization electrons either passing

through the wire plane (a bipolar, “induction” signal) or collecting on it (a unipolar, “collec-

tion” signal). We approximate here that each wire is only sensitive to the ionization electrons

directly adjacent to it, motivating the step function response illustrated in the left-hand dia-
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Figure 4.3: (Left) Smearing widths from transverse diffusion (using the Li et al. parameter-
ization for DT [116]) by drift time for the DUNE (4.7 mm) and SBN (3 mm) wire pitches.
(Right) Thickness observed by a channel with a weight function given by a step function of
width a convolved with a Gaussian of width σT, as a function of σT/a. From Ref. [113].

gram of figure 4.1 (in the absence of diffusion). In reality, electrons can induce a signal as far

away as 3 cm (10 wires for a 3 mm spacing) [108]. This effect is subdominant, and any change

it makes to the channel thickness will only change the peak energy loss logarithmically (as

per equation 4.10). Still, assessing the effect of long-range current induction on the channel

ionization weight function merits further study, especially for induction wire planes.

To account for the impact of diffusion, the LArTPC channel weight function is modified

to be a convolution of the step function of the wire pitch and a Gaussian smearing induced

by transverse diffusion, as illustrated in the right-hand diagram of figure 4.1. In addition, as

shown in figure 4.2, a track will in general be at some angle γ to the wire orientation, which

dilates the channel weight function w. Putting this together, we obtain

wLArTPC(x) =

a∫
0

dx′√
2πσT

e−(x·cosγ−x′)2/(2σ2T)

σT =
√

2 ·DT · tdrift ,

(4.12)

for a wire separation a, drift time tdrift, and transverse diffusion constant DT .

This weight function has a pitch p = a/cosγ (note that the formula for the pitch p here
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Figure 4.4: Comparison of the MPV energy loss from a Monte-Carlo simulation of the
probability distribution in equation 4.6 and the Landau MPV approximation (equation 4.10)
for a channel ionization weight function given by a step function of width 3 mm convolved
with a Gaussian of varying widths (equation 4.12). The comparison is made at various
values of the muon energy. At low muon energy and large channel thickness, the thin-
film/relativistic approximation underlying the Landau MPV prediction begins to breakdown,
up to the percent level at 0.2 GeV. From Ref. [113].

coincides with the usual definition of the track pitch in a LArTPC). In the limit of a small

wire separation relative to the Gaussian width, the thickness converges to σT
√

2πe/cosγ.

In general though, we have not found a useful closed form of the thickness for this weight

function. A plot of the thickness t as a function of σT/a for cosγ = 1 is shown in figure 4.3.

By the scaling property of the thickness under dilation (equation 4.11), t(cosγ) = t(1)/cosγ.

Figure 4.4 plots the most-probable-value of energy loss obtained from a Monte-Carlo

simulation of muon energy loss observed by a LArTPC-like weight function, as a function

of the smearing width σT . The value is compared to the energy loss estimate from the

thin-film approximation (i.e., using the value of the thickness in the Landau distribution

MPV formula, equation 4.10). The Landau approximation works well at small thickness and

large muon energy. Outside of this region, numerically obtaining the peak of the general

distribution with the weight function (equation 4.6) would be required. Since the LArTPC

weight function is not a step function, in this region the distribution is also not a Landau-

Vavilov distribution. In the usual Vavilov case, one defines this region of phase space using

the parameter ζ · p, which is a unit-less measure of the “film-thickness” of a channel that
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Detector Wire
Pitch
[mm]

Drift
Time
[ms]

Diffusion
Const.
DT

[cm2/s]

MPV
dE/dx,

No Diffusion
[MeV/cm]

MPV dE/dx
at Cathode
(Full Diff.)
[MeV/cm]

Differ-
ence
[%]

MicroBooNE [84] 3.00 2.33 5.85 1.69 1.79 5.9
ArgoNeuT [121] 4.00 0.295 12.0

(9.30)
1.72 (1.72) 1.76 (1.75) 2.3

(1.7)
ICARUS [37] 3.00 0.960 12.0

(9.30)
1.69 (1.69) 1.78 (1.77) 5.3

(4.7)
SBND [37] 3.00 1.28 12.0

(9.30)
1.69 (1.69) 1.79 (1.78) 5.9

(5.3)
DUNE-FD (SP) [36] 4.71 2.2 12.0

(9.30)
1.74 (1.74) 1.82 (1.81) 4.6

(4.0)

Table 4.1: Values of the most-probable-value (MPV) of dE/dx for a muon with 1 GeV of
energy with no perturbation from diffusion (this is equivalent to a deposition at the anode)
and at the cathode (where the effect of diffusion is largest). The MicroBooNE transverse
diffusion constant is taken from the extrapolated measurement in that detector [122], while
the others are taken from the Li et al. [116] (Atrazhev-Timoshkin [123]) prediction at an
E-field of 500 V/cm. All MPVs neglect the density effect, which would affect the diffusion
on and off quantities equally.

is small for large particle energy and small channel thicknesses. Typically, the Landau

distribution is taken to be valid for ζ · p < 0.01 [114]. For our purposes, it is natural to

leverage ζ · t.

4.2 Impact of Diffusion on LArTPC Calibration

In LArTPCs, the peak of the muon energy loss distribution (the most-probable-value, or

MPV) is typically used as the observable of the distribution in calibrations (see, e.g.: [117,

118, 119, 120]). The main result of our derivation in section 4.1 is that diffusion changes

the MPV across the detector. Table 4.1 lists the MPV dE/dx for energy depositions from

a muon with 1 GeV of energy for a few LArTPC detector configurations including that of

ICARUS.

The effect of diffusion can bias measurements attempting to equalize the response of

the detector as a function of drift time (removing effects such as LAr impurities). Since
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Figure 4.5: Measuring the charge wire-by-wire in a LArTPC (top) means that the thickness
of the wire is significantly impacted by diffusion. Summing the charge across a large number
of consecutive channels (bottom) diminishes this effect, which can be a useful technique for
calibrations. From Ref. [113].

the underlying distribution of energy loss is also drift-dependent in the presence of diffusion,

these procedures may be dividing-out a physical effect rather than just the detector response.

The effect of smearing induced by transverse diffusion is to push the value of the dQ/dxMPV

up along the drift length, as opposed to LAr impurities, which push it down. To combat

this effect, one can “coarse-grain” the detector by summing hits across many consecutive

channels along the track into each value of dQ/dx. By combining enough channels, the

length of the effective channel spacing would dominate over the length of diffusion and thus

the drift-dependent effect of diffusion could be made negligible. This process is demonstrated

diagrammatically in figure 4.5.
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4.3 Cosmic Muon Energy Scale

The derivation of the distribution of muon energy loss takes the mean energy loss as an

external input. The mean energy loss must be specified to obtain the overall energy scale

for particle energy loss. It is given by Bethe-Block theory [112], with [114]

dE

dx
= ζTmax

[
ln

2mec
2β2G2Tmax
I2
0

− 2β2 − δ(βG)

]

Tmax =
2mec

2β2G2

1 + 2Gme/M + (me/M)2

ζ = ρ
K

2

Z

A

1

Tmaxβ2
.

(4.13)

The relevant parameters are the particle (muon or proton) mass M , the electron mass me,

the particle velocity β, the Lorentz factor G, the mean excitation energy I0, the argon charge

number Z, the argon mass number A, the argon mass density ρ, and the constant K, with

units MeV × cm2/mol. In these equations, δ is the correction from the density effect [124].

We use the parameterization [125]

δ(βG) =


0 log10βG < 0.2

2lnβG− 5.2146 + 0.19559× (3− log10βG)3 0.2 ≤ log10βG ≤ 3

2lnβG− 5.2146 log10βG > 3 .

(4.14)

Together, the mean energy loss in equation 4.13 and the MPV energy loss in equation 4.10

specify the energy scale for cosmic muons.
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CHAPTER 5

CALIBRATION AND SIMULATION OF THE ICARUS LIQUID

ARGON TIME PROJECTION CHAMBER

The detection of charge in the ICARUS detector is not perfectly uniform in space and time.

Effects such as argon impurities [126, 127] and space charge effects [128, 129] can perturb the

amount of charge measured across the detector. We have developed a procedure to calibrate

these effects so that the non-uniformity they induce can be removed from the data. This

procedure relies on the copious number of cosmic ray muons available to ICARUS, which

operates under only 10 m.w.e. of concrete overburden. The procedures we have developed

leverage many of the ideas first developed by the MicroBooNE surface LArTPC experiment

[120], applied to the specific conditions observed in ICARUS.

In addition to calibrating the data, it is necessary to build an accurate simulation of

ICARUS detector operation to perf physics analyses. The outline of ICARUS simulation is

described in section 3.2. In this chapter we develop ways to tune the Monte Carlo simulation

to match what is observed in ICARUS data. In particular, the signal shapes we observe in

the detector depart from the nominal prediction made by Wire-Cell and GARFIELD. This

departure is significant, although it is not drastically different from the level of disagreement

observed by prior experiments applying the same simulation [130]. It is critical to precisely

simulate the signal shapes in LArTPCs in order to accurately characterize the performance

of signal processing and its impact on physics analysis. The leading systematic uncertainty

associated with detector performance in prior LArTPC experiments has been the TPC sig-

nal shape (see, e.g., Ref. [131, 132, 133]). We have developed a novel approach to tune

the underlying field responses input to Wire-Cell which match the simulated signal shapes

precisely to what is measured in the detector.

This chapter is organized as follows. In section 5.1, we describe the procedure used

to remove non-uniformities in the ionization charge response of the ICARUS TPCs and
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demonstrate its impact on the charge resolution of the detector. In section 5.2, we describe

the measurement of TPC signal shapes in ICARUS data, as well as the novel procedure

we have developed to tune simulation to match the data. Finally, section 5.3 shows the

comparison of charge resolution performance between ICARUS Monte Carlo simulation and

data with the calibrations and simulation refinements described here applied.

5.1 Charge Scale Equalization

The goal of the charge scale equalization procedure is to make the TPC response to charge

uniform in space and time. This is expressed in terms of the charge per length, or dQ/dx, of

hits along particle tracks and showers. This quantity is used to compute energy loss (dE/dx)

after correcting for electron-ion recombination (see chapter 6). As is detailed below (section

5.1.1), a number of effects perturb the charge response in ICARUS. To account for these

effects, we have elected to equalize the charge response in three steps: an equalization in

the drift direction (section 5.1.2), an equalization in the two wire plane directions, ŷ and

ẑ (section 5.1.3), and a final TPC equalization (section 5.1.4). The performance of charge

reconstruction in ICARUS after these equalization steps is shown in section 5.1.5.

As a surface detector, ICARUS has access to a copious number of cosmic muon tracks for

use in these calibrations. Most muon tracks pass through the detector as nearly minimum-

ionizing particles (MIPs). We use a selection of cosmic muons to do these calibrations.

The muon tracks are required to cross the cathode. For such tracks, matching the energy

depositions in both TPCs on either side of the central cathode enables the identification of

the arrival time (t0) of the track. Knowledge of this time is needed to properly compute and

apply the drift time correction.
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5.1.1 Effects Leading to Non-Uniformities in Charge Scale

Argon Impurities

As the ionization cloud from a particle deposition drifts to the wire plane, impurities in the

argon (primarily O2 and H2O [126, 127]) absorb electrons. The attenuation is exponential

and can be described by an electron lifetime, which is the mean time an electron will drift

in the argon before it is absorbed. The electron lifetime in ICARUS ranged from 3-8 ms

over the dataset considered here, which corresponds to a ∼5-15% average attenuation in the

charge signal across the ∼1 ms ICARUS drift time.

Drift Field Distortions

The drift electric field in ICARUS is not perfectly uniform. While it is very stable across

time, a few effects perturb its value spatially across the detector. The constant rate of

cosmic muons ionizing the argon produces a build-up of positive argon ions, or space-charge,

that affect the electric field [129, 128]. In addition, the cathode plane in ICARUS is not

perfectly flat. This is an effect that was previously observed during the ICARUS run at

Gran Sasso [134]. It is still present in the refurbished ICARUS installation at Fermilab at a

much reduced magnitude. The biggest deflection is in the East Cryostat, which is bent by

as much as 1.5 cm. This perturbs the electric field by a few percent, especially close to the

cathode. Finally, there is a failure in the field cage in TPC EE that distorts the drift electric

field in that TPC.

The drift field distortions can affect the charge scale in two ways. First, changes to the

drift field affect the quantity of electric charge that recombines with argon ions at the point

of ionization. Second, distortions to the drift field can deflect ionization tracks and therefore

bias the reconstruction of the track pitch – the dx in dQ/dx.

At this time, we have not specifically calibrated the impact of drift field distortions.
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We have measured the broad magnitude of the distortions and found them to be small –

distortions to the drift field of at most a couple percent which deflect tracks by at most a

couple centimeters. The charge scale calibrations here should be understood as folding in

the (small) impact of drift field distortions.

Diffusion

As discussed in chapter 4, diffusion in the two directions transverse to the drift field direction

impacts the measured charge scale from cosmic muons (see also Ref. [113, 135]). This effect is

due to the underlying distribution of energy loss (dE/dx) from muons changing as a function

of the magnitude of diffusion. This effect arises from the Landau-Vavilov nature of particle

energy loss [111, 110]. The shape of the Landau distribution depends on the length of the

muon observed by the readout wire [111]. In particular, the width of the distribution narrows

and the location of the peak (which is typically used as the observable of the distribution

[114]) shifts upward. Transverse diffusion smears the energy depositions observed by each

wire, and thus broadens the length of the muon observed by each wire and impacts the

Landau distribution of energy loss.

Therefore, transverse diffusion does not affect the detector response to charge (except

perhaps indirectly through any impact on signal processing), but rather makes the “standard-

candle” used to equalize the charge scale – cosmic muons – not truly standard in the drift

direction. As a result, using cosmic muon depositions to equalize the charge scale produces

a biased result, since such a procedure applies a non-uniform dE/dx distribution.

The impact of diffusion is significant because the smearing width of transverse diffusion

in ICARUS (∼1 mm for a deposition at the cathode) is on the order of the wire spacing

(3 mm). It can therefore be mitigated by summing together adjacent hits on a cosmic muon

track into a “coarse-grained” dQ/dx (see section 4.2). For example, summing together 10 hits

obtains a dQ/dx with an effective spacing of 10 wires, or 3 cm, much larger than the smearing
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width of transverse diffusion. This method also allows us to study the impact of diffusion

in data. The drift direction profile of the “coarse-grained” dQ/dx is impacted exactly the

same by detector non-uniformities (mostly argon impurities and drift field distortions) as a

“wire-by-wire” dQ/dx, but the two observables have different underlying dE/dx distributions

which are impacted differently by diffusion.

Figure 5.1 demonstrates this effect. Both the coarse-grained and wire-by-wire dQ/dx

attenuate across the drift direction, since the biggest effect is from argon impurities. However,

the two values also get closer at larger drift times. The coarse-grained measurement has a

longer track sensitive length constant across the detector, and thus a larger dE/dx peak

value. The wire-by-wire measurement has a smaller track sensitive length that increases

with increasing transverse diffusion across the drift direction. Therefore, the wire-by-wire

peak dE/dx is smaller but approaches the coarse-grained dE/dx peak at large drift times.

The magnitude of the effect is hard to predict because it depends on the unknown momentum

of the through-going muons used in the measurement. Its direction though is consistent with

expectation. This is the first confirmation in data of the impact of transverse diffusion on the

muon charge scale, which has previously only been predicted from simulation [113, 135]. It

validates the approach we have taken in ICARUS towards drift direction charge equalization,

as detailed in section 5.1.2.

Induction Wire Plane Intransparency

The induction wire planes in ICARUS (primarily the middle induction plane) absorb charge

in a position dependent way across the detector. This effect induces significant variations

(∼ 20%) in the charge response on all three readout wire planes. On the collection plane,

it directly reduces the amount of visible charge. On the induction planes, the unipolar

collection signal from absorbing charge competes with the bipolar induction signal from

non-absorbing charge.
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Figure 5.1: Comparison of the 1-Wire (wire-by-wire) and 10-Wire (coarse grained) charge
measurements for one ICARUS run in TPC WW. In the top panel, the most-probable-value
(MPV) of dQ/dx is plotted as a function of the drift time for both measurements. In the
bottom panel, a ratio of the two measurements is shown. The 1-Wire measurement MPV
approaches the value of the 10-Wire measurement MPV due to diffusion in the direction
transverse to the drift direction.

A GARFIELD simulation [109] of the nominal ICARUS wire plane configuration predicts

that the inductions plane absorb 7% of the charge. Thus, to explain the observed variations,

the wire plane configuration of ICARUS must depart from the design specification in a

position dependent way across the detector. We have checked all components of the wire

bias outside of the cryostat and have found only a couple of discrete failures, which have

been correlated to features in the non-uniformity but do not explain all of them. Inside the

cryostat, some departure of either the wire bias or the inter-plane wire spacing from the

nominal configuration must conspire to produce the spatial variations observed in ICARUS.

We have investigated the possibility of changing the ICARUS detector configuration to
51



mitigate the impact of this effect. The supplied wire bias cannot be turned any higher

due to the rating of cables carrying the bias inside the cryostat. We tested operating at a

reduced drift electric field (which increases the relative effect of the wire bias) in Summer

2022. We found that the increased effect of recombination and larger attenuation from argon

impurities reduced the signal-to-noise in ICARUS by too much to be feasible, especially on

the induction planes.

Although significant, the variation in the induction wire plane intransparency has been

found to be very stable across time. Thus, we can calibrate out the effect using the very

large sample of cosmic muons available to ICARUS.

Channel Gain Variation

The gain of different channels in the ICARUS TPC are not perfectly uniform. This effect has

been measured by directly pulsing the electronics with a constant pulse. The measurement

found that the variation of gain in different channels is not large, and that it is a smooth

effect across the detector. Thus, the spatial resolution of the correction factors computed in

section 5.1.3 (10×10 cm2) is adequate to address this effect.

5.1.2 Drift Direction Equalization

The drift direction equalization step corrects charge reconstruction for effects that vary with

the ionization drift time. The primary such effect is attenuation from argon impurities.

Since the electron lifetime varies across the ICARUS dataset, this equalization is done per-

DAQ-run. One DAQ run in ICARUS lasts from a few hours to a few days, and the electron

lifetime does not vary significantly over such a period.

The calibration is done with depositions from anode-cathode crossing tracks. The cathode

crossing identification is done by matching a pair of aligned tracks in the two TPCs on

either side of the central cathode plane. A cut on the drift direction length of the track
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in either TPC ensures that it also crosses the anode in that TPC. As described in section

5.1.1, to mitigate the impact of diffusion, the charge is summed in groups of 10 wires into a

“coarse-grained” dQ/dx. The coarse-grained depositions are grouped by drift time and are

fit with a Landau distribution convolved with a Gaussian distribution to extract the most-

probable-value (MPV) of the distribution. The MPV as a function of drift time is fit to an

exponential to obtain an effective electron lifetime that parameterizes the non-uniformity.

This electron lifetime should be understood to be effective because, while argon impurities

have the dominant impact, the measured lifetime also includes effects from field distortions

and imperfections in signal processing. We have found that an exponential is able to model

the charge non-uniformity in all runs across the ICARUS dataset.

Figure 5.2 shows the electron lifetime across the ICARUS dataset, as well as the corre-

sponding mean signal attenuation in the drift direction. The electron lifetime was maintained

at ∼3 ms in the West cryostat and at ∼5 ms in the East cryostat across Run 1. During Run

2, the lifetime in the West cryostat reached 8-10 ms. There are slight differences between the

East and West TPCs in both Cryostats. This is not expected from the argon purity since

the same argon circulates in both TPCs in a cryostat. Rather, the differences between the

TPCs are an indication of different field distortions in the TPCs which perturb the effective

electron lifetime measured here.

5.1.3 Wire Plane Equalization

The wire plane equalization step corrects charge reconstruction for detector effects that vary

across the two directions in the plane of the readout wires: ŷ, the vertical direction, and ẑ,

the (BNB) beamline direction (see figure 3.6). The calibration is done with coarse-grained

depositions from through-going cathode-crossing tracks. Depositions are binned in terms of

their ŷ− ẑ location on the wire plane in 10×10 cm2 bins. This is as small a spatial resolution

as is possible given the statistics of cosmic muons (∼ 3 million) available for the calibration.
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Figure 5.2: Measured effective electron lifetime values measured in each ICARUS TPC
across the Run 1 and Run 2 datasets. The right axis shows the corresponding average signal
attenuation across the ∼1 ms ICARUS drift period.

As in the drift direction equalization, in each spatial bin the distribution of dQ/dx values is

fit with a Landau distribution convolved with a Gaussian distribution to extract the MPV.

The MPV in each spatial bin is converted into a scale factor computed to keep the mean

MPV across the TPC fixed. The scale factors are computed individually in each TPC in

each wire plane. We have also split up the dataset by run to study time dependence of the

spatial variations.

The spatial uniformity maps are shown in the Run 1 dataset for the front induction,

middle induction, and collection planes in figures 5.3, 5.4, and 5.5, respectively. Some, but

not all, of the features in the map have been traced to known faults in the detector. For

example, the band of small dQ/dx around z = 0 in each TPC is due to perturbations to the

applied wire bias field by the presence of a mechanical bar supporting the front induction

wires. There are a couple of discrete changes in the uniformity between Runs 1 and 2. The

difference in the uniformity between Run 1 and Run 2 is shown for the collection plane in

figure 5.6. These changes have been traced to a couple of changes to the detector operation

during the 2022 technical shutdown: two additional failures of middle induction plane wire
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bias voltage supplies, and a few readout board replacements on the collection plane (which

have a slightly different gain). We have not observed any time dependence of the spatial

uniformity within either Run 1 or Run 2.
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Figure 5.3: Coarse-grained MPV dQ/dx values in 10×10 cm bins in each of the ICARUS
TPCs on the front induction plane across the Run 1 dataset. The borders between different
flanges that supply the wire bias to groups of wires on collection and induction are overlaid,
as well as the location of mechanical support structures on the front induction wire plane.
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Figure 5.4: Coarse-grained MPV dQ/dx values in 10×10 cm bins in each of the ICARUS
TPCs on the middle induction plane across the Run 1 dataset. The borders between different
flanges that supply the wire bias to groups of wires on collection and induction are overlaid,
as well as the location of mechanical support structures on the front induction wire plane.
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Figure 5.5: Coarse-grained MPV dQ/dx values in 10×10 cm bins in each of the ICARUS
TPCs on the collection plane across the Run 1 dataset. The borders between different flanges
that supply the wire bias to groups of wires on collection and induction are overlaid, as well
as the location of mechanical support structures on the front induction wire plane.
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Figure 5.6: Differences between the Run 1 and Run 2 datasets of coarse-grained MPV dQ/dx
values in 10×10 cm bins in each of the ICARUS TPCs on the collection plane. The borders
between different flanges that supply the wire bias to groups of wires on collection and
induction are overlaid, as well as the location of mechanical support structures on the front
induction wire plane.
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5.1.4 TPC Equalization

As a final step, the gains in the four separate TPCs in ICARUS are equalized. This equal-

ization is done separately for both ICARUS runs. This corrects for any broad differences

in the gain between the different TPCs or runs. The charge scale for this equalization is

computed using stopping cosmic muons, as opposed to throughgoing muons. This choice is

made because stopping cosmic muons are used to measure the absolute gain in ICARUS in

the ionization energy scale calibration (chapter 6). Equalizing the TPC gain with the same

sample ensures that different TPCs are completely consistent in the gain fit.

The charge scale is computed from distributions of coarse-grained dQ/dx with the drift

and wire plane direction equalizations applied. The distributions are split up in terms of the

stopping muon track residual range and drift time to select for a single peak dE/dx in each

distribution. The residual range is binned in steps of 5 cm from 200-300 cm. The drift time

is binned in steps of 100 µs from 500-900 µs. Each histogram of equalized dQ/dx is fit to a

Landau distribution convolved with a Gaussian distribution to extract the MPV. The MPVs

are averaged over residual range to obtain a single average for each drift time. Then, a scale

factor is fit to the mean MPVs per each TPC per each run. This scale factor is normalized

so that TPC EW in Run 1 has a scale of 1. The average MPVs and the scale factors are

shown in figure 5.7.

5.1.5 Equalization Results

Figure 5.8 plots the distribution of coarse-grained dQ/dx values from throughgoing cathode-

crossing cosmic muons before and after the equalization procedure. The width of the dQ/dx

distribution noticeably narrows after applying the corrections developed in this section. The

narrowing is most significant on the collection plane, where the inherent broadening from

readout noise has the smallest effect.
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Figure 5.7: Computation of TPC equalization scale factors in each TPC in both runs. The
scale factors are computed by equalizing the MPV of stopping cosmic muon depositions
across four drift time bins, averaged across a residual range from 200-300 cm. These are
shown by the data points per-TPC. The scale factors are given by the horizontal lines. They
are normalized so that TPC EW in Run 1 has a scale of 1.

5.2 Signal Shape Measurement and Simulation

Inaccuracies in the simulation of ionization signal shapes in LArTPCs can bias the estimation

of the performance of tracking and calorimetry in the detector. In order to minimize these

biases, we carry out a data-driven tuning of the ionization signal shape used in ICARUS

Monte Carlo simulation. The measurement of the signal shapes in data and Monte Carlo

simulation is shown in section 5.2.1. The procedure to tune the simulated signal shape to

match the data is described in section 5.2.2.

5.2.1 Signal Shape Measurement

The ionization signal shapes in the ICARUS detector have been measured using a technique

first pioneered in the MicroBooNE experiment [130]. The signal shapes of ionizing particle

tracks depend on their orientation relative to each wire plane as determined by the θxw angle

(see figure 4.2). The measured signal shapes across three bins of θxw are compared between

data and Monte Carlo simulation in figure 5.9. There is significant disagreement between
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Figure 5.8: Distribution of coarse-grained dQ/dx values for throughgoing cosmic muons in
the Run 1 and Run 2 datasets uncorrected, and with the drift and wire plane equalization
corrections applied. Shown for the front induction plane (left), the middle induction plane
(middle), and the collection plane (right).

the data and the nominal simulation on all three planes. We have identified three main

causes for this disagreement: a tail in the channel electronics response not in the nominal

shape, distortions in the field response indicated by the intransparency of the induction

planes to charge, and differences in the signal-to-noise ratio between the simulation and the

data. The first two causes are directly connected to the signal shape. The last is driven by

variations in the detector response to charge (such as the varying electron lifetime measured

in section 5.1.2, and the varying induction intransparency measured in section 5.1.3) that

are not simulated. These variations primarily impact the front induction plane, where the

noise is larger and the dependence on the exact signal-to-noise ratio is significant. In the

tuning procedure we describe in the next section, we therefore elect to apply the fit only to

the measurements on the middle induction and collection planes. The tuning procedure can

in principle be applied to the front induction plane once the differences in the variation of

signal-to-noise are addressed.

5.2.2 Fit Procedure

We have developed a novel procedure to tune simulated signal shapes to match their measure-

ment in data. This procedure tunes the input single electron field generated by GARFIELD

[109] and applied by the Wire-Cell package, which is used in the ICARUS detector signal
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Figure 5.9: Comparison of the signal shape measurement between data and the nominal
(untuned) GARFIELD-based Monte Carlo simulation (“MC Nominal”) on the front induction
plane (top row), middle induction plane (middle row), and collection plane (bottom row).
Shown are measured signal waveforms averaged across θxw ranges of [20◦, 40◦] (left column),
[40◦, 60◦] (middle column), and [60◦, 76◦] (right column).

shape simulation. We defer to the initial paper on Wire-Cell for a detailed description of

how it works [108]. Here we include an abbreviated discussion necessary to understand the

fitting procedure.

Wire-Cell forms signal shapes by summing the single electron field response on each wire

from ionization electrons in particle energy depositions. The single electron field response

depends on the location of the electron in the direction perpendicular to the wire direction

(which we call ŵ, see figure 4.2). The field response is significant even when the electron is

not directly adjacent to the wire. Wire-Cell applies single electron field responses calculated
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every 0.3 mm for 3 cm (10 wire-spacings) on either side of each wire. Individual clusters of

electrons in the simulation arrive in between the discrete locations where the field responses

are calculated, so for a given deposition Wire-Cell linearly interpolates between the two on

either side. The combined field response from all ionization electrons in a readout on a

given wire is then convolved with the electronics response to create the signal shape for that

readout.

The nominal ICARUS single electron field responses are computed by a GARFIELD sim-

ulation of the nominal ICARUS wire plane configuration. The nominal electronics response

is a Bessel shaping function with a width of 1.3 µs. That the observed signal shapes depart

from the nominal simulation indicates that the ICARUS detector departs from this nominal

configuration in some way. First, we have observed a tail in the electronics response due to

imperfect pole-zero cancellation that we measure separately and include in the tuned elec-

tronics response. The remaining differences are harder to attribute and ultimately depend

on the inaccessible state of the TPCs inside both cryostats. We have thus taken the per-

spective that a data driven approach is an apt fix to these discrepancies. We fit the signal

shapes in the simulation directly to the measurement. The objects in the fit are the position

dependent single electron field responses and the electronics response1, although we do not

claim to be more accurately measuring any of these objects individually after the fit. We

only attempt to model their combined impact on the signal shape. Monte Carlo simulation

with the signal shapes tuned by this procedure demonstrates a much improved match in the

signal shape between data and Monte Carlo simulation, as is shown below.

1. Imperfections in the means to directly pulse the ICARUS TPC readout electronics prevent a pre-
cise direct measurement of the electronics response. Instead, the fit described here produces an “effective”
electronics response adequate to describe the final signal shape.
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Figure 5.10: Averaged waveform from high angle tracks used to measure the exponential tail
in the electronics response.

Electronics Response Tail Measurement

We have observed a long tail, with a time constant of ∼50 µs, in the electronics response of

ICARUS. The origin of the effect is imperfect pole-zero cancellation in the transfer function of

the electronics. The tail is measured by averaging together waveforms on the collection plane

from a large number of high angle muons (large θxw). High angle muons are used because

the coherent noise subtraction can depress the effect of the tail when the track is closer to

perpendicular to the drift direction. An exponential (e−t/τ ) is fit to the averaged waveform

values between 40-80 µs (100-200 ticks), which is far past where the field response impacts the

shape. This fit obtains an exponential with a time constant of 48.8 µs that contains 15.9%

of the charge from the pulse. The fit exponential is convolved with the nominal electronics

response to obtain the effective electronics response. Figure 5.10 displays the data and the

fit. The exponential describes the waveform shape well in the fit region.
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Signal Shape Model

We have developed a model of the signal shape measurement that takes the single electron

field responses and the electronics response as input and produces the expected signal shape

as a function of the track angle θxw. The fit of the field and electronics responses are done

by fitting this model to the measured signal shapes.

The model first turns the set of single electron field responses (201 total, each spaced

0.3 mm apart) into an angle dependent “track field response”. This is done by sub-sampling

the single electron field responses. Each sample linearly interpolates the responses on either

side (as is done in Wire-Cell). The samples are shifted in time according to the chosen track

angle and summed together. Given the single electron field responses

s−30 mm(t), s−29.7 mm(t), . . . , s30 mm(t) relative to the wire at time t, the track field response

f(θxw; t) is equal to

f(θxw; t) =
∑
xi

(
1− xi − bxic

0.3 mm

)
·sbxic

(
t− xitanθxw

vD

)
+

(
1− dxie − xi

0.3 mm

)
·sdxie

(
t− xitanθxw

vD

)
,

(5.1)

where vD is the drift velocity, xi are the sampled locations, bxc is the position immediately

below x of a sampled single electron field response, and dxe is the position immediately above

x of a sampled single electron field response. In our implementation, we sub-sampled the

single electron field responses every 0.03 mm for 2001 sub-samples. The sampled nominal

field responses shifted by a few example track angles is shown in figure 5.11. The sum of

these samples (i.e., the track field response f(θxw; t)) is shown for a few example track angles

in figure 5.12. The un-physical spikes in the field responses are caused by the finite sampling

spacing of the single electron field responses and are smoothed out by the electronics response,

as specified below.

The track field response is convolved with the electronics response e(t) to obtain the track

signal shape. In addition, the measurement of the signal shape will not perfectly reproduce
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Figure 5.11: Sampled interpolated single electron field responses, shifted by track angle, as
defined in equation 5.1. Shown for the front induction plane (top row), middle induction
plane (middle row), and the collection plane (bottom row).

the signal. The alignment of signals from different muons in the averaged waveform will not

be perfect due to detector noise. The resolution from this misalignment smears the shape.

(Other broadening effects, such as diffusion, are insignificant.) To account for this effect, the

signal shape is convolved with a “measurement kernel” m(θxw; t). The final measured track

signal shape S(θxw; t) is thus equal to

S(θxw; t) = (f(θxw) ~ e~m(θxw)) (t) , (5.2)

where ~ denotes a convolution.

The measurement kernel is determined from a fit on ICARUS simulation where the

underlying field and electronics response is known. It is found to be well approximated by a

Gaussian with a width σ depending on the track angle by a form σ (θxw) =
√
a2 + b2tan2θxw,
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Figure 5.12: Track field response f(θxw; t), as defined in equation 5.1. Shown for the front
induction plane (top row), middle induction plane (middle row), and the collection plane
(bottom row).

where a and b are parameters individual to each wire plane. The measurement kernel width

as determined in Monte Carlo simulation on each wire plane is shown in figure 5.13 for the

middle induction and collection planes, on which the fit is performed.

The fit to data is done by matching the measured signal shape S to the data by fitting

the electronics response e and the single electron field responses si (implicit in the track

field response f). In this fit, non-linear transformations parameterized by the fit are applied

to the nominal field and electronic responses. The details of these transformations are in

appendix C. The fit is done on all measured track angles at once.

Fits

The results of the fit are shown in figures 5.14 and 5.15 for the middle induction plane and

collection plane respectively. The fit is done in angle bins 2◦ in width from θxw = 20◦− 76◦.
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Figure 5.13: Broadening from resolution on track alignment in the signal shape measurement
procedure as measured in ICARUS simulation. The width of the broadening is plotted as a
function of the track angle which determines the signal shape, θxw.

The fit improves the signal shape model at all angles on each plane.

5.2.3 Tuned Signal Shape Results

As a validation of the tuned signal shapes, we compare the signal shape measurement from

data against Monte Carlo simulation generated with the tuning applied. The comparison is

shown above for the nominal signal shapes in figure 5.9. Figure 5.16 shows the comparison on

the middle induction and collection planes with the tune applied. The modeling is improved

in all angle bins on the both planes.
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Figure 5.14: Signal shape fits on the middle induction plane. Each plot shows one angle bin
between 20◦ and 76◦. The blue curve is the nominal ICARUS signal shape and the orange
is the result of the fit.
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Figure 5.15: Signal shape fits on the collection plane. Each plot shows one angle bin between
20◦ and 76◦. The blue curve is the nominal ICARUS signal shape and the orange is the
result of the fit.
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Figure 5.16: Comparison of the signal shape measurement between data and the tuned Monte
Carlo simulation (“MC Modified”) on the middle induction plane (top row) and collection
plane (bottom row). Shown are measured signal waveforms averaged across θxw ranges of
[20◦, 40◦] (left column), [40◦, 60◦] (middle column), and [60◦, 76◦] (right column).
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Figure 5.17: Distribution of equalized coarse-grained dQ/dx values for throughgoing cosmic
muons, compared between Monte Carlo simulation and data. The simulation uses the nom-
inal GARFIELD signal shape on the front induction plane and the tuned signal shape on
the other two planes. The data is taken from the Run 1 and Run 2 datasets. Shown for the
front induction plane (left), the middle induction plane (middle), and the collection plane
(right).

5.3 Charge Resolution Comparison

To validate the equalization and simulation results of this chapter, we compare the distri-

bution of equalized dQ/dx for throughgoing cosmic muons between data and Monte Carlo

simulation. This is shown in figure 5.17. The data is shown after applying the corrections

discussed in section 5.1. The signal shape applies the nominal GARFIELD simulation on

the front induction plane, and the tuned signal shape (as described in section 5.2) on the

middle and collection planes. The Monte Carlo simulation does not include any y-z detector

response variations. It is simulated with a uniform 3 ms lifetime, which is corrected for using

the same methodology as in the data. The simulated gain was tuned on each plane so that

the peaks of the distributions matched.

Taken together, the final comparison shows very good agreement on all planes. There

is a small residual underestimation of the charge resolution in simulation. This is observed

on all three planes and is biggest on the front induction plane. There are a number of

possibilities that could explain this effect: variations in the effective channel gain (from, e.g.,

the varying electron lifetime) not included in the simulation, deficiencies in the noise model,

or differences in the inherent fluctuations from recombination, for example.
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CHAPTER 6

ANGLE DEPENDENT ELECTRON-ION RECOMBINATION

AND ITS APPLICATION IN THE ICARUS LARTPC

6.1 Introduction

To turn charge measurements (dQ/dx) into measurements of particle energy loss (dE/dx), it

is necessarily to correct for the effect of electron-ion recombination. When charged particles

deposit energy in the argon, they ionize individual argon ions. Critically, not all of the

ionization electrons escape the particle track to be detected. Depending on the charge

density, a significant fraction recombines with argon ions at the point of creation [136, 137,

138, 107]. The rate of recombination has a non-linear dependence on the energy per length,

or dE/dx, deposited by charged particles. In addition, because the drift electric field points

in a specific direction, the recombination process may depend on the angle of the ionizing

track to the electric field [139, 140]. Measuring the rate of recombination across relevant

variables is necessary for LArTPC detectors to precisely leverage calorimetry for particle

identification and energy reconstruction. Any angular dependence in recombination is also

of interest for argon-based dark matter detectors, where it could be leveraged to identify

weakly interacting massive particle dark matter below the neutrino floor [141].

This chapter reports on a measurement of electron-ion recombination and its dependence

on the angle of the ionizing particle direction to the drift electric field with the ICARUS

LArTPC. The measurement is applied in the absolute energy scale calibration of the ICARUS

TPC. The measurement is performed by fitting for the electronics gain and recombination

parameters in a single, self-consistent fit. This fit includes minimum-ionizing depositions

from cosmic-ray muons (which are included in the fit to anchor the gain) and highly-ionizing

depositions from protons produced in neutrino interactions at ICARUS from the Neutrinos

at the Main Injector (NuMI) beam [82] (which provide information on the non-linearity of
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recombination).

The recombination measurement observes a clear dependence in recombination on the

track angle to the drift electric field. We develop a new model, ellipsoid modified box (EMB)

recombination, that is able to fit the data across all measured energies and angles. We further

demonstrate that accounting for the angular dependence in EMB recombination improves

the accuracy and precision of calorimetric measurements applying dE/dx.

This chapter is organized as follows. Section 6.2 discusses the models used to describe

recombination and how to include an angular dependence. Section 6.3 develops how stopping

muon and proton tracks are selected. Section 6.4 shows the fit results for the TPC gain and

the angular dependent recombination measurement. The fit is applied as the energy scale

calibration for ionization calorimetry in ICARUS. Applying this calibration, section 6.5 shows

results for particle identification and calorimetric energy measurements and compares data

to Monte Carlo simulation. Finally, section 6.6 concludes the chapter.

6.2 Recombination Modeling

Electron-ion recombination in liquid argon is driven by the collective absorption of ionized

electrons by the cloud of argon ions along the particle track [136, 107] (the geminate fraction

is negligible [142]). Recombination occurs after electrons thermalize and before they diffuse

significantly [143]. It happens before the argon ions drift or diffuse significantly. Recombi-

nation thus takes place while the ionization electrons are dragged by the drift electric field

over a stationary cloud of argon ions. The rate of recombination therefore may depend on

the strength of the drift electric field and its orientation to the particle track, as well as the

particle stopping power (dE/dx).

We consider two models to parameterize the recombination of ionizing particle tracks in

liquid argon. The previous ICARUS measurement of recombination at Gran Sasso applied
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the Birks equation [138]
dQ

dx
=

1

Wion

AdEdx

1 + k dEdx /Eρ
, (6.1)

where Wion is the argon ionization work function, E is the drift electric field, and A and

k are fit parameters. The ArgoNeuT experiment measured recombination in terms of their

proposed modified box model [107]

dQ

dx
=

log
(
α + B dEdx

)
BWion

B =
β

Eρ
,

(6.2)

where α and β are fit parameters. This equation is a modification of the Thomas-Imel box

model [136].

In both of these models one fit parameter (A,α) is uncoupled to the electric field. At the

ICARUS drift field, these parameters control the amount of recombination for minimum-

ionizing depositions. Both models also include one parameter (k, β) which is coupled to the

electric field and determines the non-linearity of recombination with respect to dE/dx.

Neither of these models explicitly include a dependence on the track angle to the drift

field, which we refer to as φ (see figure 4.2). Different forms of the angular dependence derive

from different assumed shapes for the particle track ionization cloud. Two such examples are

columnar [139] and ellipsoid [140] shapes. These models give an angular dependence to the

drift electric field in the Birks equation. The same angular dependence in the drift electric

field can also be applied in the modified box model.

For this measurement, we elect to include an angular dependence with a general form

by promoting the parameters coupled to the drift field, k for Birks recombination and β

for modified box recombination, to functions of φ: k(φ) and β(φ). These are compared to

the columnar and ellipsoid model predictions. Neither phenomenological model assigns any

angular dependence to the parameters uncoupled to the electric field (A,α). We do not
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include any angular dependence in these parameters in our measurement. We find that our

results are well described by including an angular dependence just on the parameters coupled

to the electric field (k, β).

Our recombination modeling also assumes that there is no dependence of recombination

on the particle type (muon versus proton, e.g.). It is possible that at the same energy loss

(dE/dx), muons and protons would deposit different amounts of ionization (dQ/dx) because

the two particles produce different energy spectra of ionization electrons. Our results are

well described by neglecting any particle type dependence, although they do not include any

data where the expected muon and proton energy loss overlaps. The search for such an effect

merits further study.

In the fit, we also include the electronics gain (G) as a free parameter. The gain enters the

fit equations as dQdx ADC = 1
G
dQ
dx . The gain for the ICARUS TPC readout electronics has been

previously measured [85]. The gain in this fit should be understood as an effective parameter

which encodes any perturbations induced by signal processing and charge corrections. In

addition, by including the gain directly in the fit, we are able to include the uncertainty that

the unknown effective gain induces on the measurement of recombination.

6.3 Track Selection

Particle tracks are identified in ICARUS with the Pandora reconstruction framework [86,

87], run on hits produced by the ICARUS signal processing chain [83]. Separate track

selections identify cosmic-ray muon and neutrino-induced protons useful for the energy scale

calibration. These are detailed in sections 6.3.1 and 6.3.2, respectively. The charge measured

from tracks is equalized across space, time, and track orientation, as described in section

6.3.3. Distributions of dQ/dx are then constructed from hits along tracks, as discussed in

section 6.3.4. Table 6.1 outlines the selection for proton and muon hits.
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Selection Step Muons Protons
Topological Selection Cathode-crossing (see

section 6.3.1)
From neutrino candidate
(see section 6.3.2)

Calorimetric Selection Median dQ/dx in last
5 cm > 75 ke−/cm

µ-like PID > 40, p-like PID
< 80 (see figure 6.1)

Fiducial Volume X Inset (drift) 10 cm from anode and 15 cm from cathode
Fiducial Volume Y Inset (vertical) 20 cm from top and bottom.
Fiducial Volume Z Inset (BNB) 50 cm from front and back
Hit Residual Range 33 bins, 80 to 300 cm 16 bins, 2 to 25 cm
Hit Pitch 0.3 to 0.4 cm 0.3 to 1 cm
Hit φ 70◦ to 85◦ 6 bins, 30◦ to 85◦
Hit θxw 5◦ to 20◦ 5◦ to 70◦
Hit Drift Time 5 bins, 500 to 900 µs No cut

Table 6.1: Overview of selection to identify hits from muon and proton tracks. The topolog-
ical section is specified in sections 6.3.1 and 6.3.2 for muon and protons, respectively. The
extra fiducial cut in TPC WW removes a problematic detector region. When hits are split
into groups by the quantity, the number of bins is specified.

6.3.1 Cosmic-Ray Muon Selection

Cosmic-ray muon tracks are required to cross the central cathode plane in either cryostat.

The identification of a track in both TPCs on either side of the cathode allows the arrival time

of the muon to be determined. This enables the track charge to be corrected for attenuation

due to argon impurities. These “cathode-crossing tracks” are identified by Pandora. The

muon is required to stop within a fiducial volume (see table 6.1), and is required to have a

median dQ/dx in the last 5 cm along the track greater than∼ 75 ke−/cm 1. This cut increases

the stopping track purity by requiring the measured charge near the endpoint to be consistent

with the expectation from the muon Bragg peak. The region of the track where the cut is

applied is not included in the calibration, and so the cut should not bias the measurement.

This selection identifies 93 thousand muon candidates. A Monte Carlo simulation study

(with cosmic-ray muon generation modeled by CORSIKA [106]) of this selection yields a

1. The cut value is expressed directly in terms of analog-digital counts (ADC) per centimeter. The cut is
1000 ADC/cm. The written value is converted to a number of electrons (e−) applying an approximate gain
of 75 e−/ADC.
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93% purity of tracks stopping within 5 cm of the reconstructed endpoint. The remaining 7%

consist almost entirely of cosmic-ray muons where the endpoint is mis-reconstructed, either

due to track splitting or combining with a Michel electron. The dependence of energy loss

on the muon momentum is small for the range of muon momenta used in this measurement,

so this impurity has a small impact.

6.3.2 Neutrino-Induced Proton Selection

Neutrino-induced protons are selected by applying topological and loose calorimetric cuts.

The tracks are required to originate from a neutrino candidate with a fiducial interaction

vertex. The neutrino candidate must have at least two tracks with a length of at least 25 cm

each. The cosine of the angle of the longest track in the candidate to the vertical direction

must be greater than -0.7. These cuts select for event topologies with multiple tracks and

remove events with downward going tracks. They remove the large majority of cosmic-ray

muon background events.

After the topological cuts, the proton track candidates are selected by applying a calori-

metric particle identification cut. This cut relies on particle identification (PID) variables

which compare the reconstructed profile of dE/dx along a track to the theoretical expecta-

tion for muon (µ-like) and proton (p-like) hypotheses [121]. Calorimetric cuts are necessary

to select proton tracks from muons and pions, and have been used in prior recombination

measurements leveraging protons [107, 120]. These variables are computed using a basic en-

ergy scale calibration which assumes the ArgoNeuT recombination measurement [107] and

fits for the TPC electronics gain using the cosmic muon track sample. Distributions of the

PID variables in ICARUS Monte Carlo simulation are shown in figure 6.1. Candidate proton

tracks must be contained in a fiducial volume and have p-like PID < 80 and µ-like PID > 40.

This selection identifies 4.4 thousand proton candidates. The sample has a 97.5% purity of

true protons in a Monte Carlo simulation study. We have performed the recombination
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Figure 6.1: Distribution of proton-like (left) and muon-like (right) particle identification
(PID) variables in ICARUS NuMI neutrino + CORSIKA cosmic-ray Monte Carlo simulation.
Distributions are shown after applying the topological cuts in section 6.3.2. The particle ID
variables are computed by comparing the profile of dE/dx along a track to the theoretical
expectation for the proton and muon hypotheses.

measurement with variations on the calorimetric cuts and have found that our result is not

sensitive to the particular choice of the cut values.

6.3.3 Charge Scale Corrections

Charge signals measured from muon and proton tracks per-wire on the collection plane are

equalized per-hit in space and time by applying the charge equalization procedure developed

for ICARUS (see chapter 5). This procedure equalizes the detector response by applying

corrections obtained from charge depositions by throughgoing cosmic muons.

A small (∼2.5%) angular dependence is also observed in the charge reconstruction for

particle tracks as derived by comparing charge reconstruction methods in ICARUS simulation

and data. There are two methods for measuring charge in a hit in ICARUS reconstruction.

The “Integral” method fits a Gaussian shape to the hit pulse and defines the charge as the

area of the fit. The “SummedADC” method sums the ADC values over the range of the

hit. The hit range is defined as the region between two local minima below the (baseline
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subtracted) zero-point of the waveform on either side of a hit pulse that goes above a set

threshold. Monte Carlo simulations in ICARUS indicate that the SummedADC method has

a worse charge resolution but no angular dependence, whereas the Integral method has a

better resolution and a moderate angular dependence. The TPC signal shapes in ICARUS

Monte Carlo simulation have been tuned to directly match the data signal shapes (chapter

5), so we are confident that the Monte Carlo simulation is able to precisely model the amount

of angular dependence in the charge reconstruction.

We use the Integral charge method for calibrating the ICARUS TPC energy scale, but use

the SummedADC method to diagnose the angular dependence. The ratio of the Integral to

SummedADC charge reconstruction is taken as a charge scale correction factor as a function

of the track angle θxw2 (see figure 4.2). Figure 6.2 plots the correction factor in Monte Carlo

simulation and data. A systematic uncertainty of 0.2% on the correction is assigned to cover

the differences.

Selected protons are required to have θxw < 70◦ so that this correction is applicable. For

muons, instead of making a correction, we restrict the θxw range between 5◦ < θxw < 20◦,

over which the angular dependence is not significant (< 0.2%).

6.3.4 dQ/dx Measurements

After selection and charge scale corrections, hits from protons and muons are divided into

groups. The MPV dQ/dx is extracted in each group. Both muon and proton hits are

required to be contained in a fiducial volume which removes regions where drift electric

field distortions are the largest. Muon hits are required to have a reconstructed pitch less

than 4 mm and a track angle φ > 70◦. They are grouped by TPC, drift time, and residual

range (the length of the muon after that hit). The subdivision by residual range and drift

time selects for a single expected energy loss MPV in each distribution. The subdivision by

2. This angle determines the shape of the ionization charge signal from a track, and therefore controls
any orientation dependence in the charge reconstruction.
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Figure 6.2: Relative scale of charge reconstruction as a function of the track angle θxw
(see figure 4.2), determined in ICARUS data and Monte Carlo simulation. A systematic
uncertainty of 0.2% on the correction is assigned to cover the difference between data and
Monte Carlo simulation.

TPC checks for any variations in the gain that were not removed by the charge equalization

procedure. Proton hits are required to have a pitch less than 1 cm and are grouped by

residual range and the track angle φ. See table 6.1 for the overview of the cuts applied to

muon and proton hits.

The MPV dQ/dx is obtained in each group by fitting the distribution of dQ/dx values to

a Landau distribution convolved with a Gaussian distribution. The fit includes a statistical

uncertainty on the MPV. Due to the uncertainty in the charge scale corrections to remove

angular dependence (section 6.3.3), as well as spatial and temporal variations (chapter 5),

we also assign a 1% systematic uncertainty on each proton dQ/dx MPV. The systematic

uncertainty is added in quadrature with the uncertainty from the fit. The uncertainty in the

muon dQ/dx MPV is separately validated by verifying that the fit uncertainty is consistent

with the residuals of the MPVs to a linear fit to the data (since recombination is linear for the

minimum-ionizing muon depositions). Thus, no additional systematic uncertainty is added

to the muon dQ/dx MPVs.
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6.4 Energy Scale Fit

6.4.1 Procedure

The end results of the track and hit selection described in section 6.3 are dQ/dx MPVs for

muon and proton tracks as a function of mean pitch, residual range, and (for muons only)

drift time. Each dQ/dxMPV is matched to an expected dE/dxMPV by applying the energy

scale modeling from chapter 4. Equation 4.10 specifies analytically the MPV energy loss in

the Landau limit. The Landau approximation is quantified by the unitless quantity ζ · t

(specified in equations 4.4 and 4.9, respectively), and is typically taken to be valid when

ζ · t < 0.01 [114]. When this limit is violated, the distribution of particle energy loss is not

well modeled by a Landau distribution and equation 4.10 does not apply. The ζ parameter

monotonically decreases with increasing momentum, so the approximation is valid at higher

momentum, away from the Bragg peak.

In our calibration procedure, for the muon population we elect to only include deposi-

tions where the analytic Landau approximation is valid. This limits us to depositions near

the mimumum-ionizing-particle (MIP) region, where recombination is close to linear. To

provide information on recombination, we also include highly-ionizing-particle (HIP) depo-

sitions from protons near their Bragg peak. In this case, the distribution of energy loss is

approximately a Landau-Vavilov distribution [110], although there is a perturbation to the

shape from diffusion (see chapter 4). The MPV of the Landau-Vavilov distribution can-

not be expressed analytically. We use the numerical computation provided by the ROOT

VavilovAccurate routine3 [144].

The measured dQ/dxMPVs are fit to the expected dE/dxMPVs with either the Birks or

modified box recombination model. The electronics gain is included as a free parameter in

3. We have found in our simulation that in this region the MPV of the proton energy loss distribution is
modeled well by the ROOT numerical computation, using the track pitch (not the track thickness) as the
input to the Landau parameter (λL) and κ value used in the VavilovAccurate routine.
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both fits. The A parameter in Birks recombination is degenerate with the gain in the fit, so we

use the A value from the ICARUS Gran Sasso measurement [138]. The parameters coupled

to the electric field, k(φ) for Birks recombination and β(φ) for modified box recombination,

are allowed to be different in each proton angular bin. The muon data bridges two of the

proton angular bins, 70◦ < φ < 80◦ and 80◦ < φ < 85◦. We use the average β and k values

from those two bins to calculate the expected amount of recombination. We have verified

in a Monte Carlo simulation study that this method is able to reproduce the simulated

recombination and electronics gain parameters.

The external values of parameters used in the fit are listed in table 6.2. The largest un-

certainty in any parameter relevant to energy loss modeling comes from the mean excitation

energy. We do not specifically include an uncertainty from this parameter in the energy scale

fit, as other uncertainties in the fit dominate over the impact of the excitation energy on the

mean energy loss. There is a 1.7% uncertainty in the electric field which translates directly

into an uncertainty in β and k which is fully correlated across angular bins. The uncertainty

in the electric field arises from distortions due to space charge and bending of the cathode

observed in both cryostats in ICARUS. There is an additional localized drift field distortion

in one TPC (the East TPC in the East cryostat, TPC EE) due to a failure in the field cage.

We have confirmed that removing data from that TPC does not change the measurement

by more than the uncertainty on the drift electric field. We therefore include data from that

TPC in the measurement.

6.4.2 Results

The result of the fit comparing measured dQ/dx and expected dE/dx is shown for muons

in figure 6.3 and for protons in figure 6.4. The χ2 values of the modified box and Birks

4. This value is taken from an analysis in ICARUS in preparation to be published. The preliminary value
applied here will not change in the final result by an amount significant enough to impact the results of this
chapter.
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Parameter Value
Energy loss coefficient K [114] 0.307 075 MeVcm2/mol
Mean excitation energy I0 [145] 197(7) eV

Transverse diffusion constant DT 4 7.5(2) cm2 s−1

Argon ionization work function Wion [146] 23.6 ± 0.3 eV

Argon density ρ 1.393 g mL−1

Drift electric field E 492.6 ± 8.4 V cm−1

Wire pitch p [79] 2.991 mm

Table 6.2: Numerical values of parameters that determine the muon and proton charge scale.
A reference is included for external measurements. Uncertainties are shown when their size
is relevant.

fits are compared for the proton data in table 6.3 (there is no significant difference for the

muon data). The modified box fit results in a lower χ2 across all proton angular bins. This

reduction is greater than can be accounted for by the additional degree of freedom from the

extra parameter in the modified box fit (α). We use the modified box fit for the energy scale

calibration for ICARUS. Figure 6.5 plots all of the modified box fits together, and shows the

φ dependence in the β parameter in the fit.

We observe a clear difference in the measured MPV dQ/dx between different proton

track angle bins. This can be seen both in the proton data in figure 6.4, as well as in the

β parameter fit in figure 6.5. At the largest measured dE/dx value (12 MeV/cm), this is a

difference of 10% on the measured proton charge between the largest and smallest φ bins.

We have closely examined any possible angular biases in the charge reconstruction. None

were found outside of the 2.5% correction detailed in section 6.3. We attribute the angular

dependence observed here to an angular dependence in electron-ion recombination in liquid

argon. The success of the modified box fits demonstrates that this can be parameterized by

including a dependence on the track angle to the drift electric field (φ) in the β parameter.
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Figure 6.3: Fits of measured MPV dQ/dx to expected MPV dE/dx for muons in the East
cryostat (left) and the West cryostat (right). The two lines compare the Birks and modified
box fits.

We investigate the φ dependence of the β parameter by comparing three models of the

angular dependence:

• Constant: β(φ) = β90

• Columnar [139]: β(φ) = β90/sinφ

• Ellipsoid [140]: β(φ) = β90/
√

sin2φ+ cos2φ/R2,

where β90 (≡ β(90◦)) and R are fit parameters. The R parameter of the ellipsoid model

interpolates between the constant (R = 1) and columnar (R → ∞) models. Figure 6.5

Table 6.3: χ2 values in the modified box and Birks equation fits to proton data, broken down
by the (φ) angle bin. There are 16 data points in each angular bin. The Birks fit has 7 free
parameters (k(φ),G), and the modified box fit has 8 (β(φ), α,G).

Proton Angle Bin Birks Fit χ2 Modified Box Fit χ2

30◦ < φ < 40◦ 40.6 13.9
40◦ < φ < 50◦ 57.7 11.7
50◦ < φ < 60◦ 53.2 6.1
60◦ < φ < 70◦ 52.3 5.4
70◦ < φ < 80◦ 52.3 3.9
80◦ < φ < 85◦ 37.7 4.8

Total χ2/n d.o.f. 293.8/89 45.8/88
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Figure 6.4: Fits of measured MPV dQ/dx to expected MPV dE/dx for protons. The two
lines compare the Birks and modified box fits.
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Figure 6.5: (Left) Modified box fit in each proton angle bin. (Right) Ratio of β(φ) measure-
ments in the modified box fit to the value in the 80◦ < φ < 85◦ bin. This ratio is compared
to three models of the angular dependence, as described in the text. All three models are
normalized to match the data in the 80◦ < φ < 85◦ bin.

compares the three models to the measured ratio of β(φ) to β(82.5◦) (the ratio removes the

correlated uncertainty due to the drift electric field). Neither the constant nor columnar

models match the dependence. However, the ellipsoid model fit is able to describe it well.

Putting this together, we find that the ellipsoid modified box (EMB) model of recombi-

nation

dQ

dx
=

log
(
α + B(φ)dEdx

)
B(φ)Wion

B(φ) =
β90

Eρ
√

sin2φ+ cos2φ/R2

(6.3)

is able to describe the muon and proton data across all measured angles. The ICARUS

measurement of the EMB model is obtained by re-fitting the dQ/dx data. The result is

α: 0.904 ± 0.008 R: 1.25 ± 0.02

β90: 0.204 ± 0.008 (kV/MeV)(g/mL),

with the ICARUS electronics gain (G) measured as 75.0 ± 1.1 e−/ADC. Figure 6.6 displays

the correlation matrix of the uncertainties in the fit. The measured R parameter is 12.5 stan-
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Figure 6.6: Correlation matrix of the uncertainties in the ellipsoid modified box (EMB)
recombination measurement.

dard deviations away from a value consistent with no angular dependence in recombination

(R = 1).

The ArgoNeuT experiment previously measured electron-ion recombination, including

its angular dependence, in liquid argon with protons and deuterons at a drift field strength

close to the field strength in ICARUS [107]. A comparison is shown in figure 6.7. The two

measurements appear consistent. While ArgoNeuT recommended its result be applied in an

angular independent way, we have found that the angular dependence in the EMB model is

critical to properly calibrate the ICARUS LArTPC. Section 6.5 demonstrates the impact of

the angular dependence on particle identification.

6.5 Impact on Particle Identification and Calorimetry

The measurement of ellipsoid modified box (EMB) electron-ion recombination (equation 6.3)

and the ICARUS electronics gain presented here provides the TPC energy scale calibration

in ICARUS. This calibration enables the use of calorimetric particle identification (PID) and

energy reconstruction for ionizing particle tracks. Figure 6.8 shows the distribution of cali-
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Figure 6.7: Comparison of the modified box recombination model fit between this measure-
ment and the ArgoNeuT result [107]. The two fits are not completely comparable because
the ArgoNeuT result allowed the α parameter to be different in the different angular bins.
Beyond this limitation, the measurements appear consistent.

brated energy depositions for selected stopping muons and protons. The figure demonstrates

both the accuracy of the calibration and the ability of the ICARUS TPC to calorimetrically

separate muon and proton tracks.

In this section, the performance of ICARUS calorimetry is compared in detail between

data and Monte Carlo simulation. Furthermore, the application in data of the ICARUS

EMB-based calibration (equation 6.3) and an ArgoNeuT modified box-based calibration

(equation 6.2) are compared. The EMB model values are taken from this chapter. The Ar-

goNeuT modified box values are taken from ref. [107]. The electronics gain in the ArgoNeuT

modified box-based calibration is determined from a fit to muon dQ/dx data.

6.5.1 Particle Identification

Ionization calorimetry can be applied to separate muon and proton tracks with the µ-like

PID and p-like PID scores, as is shown for ICARUS Monte Carlo simulation in figure 6.1.

Modeling the distribution of these scores precisely is critical for physics analysis. A data

to simulation comparison of the µ-like PID score for proton-like tracks is shown in figure
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Figure 6.8: Scatter plot of calibrated energy depositions from selected stopping muons and
protons in ICARUS data.

6.9. Proton-like tracks are selected with the topological track selection detailed in section

6.3.2. They also must have a p-like PID score less than 80. The comparison is made for

energy depositions in data calibrated with the EMB model (equation 6.3) and with the

angular-independent ArgoNeuT modified box model.

The data in the comparison is taken with the NuMI beam. The cosmic triggered com-

ponent is removed by subtracting off-beam data, normalized to the trigger livetime. The

Monte Carlo simulation is described in section 3.2. There is a significant uncertainty in the

normalization of the Monte Carlo simulation prediction due to neutrino interaction and flux

modeling. This uncertainty is mostly removed by the area normalization in the plot. Only

statistical uncertainties on the data are shown.

Including the angular dependence in the EMB recombination correction dramatically

improves the agreement of the µ-like PID score distributions between data and simulation

for stopping protons. There remains some residual disagreement in the broadness of the

distribution. A similar effect is also seen in the proton energy reconstruction (see next
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Figure 6.9: Monte Carlo simulation to data comparison of the µ-like PID score applying the
angular independent ArgoNeuT modified box-based calibration (left) and with the angular
dependent EMB-based calibration (right). Tracks are selected as detailed in section 6.5.
The data is taken with the NuMI beam. The cosmic-triggered component of the data is
subtracted with off-beam data.

section).

6.5.2 Proton Energy Reconstruction

We further examine the performance of calorimetry in ICARUS by comparing the energy

reconstructed by range and by calorimetry for stopping protons. This comparison is made

for both data and Monte Carlo simulation. As for particle identification, we also compare

the impact of applying either the EMB or ArgoNeuT modified box recombination model to

calibrate the calorimetric energy reconstruction in data.

Protons are identified using the selection detailed in section 6.3.2. The energy is measured

along the last 25 cm of the track. The range energy is measured with a lookup table mapping

proton length to energy. This table applies the continuous-slowing-down-approximation

(CSDA) [125], with the mean energy loss taken from equation 4.13.

To precisely reconstruct proton calorimetric energy, a so-called “Q-tip” energy recon-
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struction technique has been developed. The charge from the last 3 cm of the proton track

is summed into a total charge which is converted to a total tip energy (this is based on the

method developed by ArgoNeuT for “blip” energy depositions [147]). Charge in subsequent

hits is corrected for recombination hit-by-hit and then summed into a total energy. This

method is more precise than correcting for recombination hit-by-hit along the whole track

because charge near the proton tip gets smeared out by diffusion and edge effects. The value

of energy loss is also changing rapidly near the proton tip due to its Bragg peak, and so this

smearing biases the energy reconstruction at the tip if it is applied hit-by-hit.

The comparison of the calorimetric and range based energy reconstruction is shown for

ICARUS data and Monte Carlo simulation in figure 6.10. Calorimetric energy calibrations

applying the ArgoNeuT modified box model and the EMB model are also compared for

the data. The result with the EMB-based calibration is both less biased and has a better

resolution than for the ArgoNeuT modified box-based calibration.

The full width at half maximum (FWHM) of the relative difference between the range

and (EMB calibrated) calorimetric energy values is 8% in ICARUS data. This resolution is

about twice as large in data as in simulation. The resolution of the range-based measure-

ment is likely simulated well by the ICARUS Geant4-based simulation, so the calorimetric

energy measurement would be dominating the discrepancy. In principle, this effect could be

explained by an underestimation of the inherent charge resolution of the detector in ICARUS

simulation. However, as is shown in the next section, for muons (which have mostly minimum

ionizing depositions) there is no such disagreement. This points to an effect specific to highly

ionizing depositions. In particular, it is possible that fluctuations in ionization recombination

are underestimated for highly ionizing depositions in the ICARUS simulation.
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Figure 6.10: Comparison of calorimetric energy (Ecalo) and range energy (Erange) recon-
struction (as defined in section 6.5.2) for selected protons in ICARUS data (top) and Monte
Carlo simulation (bottom). The comparison is made in data for the ArgoNeuT modified box-
based calibration (top-left) and the EMB-based calibration (top-right). The Monte Carlo
simulation applies the ArgoNeuT modified box model for both simulating recombination and
correcting for it. The data points are fit to a sum of two Gaussian distributions with centers
(µ1, µ2) and standard deviations (σ1, σ2). The ratio of the amplitudes of the Gaussian
distributions is quoted as N1/N2.
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Figure 6.11: Comparison of calorimetric energy (Ecalo) and range energy (Erange) recon-
struction for selected muons in ICARUS data (left) and Monte Carlo simulation (right).
The EMB-based calibration is applied. The calorimetric energy applies the “Q-tip” energy
reconstruction and a correction for missing hits along the track. The data points are fit to
a sum of two Gaussian distributions with centers (µ1, µ2) and standard deviations (σ1, σ2).
The ratio of the amplitudes of the Gaussian distributions is quoted as N1/N2.

6.5.3 Muon Energy Reconstruction

Stopping muons are identified by the selection from section 6.3.1. The same angular cuts

are applied requiring 5◦ < θxw < 20◦ and 70◦ < φ < 85◦. The energy is measured along the

whole track. The calorimetric energy is computed with the “Q-tip” energy reconstruction.

It also includes a correction for missing hits along the track: for any wire along the track

without a reconstructed hit, the mean energy loss at the inferred value of residual range

is summed into the calorimetric energy. This correction ameliorates cases where charge

depositions along the track go below the signal-to-noise threshold to create hits (especially

along the minimum-ionizing part of the muon). It is a 5% correction on average.

Figure 6.11 shows the comparison of range and calorimetric energy for stopping cosmic-

ray muons in ICARUS data and simulation. The comparison to data is only made for the

EMB-based calibration because the difference in recombination modelling is not significant

for (mostly minimum-ionizing) muon tracks. Unlike in the proton comparison, the distribu-

tion of the relative difference in data is described well by ICARUS Monte Carlo simulation.
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6.6 Conclusion

This chapter has detailed a new measurement of electron-ion recombination in liquid argon

and its application in the energy scale calibration of the ICARUS time projection chamber.

This measurement observes a significant angular dependence in recombination for highly-

ionizing particles in liquid argon. The ellipsoid modified box (EMB) model of recombination

(equation 6.3) is able to describe the data across all measured angles.

The recombination measurement is used to calibrate calorimetry in the ICARUS TPC

for use in particle identification and energy reconstruction. Distributions of particle identi-

fication variables match well between ICARUS data and Monte Carlo simulation when the

EMB recombination model is used to calibrate the data. The difference between calorimetric

energy reconstruction and the estimation of energy by the track length has a resolution of

about 5% for both muons and protons in ICARUS data. This matches the expectation for

muons from ICARUS simulation but is larger than the expectation for protons. This effect

could be the result of larger fluctuations in electron-ion recombination for highly ionizing

energy depositions than what is simulated.

96



CHAPTER 7

EVENT SELECTION FOR DI-MUON DECAYS

At this point, the calibrations necessary to apply measurements in the ICARUS TPC are

fully specified. We are thus ready to return to the headline analysis of the thesis: the search

for di-muon decays from long-lived particles (LLPs) produced in kaon decay (as introduced

in chapter 2).

Di-muon decays from LLPs produce two forward going tracks in the ICARUS detector.

Neutrinos, the physics signal for most measurements in ICARUS, for us present a background

to this process. The event selection places cuts to select for di-muon decays against neutrino

interaction backgrouns. Cuts on particle identification variables identify events with two

muon-like (µ or π±) tracks. Cuts on kinematic variables require consistency with a di-muon

decay. The most powerful of these is the θNuMI variable, which is the angle between the

direction to the NuMI target and the reconstructed scalar direction (obtained by summing

the momenta of the two muon candidates). This angle is diagrammed in figure 7.1. After the

cuts, there is a small neutrino background, primarily from muon neutrion charged current

coherent pion (νµCC-Coh-π ) interactions [99, 100].

The event selection for the analysis identifies stopping, muon-like tracks. This selection

provides a sample with no cosmic background and a small but non-negligble neutrino back-

ground. The momenta of the two stopping muon tracks can be reconstructed with a good

resolution. This selection enables a bump-hunt search with the di-muon invariant mass for

any new physics signal (see chapter 9).

The event selection relies on Pandora reconstruction [86, 87], applied on hits from ICARUS

signal processing. This workflow is described in section 7.1. Event selection cuts leverage a

number of tools downstream of Pandora that are used to reconstruct aspects of the tracks

such as their calorimetric particle identification and kinematic reconstruction. They are de-

scribed in section 7.2. The fiducial volume in the selection is defined in section 7.3 and the
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Figure 7.1: Diagram of the θNuMI angle. Not to scale. The reconstructed 4-momenta of the
two muon candidates pµ1, pµ2, are summed to obtain the scalar direction. This direction
is compared to the angle to the NuMI target.

pre-selection is defined in section 7.4. Distributions of the kinematic variables are shown in

section 7.5. A study done to optimize these cuts is developed in section 7.6. Finally, the

results of the event selection are shown in section 7.7.

7.1 TPC Signal Processing and Pandora Workflow

Ionization signals on each wire plane are processed to reduce noise and to produce a Gaussian

signal shape for hit finding and charge reconstruction. Noise that is coherent across adjacent

wires (groups of 64, on each readout board) is subtracted. The resulting wire signals are

deconvolved per-wire. The deconvolution forms Gaussian signal shapes and further reduces

noise [83].

Hits are identified on deconvolved waveforms by searching for Gaussian pulses above a

threshold. Hits are fed into Cluster3D, a simple pattern matching algorithm that identifies

matched hits across planes to reject noise hits. Matched hits are input to Pandora recon-

struction, which reconstructs tracks and showers and places them into neutrino (or di-muon

decay) and cosmic-ray candidate events.

Candidate di-muon decay events are identified as Pandora slices of TPC charge with at

least two tracks. The two tracks closest to the reconstructed vertex are identified as the two
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muon candidate tracks. A pre-selection puts some loose cuts on the muon candidate tracks.

The event selection then identifies and cuts any other reconstructed objects in the slice, puts

tighter cuts on the muon identification, removes low energy protons / vertex activity, and

applies kinematic cuts.

7.2 Reconstruction Tools

7.2.1 Pandora Outputs

Pandora provides the basic objects and a number of reconstructed quantities useful in the

analysis. Pandora clusters hits individually on each plane, then matches clusters across

planes to perform 3D reconstruction and produce “particles”. Multiple particles assumed

to have the same origin (either neutrino or cosmic) are part of the same “slice” of charge.

Particles in a slice form a “flow”: there is a parent vertex (for neutrino slices) or particle (for

cosmic slices), and other particles are children, grand-children, etc. of the parent.

Particles are fed to track and shower reconstructions. The track reconstruction creates

a track trajectory which is used as the input to downstream algorithms (for particle ID and

momentum reconstruction, e.g.).

7.2.2 χ2 Calorimetric Particle ID

Calorimetric particle identification enables the separation of muon from other particle tracks.

Muons and protons deposit very different rates of energy which can be distinguished in most

cases. Pions are not calorimetrically distinguishable from muons. However, most pions

inelastically scatter in the argon before coming to a stop. The particle ID, which selects

specifically for a Bragg peak, rejects the large majority of these pions.

Particle identification is done by comparing the measured dE/dx along the track to its

expectation. The dE/dx is reconstructed wire-by-wire along the track. The charge on each
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Figure 7.2: Energy loss profiles for particle types leveraged by the χ2 particle identification
algorithm.

wire is reconstructed by extracting the area of a Gaussian fit to signal pulses on the collection

plane after the signal processing procedure. Charge is turned into energy loss (dE/dx) by

applying the calibrations discussed in chapters 5 and 6.

The reconstructed track dE/dx is compared, as a function of residual range, to an ex-

pected profile of energy loss. This technique was originally developed by ArgoNeuT [121].

The profile was built from simulated energy loss of muon, pion, kaon, and proton tracks

in Geant4. These profiles are shown in figure 7.2. A χ2
P score is computed between the

reconstructed track and the hypothesized particle P as:

χ2
P =

hits∑
i

(
dE
dx P

(RRi)− dE
dx i

)2

(δ dEdx P (RRi))2 + (r(dEdx i))
2
, (7.1)

where dE
dx P

(RR) is the expected dE/dx energy loss at the residual range RR, δ dEdx P (RR)

is the standard deviation of the energy loss distribution, and r(dE/dx) is the resolution

in the measurement of dE/dx. The algorithm applies r(dE/dx) = (0.04231 + 0.0001783 ×

dE/dx2)× dE/dx (where dE/dx is expressed as MeV/cm). Both of these factors are taken

from the profiles in figure 7.2. We apply only the muon and proton χ2 scores. These variables

are good for selecting stopping muons and rejecting protons.
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7.2.3 Stub Low Energy Proton ID

At low energies (. 50 MeV KE), proton tracks do not travel far enough in the detector (. 3

cm) to create a separate cluster of hits as recognized by Pandora. We have developed a

special “stub” reconstruction to identify these low energy protons.

Stubs are recognized by identifying large hits near a reconstructed vertex. For all hits

within 5 cm of a reconstructed vertex, a dQ/dx is computed. The dx is computed using

an assumed pitch by drawing a track from the vertex to the 3D location of the hit. Hits

within 5 cm of the reconstructed vertex and dQ/dx > 200ke−/cm, or hits within one 1 wire

of the vertex (projected onto the plane) and dQ/dx > 100ke−/cm, seed candidate stubs.

Hits between the reconstructed vertex and the germinate hit are added to the stub. The hit

in the wire immediately preceding the reconstructed vertex and immediately following the

germinate hit are also included, if they are present. Stubs are combined if one fully overlaps

the other. Stubs can be computed from any wire plane. However, since only the collection

plane has been fully calibrated, we only source stubs from that plane.

There are two reconstructed quantities obtained from stubs. The total length of the

stub is computed as the distance from the reconstructed vertex to the 3D location of the

germinate hit. A total charge is computed as the sum of charge from hits in the stub.

If a track overlaps the stub, the expected ionization from a minimum ionizing energy loss

(dE/dx =1.6 MeV/cm) is subtracted from the stub. The charge is turned into a kinetic

energy by assuming the stub only consists of precisely one proton, and mapping the recon-

structed charge to the corresponding proton kinetic energy. This map depends on the track

angle to the electric field. This angle is not reconstructed for stubs, which consist of only

one or a couple of hits. The map is constructed applying the angle of the NuMI beam (from

the target) to the ICARUS drift field, 66.7◦. This map is shown in figure 7.3.

The performance of the stub energy reconstruction is shown in figures 7.4 and 7.5. The

stub energy reconstructs the true vertex energy well when there is one proton produced in the
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Figure 7.3: Map of charge to kinetic energy for stub low energy proton reconstruction. Due
to EMB recombination (equation 6.3), the map depends on the track angle to the drift-
electric field, φ. This angle is not reconstructed by stubs, so instead the NuMI beam angle
to the drift electric field is applied. This is bench-marked by comparing it to angles parallel
and perpendicular to the drift field.

neutrino interaction. In general, it underestimates the energy if there are multiple protons at

the vertex (which is typically the case). Due to the non-linearity of recombination, to map

reconstructed charge to energy it is necessary to make assumptions about the particle content

of the vertex. Future work could explore possible improvement from a more sophisticated

treatment of the vertex particle content than assuming it consists of one proton. Figure 7.6

demonstrates the improvement in low energy proton identification from stub reconstruction.

7.2.4 Range Momentum Estimation

The range of stopping tracks can be turned into a momentum measurement. This measure-

ment comes from applying the continuous slowing down approximation (CSDA) with the

Bethe-Bloch mean energy loss for particle tracks. A power law fit of range to momentum is

applied to get the momentum.
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Figure 7.4: Comparison of the reconstructed stub energy to the maximum proton kinetic
energy in the interaction. Shown for neutrino interactions that pass the dimuon preselection
(section 7.4) that have exactly one proton in the final state.
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Figure 7.5: Comparison of the reconstructed stub energy to the maximum proton kinetic
energy in the interaction. Shown for neutrino interactions that pass the dimuon preselection
(section 7.4).

104



Figure 7.6: Performance of proton identification for low energy “stub” identification, com-
pared with Pandora reconstruction. The spectra of the maximum proton kinetic energy is
shown for all fiducial νµ CC interactions in ICARUS simulation. Then, the spectra after
applying a requirement that Pandora identifies the leading proton (blue), that stub re-
construction identifies the proton (orange), and then either algorithm identifies the proton
(green) are all shown. These spectra are used to compute the proton identification efficiency.
The plot also shows the 50% identification threshold and the false positive rate (the fraction
of interactions without a proton where one is identified).

7.2.5 Multiple Coulomb Scattering Momentum Estimation

The amount of scattering of a muon track can be used to extract the track momentum. This

reconstruction can be applied to exiting tracks. In addition, it can be used to verify that

stopping tracks are not split. The multiple Coulomb scattering reconstruction implemen-

tation is taken from an algorithm developed by MicroBooNE [148]. It has been applied in

ICARUS Monte Carlo simulation and calibrated to ICARUS data.

7.3 Fiducial and Containment Volumes

The fiducial volume defines the volume of decay vertices that are considered in the analysis.

It is defined as an inset to the detector active volume. This inset is 10 cm in x̂ and ŷ and

15 cm in the upstream ẑ. It is 100 cm in the downstream ẑ.

The containment volume defines the volume of track end points that are considered

contained for this analysis. The track containment volume is inset 10 cm in x̂ and ŷ and
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15 cm in ẑ.

Furthermore, specific bad regions of the detector are excluded from both volumes. In

TPC EE, the regions where Y >115 cm and Y <−161.86 cm are removed due to the field cage

failure (this is an inset of 20 cm from the edges). In TPC WW, the region where Y >70 cm,

Z >0 cm is removed due to the dangling cable. The total fiducial volume comprises 308 t of

LAr.

7.4 Pre-Selection

The pre-selection identifies slices with a di-muon decay topology and applies a loose muon

ID. Candidate slices must have a fiducial vertex with at least two particles that start within

10 cm of the reconstructed vertex and have a length of at least 10 cm. The particle closer

to the vertex is labelled the “trunk” and the particle further from the vertex is labelled the

“branch”. This terminology comes from the way di-muon decays are typically reconstructed.

The two muons typically have a region at the start of the particle where they fully overlap

(see the event displays in figure 3.5 for an example). Pandora typically reconstructs this

topology as one track that starts at the vertex and another particle that “branches” off at

the position the tracks split.

The trunk and the branch are both required to stop in the detector in the track fiducial

volume. There are also particle ID cuts applied: χ2
µ < 30 and χ2

p > 80. Figure 7.7 shows

the fraction of well reconstructed events that pass the pre-selection cuts. In this case, well

reconstructed means both muons are associated with two individual particle tracks, both

of which start and end within 10 cm of their matched muon. A very high fraction of well

reconstructed events pass the pre-selection. However, the fraction of well reconstructed

events is itself relatively small (∼ 50%). This is due to Pandora poorly reconstructing

muon tracks. Signal-to-noise is relatively small for minimum-ionizing depositions along muon

tracks. The reconstruction of these signals can be poor, especially on the induction planes.
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Figure 7.7: Fraction of all fiducial, contained scalar decays that are well-reconstructed and
pass pre-selection requirements. First, the blue line shows the fraction of all fiducial, con-
tained scalar decays where Pandora identifies a track for each muon. Both tracks are required
to identify the muon start and endpoints to within 10 cm. Further requirements are placed
on the two tracks in the next two lines. First, the orange line plots the fraction of events
where both tracks are reconstructed as contained. Second, the green line plots the fraction
of events where both tracks pass the muon-ID cuts in the pre-selection (see section 7.4).

The poor signal reconstruction can leave gaps on the planes which can lead Pandora to

split up tracks. Furthermore, at low scalar mass the two decay muons are very forward and

can overlap for a significant length (∼10s of cm). Pandora has trouble reconstructing this

topology. Both of these issues would benefit from further optimizations to reconstruction

algorithms in future work.

The cut on the distance between the vertex and track start is also studied in figure 7.8.

Loosening the cut beyond 10 cm would provide a marginal improvement to the efficiency.

7.5 Cut Variable Distributions

The following figures plot the variables used to select for di-muon decays. Distributions are

area normalized comparisons of the scalar signal, as well as neutrino and cosmic backgrounds,

for two example scalar model points, at MS = 240 MeV and 320 MeV. The variables are:

1. Object Cuts
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Figure 7.8: Efficiency of the muon ID requirement as a function of the distance between the
event vertex and the track start position. In the pre-selection, the cut is placed at 10 cm.

• Maximum shower length: the longest shower that starts within 10 cm of the re-

constructed vertex (not applied if there is no such shower). Figure 7.9.

• Maximum other track length: the longest track other than the two muon candi-

dates that starts within 10 cm of the reconstructed vertex (not applied if there is

no such track). Figure 7.10.

• Maximum other χ2
µ: the maximum χ2

µ value for any particle other than the two

muon candidates that starts within 10 cm of the reconstructed vertex. Figure

7.11.

• Minimum other χ2
p: the minimum χ2

p value for any particle other than the two

muon candidates that starts within 10 cm of the reconstructed vertex. Figure

7.12.

2. Tight muon ID

• Trunk length: the trunk track length. Figure 7.13

• Branch length: the branch track length. Figure 7.14

• Trunk χ2
µ: the muon χ2 for the trunk track. Figure 7.15

• Trunk χ2
p: the proton χ2 for the trunk track. Figure 7.16.
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• Branch χ2
µ: the muon χ2 for the branch track. Figure 7.17

• Branch χ2
p: the proton χ2 for the branch track. Figure 7.18.

• Trunk MCS P/Range P: the offset between the reconstructed range momen-

tum and the reconstructed multiple-Coulomb-scattering momentum for the trunk

track. Figure 7.19.

• Branch MCS P/Range P: the offset between the reconstructed range momentum

and the reconstructed multiple-Coulomb-scattering momentum for the branch

track. Figure 7.20.

3. Stub ID

• Stub KE, 0 < length < 0.5 cm: the maximum kinetic energy for any stub with a

length between 0 and 0.5 cm (if at least one exists). Figure 7.21.

• Stub KE, 0.5 < length < 1 cm: the maximum kinetic energy for any stub with a

length between 0.5 and 1 cm (if at least one exists). Figure 7.22.

• Stub KE, 1 < length < 2 cm: the maximum kinetic energy for any stub with a

length between 1 and 2 cm (if at least one exists). Figure 7.23.

• Stub KE, 2 < length < 3 cm: the maximum kinetic energy for any stub with a

length between 2 and 3 cm (if at least one exists). Figure 7.24.

4. Kinematic Cuts

• Track opening angle: the angle between the two candidate muon tracks. Figure

7.25.

• Scalar angle to beam (θNuMI): the angle of the summed muon momentum vectors

to the NuMI beam. Figure 7.26
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Figure 7.9: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. Maximum length of any shower within 10 cm of the reconstructed vertex.

0 10 20 30 40 50 60
Max Other Track Length [cm]

0.00

0.05

0.10

0.15

0.20

0.25

Ar
ea

 N
or

m
al

ize
d

ICARUS MC, MS = 240 MeV
Scalar

Cosmic

0 10 20 30 40 50 60
Max Other Track Length [cm]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ar
ea

 N
or

m
al

ize
d

ICARUS MC, MS = 320 MeV
Scalar

Cosmic

Figure 7.10: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. Maximum length of any track other than the two muon candidates within 10 cm
of the reconstructed vertex.
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Figure 7.11: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. Maximum χ2

µ value for any particle other than the two muon candidates within
10 cm of the reconstructed vertex.
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Figure 7.12: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. Minimum χ2

p value for any particle other than the two muon candidates within
10 cm of the reconstructed vertex.

111



0 20 40 60 80 100
Trunk Length [cm]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ar
ea

 N
or

m
al

ize
d

ICARUS MC, MS = 240 MeV
Scalar

Cosmic

0 20 40 60 80 100
Trunk Length [cm]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ar
ea

 N
or

m
al

ize
d

ICARUS MC, MS = 320 MeV
Scalar

Cosmic

Figure 7.13: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. Length of the trunk track.
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Figure 7.14: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. Length of the trunk track.
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Figure 7.15: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. χ2

µ for the trunk track
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Figure 7.16: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. χ2

p for the trunk track
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Figure 7.17: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. χ2

µ for the branch track
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Figure 7.18: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. χ2

p for the branch track
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Figure 7.19: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. Comparison of the range and multiple-Coulomb-scattering momentum for the
trunk track
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Figure 7.20: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. Comparison of the range and multiple-Coulomb-scattering momentum for the
branch track
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Figure 7.21: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. The maximum dQ/dx for any stub with a length between 0 and 0.5 cm (if at least
one exists).
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Figure 7.22: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. The maximum dQ/dx for any stub with a length between 0.5 and 1 cm (if at least
one exists).
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Figure 7.23: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. The maximum dQ/dx for any stub with a length between 1 and 2 cm (if at least
one exists).
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Figure 7.24: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. The maximum dQ/dx for any stub with a length between 2 and 3 cm (if at least
one exists).
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Figure 7.25: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. Opening angle between the two muon candidate tracks.
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Figure 7.26: Area normalized spectra in ICARUS MC comparing scalar signal and back-
grounds. The reconstructed µµ angle to the NuMI beam.
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7.6 Cut Optimization

A cut optimization study has been performed using the effective signal significance as the

figure of merit. The effective statistical significance is defined for a scalar mass point M as

S/
√
S +B where S and B are the number of signal and background events with a recon-

structed scalar mass within 40 MeV of M . The signal model normalization at each mass

point is weighted so that 30 events pass the preselection. The signal analysis is oriented as a

bump-hunt (see chapter 9), and this range of reconstructed scalar mass defines the statistical

significance of the bump.

In this study, for each variable the cut value is varied over its possible range while keeping

all other cuts fixed. The effective statistical significance relative to the maximum value for

the cut is plotted for each test mass point. This study was done iteratively to find cut values

that maximized the effective signal significance across all mass points. It is shown for the

object cuts in figure 7.27, for the muon ID cuts in figures 7.28 and 7.29, for the stub ID in

figure 7.30, and for the kinematic cuts in figure 7.31.

7.7 Selection Results

The efficiency of the selection at each stage of the cuts is shown in figure 7.32. The efficiency

is defined relative to the number of fiducial scalar decays where both tracks stop in the track

fiducial region. The di-muon invariant mass distributions with injected scalar model points

are shown in figure 7.33. The distributions of selected events before the θNuMI cut are shown

as a function of θNuMI in figure 7.34. The cuts and their optimized values are summarized

in table 7.1.
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Figure 7.27: Cut optimization study for the object cuts.

120



0 20 40 60 80 100
Trunk Length [cm]

0.80

0.85

0.90

0.95

1.00

Re
la

tiv
e 

Si
gn

ifi
ca

nc
e

Scalar Mass [MeV]
220
240

260
280

300
320

340

0 20 40 60 80 100
Branch Length [cm]

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Re
la

tiv
e 

Si
gn

ifi
ca

nc
e

Scalar Mass [MeV]
220
240

260
280

300
320

340

1.2 1.4 1.6 1.8 2.0 2.2 2.4
Trunk MCS P / Range P

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Re
la

tiv
e 

Si
gn

ifi
ca

nc
e

Scalar Mass [MeV]
220
240

260
280

300
320

340

1.2 1.4 1.6 1.8 2.0 2.2 2.4
Branch MCS P / Range P

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Re
la

tiv
e 

Si
gn

ifi
ca

nc
e

Scalar Mass [MeV]
220
240

260
280

300
320

340

Figure 7.28: Cut optimization study for the muon topological ID cuts.
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Figure 7.29: Cut optimization study for the muon calorimetric ID cuts.
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Figure 7.30: Cut optimization study for the stub ID cuts.
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Figure 7.31: Cut optimization study for the kinematic cuts.

Cut Value
Other Object Cuts

Maximum shower length in slice <15 cm
Maximum third track length in slice <15 cm

Minimum χ2
p of other particle in slice >90

Maximum χ2
µ of other particle in slice <45

Muon ID Cuts
Trunk+Branch track length >25 cm

Trunk+Branch χ2
µ <10

Trunk+Branch χ2
p >95

Trunk+Branch MCS P/Range P < 1.8
Stub ID Cuts

Maximum Stub KE (length 0-5 mm) <20 MeV
Maximum Stub KE (length 5-10 mm) <30 MeV
Maximum Stub KE (length 10-20 mm) <35 MeV
Maximum Stub KE (length 20-30 mm) <45 MeV

Kinematic Cuts
Trunk-Branch Opening Angle < 70◦

Trunk+Branch (Scalar) angle to beam (θNuMI) < 5◦

Table 7.1: Summary of cuts and their optimized values in the event selection.
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Figure 7.32: Efficiency of the event selection, at each stage in the cuts, for sample model
points.
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Figure 7.33: Absolutely normalized event spectra after event selection cuts as a function of
the reconstructed di-muon invariant mass. The Scalar signal sample is normalized to contain
20 events after applying the pre-selection.
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Figure 7.34: Absolutely normalized event spectra after event selection cuts as a function
of θNuMI. The Scalar signal sample is normalized to contain 20 events after applying the
pre-selection.
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CHAPTER 8

MONTE CARLO SIMULATION TO DATA COMPARISONS

Monte Carlo simulation to data comparisons are made comparing neutrino Monte Carlo

simulation to beam off subtracted beam data. These comparisons validate the event selection

and our understanding of the neutrino backgrounds in the signal box region, as presented in

chapter 7. There are significant systematic uncertainties in the neutrino rate that need to

be accounted for in order to make proper comparisons. These are detailed in section 8.1.

Comparisons are first made in a far sideband to the di-muon analysis that is comprised

of incoherent neutrino interactions which comprise a sub-dominant background in the signal

region of the analysis. The results from this sample validate the modeling of reconstructed

variables in the event selection. These are shown in section 8.2.

Comparisons are then are made in a near sideband to allow direct comparisons of the

dominant νµCC-Coh-π background between data and simulation. These are shown in section

8.3. The observed rate in data matches the expectation from νµCC-Coh-π modeling to within

uncertainties (which uses the tune detailed in section 3.2 and shown in figure 3.12).

8.1 Systematic Uncertainties

8.1.1 Physics Model

Physics model systematic uncertainties arise from the neutrino flux, the neutrino-argon cross

section, the propagation of particles through the argon, and the performance of the ICARUS

TPC. Uncertainties in the neutrino flux arise from the mechanical tolerance of the compo-

nents in the beam target and focusing system, as well as from uncertainties in cross sections in

hadron-carbon interactions. They are computed by the PPFX package [92, 93]. Uncertainties

in neutrino-argon interactions arise from a variety of effects in neutrino-nucleus interaction,

such as the axial form factor, the impact of final state interactions in the nucleus, and the
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impact of two particle-two hole interactions. They are computed by the GENIEReweight pack-

age. The GENIE central value and uncertainties used for this result come from GENIE

version 3.04.00 configuration AR23_20i (the liquid argon tune). Uncertainties in the particle

propogation come from proton-argon and pion-argon inelastic collisions, and are computed

by the GEANT4Reweight package [149].

The systematic uncertainties of all three categories are listed in tables ??, ??, ??, and ??.

All of the physics model systematic uncertainties are implemented as weights on simulated

events. There are three types of weight-based implementations of systematic uncertain-

ties. “Multi-sigma” uncertainties are computed with ±1, 2, 3σ variations as a weight on

each neutrino interaction. “Morph” uncertainties are computed with a one-directional un-

certainty +1σ (representing, e.g., a model change) as a weight on each neutrino interaction.

“Multi-sim” uncertainties are computed in many universes, where each universe represents a

correlated throw of the relevant parameters.

The systematic uncertainties of various types are combined into systematic universes.

Weights of each type (multi-sigma, morph, multi-sim) are turned into universe weights as

• multi-sigma: uji = 1 + (w
j
+1σ − 1) · rji

• morph: uji = 1 + (w
j
+1σ − 1) · 2|rji |

• multi-sim: uji = w
j
i ,

where i indexes the universe, j indexes the systematic uncertainty, and r
j
i is a random

number generated from Gaus(µ = 0, σ = 1) per universe, per systematic (the same across

all events). An event will in general have n neutrino interactions, each with m systematic

uncertainties. The total systematic weight (Ui) for the i-th universe is

Ui =
n∏
j=1

m∏
k=1

u
j
i,k. (8.1)
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ppfx Neutrino Flux Uncertainties
Name Type Description
Beam div multi-sigma Beam divergence
Beam shift x multi-sigma Beam shift 1 mm variation in x direction
Beam spot multi-sigma Beam spot size variation of −2 mm
Horn 1 x multi-sigma 3 mm variation of x position of first focusing

horn
Horn 1 y multi-sigma 3 mm variation of y position of first focusing

horn
Horn current + multi-sigma Horn current variation +2 kA
Water layer multi-sigma Horn water layer variation of 1 mm
PCAi multi-sigma i-th Principle component of the meson cross

section covariance matrix, i = 1 . . . 20

Table 8.1: Systematic uncertainties on the neutrino flux in ICARUS Monte Carlo simulation.
The technical name, type (see text), and a short description are listed.

In other words, the product of the weights across all uncertainties across all neutrinos is the

universe weight for that event.

The systematic covariance matrix for a given distribution is then given by:

Esyst =
m∑
i=1

( ~NCV − ~NU
i )× ( ~NCV − ~NU

i )

m
, (8.2)

where i = 1 . . .m indexes the systematic universes, ~NCV is a vector of entries in each bin for

the central-value estimate, and ~NU
i is the vector in the i-th systematic universe. × denotes

an outer product.

8.1.2 Detector Model

Systematic uncertainties on the neutrino rate also arise from the modeling of the performance

of the ICARUS detector. These have been determined and analyzed from the understanding

of the operation of the ICARUS detector during physics data taking Runs 1 and 2. This

understanding comes directly out of the calibration work for the detector covered by chapters

5 and 6. There are two sources of uncertainty included in the Monte Carlo simulation to
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SBN-Tune Genie Neutrino Cross Section Uncertainties
Name Type Description
VecFFCCQEshape multi-sigma Shape of vector form factor in charged-

current quasi-elastic (CCQE) scattering
RPA CCQE multi-sigma Variation on random-phase-approzimation

(RPA) in CCQE scattering
Coulomb CCQE multi-sigma Varies the strength of Coulomb corrections
ZExpVariationResponse multi-sim Variations in z-expansion of axial form factor

in CCQE scattering (to 4th order)
Norm CCMEC multi-sigma Normalization variation in charged-current

meson exchange current (MEC) scattering
Norm NCMEC multi-sigma Normalization variation in neutral-current

MEC scattering
Decay Angle MEC morph Variation of model of decay angle in MEC

scattering
CCRESVariationResponse multi-sim Normalization uncertainy on charged-current

resonant scattering
NCRESVariationResponse multi-sim Normalization uncertainy on neutral-current

resonant scattering
RDecBR1gamma multi-sigma Sale factor for branching fraction of X + γ
RDecBR1eta multi-sigma Sale factor for branching fraction of X + η
ThetaDelta2Npi multi-sigma Reweight from isotropic to Rein-Segall pre-

diction for the π angle dist. in ∆ decay
ThetaDelta2NRad multi-sigma Reweight from isotropic to ∝ cos2θ for the γ

angular distribution in ∆ decay
NonRESBG-
vp[n]CC(NC)1{2}pi multi-sigma Non resonant neutrino-proton charged (neu-

tral) current scattering with 1{2}π, one pro-
ton [neutron] (W < 2 GeV)

NonRESBG-
vbarp[n]CC(NC)1{2}pi multi-sigma Non resonant antineutrino-proton charged

(neutral) current scattering with 1{2}π, one
proton [neutron] (W < 2 GeV)

DISBYVariationResponse multi-sim Variations in the response of the Bodek-Yang
DIS cross section model

FSI pi VariationResponse mutli-sim Variations in pion FSI
FSI N VariationResponse multi-sim Variations in FSI of nucleons
NCELVariationResponse multi-sim Variations in response of neutral-current

elastic scattering

Table 8.2: Systematic uncertainties on the neutrino incoherent cross section in ICARUS
Monte Carlo simulation. The technical name, type (see text), and a short description are
listed.
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Tuned νµ CC Coherent Pion Uncertainties
Name Type Description
π − C A scaling multi-sigma Uncertainty on A scaling of π−N cross sec-

tion from C to Ar
π − C scale factors multi-sim Variations on π−C cross section strength as

a function of pion kinetic energy
MA CC COH multi-sigma Uncertainty on axial mass in form factor

(±0.3 GeV)

Table 8.3: Systematic uncertainties on coherent neutrino cross section in ICARUS Monte
Carlo simulation. The technical name, type (see text), and a short description are listed.

Geant4 Particle Propagation Uncertainties
Name Type Description
piminus multi-sim Variations of π− − Ar interactions
piplus multi-sim Variations of π+ − Ar interactions
proton multi-sim Variations of p− Ar interactions

Table 8.4: Systematic uncertainties on G4 particle propagation ICARUS Monte Carlo sim-
ulation. The technical name, type (see text), and a short description are listed.

data comparisons. First, there are uncertainties in the energy scales of the ionization charge

(as determined in chapter 6) and multiple-Coulomb-scattering. As an example, the uncer-

tainty in the calibrated dE/dx as a function of reconstructed dE/dx is shown in figure 8.1.

This uncertainty is determined directly from the uncertainties in the measurement of ellip-

soid modified box recombination (equation 6.3), including the correlations between different

parameters in the fit. This uncertainty is propagated to comparisons by “mis-calibrating”

the Monte Carlo simulation dE/dx by the uncertainty in dE/dx, and re-computing relevant

particle identification variables (see section 7.2.2).

The re-computed variables are treated as 1σ variations on the central value spectra. The

alternative spectra is interpreted as a “unisim” implementation of a systematic variation,

which is an alternative to the weight-based implementation for the physics model systematic

uncertainties (section 8.1.1). The alternative spectra can be turned into a covariance matrix

using equation 8.2, where ~NU
i are the spectra variation(s).

The other source of detector performance systematic uncertainty comes from re-generating
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Figure 8.1: Systematic uncertainty in calibrated calorimetric dE/dx as a function of the
energy loss and track angle to the drift electric field (φ). Obtained from the chapter 6
measurement of the EMB model (equation 6.3).

Monte Carlo simulation with variations in the detector simulation. There are various ways in

which the performance of the ICARUS detector varies across the dataset that are simulated.

For example, the varying electron lifetime across the dataset (see section 5.1.2) changes the

signal-to-noise ratio in the detector over time. This variation is especially impactful on the

induction planes, where the average signal-to-noise ratio is small. ICARUS Monte Carlo

simulation only applies a single, constant value across all events (3 ms). In addition, the in-

duction plane signal shapes have been observed to vary in a spatially dependant way across

the detector. ICARUS simulation only applies a spatially averaged signal shape across the

whole detector (see section 5.2). For this analysis, we have elected to vary the detector sim-

ulation by the size of these spatial and temporal variations1. Alternative simulated datasets

are generated with variations on the detector simulation with the “Coh-like” subsample of

1. Future work inside the ICARUS collaboration will include these variations in the simulation, at which
point the uncertainties on these variations will be the residual, much reduced, detector systematic uncertainty.
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neutrino interactions (see section 3.2.1). The differences in spectra from the detector cen-

tral value spectra and the varied spectra are treated as unisim 1σ variations. These are

scaled up by the fraction of “Coh-Like” sample events in each bin to obtain the complete

uncertainty. This approximates that the impact of the detector systematic uncertainties is

identical for Coh-like and non-Coh-like neutrino interactions. This is a rough approximation

that improves in regions where the Coh-like sample dominates the neutrino rate. In the

far sideband plots (section 8.2), about 20% of the neutrino simulation is in the “Coh-Like”

sample. In the near sideband plots (section 8.3), the fraction is about 80%.

8.2 Far Sideband

The far sideband is defined as events passing the preselection (section 7.4) that also pass

loose particle identification cuts, and have θNuMI > 10◦. The particle identification cuts

require:

• Trunk and Branch MCS P / Range P < 1.8

• Trunk and Branch χ2
µ < 15

• Trunk and Branch χ2
p > 80.

These particle identification cuts select for well reconstructed events with two muon-like

particles (typically one muon and one pion). They remove cosmic backgroud events and

low energy neutrino interactions, neither of which are well modeled in ICARUS simulation.

The θNuMI cut removes the signal box region (θNuMI < 5◦), as well as the region where the

main background (νµCC-Coh-π ) arises (θNuMI < 10◦). The far sideband is thus a sample

of incoherent neutrino interactions where data and simulation are on the same footing.

In these distributions, the modeling of kinematic and particle identification variables is

valid to within the significant systematic uncertainties assessed on the Monte Carlo sim-

ulation prediction, with a few exceptions. None of the exceptions impact the analysis in
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the signal box region (chapter 9) in a serious way. First, there is a deficit of events at low

transverse momentum, and an enhancement at large transverse momentum. This can be

observed most directly in figure 8.9. This is likely due to mis-modeling in the nuclear model

for incoherent neutrino interactions. This mis-modeling indirectly impacts the comparisons

of other variables in the far sideband (θNuMI, which is very correlated with pT , for example).

However, incoherent neutrino interactions constitute a subdominant part of the background

in the signal region.

Second, in data there is a dearth of events with a low χ2
µ score (see figure 8.3). This

could be caused by a few reasons: underestimation of the charge resolution, the inaccurate

mean excitation energy value in MC (188 eV, as opposed to 197 eV [145]), or overestimation

of the tracking performance in data relative to the central value. The detector model sys-

tematic variations on the signal-to-noise and signal shapes vary the tracking performance in

a realistic way. Their inclusion makes the χ2 of the comparison close to 1, in spite of the

deficit compared to the central value. Thus, the discrepancy is covered by the uncertainties

developed for the analysis.

Finally, there is also a deficit of events with a small “Minimum Other χ2
p” score (see, e.g.,

figure 8.2). This is due to the underestimation of fluctuations in recombination for highly

ionizing protons. This effect was also observed in the ionization energy scale calibration

(chapter 6, see especially section 6.5). The cut on the χ2
p in the analysis is very loose (< 90,

see table 7.1), and so the resolution effect should not impact the analysis.

135



0

20

40

60

80

100

120

Sl
ice

s /
 2

.4
1×

10
20

 P
OT

ICARUS Data

2/n = 16.4 / 20
Loose Muon ID

Data
Syst. Err

Cosmic
 Other
 NC

 CC QE+MEC
 CC RES

 CC DIS
 CC COH

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Maximum Shower Length [cm]

0.5

1.0

1.5

Da
ta

 / 
M

C

0

50

100

150

200

250

300

Sl
ice

s /
 2

.4
1×

10
20

 P
OT

ICARUS Data

2/n = 15.2 / 20
Loose Muon ID

Data
Syst. Err

Cosmic
 Other
 NC

 CC QE+MEC
 CC RES

 CC DIS
 CC COH

0 10 20 30 40 50 60
Maximum Other Track Length [cm]

0.5

1.0

1.5

Da
ta

 / 
M

C

0

20

40

60

80

100

120

140

Sl
ice

s /
 2

.4
1×

10
20

 P
OT

ICARUS Data

2/n = 16.2 / 20
Loose Muon ID

Data
Syst. Err

Cosmic
 Other
 NC

 CC QE+MEC
 CC RES

 CC DIS
 CC COH

0 10 20 30 40 50 60
Maximum Other 2

0.5

1.0

1.5

Da
ta

 / 
M

C

0

50

100

150

200

250

300

350

Sl
ice

s /
 2

.4
1×

10
20

 P
OT

ICARUS Data

2/n = 47.0 / 20
Loose Muon ID

Data
Syst. Err

Cosmic
 Other
 NC

 CC QE+MEC
 CC RES

 CC DIS
 CC COH

0 10 20 30 40 50 60
Minimum Other 2

p

0.5

1.0

1.5

Da
ta

 / 
M

C

Figure 8.2: Monte Carlo to data comparison of object variable distributions in the Loose
Muon ID dataset. Beam-off data is subtracted from the data points. Systematic uncertainties
on the flux, interaction, particle propagation, and detector model are included. Detector
model variation systematics are only assessed on the “Coh-like” MC subsample and are
scaled to the size of the spectrum.
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Figure 8.3: Monte carlo to data comparison of muon calorimetric (µ-like) ID distributions
in the Loose Muon ID dataset. Beam-off data is subtracted from the data points. Shown by
cateogories of the trunk track particle type (left) and the neutrino interaction type (right).
Systematic uncertainties on the flux, interaction, particle propogation, and detector model
are included. Detector model variation systematics are only assessed on the “Coh-like” MC
subsample and are scaled to the size of the spectrum.
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Figure 8.4: Monte carlo to data comparison of muon calorimetric (p-like) ID distributions
in the Loose Muon ID dataset. Beam-off data is subtracted from the data points. Shown
by cateogories of the track particle type (left) and the neutrino interaction type (right).
Systematic uncertainties on the flux, interaction, particle propogation, and detector model
are included. Detector model variation systematics are only assessed on the “Coh-like” MC
subsample and are scaled to the size of the spectrum.
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Figure 8.5: Monte carlo to data comparison of track length distributions in the Loose Muon
ID dataset. Beam-off data is subtracted from the data points. Shown by cateogories of the
track particle type (left) and the neutrino interaction type (right). Systematic uncertainties
on the flux, interaction, particle propogation, and detector model are included. Detector
model variation systematics are only assessed on the “Coh-like” MC subsample and are
scaled to the size of the spectrum.
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Figure 8.6: Monte carlo to data comparison of muon topological ID distributions in the Loose
Muon ID dataset. Beam-off data is subtracted from the data points. Shown by cateogories
of the track particle type (left) and the neutrino interaction type (right). Systematic un-
certainties on the flux, interaction, particle propogation, and detector model are included.
Detector model variation systematics are only assessed on the “Coh-like” MC subsample and
are scaled to the size of the spectrum.
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Figure 8.7: Monte carlo to data comparison of stub ID distributions for stub length < 1 cm
in the Loose Muon ID dataset. Beam-off data is subtracted from the data points. Shown
by cateogories of the vertex type (left) and the neutrino interaction type (right). Systematic
uncertainties on the flux, interaction, particle propogation, and detector model are included.
Detector model variation systematics are only assessed on the “Coh-like” MC subsample and
are scaled to the size of the spectrum
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Figure 8.8: Monte carlo to data comparison of stub ID distributions for stub length > 1 cm
in the Loose Muon ID dataset. Beam-off data is subtracted from the data points. Shown
by cateogories of the vertex type (left) and the neutrino interaction type (right). Systematic
uncertainties on the flux, interaction, particle propogation, and detector model are included.
Detector model variation systematics are only assessed on the “Coh-like” MC subsample and
are scaled to the size of the spectrum.
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Figure 8.9: Monte carlo to data comparison of kinematic varible distributions in the Loose
Muon ID dataset. Beam-off data is subtracted from the data points. Detector model vari-
ation systematics are only assessed on the “Coh-like” MC subsample and are scaled to the
size of the spectrum.
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8.3 Near Sideband

We have also developed a near sideband to examine coherent pion production outside the

signal box region. The sideband consists of events where 5◦ < θNuMI < 10◦. The sideband

applies all other cuts in the event selection (see table 7.1). The sideband leverages the

kinematic separation between signal scalar and νµCC-Coh-π background events. As defined

in equation 3.1, νµCC-Coh-π events occur at low energy transfer to the nucleus (t). Since

decays do not involve a nucleus, they all effectively occur at t = 0. The tail in t for νµCC-Coh-

π interactions induces a broader spread in the θNuMI variable, which can therefore be used

to partially separate signal and background. Applying this sideband therefore necessitates

extrapolating the νµCC-Coh-π rate from high t (in the sideband) to low t (in the signal

region). This extrapolation should be well controlled because the νµCC-Coh-π rate, while

uncertain, is relatively well constrained as a function of t [102].

A plot of the beam angle variable (θNuMI) used to define the sideband is shown in

figure 8.11 including data both inside and outside the near sideband region. The data

distribution displays an overall normalization shift above the simulated background at large

θNuMI. This shift is essentially consistent within the large systematic uncertainties assigned

on the neutrino rate (the reduced χ2 is still about 1). It is also an effect of incoherent

neutrino interactions which constitute a sub-dominant background in the signal region. The

region of the distribution with the highest sensitivity to νµCC-Coh-π interactions is the

5◦ < θNuMI < 10◦ bin. We observe 14 events with an expectation of 17.8±syst 6.6±stat 4.2.

This is consistent with the predicted amount of coherent pion production. A constraint

on the amount of coherent pion production from the measurement in this bin is shown in

figure 8.10. Due to the limited statistical power of this constraint, we elect to not actually

apply it in the systematic analysis in the signal box region. Instead, as will be discussed in

chapter 9, the signal identification procedure obtains a constraint on the νµCC-Coh-π rate

incorporating data from both the near sideband and signal box region.
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Figure 8.10: Observed and expected constraint on the νµCC-Coh-π signal strength in the
near sideband.

The events in the lowest angle bin are also shown broken down by relevant kinematic

quantities. These are shown in figures 8.12 and 8.13. Event displays of a few of the selected

events are shown in figures 8.14 to 8.17. Visually, the background events appear consistent

with the expectation from simulation: neutrino interactions with two muon-like tracks. There

are no selected events which (e.g.) appear to be cosmogenic.
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Figure 8.11: Monte Carlo simulation to data comparison for θNuMI after applying all other
event selection cuts. Beam-off data is subtracted from the data points. Systematic un-
certainties on the flux, interaction, particle propagation, and detector model are included.
Detector model variation systematics are only assessed on the “Coh-like” MC subsample and
are scaled to the size of the spectrum.

146



0

2

4

6

8

10

12

Sl
ice

s /
 2

.4
1×

10
20

 P
OT

ICARUS Data

2/n = 2.6 / 5
Near Sideband

Data
Syst. Err

Cosmic
 Other
 NC

 CC QE+MEC
 CC RES

 CC DIS
 CC COH

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Leading Track Momentum [GeV]

0

1

2

Da
ta

 / 
M

C

0

2

4

6

8

10

12

14

Sl
ice

s /
 2

.4
1×

10
20

 P
OT

ICARUS Data

2/n = 0.8 / 4
Near Sideband

Data
Syst. Err

Cosmic
 Other
 NC

 CC QE+MEC
 CC RES

 CC DIS
 CC COH

0.1 0.2 0.3 0.4 0.5 0.6
Subleading Track Momentum [GeV]

0

1

2

Da
ta

 / 
M

C

0

2

4

6

8

Sl
ice

s /
 2

.4
1×

10
20

 P
OT

ICARUS Data

2/n = 1.8 / 4
Near Sideband

Data
Syst. Err

Cosmic
 Other
 NC

 CC QE+MEC
 CC RES

 CC DIS
 CC COH

0.5 0.6 0.7 0.8 0.9 1.0
Leading Momentum Fraction

0

1

2

Da
ta

 / 
M

C

Figure 8.12: Monte Carlo simulation to data comparison for kinematic variables in the near
sideband. Beam-off data is subtracted from the data points. Systematic uncertainties on
the flux, interaction, particle propagation, and detector model are included. Detector model
variation systematics are only assessed on the “Coh-like” MC subsample and are scaled to
the size of the spectrum.
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Figure 8.13: Monte Carlo simulation to data comparison for kinematic variables in the near
sideband. Beam-off data is subtracted from the data points. Systematic uncertainties on
the flux, interaction, particle propagation, and detector model are included. Detector model
variation systematics are only assessed on the “Coh-like” MC subsample and are scaled to
the size of the spectrum.
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Figure 8.14: Event display of selected event in near side band. Event # 3927 in Run 9750.
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Figure 8.15: Event display of selected event in near side band. Event # 80208 in Run 9807.

150



Figure 8.16: Event display of selected event in near side band. Event # 68042 in Run 9838.
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Figure 8.17: Event display of selected event in near side band. Event # 26577 in Run 9945.
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CHAPTER 9

SIGNAL IDENTIFICATION PROCEDURE AND SENSITIVITY

The event selection for di-muon decays, as developed in chapter 7 and validated with Monte

Carlo simulation to data comparisons in chapter 8, provides an event sample, the signal-box

region, with a high sensitivity to new physics models of di-muon decays. This sample is not

background-free; there is a small background (∼ 8) of neutrino interactions predicted (∼ 8),

mostly from νµCC-Coh-π events. In order to apply this sample in the search, it is necessary

to answer two questions. First, is there any new physics in the sample, or is its measured

rate consistent with the expectation with neutrino backgrounds? Second, in the event of no

new physics, which areas of new physics parameter space can we exclude to some specified

confidence level?

This chapter addresses the statistical analysis we have developed to address these two

questions. First, there are significant systematic uncertainties on both the neutrino back-

ground (mostly from the interaction strength of the νµCC-Coh-π process) and the scalar

signal (primarily from the flux of the NuMI beam). Section 9.1 addresses the uncertainty

analysis for the signal-box sample.

The statistical procedure to identify signal from background leverages the di-muon in-

varaint mass: Mµµ = |pµ1 + pµ2|, where pµ1 and pµ2 are the reconstructed 4-momenta of

the two muon candidates. Scalar signals will produce a resonance in Mµµ, while neutrinos

represent a smooth background. This is a familiar situation in particle physics; it is possible

to identify such a new physics signal by looking for the bumps in the Mµµ spectrum [150]

(see, e.g., Ref. [151, 152, 153]). In the event of no new physics signal, the CLs method is

used to put limits on available parameter space [154]. This method is also how previous

searches for these new experiments physics models have quoted their sensitivity (e.g., Ref.

[155]), and so applying this method enables an apples-to-apples comparison between different

experimental limits. The statistical procedure is discussed in depth in section 9.2.
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Finally, the sensitivity of the search is shown in section 9.3. The sensitivity is shown

both in terms of the expected statistical significance of any new physics model (applying the

bump-hunter method) and in terms of the expected excluded parameter space in the case

of a null result (applying the CLs method). It is interpreted for both a model-independent

scenario of the process K → π + S(→ µµ), as well as the Higgs portal scalar and heavy

axion models (as introduced in chapter 2).

9.1 Signal Box Uncertainty Analysis

This section details the uncertainty analysis in the signal box region for scalar signal and

neutrino background events. The physics model systematic uncertainties are the same as

those introduced for Monte Carlo simulation to data comparisons (see section 8.1, table

??). They arise from the neutrino flux (computed with PPFX), incoherent neutrino-nucleus

interactions (computed with GENIE-Reweight), νµCC-Coh-π interactions (computed with the

MINERvA tune, section 3.2), and particle propogation (GEANT4-Reweight). Section 9.1.1

details how the detector systematic uncertainties are computed. The combined uncertainty

is shown for scalar signals in section 9.1.2 and for neurino backgrounds in section 9.1.3.

9.1.1 Detector Systematic Evaluation

We examine the impact of detector systematic uncertainties in the signal box region for both

the neutrino background and signal spectra. As in section 8.1.2, the neutrino background

systematic uncertainties are examined with the “Coh-like” sample (see section 3.2.1).

There are three categories of detector systematic uncertainty: detector model variations,

energy scale uncertainties, and track splitting. The first two categories were introduced

in section 8.1.2. The track splitting uncertainty comes from a study which addressed two

regions in ICARUS where un-simulated perturbations to the drift field distort tracks: the

bending of the central cathode plane in each cryostat, and a mechanical support on the front
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Figure 9.1: Neutrino interaction candidate in ICARUS data with two tracks split by the
front induction support.

induction wire plane in each TPC. An event display of a neutrino event in ICARUS data

with two tracks that cross the front induction wire support region is shown in figure 9.1. The

three subsections below demonstrate the impact of these three uncertainties on scalar signal

and neutrino background events in the signal box region. The magnitude of uncertainty

from each source in the analysis is summarized in table 9.1.

Detector Model Variations

Figure 9.2 shows the comparison of the number of selected events in each sample under each

of the detector model variations detailed in section 8.1.2. For the neutrino “Coh-Like” sample,

the full section is shown (“Coh-Like”), as well as an adapted selection where the θNuMI cut

(see figure 7.1) is loosened from 5◦ to 15◦ (“Coh-Like Loose”). The expanded definition selects

for a larger, more statistically significant Monte Carlo sample, while retaining characteristics
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Systematic Impact on Scalar
Signal [%]

Impact on
Neutrino Back-
ground [%]

Energy Scale
Calorimetric Gain ± 1% 1.6 2.1
Calorimetric dE/dx 0.4 7.8
Multiple Coulomb Scattering 0.5 1.1
Total Energy Scale 1.8 8.2

Detector Model
Total Detector Model 9.9 17.6

Track Splitting
Total Cathode + Wire Gap 5.0 6.4

Table 9.1: Summary of impact of detector systematic uncertainties in the signal box region.
The “Energy Scale” and “Detector Model” uncertainties are computed as normalization uncer-
tainties, as detailed in sections 9.1.1 and 9.1.1, respectively. The track splitting uncertainty
is computed by weighting individual events (it is not assumed to be a normalization), as
discussed in section 9.1.1.

similar to the Coh-Like sample.

The uncertainty in each comparison is estimated as
√
N of the total number of selected

Monte Carlo simulated events N . This is a good estimate of the uncertainty on the difference

because different samples have different selected neutrinos. The same underlying neutrino

interactions are in each detector model variation. However, the G4 processing is different.

The event selection mostly selects stopping pions, and the fraction of pions that stop is small

and random between different Geant4 processings. Thus, the G4 step effectively randomizes

each detector model variation sample. Empirically, less than 5% of the selected neutrinos

are shared between the nominal sample and each variation. The Monte Carlo statistical

uncertainty is much smaller for the scalar samples because it is easier to get statistics in the

signal box region for the scalar signal. The central value neutrino background sample has

912 selected events, which corresponds to 3.2× 1022 POT (∼ 125× data POT). Each model

variation neutrino sample has about 130 events, corresponding to ∼ 5× 1021 POT (∼ 20×

data POT). Some scalar variation samples have a larger statistical uncertainty due to fewer

events being generated for those samples.
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Figure 9.2: Magnitude of the impact on the number of selected events for signal shape
detector model variations (left) and signal to noise variations (right). Shown for 7 scalar
signal model points (with masses from 220 to 340 MeV) and for the Coh-like subsample of
neutrino background (see section 3.2.1). The Coh-like subsample is shown for two definitions
of the signal-box region: the nominal definition (plotted first) and a “Loose” version with
the θNuMI cut (see figure 7.1) loosened to 15◦.

For each systematic variation, there is no significant difference between any of the scalar

model points. There is a somewhat significant variation (up to∼ 1.5σ) on the impact between

the scalar signal and neutrino background samples. This may be a genuine difference of the

impact of detector model variations on signal µµ events v. background µπ events, or just a

relatively large statistical fluctuation. There is no significant difference between the “Coh-

Like” and “Coh-Like Loose” samples for any uncertainty.

We elect to apply a normalization uncertainty on the number of selected events computed

separately for scalar signal and neutrino background samples. The scalar signal uncertainty

is computed with the fractional difference between the nominal and varied detector simula-

tion, averaged over all of the scalar model points. The neutrino background uncertainty is

computed as the fractional difference of the “Coh-Like Loose” sample between the nominal

and varied simulations. For scalar samples, there are enough Monte Carlo statistics that

this estimate of the uncertainty is precise. This is important because, as is shown in section

9.1.2, the detector has the leading impact on the systematic uncertainty of the scalar rate.
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For neutrinos, even the “Loose” sample still has a large Monte Carlo statistical error. The

uncertainty reported here should thus be understood as a conservative upper limit, rather

than a precise estimate. This choice does not severely impact the analysis because, as shown

in section 9.1.3, the background uncertainty is dominated by the νµCC-Coh-π rate. The

uncertainty is treated as completely correlated between the neutrino background and scalar

signal.

Energy Scale

Figure 9.3 shows the comparison of the number of selected events in each sample under the

energy scale variations developed in section 8.1.2. There are three energy scale variations:

on the EMB recombination measurement (equation 6.3), the channel gain (±1%), and the

multiple-Coulomb-scattering momentum (±3%). Each of the three variations are evaluated

“up” and “down”, which corresponds to a ±1σ unisim variation. The comparisons are made

the same way as for the detector variations (section 9.1.1). The uncertainty in the plot (taken

as
√
N) is likely overestimated since the same underlying events are applied with variations

on the energy scales.

There is no significant difference on the impact of any energy scale uncertainty on the

number of events between the different scalar signal points. There is a clear difference be-

tween the scalar signal and neutrino background samples for any uncertainty is the calorimet-

ric dE/dx variation. This is because the neutrino sample includes the variation in low energy

proton (“stub”) dE/dx due to angular-dependence in recombination (see section 8.1.2), while

the scalar signal does not.

As in the case of the detector model variations, we compute a normalization uncertainty

separately for neutrino backgrounds and scalar signals. The uncertainty is assumed to be

completely correlated between neutrinos and scalars. Each of the three pairs of energy

scale variations are treated as ±1σ variations of the same underlying systematic uncertainty.

158



MS :  220 MeV

MS :  240 MeV

MS :  260 MeV

MS :  280 MeV

MS :  300 MeV

MS :  320 MeV

MS :  340 MeV
Coh-like

Coh-like
 Loose

Monte Carlo Type

15

10

5

0

5
Va

ria
tio

n 
Im

pa
ct

 [%
]

Mean of Scalar Samples

Cal. dE/dx Low

MS :  220 MeV

MS :  240 MeV

MS :  260 MeV

MS :  280 MeV

MS :  300 MeV

MS :  320 MeV

MS :  340 MeV
Coh-like

Coh-like
 Loose

Monte Carlo Type

10

5

0

5

10

Va
ria

tio
n 

Im
pa

ct
 [%

]

Mean of Scalar Samples

Cal. dE/dx High

MS :  220 MeV

MS :  240 MeV

MS :  260 MeV

MS :  280 MeV

MS :  300 MeV

MS :  320 MeV

MS :  340 MeV
Coh-like

Coh-like
 Loose

Monte Carlo Type

10

5

0

5

10

Va
ria

tio
n 

Im
pa

ct
 [%

]

Mean of Scalar Samples

Cal. Gain 1.01x

MS :  220 MeV

MS :  240 MeV

MS :  260 MeV

MS :  280 MeV

MS :  300 MeV

MS :  320 MeV

MS :  340 MeV
Coh-like

Coh-like
 Loose

Monte Carlo Type

10

5

0

5

10

Va
ria

tio
n 

Im
pa

ct
 [%

]

Mean of Scalar Samples

Cal. Gain 0.99x

MS :  220 MeV

MS :  240 MeV

MS :  260 MeV

MS :  280 MeV

MS :  300 MeV

MS :  320 MeV

MS :  340 MeV
Coh-like

Coh-like
 Loose

Monte Carlo Type

10

5

0

5

10

Va
ria

tio
n 

Im
pa

ct
 [%

]

Mean of Scalar Samples

MCS Low

MS :  220 MeV

MS :  240 MeV

MS :  260 MeV

MS :  280 MeV

MS :  300 MeV

MS :  320 MeV

MS :  340 MeV
Coh-like

Coh-like
 Loose

Monte Carlo Type

10

5

0

5

10

Va
ria

tio
n 

Im
pa

ct
 [%

]

Mean of Scalar Samples

MCS High

Figure 9.3: Impact on the number of selected events for energy scale uncertainty variations.
Shown for 7 scalar signal model points (with masses from 220 to 340 MeV) and for the
Coh-like subsample of neutrino background (see section 3.2.1). The Coh-like subsample is
shown for two definitions of the signal-box region: the nominal definition (plotted first) and
a “Loose” version with the θNuMI cut (see figure 7.1) loosened to 15◦.
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For scalar signals, the uncertainty is computed with the difference between the nominal and

variation, averaged over the model points. The neutrino background uncertainty is computed

with the “Coh-Like Loose” sample.

Track Splitting

There are two regions in ICARUS where un-simulated perturbations to the drift field distort

tracks: the bending of the central cathode plane in each cryostat, and a mechanical support

on the front induction wire plane in each TPC. An event display of a neutrino event in

ICARUS data with two tracks that cross the front induction wire support region is shown in

figure 9.1. Since these effects are not directly included in the ICARUS detector simulation,

the Monte Carlo simulation is instead re-weighted to correct the amount of track-splitting

in these regions, with an associated systematic uncertainty.

Figure 9.4 shows the impact of the reweighting and uncertainty for neutrino events, as

a function of the reconstructed dimuon mass. Figure 9.5 shows the impact of the correc-

tion and the size of the uncertainty as a function of scalar mass point. The impact of the

uncertainty on the normalization of events is shown in table 9.1. However, unlike the other

two detector uncertainties, the track splitting uncertainty is not assumed to be a normal-

ization. Rather, the systematic variation on track splitting is computed event-by-event with

systematic weights. The weights are correlated between neutrino background and scalar

signal.

9.1.2 Scalar Signal

Scalar signal events have uncertainties from the detector and flux. The detector uncertainties

are applied as described in section 9.1.1. Flux uncertainties are computed with ppfx (see table

??). There are no Geant4 uncertainties because there is no uncertainty assigned to µ − Ar

interactions. The uncertainty for each scalar mass point is summarized in figure 9.6.
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Figure 9.4: Impact of track splitting corrections on neutrino background events, with asso-
ciated uncertainty. Shown as a function of the reconstructed dimuon mass.
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and systematic uncertainty (error bar) as a function of the scalar mass.
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Figure 9.6: Systematic uncertainty by source for scalar events, as a function of the mass.

9.1.3 Neutrino Background

Neutrino background events have uncertainties from the detector, flux, cross-section, and

Geant4. The number of simulated events is also relatively small, so there is a significant

uncertainty from MC statistics. The detector uncertainties are applied as described in section

9.1.1. The flux, cross-section, and Geant4 uncertainties are applied as described in section

8.1. The systematic uncertainty from each source is shown in figure 9.7, as a function of the

reconstructed di-muon invariant mass (mµµ).

9.2 Signal Box Statistical Analysis

9.2.1 Identifying a New Physics Signal with the Bump-Hunter Algorithm

The search for new physics in the signal box region is performed as a bump-hunt, using the

Bump-Hunter algorithm [150]. We use the pyBumpHunter library for the implementation of
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Figure 9.7: Systematic uncertainty by source for neutrino events, as a function of the recon-
structed di-muon mass.

the algorithm [156]. This algorithm implements a test statistic which quantifies the level of

disagreement between the observed data and the predicted background, depending on the

size of the biggest bump. It searches for bumps in all possible windows combining bins in the

reconstructed di-muon mass spectrum (see figure 7.33). For our implementation, we allow

the window size to be between 1 and 3 bins. The test statistic is defined as the window with

the smallest local p-value. The local p-value depends on a local test statistic defined as:

twindow =


0 if D < B

f(D −B) otherwise ,
(9.1)

where D is the observed number of events in the window, B is the predicted background in

the window, and f is any positive, monotonically increasing function. For this test statistic,
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the local p-value is (in the case of Poisson fluctuations)

pwindow =


1 if D < B

Γ(D,B) otherwise ,
(9.2)

where

Γ(D,B) =

B∫
0
tD−1e−tdt

∞∫
0
tD−1e−tdt

. (9.3)

The global, Bump-Hunter test statistic is then defined with the smallest local p-value across

all windows (pmin
window):

tBH = −log pmin
window . (9.4)

This test statistic can be computed for the input data. The global p-value is computed

from the distribution of tBH generated with psuedo-experiments. Thus, the Bump-Hunter

algorithm provides a mechanism to translate a local p-value into a global one. As a result,

it correctly penalizes any candidate bump for the “look-elsewhere” effect.

In order to apply the bump-hunter algorithm for the di-muon search, there is one compli-

cation that must be accounted for. The rate of the main background, νµCC-Coh-π interac-

tions, has a large systematic uncertainty (see figure 9.7). We therefore want our background

prediction to be flexible to changes in the data normalization, so that an under-estimation

of the overall rate is not mistaken for a bump. We have implemented a three-step procedure

that extracts a constraint on the νµCC-Coh-π rate and the statistical significance of any

bump at the same time. The procedure is as follows:

1. Run the Bump-Hunt algorithm on the signal box region between the data and the

nominal background prediction to obtain the mass window with the largest upward

fluctuation (if any exist). This window is defined the “mass-exclusion” region.
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Figure 9.8: Cartoon diagram of a new physics signal on top of a smooth background.

2. Fit an overall scale factor to the νµCC-Coh-π rate with a fit region defined as: events

passing the signal-box event selection (table 7.1), but with the θNuMI cut loosened to

10◦ (to allow more νµCC-Coh-π events), and the mass-exclusion region removed.

3. Run the Bump-Hunt algorithm again in the signal box region, to obtain the final test

statistic value (tBH).

The global p-value is computed from this test statistic from a distribution of tBH values

obtained from running toy experiments. In each toy experiment, a fake data distribution is

obtained by throwing all systematic and statistical uncertainties on the neutrino background.

This distribution is shown in figure 9.9. The global p-value is treated as a one-tailed p-value

to obtain a global significance (σ). This significance is negative when p > 0.5. This case

corresponds to a bump smaller than the median expectation.

Figures 9.10, 9.11, and 9.12 demonstrate the three steps of this procedure for two fake

data studies: one with neutrino background only, and one with Scalar signal injected.
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Figure 9.9: Distribution of Bump-Hunter test statistic values (tBH) applying the signal box
identification procedure outlined in the text. Shown for statistical variations only, as well as
for all statistical and systematic variations.
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Figure 9.10: Step 1 of the signal identification procedure: The Bump-Hunt algorithm identi-
fies the “mass-exclusion” region as the window with the largest upward fluctuation between
the data and the nominal Monte Carlo simulation. Shown for a neutrino-only fake data test
(left) and a signal injection test (right).
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Figure 9.11: Step 2 of the signal identification procedure: a scale factor for the νµCC-Coh-π
rate is fit with data including θNuMI < 10◦ and excluding the mass-exclusion region. Shown
for a neutrino-only fake data test (left) and a signal injection test (right).
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Figure 9.12: Step 3 of the signal identification procedure: the Bump-Hunter algorithm is run
comparing the scaled neutrino background prediction to the data. The test-statistic (tBH) is
computed, and the distribution of tBH values (figure 9.9) is used to obtain a global p-value.
Shown for a neutrino-only fake data test (left) and a signal injection test (right).
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9.2.2 Excluding Parameter Space with the CLs Method

In the event of no new physics, the CLs method is used to exclude regions of parameter space

at some confidence level [154]. This method applies a new test statistic −2 log Q, where

Q = L(~S + ~B, ~D)/L( ~B, ~D) , (9.5)

where ~D is the spectrum of observed data events (interpreted as a vector), ~B is the expected

background spectrum, ~S is the expected signal spectrum, and L is the Poisson likelihood,

defined as

L( ~E, ~O) =
n∏
i=1

~Oi∑
j=0

e−
~Ei
(
~Ei

)j
j!

, (9.6)

for an expected event spectrum ~E and an observed event spectrum ~O, each with n bins.

The value of Q is computed individually for each point in model parameter space (each

point gives a different value for ~S). The value of −2 log Q at each point is then compared

to a distribution of test statistic values (also computed with toy experiments) to obtain a

p-value. In the naive implementation, to exclude a model point at some specified confidence

level (say, 95%), one would exclude all model parameter points with p < 0.05. However, at

such a confidence level one would expect that 5% of the time the background-only hypothesis

is rejected. If this happens, then even arbitrarily small signals are rejected at 95% confidence.

The CLs method corrects for this effect. It relies on two distributions of −2 log Q:

the background-only distribution, and the signal plus background distribution. These two

distributions are used to obtain two confidence levels: CLb and CLs+b. The confidence level

is equal to the fractional area of the distribution that is larger than the observed test statistic

value. The CLs value is then defined as CLs+b/ CLb. To rule out a point in model parameter

space at, say, 95%, one requires that CLs < 0.05. This treatment ameliorates cases where

fluctuations in the data rule out the background hypothesis. In this situation, an arbitrarily
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Figure 9.13: Example distributions of the test statistic (−2 log Q) defining the CLs method.
The confidence limit CLs is equal to CLs+b/ CLb.

small signal would have CLs+b = CLb, and CLs = 1, so it could not be ruled out to any

confidence level. This procedure is typically described as ad-hoc and conservative. However,

it does provide similar results to more principled, Bayesian approaches to limit setting [154].

This procedure is diagrammed in figure 9.13.

To apply the CLs method to the di-muon search, we take the tuned neutrino background

prediction (from section 9.2.1) as the value of ~B. The signal prediction ~S is computed at

each point in model parameter space. Distributions of Q are obtained by varying all statis-

tical and systematic uncertainties on both the neutrino background and the scalar signal.

Uncertainties of the scalar signal rate (from the flux and detector modeling) broaden the

signal plus background distribution and appropriately penalize our sensitivity to excluding

any new physics signal.
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9.3 Sensitivity

This section shows the sensitivity result for this analysis. The sensitivity is defined as the

expected (median) parameter space that can be excluded by the CLs method in the event

of no new-physics signal at 90% confidence (as detailed in section 9.2.2). The sensitivity is

first presented in a model independent way (section 9.3.1). Then, it is also shown for two

specific models: the Higgs portal scalar (section 9.3.2), and a heavy axion (section 9.3.3).

The sensitivity of the two specific models is shown compared to the landscape of previous

experimental searches.

9.3.1 Model Independent Sensitivity

As discussed in section 2.3, this analysis is sensitive to any new physics model involving the

process K → π + S(→ µµ), for some scalar S. We present our sensitivity to such a general

case in a three-dimensional parameter space [54]: the decay length cτ , the scalar mass MS ,

and the branching ratio of the process. Scalar production can come from both K± and KL

decay in NuMI. As shown in appendix B, we are sensitive to the branching ratio combination

[
BR
(
K± → π± + S

)
+ 0.12 · BR

(
KL → π0 + S

)]
× BR (S → µµ) . (9.7)

The sensitivity is determined for 8 discrete values of scalar mass MS between 220 and

350 MeV. At each mass point, events are reweighted based on the value of the scalar decay

length (cτ) and branching ratio (equation 9.7). The median CLs exclusion at 90% confidence

is shown for these model points in figure 9.14. The median and ±50% range of possible

exclusion sensitivities are shown for each mass point in figure 9.15.
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Figure 9.14: CLs exclusion sensitivity to kaon-induced di-muon scalar resonances (K →
π+ S(→ µµ)). Shown as a function of the scalar branching ratio and mass, for a few values
of the decay length.
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Figure 9.15: The median and expected ±50% CLs exclusion sensitivity to kaon-induced di-
muon scalar resonances (K → π + S(→ µµ)). Shown in the branching ratio-lifetime space,
as a function of MS .
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9.3.2 Higgs Portal Scalar Sensitivity

The first of the two specific models we set limits on is the Higgs Portal scalar. The phe-

nomenology of this model is discussed in section 2.1. Our median sensitivity at 90% confi-

dence is shown in figure 9.16. The limit is compared to other searches for this model. Direct

analyses come from rare kaon decay searches (E949 [157] and NA62 [158]), B-meson decay

searches (LHCb [159, 160]), and the MicroBooNE neutrino experiment [155]. Also shown

are reinterpretations of searches for different models. The CHARM limit [161] comes from

a search for axion-like particle production at a beam dump in the µµ final state [162]. The

PS191 limit [163] comes from a search for heavy neutral leptons in a beam dump in final

states including νµµ and µπ. The LSND limit [164] is reinterpreted from a search for νµ CC

interactions at a beam dump [165]. None of these searches were directly for the Higgs Portal

scalar or the equivalent physical process it generates. The inferred limits all rely on assump-

tions about the detector operation made by the authors of the relevant reinterpretation. We

therefore elect to show them separately with dashed lines.
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Figure 9.16: Median ICARUS sensitivity to the Higgs Portal Scalar at a 90% confidence
level. Shown compared to previous dedicated searches for scalar production in kaon decay
(from NA62 [158] and E949 [157]), B-meson decay (from LHCb [159, 160]), and in a neutrino
beam (from MicroBooNE [155]). Also shown are reinterpretations of other analyses from PS
191 [163], LSND [164], and CHARM [161].
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Figure 9.17: Median ICARUS sensitivity to our heavy axion model (with cµ = 1/100) at
a 90% confidence level. Shown compared to previous results from ArgoNeuT [167], NA48
[166], and LHCb [159, 160].

9.3.3 Heavy Axion Sensitivity

Finally, we show our estimated sensitivity for the heavy axion model developed in section

2.2. We interpret our result for the co-dominance scenario (c1 = c2 = c3 = 1) for two

choices of the axion-muon coupling (1/36, 1/100). Our median limit at 90% confidence is

shown in figures 9.17 (caµ = 1/100) and 9.18 (caµ = 1/36). Our limit is shown compared

to other relevant results from kaon decay searches (NA48 [166]), B-meson decay searches

(LHCb [159, 160]), and at the ArgoNeuT neutrino experiment [167].
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Figure 9.18: Median ICARUS sensitivity to our heavy axion model (with cµ = 1/36) at
a 90% confidence level. Shown compared to previous results from ArgoNeuT [167], NA48
[166], and LHCb [159, 160].
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CHAPTER 10

RESULTS

The three steps of the signal identification procedure are shown in figure 10.1. No significant

excess over the fit background is observed. As is demarcated on the figure, the largest excess

has a 0.19σ global significance.

The null result enables limits to be set on the parameter space of relevant physics models.

Limits on the Higgs Portal scalar are shown in figure 10.2 and on the heavy axion model

in figures 10.3 (cµ = 1/100) and 10.4 (cµ = 1/36). Model independent limits on the new

physics process K → π+S(→ µµ) are shown in figures 10.5 (for a few scalar lifetime values)

and 10.6 (for a few scalar masses). All limits are at the 90% CL, applying the CLs method.

The limit on the branching ratio is determined for scalar decay lengths between 10 m and

10 km. Below a decay length of 10 m, the large majority of scalars decay before reaching

ICARUS and the limit on the branching ratio is weak. Above a decay length of 10 km, a

negligible number of scalars decay before reaching ICARUS and the limit on the branching

ratio scales linearly with the decay length: BR ∝ cτS

The observed limit is close to the ±50% range for all scalar masses. The limit is a little

weaker than the median for masses close to 260 MeV (where the biggest excess is observed)

and is a bit stronger than the median for higher masses around 340 MeV (where no events are

observed in the relevant bin). The limit on the Higgs Portal scalar is world-leading among

dedicated searches for the scalar. The competing limit from PS 191 that out performs this

measurement is based on a reinterpretation of a separate search for heavy neutral leptons

performed by authors outside of the collaboration. The limit on the heavy axion model

probes an area of parameter space complimentary to prior searches for the particle. It

limits nearly a decade of new parameter space in fa, requiring (in combination with previous

searches) fa &200 TeV for cµ = 0.01 and 215 < ma <350 MeV. The significant sensitivity of

this search to gluonic axions is due to the octet enhancement of the K → a + π process in
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Figure 10.1: Reconstructed di-muon event spectra in the signal box region, as interpreted
by the three-step signal identification procedure. Step 1 (top left): the region with the
biggest initial bump above the nominal background prediction is excluded from the result.
Step 2 (top right): going out to θNuMI < 10◦, data in the “Fit Region” is used to obtain
a scale factor on the νµCC-Coh-π component of the background. Step 3 (bottom): the
fit background prediction is compared to the data in the signal box. The largest excess is
identified, which has a 0.19σ significance.
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Figure 10.2: Limits from ICARUS on the Higgs Portal Scalar, applying the CLs method at
the 90% confidence level. Shown compared to the median and ±50% expected limit. Shown
alongside previous dedicated searches for scalar production in kaon decay (from NA62 [158]
and E949 [157]), B-meson decay (from LHCb [159, 160]), and in a neutrino beam (from
MicroBooNE [155]). Also shown are reinterpretations of other analyses from PS 191 [163],
LSND [164], and CHARM [161].

the chiral Lagrangian, as was discussed in chapter 2.
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Figure 10.3: Limits from ICARUS on the heavy axion model (with cµ = 1/100), applying
the CLs method at a 90% confidence level. Shown compared to the median and ±50%
expected limit. Shown alongside previous results from ArgoNeuT [167], NA48 [166], and
LHCb [159, 160].
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the CLs method at a 90% confidence level. Shown compared to the median and ±50%
expected limit. Shown alongside previous results from ArgoNeuT [167], NA48 [166], and
LHCb [159, 160].

180



0.225 0.250 0.275 0.300 0.325 0.350
MS [GeV]

10 12

10 11

10 10

10 9
[B

R(
K

±
±

+
S)

+
0.

13
BR

(K
L

0
+

S)
]

×B
R(

S
)

ObservedExp. Med. Exp. ±50%

Model Independent Limit by c S [m]
2 101 2 102 2 103 104

Figure 10.5: ICARUS limits on kaon-induced di-muon scalar resonances (K → π+S(→ µµ)),
applying the CLs method at the 90% confidence level. Shown as a function of the scalar
branching ratio and mass, for a few values of the decay length.

101 102 103 104

c S [m]

10 12

10 11

10 10

10 9

[B
R(

K
±

±
+

S)
+

0.
13

BR
(K

L
0

+
S)

]
×B

R(
S

)

Model Independent Limit, MS = 220 MeV
Expected Median
Expected ±50% Range
Observed

101 102 103 104

c S [m]

10 12

10 11

10 10

10 9

[B
R(

K
±

±
+

S)
+

0.
13

BR
(K

L
0

+
S)

]
×B

R(
S

)

Model Independent Limit, MS = 240 MeV
Expected Median
Expected ±50% Range
Observed

101 102 103 104

c S [m]

10 12

10 11

10 10

10 9

10 8

[B
R(

K
±

±
+

S)
+

0.
13

BR
(K

L
0

+
S)

]
×B

R(
S

)

Model Independent Limit, MS = 260 MeV
Expected Median
Expected ±50% Range
Observed

101 102 103 104

c S [m]

10 12

10 11

10 10

10 9

[B
R(

K
±

±
+

S)
+

0.
13

BR
(K

L
0

+
S)

]
×B

R(
S

)

Model Independent Limit, MS = 280 MeV
Expected Median
Expected ±50% Range
Observed

101 102 103 104

c S [m]

10 12

10 11

10 10

10 9

10 8

[B
R(

K
±

±
+

S)
+

0.
13

BR
(K

L
0

+
S)

]
×B

R(
S

)

Model Independent Limit, MS = 300 MeV
Expected Median
Expected ±50% Range
Observed

101 102 103 104

c S [m]

10 12

10 11

10 10

10 9

10 8

[B
R(

K
±

±
+

S)
+

0.
13

BR
(K

L
0

+
S)

]
×B

R(
S

)

Model Independent Limit, MS = 320 MeV
Expected Median
Expected ±50% Range
Observed

101 102 103 104

c S [m]

10 12

10 11

10 10

10 9

10 8

10 7

[B
R(

K
±

±
+

S)
+

0.
13

BR
(K

L
0

+
S)

]
×B

R(
S

)

Model Independent Limit, MS = 340 MeV
Expected Median
Expected ±50% Range
Observed

101 102 103 104

c S [m]

10 12

10 11

10 10

10 9

10 8

[B
R(

K
±

±
+

S)
+

0.
13

BR
(K

L
0

+
S)

]
×B

R(
S

)

Model Independent Limit, MS = 350 MeV
Expected Median
Expected ±50% Range
Observed

Figure 10.6: ICARUS limits on kaon-induced di-muon scalar resonances (K → π+S(→ µµ)),
for a range of masses. Limits are computed with the CLs method at the 90% confidence level.
Shown compared to the median and expected ±50% CLs exclusion sensitivity. The median
and expected ±50% CLs exclusion sensitivity to kaon-induced di-muon scalar resonances
(K → π + S(→ µµ)).
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CHAPTER 11

CONCLUSION AND OUTLOOK

This thesis has presented a search for new physics through a long-lived di-muon resonance

in the Neutrinos at the Main Injector (NuMI) beam with the ICARUS detector at Fermilab.

No significant excess above background is observed, and we set world leading limits on two

hidden sector models: the Higgs Portal scalar and a heavy axion model. We also compute

the exclusion for the model independent process K → π + S(→ µµ), for some particle S.

This search is enabled by the calibration of the ICARUS liquid argon time projection

chamber (LArTPC) detector, which has also been presented. This calibration enables the

application of ionization measurements in the ICARUS time projection chamber (TPC) for

physics analysis. Together with the Short-Baseline Near Detector (SBND), ICARUS will

search for neutrino oscillations to address the short-baseline anomalies in neutrino physics.

The calibration has also demonstrated new techniques and phenomena important for the

calibration of LArTPC detectors. First, the energy scale of cosmic muon depositions is

impacted by ionization diffusion in the TPC. Second, simulated ionization signal shapes on

the charge sensing wire planes can be tuned to data to improve the fidelity of the detector

simulation. And finally, highly-ionizing energy depositions have an angular dependence in

the amount of electron-ion recombination in liquid argon. These findings are all important

for the calibration of future LArTPC detectors such as SBND and DUNE.

The di-muon LLP search is performed as a bump-hunt, which enables discrimination

between a new physics signal and the smooth neutrino-induced background. The application

of this technique can be useful for future new physics searches in neutrino experiments (such

as DUNE) that have backgrounds from neutrino interactions. In addition, the observation

in this thesis that the octet enhancement of kaon decays to axions significantly boosts the

production rate of axions in neutrino experiments improves the outlook for future searches

above the estimation of previous studies which only considered psuedoscalar meson mixing
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as a production mechanism.

ICARUS continues to take physics data with the NuMI beam, and a search with the

expanded dataset will enable further sensitivity to di-muon LLPs. In such a future search,

new techniques to reduce the neutrino background will be critical. There are two promising

avenues for such a reduction. First, improved charged pion rejection. Visually, many of the

selected pions in the signal box region elastically scatter off argon nuclei before stopping.

Identification of these elastic scatters by the automated reconstruction would enable reject-

ing these events as neutrino backgrounds. Second, neutrino rejection with PMT timing.

Neutrinos, travelling at nearly the speed of light, arrive promptly in the detector compared

to massive scalar particles, which typically have sub-luminal speeds. Precise event timing

with scintillation light could thus be leveraged to reject neutrinos.

***

One might propose a goal for these future searches at experiments such as ICARUS,

SBN, and DUNE: that they, taken together, are capable of excluding the hypothesis they

test. That is, these searches are testing the possibility that outstanding puzzles in particle

physics such as the nature of dark matter and the strong-CP problem are resolved by a

hidden sector of new physics. If none are found after DUNE and SBN, can we conclude that

hidden sectors indeed are not responsible for these puzzles?

Taking the Higgs Portal scalar as example, there is a relevant lower limit on the Standard

Model mixing from the requirement that the dark matter particle thermalizes through cou-

pling to the scalar in the early universe. This requires that θ2
S & 2×10−13. The world-leading

limit presented here (combined with other previous null results) requires θ2
S . 1.5 × 10−9

aroundMS ∼250 MeV. There are thus many orders of magnitude left to probe in the model.

The future ICARUS dataset, as well as the DUNE experiment, will probe further but will
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not reach the lower bound. This is nothing to say of the many decades of possible masses for

the scalar, as well as the variety of possible motivated hidden sectors to dark matter (vector,

psuedo-scalar, and fermion, in addition to scalar). Experimental searches which probe this

space will thus be a promising avenue of research for years to come, but the task of fully

exploring the realm of hidden sectors is daunting. To complete the task, DUNE will not

be enough. New experimental approaches, and the determination to perform them, will be

required.

Are they worth it? The questions these searches seek to address are fundamental to the

nature of matter and our reality. Even if each search is, to use a common metaphor, just one

lamppost illuminating its own corner of the question, it does so towards a deeply important

goal. But will any lamppost illuminate something new?

It is often remarked that particle physics has been very lucky with nature to make its

many discoveries over the last century and a quarter. Taking neutrino oscillations as an

example, the phenomenon was discovered due to a truly cosmic coincidence: that the density

of the sun was matched to resonate with the solar neutrino mass splitting. This resonant

enhancement was responsible for the significant deficit in neutrinos originally observed at

the Homestake experiment. It required two values with no possible relation to each other,

the neutrino masses and the density of the sun, to be precisely matched to each other. And

the oscillation hypothesis was confirmed by Super-Kamiokande through a second cosmic

coincidence: that the size of the earth is matched to the atmospheric oscillation length at

atmospheric neutrino energies.

If particle physics is to resolve the puzzles that hidden sectors propose to solve, it seems

like another stroke of luck is needed in the coming years. Hopefully ours has not run out.
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APPENDIX A

THE DISTRIBUTION OF ENERGY LOSS SEEN BY A

CHANNEL WITH A POSITION-DEPENDENT SENSITIVITY

TO PARTICLE ENERGY

A.1 Derivation

Typically, the Landau and Landau-Vavilov distributions are derived by means of a Laplace

transform leveraging the continuity property of the energy loss distribution [110]. Here we

take an alternative approach, applying the convolution property (equation 4.1) by means

of a Fourier transform. We also keep track of the channel ionization weight function as

a function of the charged particle position (w(x)). We end at the same place, except for

perturbations coming from the weight function. To start, we discretize w(x) into weights wi

over infinitesimal steps dxi, and build up the probability distribution over the full weight

function by performing a product of convolutions:

pw(E) =

∫
dT1

∫
dT2 · · ·

∫
dTn

pdx0(E−Tn−···−T1w0
)

w0
×
pdx1(Tn−···−T1w1

)

w1
× · · · ×

pdxn( Tnwn )

wn
.

(A.1)

By use of a Fourier transform F , we can turn this into a regular product:

pw(E) = F−1

τ→E
Π
i
F
T→τ

pdxi(T/wi)

wi
.

Applying the scale property of a Fourier Transform:

pw(E) = F−1

τ→E
Π
i
F

T→wiτ
pdxi(T ) .
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By taking the exponential of the log of the RHS, we can manipulate it into a sum:

pw(E) = F−1

τ→E
exp

[∑
i

log F
T→wiτ

pdxi(T )

]
.

Using the small−` formula (4.2) for pdx(T ), we can simplify its Fourier transform:

pw(E) = F−1

τ→E
exp

[∑
i

log(1− σρdxi + ρdxi F
T→wiτ

dσ

dT
)

]
.

By applying log(1 + ε) ≈ ε, we obtain:

pw(E) = F−1

τ→E
exp

[∑
i

−σρdxi + ρdxi F
T→wiτ

dσ

dT

]
.

Which can be neatly turned into an integral:

pw(E) = F−1

τ→E
exp

[∫
dx(−ρσ + ρ F

T→w(x)τ

dσ

dT
)

]
.

Now we apply the definitions of σ and F to evaluate the integral. Noting dσ/dT 6= 0

only for 0 < T < Tmax, we obtain

pw(E) = F−1

τ→E
exp

ρ∫ dx

Tmax∫
0

dT
dσ

dT

(
e−2πiτw(x)T − 1

)
= F−1

τ→E
exp

ρ2πr2
eme

β2

∫
dx

Tmax∫
0

dT
1− β2T/Tmax

T 2

(
e−2πiτw(x)T − 1

) ,

where we have used the formula for the bare cross section (equation 4.3) in place of dσ/dT .

The integrand diverges as 1/T as T → 0. This divergence appears because we have

used the cross section of scattering on bare electrons instead of atomic electrons. At low
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energy transfer the cross section is modified by atomic effects, which in particular cutoff

the cross section near the excitation energy (above T = 0) to remove the divergence. We

can remove the divergent behavior of the integrand by adding and subtracting the mean

energy loss E =
∫
dx
∫
dTρ dσdT Tw(x). That subtracting the mean energy loss makes the

integrand converge indicates that the shape of the distribution is not sensitive to atomic

effects; these only act to change the mean. So once the impact of atomic effects on the mean

energy loss is accounted for, it is safe to apply the bare cross section to find the shape of the

distribution. Thus, for the purpose of this derivation, we take the mean energy loss as an

external input (from Bethe-Bloch theory [112]) and find how the mean relates to the shape

of the distribution. (There is also nothing new here coming from the weight function; this is

precisely the same approximation that is made by Vavilov [110]). Applying this substitution,

we get

pw(E) = F−1

τ→E
exp

[
− 2πiEτ + ρ

2πr2
eme

β2
×

∫
dx

Tmax∫
0

dT
1− β2T/Tmax

T 2

(
e−2πiτw(x)T + 2πiτw(x)T − 1

) ]
.

(A.2)

This integral converges to

pw(E) = F−1

τ→E
exp

[
− 2πiEτ + ρ

2πr2
eme

β2Tmax

∫
dx(

1− e−2iπTmaxw(x)τ − 2πiτw(x)Tmax(1 + β2) + (β2 + 2iπTmaxw(x)τ)×

(−Ei[−2iπTmaxw(x)τ ] + log[2iπTmaxw(x)τ ] + γEM)
) ]

,

where γEM is the Euler constant and Ei is the exponential integral function, Ei(x) =
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−
∞∫
−x

dt e−t/t. Next, we expand the inverse Fourier transform F−1:

pw(E) =

∞∫
−∞

dτ exp

[
2πiEτ − 2πiEτ + ρ

2πr2
eme

β2Tmax

∫
dx

(
1− e−2iπTmaxw(x)τ − 2πiτw(x)Tmax(1 + β2) + (β2 + 2iπTmaxw(x)τ)×

(−Ei[−2iπTmaxw(x)τ ] + log[2iπTmaxw(x)τ ] + γEM)
) ]

.

To simplify these integrals, we can leverage the ζ quantify defined earlier (equation 4.4) and

z ≡ 2πτζTmax:

pw(E) =
1

2πζTmax

∞∫
−∞

dz exp

[
iz

ζTmax
(E − E) +

∫
dx

ζ(1− e−iw(x)z/ζ)− izw(x)(1 + β2) + (ζβ2 + iw(x)z)×

(−Ei[−iw(x)z/ζ] + log[iw(x)z/ζ] + γEM)

]
.

(A.3)

This integral definition gives the general result of the probability distribution of energy

loss observed by some channel with a position-dependent weight function w(x). In the

nominal case, we would replace
∫
dx → p for some channel pitch p and would obtain the

Landau-Vavilov distribution. From here, we will consider for which channel sensitivities the

distribution is equal to the Landau distribution (in the thin film case) or the Landau-Vavilov

distribution (in the general case). In section A.2 it is shown that for all channel sensitivities

that satisfy the thin film approximation, the distribution is a Landau one. Finally, in section

A.3 we find that only for specific channel sensitivities is the distribution equivalent to a

Landau-Vavilov distribution in the general case.
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A.2 The Landau Limit

To restrict to the Landau case, we take the thin-film approximation. In the usual derivation,

one takes the limit that ζ ·`� 1, where ` is the width of the step function. In our case, since

we don’t have a single such width, we have to be more careful about this approximation. In

this case we can make a requirement on w – that the range of values where w is not � 1, r,

has the property that ζ · r � 1. Then, inside the integrand of
∫
dx, we can take the limit

that ζ is small. In this limit, pw(E) converges to

pw(E) =
1

2πiζTmaxp

i∞∫
−i∞

dz′ exp
[
z′
(
λ+ log|z′|

)]
, (A.4)

where z′ = iz/ζTmax, p ≡
∫
w(x)dx, and λ = E−E

ζTmaxp
− logζp + γEM − 1 − β2 +∫

dx w(x)log[w(x)]
p . This equation can be recognized as the Landau distribution for a pa-

rameter λ.

A.3 General / Landau-Vavilov Case

To understand the general case, we will examine the cumulants of the probability distribution.

To do this, it is useful to go back to the definition in equation A.2, modified slightly so that

we obtain the cumulant-generating function K(τ) = log E
[
e−iτE

]
:

K(τ) = −iEτ + ζTmax

∫
dx

Tmax∫
0

dT
1− β2T/Tmax

T 2

(
e−iτw(x)T + iτw(x)T − 1

)
. (A.5)

We expand the term in parentheses in a Taylor series:

K(τ) = −iEτ + ζTmax

Tmax∫
0

dT
1− β2T/Tmax

T 2

∞∑
n=2

(−iτT )n

n!

∫
dx w(x)n .

189



Which can be simplified to

K(τ) = −iEτ + ζTmax

∞∑
n=2

(−iτ)n

n!
Tn−1
max

(
1

n− 1
− β2

n

)∫
dx w(x)n .

From here, the nth cumulant κn = inK(n)(0) can be directly read off:

κ1 = E

κn = ζTnmax

(
1

n− 1
− β2

n

)∫
dx w(x)n .

(A.6)

The cumulants of the Landau-Vavilov distribution are given for w(x) = Θ(x)−Θ(x+p)

for some pitch p. Thus, the cumulants of the Landau-Vavilov distribution are

κLV1 = E

κLVn = ζpTnmax

(
1

n− 1
− β2

n

)
.

(A.7)

A necessary but not sufficient condition for two probability distributions to be equivalent is

that they have the same cumulants. Allowing for the distributions to be different by location

and scale parameters, the n-th cumulant must be equal up to a multiplicative (scale) factor

cn. Thus, we need κn = κLVn cn for a distribution (with cumulants κ) to be equivalent to the

Landau-Vavilov distribution up to location and scale parameters. This puts a requirement

on w that
∫
dx w(x)n = pcn−1 for all integers n ≥ 1 for some constant c and the pitch p.

The cumulants being equivalent is not by itself a sufficient condition for the probabil-

ity distributions to be the same. However, given this property on w we can simplify the
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distribution further – starting from equation A.2:

pw(E) = F−1

τ→E
exp

−2πiEτ + ρ
2πr2

eme

β2

∫
dx

Tmax∫
0

dT

1− β2T/Tmax
T 2

(
e−2πiτw(x)T + 2πiτw(x)T − 1

) ]

= F−1

τ→E
exp

−2πiEτ + ρ
2πr2

eme

β2

p

c

Tmax∫
0

dT

1− β2T/Tmax
T 2

(
e−2πciτT + 2πciτT − 1

) ]
,

which integrates to:

pw(E) = F−1

τ→E
exp

[
− 2πiEτ + ρ

2πr2
eme

β2Tmax

p

c

(
1− e−2iπTmaxcτ − 2πiτcTmax(1 + β2)+

(β2 + 2iπTmaxcτ)(−Ei[−2iπTmaxcτ ] + log[2iπTmaxcτ ] + γEM)
) ]

.

Then, defining ζ ′ = ρ
2πr2eme

Tmaxβ2
p
c and z′ = 2πiτTmaxc:

pw(E) =
1

2πiTmaxc

i∞∫
−i∞

dz′ exp

[
z′

Tmaxc
(E − E) + ζ ′(1− e−z

′
)− z′ζ ′(1 + β2)+

ζ ′(β2 + z′)(−Ei[−z′] + log[z′] + γEM)

]
,

which is the Landau-Vavilov distribution with a scale parameter c (this can be verified

against [110] equation 8, with somewhat different notation). Thus, the probability distri-

bution of energy loss recorded by a channel with a weight function w(x) is equal to the

Landau-Vavilov distribution precisely when

∫
dx w(x)n = pcn−1 (A.8)
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for all integers n ≥ 1 for some p, c.

We can show further that this requirement means w(x) is equal to some number of non-

overlapping step functions multiplied by a scale factor c. First, define p′ = cp and w′(x) =

w(x)/c. Then A.8 being satisfied means
∫
dx w′(x)n = p′ for all n ≥ 1. We show this means

w′(x) is equal to 1 or 0 for all x. Take n large enough that for w′ < 1, w′n ≈ 0 and for w′ > 1,

w′n ≈ ∞. Then w′(x) can’t have some compact region where w′ > 1, or else the integral

would diverge. In this case, the integral breaks down to a sum of the compact regions where

w′ = 1: lim
n→∞

∫
dx w′(x)n =

∑
region−i

ri = p′, where ri is the length of region i where w′ = 1.

Then, consider the integral
∫
dx w′(x). This is equal to those same regions plus the integral

of w′(x) outside those regions:
∫
dx w′(x) =

∑
region−i

ri +
∫

w′ 6=1

w′(x). Since
∑

region−i
ri = p′,

we need
∫

w′ 6=1

w′(x) = 0. Since w′ is positive for all x, this means w′ must be equal to 0

wherever w′ 6= 1. This means that w′ should be given by the sum of some number of non-

overlapping step functions at location xi of length ai: w′(x) =
∑
i Θ(x−xi)−Θ(x−xi−ai).

Translating this back to w, this means w must be given by the sum of those step functions

multiplied by some constant c where 0 ≤ c ≤ 1.

Thus, when not considering the relativistic limit, the distribution of particle energy loss

recorded by a channel with a weight function w(x) is only equal to a Landau-Vavilov distri-

bution (up to location and scale factors) when w(x) is given by the sum of step functions

multiplied by some overall constant. In general, the probability distribution will be differ-

ent and is given by equation A.3 (equation 4.6 in the main text). The cumulants of this

distribution are given by equation A.6.
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APPENDIX B

RATIO OF LONG TO CHARGED KAON PARENTAGE OF

SCALARS IN NUMI

The new physics models we consider here, including HPS and ALPs, involve particles that

can be produced in both charged and long kaon decay. This creates a challenge for the

model-independent interpretation of the result (section 2.3): how to record the sensitivity to

different models with different ratios of charged to long kaon production? We demonstrate

here that a suitable linear combination of the branching ratios describes our sensitivity.

First, there are no significant spectral differences between scalars produced in long and

charged kaon decay. This is demonstrated in figure B.1. This figure neglects the component

of kaon-decay-at-rest (KDAR) scalars, which are entirely from K±. However, this analysis

is not sensitive to the component of the flux.

Seeing no spectral differences, we verify that the relative rate of KL:K± parentage is

stable across different mass points. This is shown in figure B.2. The ratio of KL:K± is

stable at 0.13 : 1. It starts to increase slightly at high mass, likely due to the approach

towards the production mass threshold (mK± −mπ± is slightly smaller than mKL −mπ0).

However, the difference is not significant. Thus, the analysis is sensitive to the branching

ratio combination BR(K± → π±+S)+0.13×BR(KL → π0 +S), independent of the scalar

mass.
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Figure B.1: Area normalized spectra of scalars produced in kaon decay at different HPS
model points.
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Figure B.2: Ratio of KL to K± parentage of scalars by the scalar mass. Taken with the
HPS model, where the relative branching ratio of KL → S vs. K± → S is divided out.
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APPENDIX C

FIELD AND ELECTRONIC RESPONSE TRANSFORMATIONS

IN SIGNAL SHAPE FIT

The single electron field response fit applies a set of non-linear transformations to the nominal

Wire-Cell responses. The transformations depend on the time t and the location x along

the direction perpendicular to the wire orientation (ŵ). The fit is done by splitting each

field response into a left (denoted with a subscript `) and right (denoted with a subscript

r) side of a central time tick. The time tick is defined as the peak of the field response on

the collection plane and the zero-cross point on the induction planes. Both the shape of

the field response s and the time input to the field response t is transformed. All position

dependence is encoded in an “offset parameter” o. The fit single electronics field response

s(x, t), in terms of the nominal WireCell single electronics field response s0(x, t), is defined

below.
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s(t, x) =s`(t
′(t, x), x) · (t′(t, x) < 0) + sr(t

′(t, x), x) · (t′(t, x) ≥ 0)

s`,r(t, x) =a0
`,r(x)ss`,r(t, x) + a1

`,r(x)(ss`,r(t, x))2 · sign(ss`,r(t, x))

ss`,r(t, x) =(s0(t, x) + ds`,r(t, x)) · exp
[
(t > tstart`,r ) · e`,r|t|

]
a

0,1
`,r (x) =a0

0,1
`,r + a1

0,1
`,r · o(x)

ds`(t, x) =0 , dsr(t, x)
c
p
r · exp[−|x|/`pr ] · (|x| ≤ 1.5mm)

1 + (|t|/τpr )a
p
r

· (|t| > tp−start
r )

t′(t, x) =t′`(t, x) · (t < 0) + t′r(t, x) · (t ≥ 0) + c · o(x)

t′`,r(t, x) =t ·

s0
`,r(x) +

s2
`,r(x)

1 +
(
t/τ2

`,r(x)
)2

+
s4
`,r(x)

1 +
(
t/τ4

`,r(x)
)4


s
0,2,4
`,r (x) =s1

0,2,4
`,r · o(x) + s2

0,2,4
`,r · o(x)2

τ
2,4
`,r (x) =τ1

2,4
`,r + τ2

2,4
`,r · o(x)

o(x) =1− e−|x|/1.5mm .

(C.1)

The fit parameters in these equations are in bold. In these equation, there are 16 fit pa-

rameters on both sides of t = 0 (`, r): tstart`,r , e`,r, a00
`,r, a01

`,r, a10
`,r, a11

`,r, s1
0
`,r, s1

2
`,r, s1

4
`,r,

s20
`,r, s2

2
`,r, s2

4
`,r, τ12

`,r, τ14
`,r, τ22

`,r and τ24
`,r. There are 5 parameters only on the right side

of t = 0: cpr , `
p
r , τ

p
r , a

p
r , and t

p−start
r . Finally, there is the time shift parameter c. In total,

there are 38 parameters in the field response fit.

The electronics response is also fit for. The nominal electronics response e0(τ ; t) is a

Bessel shaping function with a nominal shaping time τ =1.3 µs. This nominal shape is

convolved with the long RC-tail measured externally to the signal shape fit as described in

section 5.2.2. To allow for further distortions, the response is convolved with an RC-RC tail
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function with a time constant τRCRC. The full fit electronics response e(t) is

e(t) = (e0(τ ) ~ RC(A, τRC) ~ RC-RC(τRCRC))(t)

RC(A, τ ; t) = δ(t) + Ae−t/τ

RC-RC(τ ; t) =

(
t

τ
− 2

)
e−t/τ

τ
,

(C.2)

where ~ denotes a convolution and δ is the dirac-delta function. The four fit parameters, τ ,

τRC, τRCRC, and A, are all in bold.
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