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ABSTRACT

Understanding the fundamental nature of dark matter (DM)—its cosmological ori-
gin, constituents, and interactions—is one of the most important questions in funda-
mental science today. In this thesis, I present two novel and highly complementary
approaches to cover the gaps in sensitivity of current DM searches. The searches are
enabled by a first-of-its-kind reconstruction technique to search for hidden-sector
particles using the Compact Muon Solenoid (CMS) and by new advances in quantum

sensing technology to search for axions and hidden-sector DM.

In the first part of this thesis, I present a search for long-lived hidden sector particles,
predicted by many extensions of the SM, using a novel technique to reconstruct
decays of long-lived particles (LLPs) in the CMS muon detector. The innovative
LLP reconstruction technique is sensitive to a broad range of LLP decays and to
LLP masses below GeV. The search yields competitive sensitivity for proper lifetime
0.1-1000 m with the full Run 2 dataset recorded at the LHC between 2016-2018
at /s = 13 TeV. To extend the physics reach of this novel muon detector shower
(MDS) signature, I present the model-independence of MDS and the reinterpretation
of the search to a large number of LLLP models, demonstrating its complementarity
with proposed and existing dedicated LLP experiments. Finally, I present a new
dedicated MDS trigger that improves the trigger efficiency by at least an order of
magnitude and was deployed in 2022, at the start of Run 3 of the LHC operations.

In the second part of the thesis, I present for the first time, the use of a novel quantum
sensor, the low-noise and single-photon sensitive superconducting nanowire single
photon detectors (SNSPDs), to directly detect dark matter. The low detection
threshold and ultra-low dark count rate of SNSPDs can close the gap in DM discovery
reach due to the current limitations in detector sensitivity. I will present my work on
the development and characterization of SNSPDs for two entirely new experiments
to directly detect axions via absorption and hidden-sector DM via electron scattering.
The search for axions employs a novel broadband reflector technique with the
Broadband Reflector Experiment for Axion Detection (BREAD). A unique parabolic
mirror is then used to focus axion-converted photons to the SNSPDs, extending the
reach to axion masses of 0.04—1 eV. On the other hand, by coupling the SNSPDs with
gallium arsenide, a bright cryogenic scintillator well matched to SNSPD detection,
a prototype sensing system can be built as a basis of new direct DM detection

experiments capable of extending the discovery to DM masses as low as 1 MeV.
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e"e” the LLP mass is 0.4 GeV with a range of c7 values between
0.01 and 1 m. The cluster reconstruction efficiency appears to be
nonzero beyond MB4 because the MB4 chambers are staggered so
that the outer radius of the CMS detector ranges from 738 to 800 cm.
The barrel and endcap muon stations are drawn as black boxes and

labeled by their station names. The region between labeled sections

are mostly steel returnyoke. . . . . . ... ..o

=0600. . ...
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59

5.10

5.11

5.12

5.13

5.14

The DT (left) and CSC (right) cluster reconstruction efficiency as a
function of the simulated r or |z| decay positions of S decaying to dd

in events with p1 "

> 200 GeV, for amass of 40 GeV and arange of ¢t
values between 1 and 10 m. The DT cluster reconstruction efficiency
is shown for events where the LLP decay occurs at |z| < 700 cm. The
DT cluster reconstruction efficiency appears to be nonzero beyond
MB4 because the MB4 chambers are staggered so that the outer radius
of the CMS detector ranges from 738 to 800 cm. The CSC cluster
reconstruction efficiency is shown for events where the LLP decay

occurs at |r| < 700cm and || < 2.6. Regions occupied by steel

shielding are shaded ingray. . . . .. .. ... ... ... .....

The geometric acceptance multiplied by the efficiency of the pi'** >

200 GeV selection as a function of the proper decay length ct for a

scalar particle S withamass of 40GeV. . . .. ... ... ... ..

The shapes of the cluster time for signal, where S decaying to dd
for a proper decay length c7 of 1 m and mass of 40 GeV, and for a

background-enriched sample in data selected by inverting the N

requirement. . . . ... L Lo Lo e e e

The shapes of Ny, (left) and A¢(pr,cluster) (right) for single
CSC clusters are shown for S decaying to dd for a proper decay
length of 1 m and various masses compared to the OOT background
(touster < —12.5 ns). The OOT background is representative of the
overall background shape, because the background passing all the
selections described above is dominated by pileup and underlying

events. The shaded bands show the statistical uncertainty in the

background. . . . . ...

The shapes of Ny, (left) and A¢(F", cluster) (right) for DT clusters
are shown for S decaying to dd for a proper decay length of 1 m and
various masses compared to the shape of background in a selection
in which the cluster is not matched to any RPC hit. The shaded bands

show the statistical uncertainty in the background. . . . . . .. . ..

Diagrams illustrating the ABCD plane for the DT-CSC category
(left), and for the DT-DT and CSC-CSC categories (right). The vari-

able c; is the pass-fail ratio of the N, selection for the background

cluster. Bin A is the SR for all categories. . .. ... .. ... ...
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5.15

5.16

5.17

5.18

5.19

5.20

Diagram illustrating the ABCD plane for the single-CSC-cluster cat-
egory, where bin Aisthe SR. . . . . .. .. ... ... .. ...
The inner DT station (MB1 or MB1 plus MB2) hit veto efficiency
for MB2 (top left), MB3 (top right), and MB4 (bottom) clusters
measured as a function of matched jet pr in an inverted jet veto
selection. The distributions are fitted to the sum of exponential and
constant function for each station separately. The )(2 per degree of
freedom of the fits are 11.1/16, 12.0/16, and 14.2/16 for MB2, MB3,
and MB4, respectively. . . . .. ... ... L
The Higgs boson py shape calculated from different renormalization
and factorizationscale. . . . . . . .. ... L oL
The signal (assuming 8(H — SS) = 1%, S — dd, and ¢t =
1 m), background, and data distributions of N s Passing the Ny
selection in the search region for CSC-CSC (upper left), DT-DT
(upper right), and DT-CSC (lower) categories. . . . . ... .. ...
Distributions of Ny (left) and A¢(51", cluster) (right) in the search
region of the single-CSC-cluster category. The background predicted
by the fit is shown in blue with the shaded region showing the fitted
uncertainty. The expected signal with 8(H — SS) = 1%, S — dd,
and ¢t = 1 m is shown for mg of 3, 7, 15, 40, and 55 GeV in various
colors and dotted lines. The N, distribution includes only events in
bins A and D, while the A¢(py i85 cluster) distribution includes only
events in bins A and B. The last bin in the N, distribution includes
overflowevents. . . . . . .. ...
Distributions of N, (left) and A¢(p1"™, cluster) (right) in the search
region of the single-DT-cluster category. The background predicted
by the fit is shown in blue with the shaded region showing the fitted
uncertainty. The expected signal with B(H — SS) = 1%, S — dd,
and ¢t = 1 m is shown for mg of 3, 7, 15, 40, and 55 GeV in various
colors and dotted lines. The N, distribution includes only events in
bins A and D, while the A¢ "%niss, cluster) one includes only events in
bins A and B. The last bin in the N distribution includes overflow

EVENLS. . . . . e e e e e e e
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5.21

5.22

5.23

5.24

5.25

The 95% CL expected (dotted curves) and observed (solid curves)
upper limits on the branching fraction 8(H — SS) as functions of
ct for the S — dd (upper left), S — bb (upper center), S — 17t~
(upper right), S — K"K~ (middle left), S — KK (middle center),
S — 7n'n” (middle right), S — 7°r° (bottom left), S — ee”
(bottom center), and S — vy (bottom right) decay modes. The
exclusion limits are shown for different mass hypotheses. . . . . . .
The 95% CL observed upper limits on the branching fraction B(H —
SS) as functions of mass and ¢t for the S — dd (upper left), S — bb
(upper center), and S — 1t~ (upper right) S — K"K~ (middle left),
S — Kk° (middle center), and S — n"n~ (middle right) S — n°r’
(bottom left), S — e"e” (bottom center), and S — Yy (bottom right)
decay modes. . . . . .. ...
The 95% CL observed upper limits on the branching fraction 8(H —
SS) as a function of mass and c¢7, assuming the branching fractions
for S are identical to those of a Higgs boson evaluated at mg [142].
The 95% CL observed upper limits on the branching fraction B(H —
YY) as functions of ct for the vector portal assuming (x;,,, X;5) =
(1,1). For the vector portal, scenarios with x;, = 2.5 are not inter-
preted, because in this case all vector mesons would decay to scalar
mesons that are invisible to the detector. The exclusion limits are
shown for different LLP mass hypotheses. The limits are calculated
only at the proper decay lengths indicated by the markers and the
lines connecting the markers are linear interpolations. . . . . . . . .
The 95% CL observed upper limits on the branching fraction B(H —
YY) as functions of ¢t for the gluon portal, assuming (x;,, X;5) =
(1,1) (left), (x;,,, x;4) = (2.5,1) (middle), and (x;,,, x;4) = (2.5,2.5)
(right). The exclusion limits are shown for different LLP mass hy-
potheses. The limits are calculated only at the proper decay lengths
indicated by the markers and the lines connecting the markers are

linear interpolations. . . . . . . . .. .. Lo Lo

Xix

92

93



5.26

5.27

5.28

5.29

5.30

6.1

The 95% CL observed upper limits on the branching fraction 8(H —
YY) as functions of ¢t for the photon portal, assuming (x;,,, x;5) =
(1,1) deft), (x;,, x;5) = (2.5,1) (middle), and (x;,,, x;,) = (2.5,2.5)
(right). The exclusion limits are shown for different LLP mass hy-
potheses. The limits are calculated only at the proper decay lengths

indicated by the markers and the lines connecting the markers are

linear interpolations. . . . . . . . ... ... oL

The 95% CL observed upper limits on the branching fraction B(H —
YY) as functions of ¢t for the Higgs boson portal, assuming (x;,,,
x;a) = (1, 1) (left), (x;,, x;p) = (2.5,1) (middle), and (x;,, x;5) =
(2.5,2.5) (right). The exclusion limits are shown for different LLP
mass hypotheses. The limits are calculated only at the proper decay

lengths indicated by the markers and the lines connecting the markers

are linear interpolations. . . . . . . . ... . L Lo

The 95% CL observed upper limits on the branching fraction 8(H —
YY) as functions of ¢t for the dark-photon portal, assuming (x;,,,
xia) = (1,1) (eft), (x;,, x;4) = (2.5,1) (middle), and (x;,,, x;5) =
(2.5,2.5) (right). The exclusion limits are shown for different LLP
mass hypotheses. The limits are calculated only at the proper decay

lengths indicated by the markers and the lines connecting the markers

are linear interpolations. . . . . . . . .. ... L oL

The distribution of generator-level muon || of the muons that are

matched to clusters passing all vetos in the W + jet sample. . . . . . .

The distribution of N for the clusters in the 2GeV particle gun

samples. . ... .. e e e e e

The geometric acceptance region considered for LLP decay in the
endcap is shaded in red. Region A and B are shown. Region A is
defined as 391 cm < r < 695.5 cm and 400 cm < |z] < 671 cm.
Region B is defined as 671 cm < |z| < 1100 cm and r < 695.5 cm
and || < 2. The rest of the acceptance region are not considered,

since the signal efficiency is almost zero (<0.5%), due to shielding

andthe Vetos. . . . . . . . . . e,
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6.2

6.3

6.4

6.5

6.6

6.7

The cluster efficiency in bins of hadronic and EM energy in region A
(left) and B (right). The cluster efficiency is evaluated using the sum
of all mass and ¢t models available from the 47 sample. The first
hadronic energy bins correspond to LLPs that decayed leptonically
with 0 hadronic energy. The statistical uncertainty for each bin is
documented in Additional Figure 7 of the HEPData record of this
analysis [143]. . . . . . . .
The cluster efficiency with respect to LLP energy in region A (left)
and B (right) for a 15 GeV LLP and different LLP lifetimes. The plots
demonstrate the cluster efficiency is independent of the LLP lifetime.
The cluster efficiency with respect to LLP energy in region A (left)
and B (right) for different LLP masses. The different LLP mass
samples consists of the sum of all available lifetimes ranging from
0.1 to 100 m to improve the statistics. The plots demonstrate the
cluster efficiency is independent of the LLP mass. . . . .. .. ...
The cluster efficiency estimated from LLP decaying to dd in bins of
hadronic and EM energy in region A (left) and B (right). The first
hadronic energy bins correspond to LLPs that decayed leptonically
with 0 hadronic energy, so it’s empty for dd decays. The sample
includes the sum of all available mass (7-55 GeV) and ctau (0.1-
100 m) points. The parameterization agrees with that derived from
theS —t t signal. . ... ... ... ... ...
The efficiency of N,

sations > 1 Wwith respect to hadronic energy in

region B. The first hadronic energy bin corresponds to LLPs that
decayed leptonically with O hadronic energy. . . . . ... ... ...
The efficiency of N,

sations > 1 in region B, comparing different LLP

masses (left), lifetimes (center), and decay modes (right). The dif-
ferent mass samples in left plot consists of the sum of all available
¢t points (0.1-100 m). The different ct samples in the center plot
assumes an LLP mass of 15 GeV. The different decay mode samples
in the right plot consists of all available mass (7-55 GeV) and ct
(0.1-100 m) points available. The first hadronic energy bin corre-
sponds to LLPs that decayed leptonically with 0 hadronic energy. No

dependence on LLP mass, lifetimes, and decay modes observed.
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6.8

6.9

6.10

Comparison of the 95% CL upper limits on the branching fraction
B(H — SS) as functions of ¢t derived with the standalone workflow
(dashed lines) and the CMS search (solid lines). In deriving these
limits we have considered a 15 GeV LLP decaying into d-quark pairs
(left), b-quark pairs (center), and 7 pairs (right). The limits from this
work are shown to agree with the CMS search to within 30%.

Comparison of the Ag(Fi™
standalone workflow (dashed line) and the CMS search (solid line)

for a 15 GeV and 1 m proper decay length LLP decaying into d-quark

,cluster) distributions derived with the

pairs with B(H — SS) = 0.01 . The signal yield when requiring
AG(PIS cluster) <1 agrees within 7%. . . . . ... .. ... ...
Recast and projected sensitivity of the different proposed search
strategies with a displaced shower signature in the CMS muon system.
The minimal HNL scenario is considered with mixings in the 7 (left)
and electron (right) sectors. The blue “recast” contour corresponds
to a straightforward recast with the Run-2 dataset. Dashed green
“strategy 17 is the same as the dot-dashed lines in the other interpre-
tations, corresponding to an increased N; requirement. Strategy 2
corresponds to the strategy with the new trigger and lowered pp™*
requirement. Sensitivity of strategy 2 are shown for datasets with
luminosity of 300 fb~' and 3 ab™! in black and brown, respectively.
We compare our results with current constraints (gray shaded re-
gion) that come from limits from the DELPHI [181] and ATLAS
experiments [182]. We also compare with projections from the pro-
posed SHiP (yellow) [183], MATHUSLA (pink) [184], and FASER2

(blue) [185] experiments. . . . . . . ... ... ... .. ...
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6.11

6.12

6.13

6.14

Constraints on light scalars produced in Higgs decays for B(H —
SS) = 0.01. Left: Comparison of our current reach (red region)
with existing limits from LHCb (orange) [186], LSND (azure) [187],
reinterpretation [120] of the CHARM experiment (blue) [188], CMS
HT +2DV search (green) [142, 189], and reinterpretation of ATLAS
mu-ROI (purple) [142, 190]. Right: Projections of our constraints
for a luminosity of 3 ab™! (red region). The three red contours (solid,
dashed, and dot-dashed) correspond to the three search strategies dis-
cussed in the main text (rescaled CMS analysis, dedicated trigger, and
higher N,;). We compare our results with current constraints (gray
shaded region) and projections for MATHUSLA [191], CODEX-
b [160], FASER2 [192], and LHCb 300f6~" [193]. The constraints
for the projections are shown between the dashed lines with the cor-
responding colors. The vertical orange line indicates the scalar mass
below which the model needs to be fine-tuned (see discussion around
Equation 6.11). . . . . . . . .. . ...
Our limits for the light scalar model for different values of 8(H —
SS). In the left panel we show the current reach, while in the right
panel we present the 3 ab™! projections assuming that the same selec-
tions of the original CMS analysis are used. As in the previous plot,
the vertical lines indicate the scalar mass below which which tuning
of more than 10% is present (see discussion around Equation 6.11).
Constraints on the singlet scalar model in absence of a tree-level
mass for S (ug = 0). The solid red line shows the current constraints,
while the other contours (dashed, dot-dashed, and dotted) show 3 ab™!
projections derived by using the three recast strategies discussed in
Section 6.3.3 (rescaled CMS analysis, dedicated trigger, and higher
Myii,)- The other existing constraints appearing on the plot are the
same of Figure 6.11. . . . . . . ... ... ... ... ........
Upper limits on the branching fraction 8(H — SS) as functions of
ct. In the left panel, we report the current constraints set by our
analysis. In the other panels, we show the projected constraints for a
luminosity of 3 ab™! derived from the three different search strategies

discussed. . . . . ...
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6.15

6.16

6.17

Constraints on dark-photons produced in Higgs decays for B(H —
SS) = 0.01. Left: Comparison of our current reach (red region) with
existing limits from BaBar (blue) [194], KLOE (azure) [195], LHCb
(purple) [196], NA48 (brown) [197], reinterpretation of ATLAS u-
ROI (yellow) [190], ATLAS search for displace dark-photon jets
(yellow) [198], and beam dump experiments (orange, gray, green,
pink) [188, 199-201]. Most of the experimental constraints appearing
in this plot have been digitized with the help of darkcast [157].
Right: Projections of our constraints for a luminosity of 3 ab™! (red
region). The three red contours (solid, dashed, and dot-dashed)
correspond to the three search strategies discussed in the main text
(rescaled CMS analysis, dedicated trigger, and higher N,;,). We
compare our results with current constraints (gray shaded region)
and projections for MATHUSLA (orange) [191], SHiP (azure) [183],
DarkQuest (purple) [202, 203], NA62 in dump mode (green) [202,
204], LHCDb upgrade (brown) [202, 205], and Belle II (blue) [206].
Our limits for the dark photon model for different values of B(H —
SS). In the left panel we show the current reach, while in the right
panel we present the projections for 3 ab™! assuming the same selec-
tions of the original CMS analysis areused. . . . . ... ... ...
Constraints on ALPs coupled to gluons. Left: Comparison of
our current reach (red region) with existing limits from CHARM
(orange) [160, 188], our reinterpretation of ATLAS (green) [207],
LEP [161], and flavor probes (purple) [30, 208-211]. Right: Pro-
jections of our constraints for a luminosity of 3 ab™! (red region).
The solid and dot-dashed red contours correspond to the projections
derived by using the same selections of the original CMS analysis,
and the one derived by using a higher N, cut and assuming zero
background. We compare our results with current constraints (gray
shaded region) and projections for FASER (purple) [212], CODEX-b
(orange) [160], and Belle II (green) [208,209] . . .. ... ... ..
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6.18

6.19

Constraints on ALPs coupled to W bosons. Left: Comparison of our
current reach (red region) with existing constraints from star cooling
constraints (green) [213], beam dump experiments (yellow) [213], Z
invisible branching ratio (orange) [214, 215], limits on e"e™ — yy
from LEP data (violet) [214, 216-218], PrimeEX (purple) [219, 220],
and Belle II (blue) [221]. Right: Projections of our constraints for
a luminosity of 3ab™! (red region). The solid and dot-dashed red
contours correspond to the projections derived by using the same
selections of the original CMS analysis, and the one derived by using
a higher N, cut and assuming zero background. We compare our
results with current constraints (gray shaded region) and projections
for SHiP (orange) [183, 222], PrimEX (purple) [219, 220], GlueX

(violet) [219, 223], , and Belle II (blue) [206, 222]. . . . . . . .. ..

Constraints on ALPs coupled to electroweak gauge bosons, and
with ¢, = 0. Left: Comparison of our current reach (red region)
with existing constraints from star cooling constraints (green) [213],
electron [200, 214, 224] and proton [188, 222, 225] beam dump
experiments (pink and brown), limits from mono-photon searches at
LEP (orange) [214,226], NA64 (green) [201], PrimEX (purple) [219,
220], and Belle II (blue) [221]. Right: Projections of our constraints
for a luminosity of 3ab~! (red region). The solid and dot-dashed red
contours correspond to the projections derived by using the same se-
lections of the original CMS analysis, and the one derived by using a
higher N, cut and assuming zero background. We compare our re-
sults with current constraints (gray shaded region) and projections for
FASER (brown) [212], SHiP (orange) [183], PrimEX (purple) [219,

220], GlueX (green) [219, 223], and Belle II (green) [206]. . . . . . .
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6.20

6.21

6.22

7.1

7.2

7.3

7.4

XXVi

Constraints on inelastic DM models, assuming a normalized mass
splitting of A = 0.05, a dark coupling @, = 0.1, and mediator mass
given by m, = 3m;. Left: Comparison of our current reach(red
region) with existing constraints from BaBar (green) [227, 228]
and LEP (blue) [205, 227, 229, 230]. Right: Projections of our
constraints for a luminosity of 3ab™! (red region). The solid and
dot-dashed red contours correspond to the projections derived by as-
suming the same selections of the original CMS analysis, and the one
derived by using a higher N, ;, cut and assuming zero background. We
compare our results with current constraints (gray shaded region) and
projections for Bellell (pink) [206], SeaQuest (gray) [203], FASER
(blue) [231], MATHUSLA (orange) [232], CODEX-b (brown) [233],
LHC (yellow and purple) [227, 234, 235], and LHCDb (green) [227,
236]. .. e 135
Constraints on the inelastic DM model for different choices of the
lower cut on the LLP energy. The other constraints appearing in the
plot are the same reported in Figure 6.20. The projections in the
right panel are for a luminosity of 3ab! luminosity, and assuming a
tighter N, cut and zero background. . . . . . ... ... ... ... 135
Current (upper left panel) and projected (upper right panel) con-
straints on the Higgs exotic decay into dark quarks of a confining
hidden valley model. For the projections we report (solid, dashed,

and dot-dashed lines) the results obtained by using the three search
strategies discussed in the main text (rescaled CMS analysis, dedi-
cated trigger, and higher N, ). . . . . . . . ... o oL 136
The N, distribution of the comparator digis (left) and wire digis
(right) for signal and data in chamber ME2/2. The signal corresponds

tomy =125 GeV, mg =12 GeV,and ct =900mm. . ... .. .. 140
Timing distribution of the cathode digis (left) and wire digis (right)
for signal and data in chamber ME2/2. . . . . ... ... ... ... 141
The number of layers distributions for cathode digis (left) and anode
digis (right) for signal and data in Chamber ME2/2. . . . . ... .. 141

The L1 trigger logic of the HMT trigger. . . .. ... .. ... ... 142



XXvii
7.5 L1 rate of CSC High Multiplicity Trigger (HMT) per number of
colliding bunches (bx) as a function of average pileup in an LHC
fill [239]. The number of colliding bunches in this fill was 2448,
which translates to L1 HMT trigger rate of 1.8 kHz at average pile-up
of 50. The HMT trigger rate dependence on pile-up is extracted by
using a linear fit. An uncertainty band corresponding to 99.7% of
coverage (3o )isalsoshown. . . . .. ... ... oL 143
7.6 L1 efficiency of CSC High Multiplicity Trigger(HMT) as a function
of the largest CSC rechit cluster size, which is a reconstructed quantity
used at HLT [239]. The CA algorithm is used to cluster the CSC
rechits with a distance parameter of AR = 0.4. To evaluate the
efficiency of individual CSC rings, the clusters position is restricted
to be within a single CSC ring (e.g., ME2/2) and it is the only ring
that contains more than 10 rechits in the cluster. The L1 efficiency is
evaluated as the fraction of events in which the HMT is fired, given
the above cluster selections are satisfied. A data sample of around
2M events triggered with zero bias triggersisused. . . . . ... .. 145
7.7 Event display of a collision triggered by the CSC HMT L1 and
HLT [239]. CSC reconstructed hits are represented by blue dots in
the muon end-cap region. This event features a CSC cluster of 210
hits in the ME1/3 ring. The event was recorded on October 8th, 2022. 145
8.1 Schematic of the SNSPD detection process (top right), divided into
five steps: photon absorption, generation of hotspot of quasiparticles
and phonons, emergence of normal domain in the nanowire, re-
direction of bias current to readout electronics, and detector recovery.
An SNSPD is typically biased through a bias-tee with a DC port
carrying the bias current and the RF port coupled to a low-noise
amplifier (bottom left). The figure is adapted from [270]. . . . . .. 149



9.1

9.2

9.3

94

9.5

XXviii

Illustration of a neutron under T (CP) and P transformation. The
associated charge (red + and —), spin (blue arrow), magnetic dipole
moment (u), and electric dipole moment (d) are shown. Applying
time transformation preserves the charge distribution, but reverses
the spin. Therefore, the directions of the electric and magnetic dipole
moment that are measured with respect to the spin also change direc-
tion, violating time-reversal symmetry. Based on the CPT theorem, a
nonzero neutron electric dipole moment would result in CP violation.
Figure from Andreas Knecht. . . . . ... ... ... ... .....
The stages of Peccei-Quinn symmetry breaking. Left: In the early, hot

universe (7,,,;, > f,), the symmetry is unbroken with the minimum

niv
of the potential at zero. Middle: When the universe cools below
the symmetry breaking scale, the shape of the potential changes
to the classical “wine bottle” with energy degeneracies at different
azimuthal angles. The symmetry is spontaneously broken and gains
a vacuum expectation value. Right: When the universe cools to

T,

univ < Aqcps the gluon interacts with the field and introduces a tip

that breaks the energy degenracies, creating a preferred minimum of
the potential. Figure reprinted from [292]. . . . .. ... ... ...
Evolution of the axion field, reprinted from [322]. Top: Qualitatively
the changing behavior of axion over time, as the universe cools and
expands. The axion is first frozen at its misalignment angle, then
begins to slowly roll down to the minimum of the potential, and even-
tually oscillates around the minimum with decreasing damping. N,
is the number of axion particles per comoving volume, demonstrating
that as axion starts rolling, it turns into pressureless matter. Bottom:
The behavior of the Hubble constant H and axion mass m,, over time
are shown. Both H and m, are dependent on temperature, so their
behavior also depends on the specific cosmological model. . . . . .
Diagram of the conversion of an axion to a SM photon under an
external B field (left) and the conversion of a dark photon to a SM
photon (right). . . . . . . . . ...
BREAD reflector geometry: rays (yellow lines) emitted perpendicu-
lar from the cylindrical barrel, which is parallel to an external mag-
netic field B

at the vertex by a parabolic surface of revolution, reprinted from [347].

¢ from a surrounding solenoid (not shown) and focused
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9.6

9.7

9.8

9.9
9.10

9.11

9.12

An illustration showing the focusing effect with 100 times exagger-
ated effect (left). The detector acceptance with respect to focal spot
sizes for different DM wind direction (right), reprinted from [347].
The top and bottom x-axes correspond to different barrel radii (R) for
the pilot and full-scale experiment, respectively. . . . .. ... ..
The schematic setup in cryostat for the pilot dark photon experiment
is shown, reprinted from [347]. . . . .. ... .. ... .. ...
The projected BREAD sensitivity for axion (left) and dark photon
(right). This assumes a DCR of 107 cps, a flat 50% efficiency
over the entire spectral range, dish area of 1Om2, and all photons are
focused onto the detector. The limits are calculated when Z = 5.
Blue shading shows existing constraints from Ref. [351]. Benchmark
axion predictions include QCD axion models KSVZ [296, 372] and
DFSZ [299]. The limits are produced with code adapted from this
package [373]. . . . . ..
A picture of the SNSPD attached to the cold finger of the cryostat.

The opened ADR with SNSPD attached is shown. The cryostat
frame consists of three stage plates (room temperature, 40 K, and
4K) connected by thermally isolating supports. Below the 4 K plate,
lies the 1 K stage to the right of the picture and the cold finger at
50 mK, where the SNSPD is attached. Each plate includes a series
of pass-throughs for experimental and thermometer wiring. . . . .
The readout and biasing scheme used, reprinted from [264]. The
cryogenic amplifier board is represented in the 40 K box, consisting of
a resistive bias-tee and a two-stage cryogenic amplifier. The SNSPD
is represented as a variable resistor Ry in series with an inductor with
kinetic inductance L;. Ry;,, is 10 kQ in the setup. . . . ... ...
The bias voltage (V;,s) With respect to sense voltage (V.,,.) is shown
on the left. The bias current (/,,;,;) with respect to sense voltage is

shownontheright. . ... ... ... ... ... .. .......
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9.13

9.14
9.15

9.16

9.17
9.18

9.19

9.20

9.21

9.22

9.23

9.24

XXX

A simplified schematic diagram of the cryogenic and electronic setup
for a single channel is shown. The SNSPD signal is readout through
a single cable from the SNSPD to the input of the cryogenic am-
plifier, which is then amplified and readout to room temperature.
The SNSPD bias current is also provided through the same cable
between the SNSPD and amplifier board. The SNSPD and amplifier
bias current are provided through the biasing breakout board at room
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Introduction

The standard model (SM) of particle physics stands as one of the most successful
theoretical frameworks in the history of science. From the unification of electro-
magnetic and weak forces to the prediction and subsequent discovery of the Higgs
boson, the SM has provided a remarkably accurate and precise description of the

fundamental particles and forces that govern the universe.

However, despite its successes, the SM is far from complete. Cosmological and
astronomical observations have revealed that only 15% of the matter content in the
universe are composed of visible matter that are well described by the SM. The ma-
jority of the universe consists of dark matter (DM), whose existence is inferred from
the overwhelming number of astronomical and cosmological observations, such as
measurements of galactic rotation curves, weak gravitational lensing observations
of galaxy clusters, and the cosmic microwave background. However, all of these
observations are through gravitational interactions, telling us little about the fun-
damental properties of DM. Deciphering its fundamental properties, including its
mass, composition, and interactions with SM particles, remains one of the foremost

open questions in basic science today.

For the past decades, many theoretically appealing hypotheses regarding the nature
of DM have been proposed and actively pursued experimentally, ranging from
massive compact halo objects to weakly interacting massive particles (WIMP).
However, the lack of a direct DM detection, which excludes significant regions
of the WIMP parameter space, and the absence of new physics at colliders have
undermined the theoretical motivation behind these theoretical models. On the
other hand, many other DM candidates have been proposed, among which hidden-
sector DM and wave-like DM stand out as strongly motivated possibilities that
have remained largely unexplored experimentally due to detector limitations. In
light of this challenge, my doctoral research aims to unravel the possible particle-
or wave-like nature of DM with two innovative and highly complementary and
differentiated approaches: 1) to produce and detect hidden-sector particles with a
novel reconstruction technique at the powerful Large Hadron Collider (LHC) and
2) to detect DM candidates from the galactic halo with advanced quantum sensing

technology.

In the first approach, I exploit the high intensity and large center-of-mass energy col-
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lisions at the LHC to produce hidden-sector particles that are then detected efficiently
by the Compact Muon Solenoid (CMS) with a unique technique that I developed.
Many extensions of the SM predict the existence of neutral, weakly-coupled par-
ticles that have a long lifetime. These long-lived particles (LLPs) often provide
striking displaced signatures in detectors, thus escaping the conventional searches
for prompt particles and remaining largely unexplored at the LHC. I performed first
searches [1, 2] at the LHC that use a muon detector as a sampling calorimeter to
identify displaced showers produced by decays of LLPs. The searches are sensi-
tive to LLPs decaying to final states including hadrons, taus, electrons, or photon,
LLP masses as low as a few GeV, and is largely model-independent. The searches
are enabled by the unique design of CMS muon detectors, composed of detector
planes interleaved with the steel layers of the magnet flux-return yoke. Decays of
LLPs in the muon detectors induce hadronic and electromagnetic showers, giving
rise to a high hit multiplicity in localized detector regions that can be efficiently
identified with a novel reconstruction technique. The searches yield competitive
sensitivity for proper lifetime from 0.1 m to 1000 m with the full Run 2 dataset
recorded at the LHC in 2016-2018. To extend the physics reach of this novel muon
detector shower (MDS) signature, I demonstrated the model-independence of MDS
and reinterpreted the search in a large number of LLP models [3, 4], illustrating
its complementarity with many proposed and existing dedicated LLP experiments.
Finally, I also contributed to the development of a new dedicated MDS trigger that
has been successfully deployed in 2022 at the start of Run 3 of the LHC operations.

In parallel, to close the gap in DM discovery reach due to current limitations in
detector sensitivity, I used for the first time, a novel quantum sensor, specifically the
time-resolved, low-noise, single-photon sensitive superconducting nanowire single
photon detectors (SNSPDs) to directly detect DM from our galaxy. I contributed to
the development and characterization of SNSPDs for two entirely new experiments
to directly detect axions via absorption and hidden-sector DM via electron scat-
tering. The search for axions employs a novel broadband reflector technique with
the Broadband Reflector Experiment for Axion Detection (BREAD). The BREAD
experiment searches for axions or dark photons by using a unique parabolic mirror
to focus axion or dark photon-converted photons to the SNSPDs. The SNSPDs
allow us to be uniquely sensitive to 0.04—1 eV axions and dark photons that were not
accessible before. I developed and built for the first time an SNSPD integration and
characterization system to thoroughly benchmark the performance of state-of-the-

art large area (mmz) sensors towards the first stage dark photon pilot experiment.
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On the other hand, by coupling the SNSPDs with gallium arsenide (GaAs), a bright

cryogenic scintillator well matched to SNSPD detection, a prototype sensing system
can be built as a basis of new direct DM detection experiments capable of extend-
ing the discovery to DM masses as low as 1 MeV. In particular, I built an x-ray
calibration system based on the Compton scattering effect that measures the energy
response of the sensing system. The work in this thesis lays the groundwork for a
new era of DM direct detection experiment that leverages on the emerging field of
quantum information science (QIS). With the breakthroughs in QIS revolutionizing
detection techniques, new avenues emerge for probing the properties of DM across
a wide range of parameter spaces that could offer new insights into the nature of our

universe.

This thesis is divided into three parts. The remainder of Part I gives a brief in-
troduction to the theoretical and phenomenological basis of the work in the thesis,
including the foundations of the standard model in Chapter 2 and essential back-
grounds for DM in Chapter 3. Part II describes the search for long-lived particles
with the CMS muon detectors, consisting of four chapters. Chapter 4 provides an
introduction to the LHC and the CMS experiment with an emphasis on the muon de-
tectors. Chapter 5 describes the search performed using the LHC full Run 2 dataset.
The reintepretation of the search using the endcap muon detectors is detailed in
Chapter 6. The new trigger that has been commissioned in Run 3 and its prospects
are described in Chapter 7. Finally, Part III details the progress of DM direct detec-
tion experiments with SNSPDs by first introducing SNSPDs in Chapter 8 and then
describing the search for axion with the BREAD experiment in Chapter 9 and the
search for light hidden-sector DM with SNSPDs coupled to GaAs in Chapter 10.



The Standard Model of Particle Physics

2.1 Introduction

The Standard Model (SM) of particle physics describes all known elementary par-
ticles and their interactions through three of the four known fundamental forces
(electromagnetic, weak, and strong interactions—excluding gravity). The theory was
developed in stages throughout the latter half of the 20th century, including the
work of many scientists worldwide. The current formulation was finalized in the
mid-1970s, upon experimental confirmation of the existence of quarks. Since then,
the discovery of the W and Z boson in 1983 [5-8], top quark in 1995 [9, 10], tau
neutrino in 2000 [11], and finally the Higgs boson in 2012 [12, 13] have added
further credence to the SM. The SM has been a highly successful theory that has

withstand decades of high-precision testing.

The SM is a renormalizable quantum field theory, described by the U(1), xSU(2); X
SU(3),. gauge symmetry group, where Y is hypercharge, L is left-handedness, and
¢ is color charge. Three fundamental forces in the SM arise due to the exchange for
force carriers (spin-1 bosons) among the spin—% fermions that make up matter. Each
factor in the gauge symmetry group describes a fundamental force, represented by
a gauge field, whose excitations are the gauge bosons that act as force carriers. The
strong interaction has SU(3) symmetry and is mediated by eight different types of
gluons. The electroweak interaction has U(1) x SU(2) symmetry and is mediated
by four bosons that mix to form the massive W™ and Z bosons, and the massless

photon (y).

The matter fields are made up of fermions that can be further divided into two
categories: quarks and leptons. There are six types of quarks: up (u), down (d),
charm (c), strange (s), top (t), and bottom (b), and six types of leptons: electron (e),
muon (), tau (t), electron neutrino (v, ), muon neutrino (Vu)’ and tau neutrino (v,).
The quarks interact through both strong and electroweak forces; the charged leptons
interact only through the electroweak force; and the neutral leptons (neutrinos)
interact solely through the weak force. Pairs of fermions can also be categorized
into three generations or favors, as can be seen in Figure 2.1, where all known

elementary particles are shown.

Finally, the Higgs Boson (H) is the only massive spin-O scalar boson observed

in nature. It is responsible for breaking the electroweak symmetry, giving rise to



particle masses, which will be described in more detail in Section 2.2.

The interactions between the particles are summarized by the Lagrangian density:
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where:

*  is the fermion field;
* vy are the Dirac matrices;
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B, are the field strength tensors for SU(3),., SU(2),, U(1)y, respec-

* a is the index of the generators, which runs from 1 to 8 for the gluon, and 1 to
3 for the weak SU(2); group;

* u,v are the Lorentz vector indices;

* Lyiges and Lyyyqay, are the terms related to Higgs field and Yukawa interac-

tions, respectively, which will be described further in Section 2.2.

2.2 Electroweak Symmetry Breaking

One feature of the non-abelian gauge theories, or Yang-Mills theories is that the
gauge bosons and fermions are massless, since the gauge symmetry forbids explicit
mass terms in the Lagrangian. Therefore, the Yang-Mills theory predicts massless
spin-1 gauge bosons. Similarly, spontaneous symmetry breaking gives rise to
Nambu-Goldstone bosons, and these additional bosons are massless spin-0 particles.
However, massless weakly-interacting gauge bosons would lead to long-range forces,
but they are only observed for electromagnetic and the corresponding massless
photons. The gauge theories of the weak force needed a way to describe massive

gauge bosons in order to be consistent.

In 1962, Philip Anderson first demonstrated that breaking gauge symmetries can

lead to massive gauge bosons in non-relativistic field theory [15]. Shortly after, the
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Figure 2.1: Elementary particles in the Standard Model. Image reprinted from [14].

approach was extended to relativistic gauge theories by introducing a new scalar
field that spontaneously breaks the symmetry group [16—18]. Finally, in 1967,
Steven Weinberg and Abdus Salam independently incorporated this approach into
the SM, as a gauge theory description of the electroweak force [19, 20]. In the SM, a
scalar SU(2) doublet field (the Higgs field) is introduced to spontaneously break the
electroweak symmetry in vacuum to keep the structure of the gauge symmetry, while
generating masses for the W* and Z gauge bosons and the fermions through Yukawa
interactions with the Higgs field. This process is known as the Brout-Englert-Higgs

mechanism, or simply the Higgs mechanism.
The Lagrangian term that describes the Higgs field can be written as:
Lijiges = (D,0)(D,0) - V(®), V(@) =— 0’0+ D) (22

where A needs to be positive so that the potential (V(®)) has a minimum value and

® is a complex scalar field that is a SU(2); doublet with weak hypercharge 1/2:

I
d=— , 2.3)
\5( ¢2 )
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Figure 2.2: The shape of the “Mexican hat” potential, with the minimum of the
potential occurring at a non-zero ® value. Illustration created by TikZ code provided
by Janosh Riebesell [21].

where ¢, and ¢, are complex scalar fields.

If ,u2 < 0, then the potential will have a minimum at |®| = 0, leading to a vacuum
expectation value (vev) of 0. In this case, the gauge transformation is still invariant,
resulting in no additional mass term required for the W* and Z bosons and fermions.
Therefore, ,u2 has to be greater than zero. When uz > (0, then the potential will have
a “Mexican hat” shape, as shown in Figure 2.2. The minimum value of the potential

will occur at: ) )
v
o' = 57 == (2.4)

Therefore, @ acquires a non-zero vev (v) that is not SU(2); X U(1)yinvariant.

There are many solutions to Equation 2.4. One can choose a particular minimum,

where ¢, = 0 and ¢, is a real scalar field:

1 {0
- , 2.5
¢mln \/E ( v ) ( )

If we expand the potential around its minimum:

1 0
(D:@(Hﬂ(x))’ (26)

and rewrite the Lagrangian terms associated to the potential:

A
—V(¢) = +°O 0 - ADTD)? = —vPH? - wH - ZH4 + const 2.7)
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As shown in the above equation, the symmetry breaking mechanism give rise to a
physical spin-0 boson, the Higgs boson, represented by the H(x) real scalar field.
From the equation, the mass of the Higgs boson at tree-level my = V2Av can be
obtained from the first term and the second and third represent the triple Higgs and

quartic Higgs interaction vertices, respectively.

In addition to a giving rise to a new physical spin-0 boson, electroweak symmetry
breaking is also responsible for generating the masses of the gauge bosons in the
SM. By evaluating the covariant derivative in Equation 2.2 on the Higgs field. The
kinetic terms can be written as:

' 3 ] 1 g2
8~ HeWi+gB)  —L(W,—iwd) ) ( 0 )

1
(D,®)]* == : . '
H 2 _’%(Wi - zWﬁ) 0, + %(ngi ~81B,)

1%
1
=3 (@VIW, + W + V6, Wy — 1B, [%) (2.8)

where we can define four field combinations that correspond to the physical W*, Z,

and photon fields:

S

3
W, -8B, L[> >
Z = Mz =5V 81 t+&
[2, 2
81 t&

W3+ B
_52u T 810 m. =0 (2.9)

Ay S y
V81 + &

This allow us to re-write Equation 2.8 to:

] 1
(DD = myWyW ™ + Sy Z, 2V + Smy A, A" (2.10)

Thus, the W* and Z bosons have acquired mass and the photons remain massless.

Additionally, as proposed by Steven Weinberg [19], fermions acquire mass through
interaction with the @ field that has a non-zero vev. The Yukawa terms are added to

the Lagrangian for each generation:

'EYukawa = _yel_‘L(DeR - yuQ_L(i)uR - de_L(DdR + (hC) (211)

Then we can identify the fermion masses as:

YeV YuV YaVv
m, = —, m, = —, m, = —. (2.12)
e \/E u \/E d
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2.3 Limitations of the SM

The observation of the Higgs boson in 2012 completed the last missing piece in
the SM. Although the SM has been highly successful in its accurate predictions, it
is not a complete theory of our universe. Notably, the SM does not describe the
fourth fundamental force, gravity and does not predict the neutrino mass. More
importantly, the SM is a theory that only describes the visible matter, which only
makes up a mere 5% of the energy content of the universe in the present day, as
shown in Figure 2.3. The remaining 95% of the universe is made of dark energy
and dark matter (DM) that don’t interact much with visible matter, and thus have
been difficult to study.

Dark matter

Ordinary
ZRV4 matter

Dark
energy

Figure 2.3: Energy composition of the universe from the high-precision measure-
ment of the cosmic microwave background from the Planck satellite [22]. Image
reprinted from [23].

The energy composition of our universe and the existence of dark energy have been
inferred from cosmological observations of inflation and the cosmic microwave
background. However, since we have not been able to directly observe dark energy

in a controlled laboratory environment, we have little understanding of its nature.

About 85% of the matter in the universe is dark matter, which we know interacts
gravitationally, but not electromagnetically, hence the name “dark matter”. Similar
to dark energy, we have not been able to directly detect them in the laboratory, so
the only understanding comes astronomical and cosmological observations of large

bodies in the universe. However, since DM can create relatively smaller scale effects
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within galaxies, precise astronomical observations have allowed us to have a better

understanding of the requirements on its identity.

The following chapter will briefly summarize the evidence that we have for the
existence of DM and introduce a few theoretically motivated DM candidates that

are sought after by experiments and are the focus of this thesis.
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Beyond the Standard Model

3.1 Evidence for Dark Matter

3.1.1 Galaxy Rotation Curves

The first experimental evidence that the universe contains additional matter was the
observations of the Coma Cluster by Franz Zwicky in 1933. Zwicky estimated the
mass of the cluster with two methods and found them to be inconsistent. Zwicky
first measured the mass by using the standard mass-to-light ratio. He then used a
second method, where he measured the motion of the individual galaxies orbiting
in the cluster by measuring the doppler shifts in their emission spectra. Using the

virial theorem, he calculated the total mass of the cluster:

GM
RO (3.1)

r

where G is the gravitational constant, M is the mass inside a galaxy’s orbit, and v is
the velocity of the galaxy relative to the center of mass of the cluster. He found out
that the first method yielded a cluster mass that is only 2% of the mass measured
from the motion of the galaxies. This discrepancy indicated that most of the mass
(98%) in the cluster was not luminous and did not interact electromagnetically, and
was thus dubbed the name “dark matter” (DM).

In the 1970s, Vera Rubin led a team to quantify the missing mass more precisely [24].
They observed 21 diverse galaxies and measured the velocities of the stars as a
function of the radius to the galactic center. They showed that most galaxies contain
about six times as much DM as visible matter and the mass was distributed much
farther from the galactic center than the majority of the visible matter. This effect is

shown in Figure 3.1 for spiral galaxy NGC 3198.

3.1.2 Gravitational Lensing

One direct consequence of general relativity is that the geometry of space-time is
modified by massive objects. As a result, massive objects (in this case, DM in
clusters of galaxies) that lie between a more distant source and an observe would act
as a lens to