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Summary

The anomalous magnetic moment of the muon, aµ = g−2
2

is the fractional deviation

of the muon g-factor from the value of 2. It emerges as the cumulative effect of the

virtual particles participating in the muon interaction with a magnetic field via quantum

loop corrections. Its value encodes all the possible interactions between the virtual

particles and, for this reason, represents an important test of the Standard Model (SM).

In particular, any deviation from the SM theoretical evaluation could be due to new

physics contributions.

The new Muon g−2 (E989) Experiment at Fermilab is currently operating to repeat

and improve the previous E821 experiment at Brookhaven National Laboratory (BNL),

aiming to reduce the experimental error by a factor of 4 to the final accuracy of 140 parts

per billion (ppb). On April 7th, 2021, the E989 collaboration published the first result

based on the first year of data taking (Run-1), measuring aµ = 0.001 165 920 40(54) with

a precision of 460 ppb. The measured value is consistent with the BNL measurement and

strengthens the long-standing tension with the data-driven SM prediction to a combined

discrepancy of 4.2σ. On the theory side, however, new efforts involving lattice-QCD

techniques are starting to question the current consensus on the theoretical prediction,

demanding new improvements on both the experimental and theoretical sides. The

E989 collaboration is now finalizing the analysis of Run-2 and Run-3 data and a new

publication is expected in the first half of 2023 with a combined statistical uncertainty

of 200 ppb.

The anomalous magnetic moment aµ is measured as the ratio between the muon spin

anomalous precession frequency, ωa, and the average magnetic field experienced by the

muons as they circulate in the storage ring. This thesis presents a precession frequency

analysis of the Run-1 data and an evaluation of the related systematic uncertainties.

A new positron reconstruction developed for the analysis of the subsequent data-taking

periods, aiming to reduce some of the major systematic uncertainties of the ωa measure-

ment, is presented. The author’s involvement in the production of the Run-2/5 data and

in the precise calibration of the detectors is discussed. Finally, the complete Run-1 aµ

result is presented.
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Chapter 1

Introduction

The story of our understanding of the subatomic world begins with the discovery of the

electron by J. J. Thomson in 1897. More than a century of fascinating experiments and

revolutionizing theories have led to the current Standard Model (SM) of particle physics.

Nearly all the constituent parts of this theory and its implications have been validated

experimentally over time, with the discovery of the top quark (1995), the tau neutrino

(2000), and the Higgs boson (2012) being among the most recent ones.

Despite the astonishing number of physical phenomena that can be described with the

SM, however, some questions about the subatomic world remain unanswered. As an

example, the model cannot describe gravitation and the presence of dark matter and

dark energy postulated by cosmological observations.

Many experiments around the world are now trying to perform tests of the SM which

require high volumes of data. There are two main strategies: the search for interactions

that should be suppressed within the SM but can be enhanced by extensions of the

model, and high-precision measurements of fundamental quantities in search of discrep-

ancies with the values predicted by the SM.

In the latter category, one of the quantities that have received continuous improvements

from both the experimental and theoretical standpoint over the last decades is the mag-

netic moment of the muon. The great interest in this physical property comes from the

fact that its value encodes all of the existing interactions that can happen between sub-

atomic particles. Its precise measurement, when compared to the theoretical prediction,

serves as a test of the completeness of the SM. Any observed discrepancy, otherwise,

would suggest the presence of new physics. In any case, the measurement would con-

strain the formulation of any extension to the current model.

11



12 Chapter 1 | Introduction

In this dissertation, I will present the experimental principles of the measurement of

the muon anomaly and my contribution to the first results delivered by the Muon g − 2

Experiment in operation at Fermilab.

This chapter will present the theoretical background and a brief historical digression of

the muon measurements, and Chapter 2 will describe the experimental principles that

enable a precise measurement of the muon anomaly. Chapter 3 will present the new

Muon g − 2 Experiment at Fermilab. Chapter 4 will discuss the production workflow

of the E989 data and my involvement as production manager. Chapter 5 will present

a new reconstruction of the positrons, of which I led the development. Chapter 6 will

describe the data analysis of the muon anomalous precession frequency and Chapter

7 will present the results and the evaluation of the systematic uncertainties. Finally,

Chapter 8 will present the complete muon anomaly measurement based on Run-1 data

that was published in April 2021.

1.1 The magnetic moment

In classical physics, the magnetic dipole moment µ⃗ of a charged object is a measure of

how much torque it experiences when placed in a magnetic field:

τ⃗ = µ⃗× B⃗ , (1.1)

and can be expressed as a function of the object charge q, mass m, and angular momen-

tum L⃗:

µ⃗ =
q

2m
L⃗ . (1.2)

For subatomic particles, the classical Equation 1.2 becomes

µ⃗ = g
q

2m
S⃗ , (1.3)

where S⃗ is the spin of the particle and g is the so called Landé g-factor. The g factor is

an observable that can be measured by placing the charged particle in a magnetic field

and observing the rate at which it precesses, according to Equation 1.1.
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Anomalous magnetic moments

According to the Dirac theory, g is equal to 2 for an elementary particle with spin
1
2
[1, 2]. This would be true if the particle only interacted with the magnetic field.

However, the magnetic moment cannot be measured without the influence from virtual

exchanges made explicit in quantum field theories. All particles are surrounded by a

cloud of virtual particles that are temporarily created from the vacuum. The screening

effect given by this cloud leads to a slight change in the observed magnetic moment from

what would be expected for a bare particle. The difference between the observed g value

and 2 is called magnetic anomaly and is conventionally written as a fractional deviation:

a =
g − 2

2
. (1.4)

The first evidence of this anomaly is due to Kusch and Foley who measured in 1948

a value of ae = 0.00119(5) for the electron [3], giving no space to doubt in the result

given such a small error. At about the same time, quantum electrodynamics (QED) was

reaching a turning point. For almost two decades, QED calculations were impeded by the

problem of non-convergent infinite series. The solution of renormalization was proposed

by Feynman, Schwinger, and Tomonaga, and by the end of 1948 Schwinger had calcu-

lated [4] the first-order correction to the magnetic moment to yield ae =
α
2π

= 0.00116,

which is within the quoted error of the Kusch and Foley experiment.

The true value of g depends on all the possible interactions that can happen within

the virtual cloud influencing the interaction between the particle and the magnetic field.

The main contribution is given by QED interactions, whose terms scale as powers of

the fine structure constant α. The more particles are involved in the virtual interaction,

the smaller the contribution to the value of g. The current precision of the experimen-

tal values of the electron magnetic anomaly requires the calculation to the fifth order in

α for a comparison between experiment and theory. The most recent calculation is [5, 6] :

athe (2017) = 0.5
(α
π

)
− 0.328478965579

(α
π

)2

+ 1.181241456
(α
π

)3

− 1.912245764
(α
π

)4

+ 6.599(223)
(α
π

)5

+ 1.74(2) · 10−12

= 0.001 159 652 182 031 (720) . (1.5)
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The last term arises from the contributions of Electro-Weak (EW) and Quantum Chromo

Dynamics (QCD) interactions. The theoretical value of ae depends on the precise mea-

surement of α, which is the major source of uncertainty in Equation 1.5. Recent mea-

surements based on the recoil of Cesium and Rubidium atoms give statistically different

values [7, 8]:

α−1(Cs; 2018) = 137.035 999 046 (27) , (1.6a)

α−1(Rb; 2020) = 137.035 999 206 (11) , (1.6b)

and the tension of 5.4σ is currently unresolved.

The experimental measurement of ae has recently reached the incredible precision of 0.1

ppb [9]:

ae(Exp; 2023) = 0.001 159 652 180 59 (13) (1.7)

which in turn can be used to predict [9]:

α−1(ae; 2023) = 137.035 999 166 (15) . (1.8)

Table 1.1 lists the measured g-factor values for different particles, as well as the theoret-

ical predictions as of 2022.

Particle Experimental value Precision Ref. Theoretical prediction Ref.
Electron 2.00231930436118(26) 1 · 10−13 [10] 2.002319304364(1) [6]
Muon 2.00233184122(82) 4 · 10−10 [11] 2.00233183620(86) [19]
Tau 2.036(34) 1.7 · 10−2 [10] 2.00235442(10) [13]
Proton 5.5856946893(16) 3 · 10−10 [14] 5.58 [15]
Neutron -3.82608545(90) 2 · 10−7 [14] -3.72 [15]

Table 1.1: Experimental and theoretical values of g for various particles.

1.2 The muon anomaly

Among the particles of the Standard Model, recent years have been characterized by an

increasing interest in the measurement of the magnetic anomaly of the muon.

The muon is usually considered as a heavier version of the electron. Both particles

are charged leptons: the lepton universality dictates that they are identical except for

mass and the fact that muons are intrinsically unstable. Together with the tauon, they

complete the charged lepton family. Table 1.2 enumerates lepton properties compiled by
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the Particle Data Group [10].

Property e µ τ
Charge -1 -1 -1
Spin 1/2 1/2 1/2
Mass 0.511 MeV/c2 105.7 MeV/c2 1776.9 MeV/c2

Lifetime > 2.0 · 1036 s 2.2 · 10−6 s 290.3 · 10−15 s
Main decay mode - µ → eν̄eνµ τ → µν̄µντ
Branching ratio - ∼ 100% 17.39%

Table 1.2: Lepton properties

A precise measurement of the muon anomaly aµ is of great interest because it probes

all of the interactions between the lepton and virtual particles. The whole Standard

Model is tested, since all possible particles can contribute either via direct virtual inter-

action with the muon or with higher-order loop corrections, adding to the value of aµ.

Figure 1.1 depicts the lower-order interactions for the electromagnetic, weak, and strong

forces.

Figure 1.1: Lower-order examples for EM, weak, and QCD interactions. Figure from
[11].

Moreover, eventual measurements that differ from the SM theoretical prediction

would indicate hints of new physics. Such results would help set new constraints on

the multitude of currently proposed Beyond Standard Model (BSM) theories.

Muons are particularly important in such a measurement because BSM interactions with

massive particles contribute with mass suppression terms, ∝ (
mlepton

M
)2. The electron g−2

has already been measured with around O(103) times more precision than the muon [16],

but the relative mass ratio between the electron and the muon enhances the sensitivity

to these terms by a factor of ( 105.66
0.511

)2 ≈ 43000 [17]. Following the same reasoning, τ

leptons would be even better for detecting new heavy particles, but their very short
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lifetime (2.9× 10−13 s), multiple decay branches, and other practical reasons make such

an experiment not feasible with current technology.

1.3 Standard Model contributions to aµ

As anticipated in the previous section, the value of aµ arises from the exchange of virtual

particles. The contributions that affect this value come from many sectors of theory, that

are Quantum ElectroDynamics (QED), ElectroWeak theory (EW), and Quantum Chro-

moDynamics (QCD), with the latter further divided into three classes. The lowest-order

contribution arises from Hadronic Vacuum Polarization (HVP). Higher-Order contribu-

tions (HOHVP) contain an HVP insertion along with an additional loop. The last class

is Hadronic Light-By-Light (HLBL) scattering.

aSMµ = aQED
µ + aEW

µ + aHV P
µ + aHOHV P

µ + aHLBL
µ (1.9)

As seen in Table 1.4 the dominant contribution comes by far by QED, being nearly two

million times the experimental error. On the other hand, the error on the Standard

Model comes almost entirely from the hadronic terms.

1.3.1 QED terms

The QED contribution to the value of aµ originates from loops containing virtual leptons

and photons, and can be evaluated as a perturbative expansion in α/π:

aQED
µ =

∞∑
n=1

Cn

(α
π

)n

(1.10)

where the Cn coefficients are finite thanks to the renormalizability of QED. The first

coefficient C1 = 1
2
is the Schwinger term and represents the contribution of a single

virtual photon exchanged between the two muon legs as depicted in the leftmost diagram

of Figure 1.1.

These loops are well understood and have been calculated up to the fifth order from

over than 13’000 Feynman diagrams. Some examples of fourth and fifth-order QED

contributions are shown in Fig. 1.2. The current best estimate for the QED contribution
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to aµ is [18, 19]:

aQED
µ = 0.5

(α
π

)
+ 0.765857425(17)

(α
π

)2

+ 24.05050996(32)
(α
π

)3

+ 130.8796(63)
(α
π

)4

+ 753.29(1.04)
(α
π

)5

= 116 584 718 931(104) · 10−14 , (1.11)

where the error mainly comes from the uncertainty in α, which is:

α−1 = 137.035 999 046(27) → 0.2 ppb (1.12)

obtained from the precise measurement of the recoil velocity of Cesium-133 h/M , the

Rydberg constant and M/me [20]:

α2 =
2R∞

c

M

me

h

M
. (1.13)

While over 99% of the value of aµ comes from the QED sector, the precision at which it

is possible to calculate the QED loops results in an error that is much smaller than the

EW and hadronic contributions (Table 1.4).

(a) (b)

Figure 1.2: Vertex diagrams representing 13 (a) and 32 (b) gauge-invariant subsets
contributing to the lepton g − 2 for QED at the eighth (a) and tenth (b) order. Solid
and wavy lines represent lepton and photon lines, respectively. Figures from [18].

1.3.2 EW term

The corrections due to the weak force are very small compared to the QED contribution.

In the EW diagrams the heavy masses of the gauge bosons will produce contributions
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with characteristic scales of
(

mµ

mZ0,H,W±

)2

. Because the masses of Z0, H, and W± are

much larger than the muon mµ, these processes are suppressed. The lowest order and

largest contributions to the weak corrections are represented by the two diagrams pic-

tured in Fig. 1.3. The diagram on the left is similar to the Schwinger diagram, but with

Figure 1.3: The largest contributing diagrams from the weak interaction.

a Z (or Higgs) boson propagating instead of a photon. The single loop contributions first

calculated in 1972 [21] yield

aEW
µ (1− loop) = 194.8 · 10−11 (1.14)

The term containing the W boson contribution is suppressed by a term (mµ/MW )2 and

it introduces a perturbation of approximately 3.3 ppm. On the other way, the single

loop with an exchange of a Z boson reduces the overall EW contribution with a negative

perturbation of -1.6 ppm, while the remaining loop with a Higgs boson (MH ∼ 125 GeV)

doesn’t contribute significantly due to the mass suppression. The total contributions

from the second order weak corrections sum up to −40 · 10−11 [17], so that the overall

EW term is [22]

aEW
µ = 153.6(1.0) · 10−11 . (1.15)

1.3.3 QCD terms

The hadronic contributions to aµ arise from loop diagrams with virtual hadrons. The

strong coupling is large at low energies, and the contributions from these processes can-

not be calculated perturbatively as for QED and EW. Moreover, the low energy processes

dominate the hadronic contribution. For these reasons the calculations are difficult to be

carried out and a semi-phenomenological approach is required. As a result, the current

uncertainty on aQCD
µ dominates the Standard Model value of aµ.



Chapter 1 | Introduction 19

The hadronic contribution to aµ can be separated into two parts:

aQCD
µ = aHV P

µ + aHLbL
µ , (1.16)

where the first term is related to the Hadronic Vacuum Polarization and the second to

the Hadronic Light-by-Light scattering; both processes are depicted in the third and

fourth diagrams of Figure 1.1.

Hadronic Vacuum Polarization

Figure 1.4: The Feynman diagram on the left shows the lowest-order Hadronic Vacuum
Polarization (HVP), where the black circle represents any possible combination of quark
matter.

The general form of Hadronic Vacuum Polarization (HVP) is quite similar to the QED

one. The muon radiates a photon or another boson, which creates a particle pair that

annihilates before being recaptured with the muon, as seen in Fig. 1.4. The difference

with QED is that the particle pair is composed of hadronic matter, such as π0, π±, ρ0,

etc. These loop terms can be calculated relating to the cross section of hadron production

from the annihilation of e+e−, using the dispersion relation [23, 24, 25, 26]:

aHV P
µ =

1

3

(α
π

)2
∫ ∞

4m2
π

ds

s

σe+e−→hadrons(s)

σe+e−→µ+µ−(s)
K(s) , (1.17)

where K(s) is the kinematic factor which can be expressed as:

K(s) =

∫ 1

0

dx
x2(x− 1)

x2 + (1− x) s
m2

µ

. (1.18)

The current recommended values for the leading order and higher orders contributions
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of the hadronic vacuum polarization calculated using the data-driven σe+e−→hadrons values

are summarized in Table 1.3. The overall HVP contribution is listed as well.

Term Value [×10−11]
aHV P,LO
µ 6931± 40

aHV P,NLO
µ −98.3± 0.7

aHV P,NNLO
µ 12.4± 0.1

aHV P
µ 6845± 40

Table 1.3: Hadronic Vacuum Polarization contributions to the value of aµ as calculated
with the dispersion relation of Equation 1.17. Values from [19].

Lattice calculation

An independent way to compute the QCD contributions to the muon anomaly is based

on the Lattice technique. This approach describes space-time as a discrete grid where

each point is separated by a spacing D. The computation is performed in this simulated

lattice and, by extrapolating the results for D → 0 (and for volume → ∞), the value

corresponding to the real universe is extracted. This method does not rely on any other

experimental measurement, such as the σe+e−→hadrons cross sections for the dispersive

approach described above. In recent years, also thanks to the increase of available com-

putational resources, this ab-initio approach has reached uncertainties comparable with

the other methods and the experimental values.

The first group to publish a result with competitive precision was the Budapest-

Marseille-Wuppertal (BMW) collaboration on April 7th, 2021, the same day as the

first publication from the Fermilab g − 2 collaboration, with a value of aHV P,LO
µ =

7075(55) · 10−11 [27]. The value presents a 2.2σ tension with the data-driven approach

listed in Table 1.3 and, when added to the overall calculation, brings aµ closer to the

experimental value.

Very recently, three other groups provided preliminary results on the same quantity

measured in a reduced region of energies which accounts for ∼30% of the total value

[30, 31, 29], all in agreement with the BMW results. Figure 1.5 shows the current pre-

dictions for this value. The tension that is now consolidating between the two theoretical

approaches for the estimation of aHV P
µ is being referred as the new g − 2 puzzle and re-

mains unexplained as of today.
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Figure 1.5: Current lattice-QCD predictions for aHV P,LO
µ in a reduced region of energies.

The estimate based on the data-driven approach [28] is shown in orange. Figure from
[29].

Hadronic Light-by-Light

The general form for hadronic light-by-light (HLbL) contains more interaction vertices

than HVP and therefore contributes to a lesser extent to the total muon anomaly. The

propagating muon interacts with three photons and those photons interact with a QCD

loop which interacts with the external field (Figure 1.6). The HLbL scattering differs

from other hadronic contributions in that it cannot be related to experiments, so it must

be estimated from a model. Several evaluations have taken place, both with the data-

driven and lattice-QCD approaches, with the ”best estimate” value currently accepted

of [19]:

aHLbL
µ = 92(18) · 10−11 . (1.19)

Figure 1.6: Feynman diagram for the general case of hadronic light-by-light scattering.
Figure from [11].
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1.3.4 The Standard Model prediction for aµ

The history of the theoretical prediction of the muon anomaly has now spanned for more

than 70 years, and it is far from coming to an end. As the new computing capabilities

now enable previously impossible calculations, and experiments continue to gather new

quality data, the precision of the Standard Model prediction is constantly improving.

However, as mentioned in Section 1.3.3, new techniques based on lattice simulations of

QCD are bringing new tensions within the field.

In 2017 a collaboration was formed, the Muon g − 2 Theory Initiative1, whose goal

is to combine all the calculations relative to aµ and provide a consensus on a combined

value. The latest publication from the group is from 2020 [19], and the values for the

QED, EW, and QCD contributions to aµ, as well as the total Standard Model prediction

are listed in Table 1.4. The quoted values do not currently include the lattice-QCD

results.

Term Value (·10−11)
aQED
µ 116 584 718.931± 0.104

aEW
µ 153.6± 1.0

aHV P
µ 6 845± 40

aHLBL
µ 92± 18

Total SM 116 591 810± 43

Table 1.4: Standard model contributions to aµ [19].

1.4 Experimental value of aµ

The history of the experimental attempts to measure the muon magnetic moment went

hand-in-hand with the theoretical development since the middle of 20th century. At each

step, both the theoretical predictions and the experimental confirmations added digits

to the expected and measured values of aµ. The muon anomaly is now one of the most

precisely measured quantities in physics. This section will briefly describe the various

experiments that marked the path up to the current Muon g−2 Experiment at Fermilab,

which is the subject of this dissertation.

1https://muon-gm2-theory.illinois.edu/
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1.4.1 Early experiments

The first muon experiment was performed in 1957 by Garwin and collaborators at the

Nevis cyclotron of Columbia University [32]. The experiment observed the Larmor pre-

cession of single muons stopped in a carbon target submerged in a magnetic field. The

magnitude of the field could be tuned to increase or decrease the rate of precession.

This experiment was able to determine a value for gµ = 2.00 ± 0.10 for the muon by

correlating the counts measured from a fixed counter with the strength of the magnetic

field following Equation 1.20 as shown in Figure 1.7:

ωs = gµ
eB

2mµc
(1.20)

.

Figure 1.7: Larmor precession data from the Garwin experiment used to determine the
muon g-factor. Figure from [32].

Similar experiments continued during the next years with the aim to improve the

precision of this measurement. An experiment at the cyclotron of the University of

Liverpool managed to measure the value gµ = 2.004± 0.014 by selecting stopped muons

with a coincidence of three counters and observing the number of decay positrons hitting

the forward detector through time [33]. Figure 1.8 shows the apparatus and the positron

plot.

So far, the precision of these experiments was not sufficient to measure anomalous

contributions to gµ.

In 1963 another experiment was performed at Columbia University, with a technique sim-

ilar to the Garwin experiment. In this experiment, the magnetic field was also measured

via nuclear magnetic resonance (NMR) in terms of the Larmor precession frequency of

protons in a polarized water sample. The result was presented as the ratio λ of the two
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(a) (b)

Figure 1.8: (a) Experimental apparatus of the Liverpool experiment. (b) Time distribu-
tion of emitted positrons from stopped positive muons in a ∼100 Gauss magnetic field.
The exponential decay factor has been removed. Figures from [33].

frequencies or magnetic moments obtaining:

λ =
ωµ

ωp

=
µµ

µp

= 3.18338(4) . (1.21)

The result corresponds to a measured g-factor of:

gµ = 2.002 353(25) → aµ = 0.001 177(13) (1.22)

which is the first measurement of aµ and is in agreement with the Schwinger prediction

of the first order QED contribution.

Figure 1.9: Experimental apparatus of the Columbia University experiment by Hutchin-
son et al.. Figure from [34].
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1.4.2 Experiments at CERN

In the same years, Lederman and other collaborators were launching a Muon g− 2 mea-

surement campaign at CERN. Overall, three experiments from 1961 to 1979 were carried

out, each one with increasing precision.

CERN I

The first, CERN I, was set to reach an experimental precision of 1% on aµ. The exper-

iment consisted of a muon beam injected into a dipole magnet that was 6 m long and

wide enough to contain the entire muon orbit. The magnet contained a small gradient

to slowly drift the muon circular orbits toward the far end of the magnet, as depicted

in Figure 1.10. A higher gradient toward the end facilitated the final ejection of the

muons into a methylene-iodide stopping target. A set of counters placed before and

after the target would then provide the trigger for an incoming muon and measure the

decay positron. The direction of the emitted positron is correlated to the direction of the

muon spin, which depends on the time spent preceding inside the magnet. The result

was:

aµ(CERN-I) = 0.001162(5) , (1.23)

with a new record precision of 0.43% [35, 36, 37].

Figure 1.10: Experimental apparatus of the CERN I experiment. Figure from [35].
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CERN II

For the next experiment, CERN II, a completely new technique involving a storage ring

was developed. The main benefit from a storage ring is that high energy muons can be

stored, and their lifetime is greatly increased by the relativistic dilation of time. The

spin precession can then last longer and be measured with much higher precision.

The storage ring was composed by a series of 40 independent bending magnets producing

a magnetic field of 1.7 T. A beam of 10.5 GeV proton accelerated by the new Proton

Synchrotron (PS) hits a target placed in the ring producing 1.27 GeV/c muons that in

turn could circulate for almost 200 µs thanks to a Lorentz boost factor of γ = 12.06.

The vertical focusing of the muon beam was provided by a small gradient in the radial

direction of the magnetic field. The positrons emitted by the muon decay were then

detected by a series of six counters placed on the inner side of the ring (Figure 1.11).

The time distribution of the observed positrons can be described by:

N(t) = Ne−t/γτµ [1 + A cos(ωat+ ϕ)] . (1.24)

The CERN II experiment provided a new measurement of aµ with an uncertainty almost

20 times smaller than the CERN I experiment:

aµ(CERN-II) = 0.001 166 16(31) , (1.25)

with a precision of 266 parts per million [38].

CERN III

The third and last of the CERN-based experiments, CERN-III, took the storage ring

idea and improved on it even further, setting the benchmark for the approach which is

still in use today.

The collaboration found a way to increase both the lifetime of the muons inside the

ring and the stability of the muon beam. The magnetic field is uniform, and a series

of electrostatic quadrupoles provides the weak vertical focusing. In principle, charged

quadrupoles would affect the precession of the moving muons, but if the machine op-

erates at the magic momentum of 3.1 GeV/c the effect is perfectly canceled out. This

phenomenon will be explained in more detail in Section 2.1. Luckily, the desired mo-

mentum implies a relativistic factor γ = 29.3, which is more than double of the CERN

II one, extending the storage time from ∼ 200 µs to ∼ 500 µs. The storage ring had a

diameter of 14 meters with a magnetic field of 1.5 T.
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(a) (b)

Figure 1.11: Experimental apparatus (a) and the wiggle plot (b) of the CERN II exper-
iment. Figures from [38].

The target was moved outside of the storage region, thus greatly reducing the impact

from the hadronic flash at beam injection. The decay positrons were detected with a set

of 24 electromagnetic calorimeters equally distributed along the ring. Figure 1.12 shows

the apparatus scheme and the observed positron data.

Many other technical improvements contributed in achieving the final result of [39, 40]:

aµ(CERN-III) = 0.001 165 924(8.5) , (1.26)

with an incredible precision of 7.3 parts per million and an improvement of 36 times with

respect to CERN II. The result is the combination of the measurement of both positive

and negative muons.

1.4.3 The Muon g − 2 Experiment at BNL (E821)

More than 10 years after the end of the CERN campaign, a group that included many

of the CERN collaborators started developing a new Muon g − 2 experiment at the

Brookhaven National Laboratory (BNL) using beams from the Alternate Gradient Syn-

chrotron (AGS). In the following 10 years of development, they built a new supercon-

ducting storage ring magnet with a much higher uniformity in the magnetic field. A new

passive magnetic inflector and a set of pulsed magnetic kickers would inject the muon

beam in the correct orbit while keeping the inflector away from the storage region. The
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(a) (b)

Figure 1.12: Experimental apparatus (a) and the wiggle plot (b) of the CERN III exper-
iment. Figures from [39].

same successful idea of utilizing electrostatic quadrupoles and the magic muon momen-

tum was applied.

The AGS accelerator complex was capable of delivering beams which were almost 20

times more intense than the PS at CERN, and the proton target station was moved even

further away from the injection point, so that most of the pions would decay into muons

before entering the ring, producing a cleaner beam.

Together with these, some more improvements of the BNL experiment were necessary to

keep systematic errors at a controlled level:

• The storage ring was constructed with three continuously wound superconductors,

as opposed to the series of 40 independent conventional bending magnets used in

CERN III.

• The inflector incorporates a superconducting shield to minimize the disruption of

the field in the storage region, and unlike the CERN inflector, allows it to operate

in a static DC mode.

• An NMR system capable of making an in-situ measurement of the field in the

storage ring was designed, which, unlike CERN III, does not require cycling the

magnet power.

• In the BNL experiments, the decay electron signals from the calorimeters are
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recorded by waveform digitizers and stored for later analysis instead of relying

on a hardware trigger.

After the data taking concluded in 2001, the BNL muon g−2 collaboration delivered

the final result for aµ by combining positive and negative muons data [41]:

aµ(BNL) = 0.001 165 920 80(63) , (1.27)

with a precision of 0.54 ppm and an improvement of almost 14 times with respect to

CERN III. The precision of this measurement was then enough to be sensitive to EW

effects and higher order QCD contributions. At that time, one of the best estimations

from the Standard Model prediction was2 [42]:

aµ(SM, 2006) = 0.001 165 918 20(73) , (1.28)

resulting in a discrepancy of:

∆aµ(BNL - SM, 2006) = (26.1± 9.4) · 10−10 , (1.29)

with a significance of 2.7σ.

1.4.4 The Muon g − 2 Experiment at Fermilab (E989)

While the discrepancy between experiment and theory might be attributed to miscalcu-

lations in the theory or systematic errors in the BNL experiment, or a very rare statistical

fluctuation, no such errors have been found despite repeated attempts to resolve it.

Moreover, after the BNL measurement, improvements from the theoretical prediction

increased the precision of the Standard Model value to the current:

aµ(SM, 2020) = 0.001 165 918 10(43) , (1.30)

bringing the discrepancy with the BNL experimental value to 3.7σ [19].

As the discrepancy could not be solved, even more interest in Muon g − 2 experiments

started to grow. The most intriguing and exciting explanation for such a discrepancy

would be the effects from physics Beyond the Standard Model (BSM). As discussed in

Section 1.2, the value of aµ receives contributions from all particles that couple to the

2At the time of the BNL publication, there were two main HVP evaluations. One of them, which
included data from hadronic tauon decays, was not considered because of inconsistencies with the e+e−

annihilation data [41].
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muon through virtual loops, so it is possible that new undiscovered particles are the

source of this discrepancy.

In order to either confirm or disprove the discrepancy, a new experiment at Fermilab

was proposed in the late 2000s. The Fermilab accelerator complex is capable of deliver-

ing an even higher luminosity than the Brookhaven’s AGS. The BNL magnetic ring was

already a sufficiently accurate device for an improved measurement, and, together with

economical reasons, the decision was made to move the superconducting coils as a single

piece all the way from Brookhaven (NY) to Fermilab (IL). This operation, nicknamed

the Big Move lasted 35 days and successfully brought the 15-meter-wide magnet to its

destination after more than 5000 km on land and sea during the summer of 2013.

The goal of the new Muon g − 2 Experiment at Fermilab is to measure the muon

anomaly with a precision of 140 ppb by observing ∼ 20 times the muons accumulated

at BNL. Many improvements from the beamline to the detectors are in place to reduce

the systematics at the necessary level. A detailed description of the apparatus will be

provided in Chapter 3. The experimental technique, which will be discussed in Chapter

2, is similar to the one of the BNL experiment and involves a pure beam of polarized

muons at the magic momentum of 3.094 MeV/c.

The Muon g−2 collaboration, of which I am part since the summer of 2017, released

in April 2021 the first measurement of aµ, relative to the first year of data taking (Run-

1). The detailed description of this measurement will be presented in Chapter 8. The

measured value, with a precision of 460 parts per billion (ppb), is [11]:

aµ(FNAL, 2021) = 0.001 165 920 40(54) , (1.31)

which is consistent with the previous BNL experiment.

1.5 Future perspectives

The number of muons analyzed in the first E989 result corresponds to roughly ∼5% of

the total collected statistics. Right now the analysis of Runs 2 and 3 is being finalized

and a new publication is expected in 2023. The experiment is currently collecting more

positive muons in the sixth year of running, which started in November 2022. A final

publication containing the entire statistics is currently projected for 2025. In addition,
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the E989 experiment will aim to set a new experimental limit to the measurement of the

Muon Electric Dipole Moment (EDM), which was also performed by the BNL collabo-

ration, to the upper value of |dµ| < 10−21 e·cm [43].

From the theoretical point of view, many efforts are coming from the international

g− 2 Theory Initiative to improve the actual estimation on the Standard Model predic-

tion. In particular, the lattice QCD value described in Section 1.3.3 has to be indepen-

dently verified and eventually included in the final average.

1.5.1 The J-PARC E34 Experiment

A new Muon g − 2 experiment is now being developed at J-PARC in Japan, aiming

to provide an independent measurement of aµ with a completely new approach. The

experiment will utilize a low-emittance 300 MeV/c muon beam, which is produced by

re-acceleration of thermal muons regenerated by the laser resonant ionization of muo-

nium atoms (µ+e−, or Mu) emitted from a silica aerogel. Figure 1.13 shows the schematic

drawing.

The use of a low emittance beam eliminates the need for strong focusing by an electric

field, which introduces a large correction to the ωa measurement and a sizable system-

atic error in the BNL and Fermilab experiments. Moreover, the absence of electric fields

allows to select a momentum different from the magic one of 3.1 GeV. The muon beam

will be stored in a highly uniform (1 ppm local uniformity) 3.0 T magnetic storage ring

that is 20 times smaller than the Fermilab storage ring. The positrons from the muon

decay will be measured by a tracker detector composed of 40 silicon strip sensors ar-

ranged radially.

The first phase of the experiment is expected to begin in 2027 with a target precision

of about 0.5 ppm, similar to that of BNL or the Run-1 result from Fermilab [44]. In

addition, the J-PARC experiment will measure the electric dipole moment (EDM) of the

muon, if any, as well.

1.5.2 The MUonE Experiment

A new measurement technique has been proposed to measure just the hadronic compo-

nent aHV P,LO
µ of aµ. It is based on a high precision measurement of the differential cross
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Figure 1.13: Schematics of the muon beamline for the J-PARC Muon g − 2 experiment.
Figure from [44].

section of the muon-electron scattering µe → µe as a function of the space-like squared

momentum transfer. The new MUonE experiment, currently being developed at CERN,

will attempt this by scattering a 160 GeV muon beam, currently available at CERN’s

muon M2 beamline, on the atomic electrons of a low-Z target consisting of 40 beryllium

layers, each 1.5 cm thick. Each layer will be separated by ∼ 1 m, and three tracking

modules will be placed after each beryllium target. A final calorimeter placed at the end

of the apparatus will measure the energies of the muons and the scattered electrons.

(a)

(b)

Figure 1.14: (a) Schematics of the MUonE experiment detector. The target is a thin
Beryllium layer while the tracking layers are made of two silicon tracker detectors. (b)
CAD drawing of one of the 40 tracking stations. Figures from [45, 46].
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The MUonE experiment will directly measure the hadronic contribution to the run-

ning of the electromagnetic coupling constant (∆αHad) in the space-like region [47]. The

aHV P
µ term can be extracted with the following equation [45]:

aHV P
µ =

α

π

∫ 1

0

dx(1− x)∆αHad[t(x)] , (1.32)

where α is the fine structure constant, and the integration variable x is related to the

space-like momentum transfer t through the formula:

t(x) =
x2m2

µ

x− 1
< 0 . (1.33)

The total target thickness will be ∼60 cm, and the CERN M2 beamline can provide a

luminosity of ∼ 1.3·107 µ/s. The expected integrated luminosity of 3 years of data taking

should accumulate ∼ 4 · 1012 elastic events with electron energy > 1 GeV, sufficient to

achieve a final statistical error of ∼ 0.3% on aHV P
µ .

With a systematic uncertainty of the same order of magnitude, the MUonE experi-

ment could bring a result comparable with both the Standard Model predictions obtained

with data-driven and lattice-QCD techniques. It could therefore clarify the current ten-

sion between the two predictions described in Section 1.3.3, allowing for a firmer inter-

pretation of the upcoming measurements at Fermilab and J-PARC.
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Chapter 2

The experimental technique

2.1 Measuring aµ

A charged particle with mass m, placed in a uniform external magnetic field will follow

a circular path because of the Lorentz force, and this motion is called cyclotron motion.

The spin of the particle, if any, will also rotate (precess) in the same plane of the circular

orbit. In the absence of electrical fields, and with the particle velocity perpendicular to

the magnetic field, the equations governing this motion are:

ω⃗s = −geB⃗

2m
− (1− γ)

eB⃗

mγ
, (2.1)

ω⃗c = − eB⃗

mγ
. (2.2)

ωs is the spin precession frequency and ωc is the cyclotron frequency. γ is the relativistic

Lorentz factor, and g is the particle’s g-factor. The second term of Eq. 2.1 is a relativistic

correction to the Lorentz force, called Thomas precession [48]. It accounts for the rotation

of the particle’s frame of reference. The rotation of the particle spin with respect to its

momentum is called anomalous precession frequency, ωa, and is equal to:

ω⃗a = ω⃗s − ω⃗c = −
(
g − 2

2

)
eB⃗

m
≡ −aµ

eB⃗

m
. (2.3)

Interestingly, if the particle’s g-factor is equal to 2 as predicted by Dirac equation then

aµ = 0 and there would be no anomalous precession. Figure 2.1 depicts the two scenarios

of a particle beam with g = 2 and g > 2.

More generally, in the presence of electric fields E⃗ and for non-perpendicular momen-

35
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Figure 2.1: Illustration of the muon spin (blue) and momentum (red) vectors for a
particle orbiting in a magnetic field if g = 2 (a) and g > 2 (b).

tum and magnetic field vectors, Equation 2.3 becomes:

ω⃗a = − e

m

[
aµB⃗ −

(
aµ −

1

γ2 − 1

)
β⃗ × E⃗ − aµ

γ

γ + 1
(β⃗ · B⃗)β⃗

]
, (2.4)

where β⃗ is the particle velocity in units of c.

Electric fields are typically necessary in g−2 experiments, as is the case for the Fermilab

E989 one, in order to provide vertical focusing of the beam. The second term β⃗×E⃗ would

introduce a perturbation to the particle precession. Interestingly, the multiplicative

factor in front of it can be canceled out for a specific magic relativistic gamma:

γ ≈ 29.3 →
(
aµ −

1

γ2 − 1

)
= 0 , (2.5)

which corresponds, for the muon, to a magic momentum pµ = 3.094 GeV/c. The experi-

ments at CERN III, BNL, and the current Fermilab E989 exploited this feature by using

muons with magic momentum to reduce the influence of the E-field on the measured

precession.

Assuming that the motion of the particles is, on average, perpendicular to the mag-

netic field vector, the last term of Equation 2.4 can be neglected as well, and the anoma-

lous precession frequency can be approximated with the expression of Equation 2.3. It
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is therefore possible to calculate the anomalous magnetic moment of the muon, aµ, from

the measurement of ωa and B:

aµ =
ωa

B

m

e
. (2.6)

A precise determination of the anomalous precession frequency and of the magnetic field

magnitude leads to a direct and precise measurement of the anomaly value.

The value of ωa can be measured with the observation of the decay positrons as a

function of time. The Fermilab E989 Experiment achieves this with a set of electro-

magnetic calorimeters. The value of the magnetic field can be measured in terms of the

shielded Larmor precession frequency of the proton (ω′
p) when submerged in the same

magnetic region where the muons are stored:

B =
ℏω̃′

p

2µ′
p

, (2.7)

where µ′
p is the proton’s magnetic dipole moment and ω̃′

p is the spatial average of ω′
p

weighted by the beam distribution. In the Fermilab E989 Experiment the measurement

of ω′
p is done using Nuclear Magnetic Resonance (NMR) probes and the beam distribution

is measured with two tracking stations. Finally, to reduce the uncertainty on the m/e

ratio, the electric charge can be written as:

e =
4meµe

ℏge
, (2.8)

where ge, µe, and me are the g-factor, the magnetic dipole moment, and the mass of the

electron. The equation for the muon magnetic anomaly becomes:

aµ =
ωa

ω̃′
p

ge
2

mµ

me

µ′
p

µe

(2.9)

The first fraction ωa/ω̃
′
p is what is measured at the Muon g− 2 Experiment at Fermilab.

The other quantities are known with high precision from other experiments.

2.2 Muon production

An experiment aiming to measure the precession of the muons in a magnetic field re-

quires that the beam of muons is polarized when injected into the storage magnet. After

the discovery of parity violation in weak interactions, the decay of charged pions became
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an easy way to produce polarized muons.

The pion is the lightest of all hadronic matter and is produced in copious numbers

when an energetic proton beam impacts a high Z target. When a charged pion decays,

the two constituent quarks annihilate, and the W boson is the only possible propagator

because of charge conservation. The final state must also have a net charge, and the light

mass of the pion (∼ 140 MeV) implies that the only possibilities are to have a muon or

an electron paired with the corresponding neutrino.

Typically, the phase space of the possible outcomes would favor the lighter electron,

but the parity violation of the weak force greatly enhances the decay into a muon and a

neutrino [10]:

Rπ =
Γ(π → µ+ νµ)

Γ(π → e+ νe)
= 8.1 · 103 , (2.10)

so that the probability of having a muon in the final state is > 99.9%

To better understand this phenomenon, Figure 2.2 shows the π+ decay in the rest frame

of the pion. In this frame, the neutrino and the anti-lepton are emitted back-to-back

because of momentum conservation. Neutrinos have left-handed chirality in the Stan-

dard Model, and, in the limit of massless neutrinos, the neutrino is always emitted with

a left-handed helicity state, as the chirality and helicity operators coincide for β → 1.

Since the pion has zero spin, to conserve total angular momentum the opposite anti-

Figure 2.2: Diagram depicting the pion decay in the rest frame, with helicity constraints.

lepton must also have left-handed helicity. In the weak decay, both the positron and the

anti-muon prefer to have right-handed helicity due to the (1 − γ5) dependence of the

decay probability. As this is not possible in the pion decay, the more massive muon is

heavily favored.

The decay muon momentum direction is spatially isotropic in the rest frame of the

pion, as the latter has zero spin. When a beam of pions is boosted into the lab frame,

however, both the highest energy (forward decay) or lowest energy (backward decay)

muons exhibit strong spin polarization, with higher energy pions having their spin anti-

parallel to their momentum vector.
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The same conclusions can be drawn for a beam of negative pions, although the results

are reversed. Both the outgoing anti-neutrino and the negative muon are right-handed.

Selecting the highest momentum decay muons now results in a beam with its polarization

aligned to the momentum.

2.3 ωa measurement

The first quantity to measure in Equation 2.9 is the anomalous precession frequency ωa,

which is the rate at which the muon spin rotates with respect to its momentum. The

measurement of this quantity is possible by observing the positrons emitted in the muon

decay as a function of time.

2.3.1 Muon decay

Muons decay into an electron and two neutrinos with nearly 100% probability:

µ− → e−ν̄eνµ (2.11)

µ+ → e+νeν̄µ (2.12)

As in the case of pion decay, parity violation plays an important role here. In the rest

frame of the muon, the highest energy decay positrons come from decays in which the

neutrinos are emitted collaterally, as depicted in Fig. 2.3. In this scenario, half of the

initial rest mass of the muon is carried away by the decay positron (Emax ≈ 53 MeV),

while the other half is shared by the two neutrinos. Since the neutrino and anti-neutrino

are traveling in the same direction, and the weak decay dictates they must have left and

right helicity respectively, their spins must have opposite direction. With the neutrino’s

spins canceling, the conservation of angular momentum forces the decay positron to carry

the spin of the parent muon.

The parity-violating nature of the weak interactions prefers to generate right-handed

positrons in the muon decay. This is achieved when the positron is emitted in the same

direction as the muon spin. For relativistic positrons, the differential decay distribution

in the muon mass frame is [49]:

d2P

dyd cos θ
∝ n(y)(1 + a(y) cos θ) , (2.13)
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Figure 2.3: Helicity constraints in the muon decay when the neutrinos are emitted in the
same direction.

where y = E/Emax is the fraction of energy carried by the positron, and θ is the angle

between the muon spin and the positron direction. The quantity n(y), also called the

Michel Spectrum, is a proxy for the overall probability of a decay positron with the

energy y. The decay asymmetry a(y) indicates the degree of correlation between the

muon spin and positron momentum. Both functions are normalized to have a maximum

value of one:

n(y) = y2(3− 2y) , (2.14)

a(y) =
2y − 1

3− 2y
. (2.15)

The scenario depicted in Figure 2.3 where the positron has maximum energy (y = 1) cor-

responds to the most probable outcome and the one with maximum asymmetry (a = 1).

The n(y) and a(y) functions are shown in Figure 2.4a.

The decay distribution in the rest frame of the muons is then boosted into the lab

frame. The total number of detected positrons in a fixed direction as a function of time

can be described by:

N(t, y) = N(y)[1 + A(y) cos(ϕ(t))] , (2.16)

where ϕ is the angle between the muon spin and the muon momentum. N(y) and A(y)

are the lab frame probability and asymmetry values, which can be derived to be:

A(y) =
−8y2 + y + 1

4y2 − 5y − 5
, (2.17)

N(y) = (y − 1)(4y2 − 5y − 5)/5 . (2.18)

The two functions are normalized to have a maximum value of one and are shown in Fig-

ure 2.4b. The angle ϕ(t) changes over time according to the muon precession frequency:

ϕ(t) = ωat+ ϕ0 , (2.19)
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where ϕ0 is the initial phase. Finally, the count of positrons provided by detectors placed

in a fixed position around the muon beam is:

N(t, E) = N(E)e−t/γτµ [1 + A(E) cos(ωat+ ϕ0)] , (2.20)

where the exponential term represents the decay rate of the muons, with a boosted life-

time of γτµ ≈ 64.4 µs for the magic momentum as in the Fermilab E989 Experiment. The

number of positrons above an energy threshold Eth oscillates at the precession frequency

ωa, which in turn can be measured by fitting Equation 2.20 to the time distribution his-

togram produced by the detectors. Figure 2.5 shows an example of such measurement,

and the entire process will be described in detail in Chapter 6.

(a) (b)

Figure 2.4: Decay rate, n(y), and decay asymmetry, a(y), of the muon decay in the
rest frame (a) and the laboratory frame (b). Emax = 53 MeV in the rest frame and
Emax = 3094 MeV in the laboratory frame.

2.4 ω̃′
p measurement

The second quantity to be measured in Equation 2.9 is the magnetic field in terms of

the Larmor precession frequency of the proton. A Nuclear Magnetic Resonance probe

operates by pulsing a radio frequency pulse into a sample of petroleum jelly, rotating the

spin of the protons inside the sample by 90◦ relative to the magnetic field direction. As

the RF pulse ends, the sample magnetization relaxes back to the equilibrium orientation,

parallel to the magnetic field of the storage ring. During the relaxation period, the proton

will precess at the frequency ωp, inducing a Free Induction Decay (FID) signal onto a

pickup coil perpendicular to the magnetic field. The amplitude of the signal decays as
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Figure 2.5: The observed number of positron oscillates in time according to the muon
precession frequency ωa. The oscillation amplitude A(E) depends on the positron energy,
as shown on the left. Summing the signals from all energies above a certain threshold
yields the one-dimensional ”wiggle” histogram shown on the right. The signal is wrapped
on itself every 87 µs to show the entire 700 µs measurement period of the E989 experi-
ment. Figure from [50].

the spin gets back to its original position. An example of such a signal is shown in Figure

2.6.

Figure 2.6: Example of the Free Induction Decay signal from one of the NMR probes of
the Fermilab E989 Experiment. The zoomed portion shows the oscillation corresponding
to the Larmor precession frequency of the proton ωp. Figure from [51].

The NMR probes need to measure the field in the same region where the muon beam

travels. However, placing the probes while the muons are circulating would destroy the

beam. The solution adopted by the Fermilab E989 experiment is to measure the field by
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equipping a movable trolley with 17 NMR probes and making it scan the entire storage

region once every three days, with no muon beam. The field stability is then monitored

between two consecutive trolley measurements with a set of NMR probes positioned

directly above and below the storage region. The trolley probes are then calibrated in

terms of the free proton precession frequency using a high precision probe containing a

sample of pure water.

The field measurements provide a three-dimensional map ωp(x, y, ϕ), where x, y, and

ϕ are the transverse and azimuthal coordinates. This map must be averaged with the

position distribution of the muons in the storage region M(x, y, ϕ) with a convolution:

ω̃p = ⟨ωp(x, y, ϕ)×M(x, y, ϕ)⟩ . (2.21)

More details on the field measurement techniques are reported in Section 8.4. The muon

distribution can be measured with a set of tracking stations, described in the next section.

2.5 Beam dynamics

In a fictional experiment where the magnetic field is perfectly uniform, and the beam is

monochromatic and perfectly collimated, ωa and ωp would be the only quantities to be

measured. However, a spread in the momentum distribution of the muons, the presence

of electric fields, and the finite transversal distribution of the beam generate a concert

of oscillations and motions of the beam that must be characterized and considered for

the final aµ computation.

In the Fermilab E989 Experiment, a magnetic inflector allows the entrance of the

beam into the storage ring, a set of magnetic kickers provide a kick to move the muons

into the right orbit, and a set of electrostatic quadrupoles provide vertical focusing. More

details on these systems will be discussed in Chapter 3.

A quadrupole is characterized by a field index, n, that is related to the electric field

gradient in the storage region by the following expression [49]:

n = − R0

βB

∂Ey

∂y
, (2.22)

where R0 is the orbit radius, β is the particle speed, B is the magnetic field, and Ey is the
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vertical component of the electric field. For a quadrupole field that provides continuous

vertical focusing over the full azimuth, the muon beam is affected by harmonic oscillations

called Betatron Oscillations (BO) with frequencies:

ωBO
x = ωcνx = ωc

√
1− n , (2.23)

ωBO
y = ωcνy = ωc

√
n , (2.24)

where ωc is the cyclotron frequency and νx, νy are the tuning factors. As these frequencies

are governed by the electric field strength, the voltage applied to the quadrupole plates

has to be carefully chosen in order to avoid beam resonances that would lead to large

beam oscillations and possible beam loss. In fact, resonances occur when the betatron

oscillations are multiples of the cyclotron frequency, or, in general:

aνx + bνy = c , (2.25)

with a, b, c ∈ Z. The E989 experiment ensures that the quadrupole voltages do not

correspond to resonant values, as shown in Figure 2.7. A typical field index of n = 0.108

results in the tuning factors νx = 0.944 and νy = 0.329.

The beam oscillations introduce a time-dependent modulation in the number of detected

positrons due to the radial and vertical acceptance of the detectors. The horizontal

betatron oscillation frequency is higher than half of the cyclotron one, since νx > 0.5.

The modulation observed by the calorimeters is therefore at the aliased value of

ωCBO = ωc − ωBO
x , (2.26)

called Coherent Betatron Oscillation (CBO).

In general, in an ideal storage ring, betatron oscillations are stable in time, however,

due to the momentum spread in the stored beam and to the incomplete coverage in

the quadrupoles field, the betatron motions decohere with time. The bundle of slightly

different oscillation frequencies gets out of sync after some time and, overall, the effect is

reduced. A simple model for the decoherence of both horizontal and vertical oscillations

is an exponential function of the form:

D(t) = Ne−t/τ , (2.27)

where N is the betatron modulation as observed by the detectors. A more detailed

description of these beam dynamic effects will be discussed in Chapter 6.



Chapter 2 | The experimental technique 45

Figure 2.7: Tune diagram showing the resonances in the E989 ring. The black lines
represent the distribution of points corresponding to resonant frequencies. The red line
corresponds to the possible tuning values of the quadrupoles. The two black points are
the Run-1 settings.
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Chapter 3

The Muon g − 2 Experiment at

Fermilab

Figure 3.1: The Muon g − 2 Experiment at Fermilab.

47
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The new Muon g − 2 Experiment (E989) in operation at Fermi National Acceler-

ator Laboratory (Fermilab) aims to measure the anomalous magnetic moment of the

muon with a precision of 140 parts per billion, a factor 4 better than the previous BNL

E821 experiment. The BNL magnetic ring was moved from Brookhaven to Fermilab

and installed in the muon campus, at the end of the FNAL accelerator chain. Fermilab

accelerators can provide a much more intense beam allowing the experiment to collect 21

times the statistics of the BNL experiment in few years of data collection. While BNL

E821 improved on the CERN III experiment in a revolutionary manner, primarily by

the invention of direct muon injection into the storage ring, the FNAL E989 experiment

introduced a broad suite of refinements focused on optimizing the beam purity and rate,

the muon storage efficiency, and modernizing the instrumentation used to measure both

ωa and ωp [49].

The E989 experiment has currently collected ∼ 20 times the statistics of E821 at the

time of this writing and is running its sixth year of data taking. On April 7th 2021, the

first aµ measurement base on the first year, Run-1, was published in Physical Review

Letters [11] together with three accompanying papers. This result, corresponding to

∼ 6% of the total statistics, confirmed the BNL measurement with a similar precision

and increased the experimental discrepancy with the data-driven Standard Model pre-

diction to 4.2σ, making a significant impact on the scientific press. The second and third

years of data taking, Run-2 and Run-3, are now being analyzed and a new publication

is expected in the first half of 2023, with a precision improved by a factor 2 with respect

to the Run-1 measurement. The latest datasets, Run-4 to Run-6, are currently being

produced, and analysis will start soon. They should increase the final precision, together

with the previous datasets, by another factor of two, allowing to reach the final goal of

140 ppb. The total final uncertainty expected for the E989 experiment is subdivided

into 100 ppb of statistical and 100 ppb of systematic uncertainties. The systematic un-

certainty is further divided into ∼ 70 ppb for the ωa measurement and ∼ 70 ppb for the

ωp measurement. The BNL budget on the ωa systematic uncertainty was 180 ppb, and

many improvements on the hardware side have been developed for the E989 experiment

to reduce this value by a factor of three or better.

Some of the various improvements needed to reach these goal uncertainties are [49]:

• Higher proton rate with less protons per bunch. Since the detected positron number

is directly proportional to the protons on target, the Fermilab experiment will have

to deliver 4 ·1020 total protons. These high numbers are within reach thanks to the
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Fermilab beam complex which is expected to annually deliver ∼ 2 · 1020 protons

with an energy of 8 GeV on an Inconel core target;

• A very long pion decay line. A limiting factor at BNL was the 120 m beamline

between the pion production target and the storage ring; since the decay length of

a 3.1 GeV/c pion is ≈ 173 m, the beam injected into the storage ring contained

both muons and a significant number of undecayed pions. Those pions create an

enormous burst of neutrons when they intercept materials. The new decay line is

more than 2000 m long, also thanks to the four orbits around a 500 m long Delivery

Ring: virtually no pion will reach the muon storage ring without decaying;

• 6-12 times larger muon yield per proton and 3 times the muon beam rate: the

muon storage ring is filled at a repetition rate of 12 Hz, which is the average rate

of muon spills that consists of sequences of successive 700 µs spills with 11 ms

spill-separations, compared to 4.4 Hz at BNL;

• Improved detectors and new electronics: the detectors and electronics are newly

constructed to meet the demands of measuring the anomalous spin precession fre-

quency to the 70 ppb level. Better gain stability and corrections for overlapping

events in the calorimeters are crucial improvements addressed in the current design.

A new tracking system allows for better monitoring of the stored muon popula-

tion, and to establish corrections to ωa that arise from the electric field and vertical

oscillations;

• Better monitoring of B-field variations: the storage ring magnetic field, and thus

ωp, are measured with an uncertainty that is approximately 2.5 times smaller than

E821. This is done by placing critical Nuclear Magnetic Resonance (NMR) probes

at strategic locations around the ring and shimming the magnetic field by placing

wedges and small steel foils to achieve high uniformity;

• A continuous monitoring and re-calibration of the detectors, whose response varies

on several timescales from nanoseconds to days: a high-precision laser calibration

system monitors the gain fluctuations of the calorimeter SiPMs at 0.04 % accuracy

[52].

This chapter presents the E989 instrumentation to inject and store the muon beams

and the detectors to measure the beam, the decay positrons, and the magnetic field

strength. A schematic drawing of the E989 experiment is shown in Figure 3.2.
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Figure 3.2: Schematic drawing of the storage ring with all the detectors and instrumen-
tation. Figure from [53].

3.1 Production and injection of the muon beam

The FNAL muon campus beamline is constructed to deliver pure pulses of highly polar-

ized muons to the E989 storage ring. The muons originate from decaying pions, which

are in turn produced by focusing a proton beam on a target. The overall structure of

the accelerator complex is schematized in Figure 3.3. The protons begin their journey in

the linear accelerator Linac and accelerate through the Booster. From there, the protons

continue into the Recycler Ring where they are grouped into high intensity bunches with

a short temporal width of ∼120 ns. Each proton bunch contains O(1012) protons with

8 GeV kinetic energy. The protons then propagate from the Recycler to the AP0 target

hall through (the antiproton production hall used by the Tevatron) where they collide

with an Inconel target. The collision produces O(109) positive secondary particles of

which many are pions. The secondary particles are focused via an electrostatic lithium

lens into a secondary beam which goes through a momentum filter shortly after focusing.

Momentum selection yields a beam of 3.1 GeV/c with a momentum spread of ±0.10∆p
p
.

The secondary beam then proceeds through M2 and M3 beamlines into the Delivery

Ring.
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Figure 3.3: Diagram of the accelerator complex used to produce muons for g− 2. Figure
from [49].

The goals in the Delivery Ring are twofold. First, the beam cycles around the Deliv-

ery Ring to create a spatial separation between the pions/muons and the more massive

protons (slightly lower velocity for the same momentum), so that the protons can be

removed. Protons with momentum 3.094 GeV/c have a relativistic γ of 3.3 and travel

at about 95% the speed of light. Muons with a γ of 29.3 travel within 0.1% of the

speed of light. Therefore, after each trip around the Delivery Ring, the protons fall 25 m

behind the muons. Secondly, essentially all pions decay in flight into muons, so that the

outgoing beam is a very pure muon beam. The pion decay line is ∼2 km long while the

one of Brookhaven was only 120 m. Four orbits around the Delivery Ring are enough to

achieve both goals.

After the Delivery Ring, the now muon beam is extracted onto the path toward the

Storage Ring. Through the pion decay process the high and low energy muons have a

net spin polarization (as discussed in Section 2.2), and the beamline design acceptance

is narrow around the filtered secondary energy of 3.1 GeV/c. The muons produced at

3.094 GeV/c by the pion beam are forward decays and thereby achieve a net spin po-

larization of around 95%. The distribution of delivered muons has a momentum RMS

of approximately 2% centered around 3.094 GeV/c and a temporal length of 120 ns. Of
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these injected muons, only 1% to 2% can be stored. A bunch of muons produced in the

beamline is referred to as a “fill”. These fills deliver O(104) muons to the storage ring

at an average rate of 11.4 Hz [49]. With a 4.5 cm radius storage region and a 7.112 m

orbit radius, the E989 ring can at best store muons within approximately 0.5% of the

design momentum.

3.1.1 Beam structure

The muon beam entering the E989 ring is composed of a cycle of 16 bunches repeating

every 1.4 seconds. The cycle structure, shown in Figure 3.4, consists of two group of 8

bunches. The bunches within a group are separated by 10 ms, while the two groups are

separated by ∼ 200 ms. Each bunch circulates inside the E989 storage ring for ∼ 750

µs, making a total of ∼ 5000 turns before being dumped. The bunch length is shorter

than 120 ns, as the cyclotron period is 149.2 ns.

Figure 3.4: Muon beam repetition cycle. Figure from [49].

3.1.2 Beam injection

The highly purified muon beam is extracted from the Delivery ring and brought to the

E989 ring through the M4/M5 beamline. At the end of the M5 beamline, the beam is

focused by four magnetic quadrupoles and injected into the g−2 storage ring. The E989

magnet is made of a continuous iron yoke, and the beam enters through a hole in the

outer side of the magnet. The beam then passes through a superconducting inflector

magnet, which provides an almost field free region, until arriving to the edge of the

storage region. Without the inflector, the muon injection into the storage ring would

not be possible because passage through the fringe field would deflect the beam into the

magnet iron.
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3.1.3 Injection detectors

Before entering the magnet yoke, the muon beam passes through a scintillator detector

called T0. It is composed of a 1 mm thick piece of plastic scintillator coupled via light

guides to two photomultiplier tubes (PMTs). This detector provides the time reference

t = 0 for the measurement period of the muon bunch. It also measures the beam time

profile and the integrated beam intensity. These quantities are used for determining the

beam storage efficiency and for data quality monitoring across the data taking period.

Figure 3.5 shows a picture and a schematics of the detector.

(a) (b)

Figure 3.5: (a) CAD drawing of the T0 detector. The muon beam passes through
the plastic scintillator (green). (b) Typical beam pulse as measured by T0. The dashed
vertical lines represent the integration period over which the beam intensity is measured.

After the T0 detector, three scintillating fiber detectors measure the horizontal and

vertical beam profile before and after the inflector magnet. They are called Inflector

Beam Monitoring System (IBMS) and are made of a 16 × 16 grid of scintillating fibers

read by a 1 mm2 Hamamatsu SiPMs. The third IBMS detector (IBMS3) only has the

vertical fibers measuring the X-plane profile, and it is in a retracted position during

normal data taking as, otherwise, it would destroy the stored beam over time. Figure

3.6 shows a picture of the third IBMS detector and a typical measured beam profile.

3.2 The Storage Ring

The E989 magnetic Storage Ring, shown in Figures 3.1 and 3.7 is the same one that

was previously used in the E821 Muon g − 2 Experiment at Brookhaven National Lab.
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(a) (b)

Figure 3.6: (a) Picture of the third IBMS detector placed after the inflector magnet. (b)
Example of the vertical beam profile as measured by IBMS1.

Figure 3.7: Top down and cross sectional view of the Storage Ring. Figures from [49].

The magnetic field is generated by three superconducting Niobium-Titanium coils in a

Copper matrix. They operate with a current of 5176 A, providing an uniform vertical

1.45 T dipole field [49]. The C-shape of the magnet cross section faces the interior of the

ring so that positrons from the muon decay, which spiral inward, can travel unobstructed

by the magnet yoke to detectors placed around the interior of the storage ring.

The muon anomalous precession frequency is proportional to the magnetic field strength,

so a very uniform field is essential for the success of the experiment. During the assembly

of the ring, edge shims and iron foils were used to provide passive shimming and fine

tune the magnetic field over the entire azimuthal angle and to control the transverse

gradients. In addition to that, a set of active surface correction coils is used to achieve

field uniformity in the storage region to better than one part per million [51]. Moreover,

the magnet power supply is adjusted continuously to correct for temperature variations
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that cause thermal expansion of the ring. Between Run-1 and Run-2, an insulating

blanket was installed around the magnet to provide better thermal stability. After Run-

2, a new air conditioning system was installed in the experimental hall for the same

reason. The magnetic field is measured by 378 Nuclear Magnetic Resonance (NMR)

probes located in grooves carved out from the aluminum vacuum chamber above and

below the storage volume.

3.2.1 Kickers

The exit of the inflector is displaced 77 mm radially outward from the center of the

storage region, and the beam is injected in an orbit slightly shifted from the designed

one. A set of three magnetic kickers adjust the orbit into the nominal one by decreasing

the magnetic field slightly during the first turn of the beam. The kicker system is

composed of three pairs of aluminum plates placed at 1/4 turn after the injection point,

as shown in Figure 3.8a. The aluminum plates are ∼ 1.27 m in length and are pulsed

by a ∼ 4000 A current for deflecting the muons by ∼ 10 mrad outwards. The aluminum

material has been chosen to avoid any perturbation to the main magnetic field during

the measurement window. The pulse shape, shown in Figure 3.8b, has a FWHM of

∼ 150 ns, so that the muons are deflected only during the first turn [54]. However,

small ringing fluctuations in the kicker current are visible in the few following cyclotron

periods, and additional eddy currents are induced for many milliseconds after the kick.

These oscillations are measured with a dedicated magnetometer system, and their effect

on the muon precession is evaluated. This will be discussed in more detail in Chapter 8.

3.2.2 Electrostatic quadrupoles

While the magnetic field provides natural horizontal focusing, the vertical focusing is

provided by a set of electrostatic quadrupoles (ESQs). The system is composed of four

sets of quadrupoles, each made of a long (spanning 26◦) and a short (spanning 13◦)

section. A view from the inside of the vacuum chamber is shown in Figure 3.9a, where

the four quadrupole plates are seen around the storage region. The quadrupoles provide

a linear restoring force in the vertical direction at the expense of a slight horizontal de-

focusing.

The quadrupole plates are charged before each beam injection with a charging scheme

shown in Figure 3.9b. Some quadrupoles plates are connected to a two-step power sup-

ply that provides a ∼ 13 kV field before reaching the final nominal ∼ 18 kV field. This
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(a) (b)

Figure 3.8: (a) Schematic illustration of the muon orbits before and after the kick.
During the first turn after injection, the kickers provide the deflection necessary to place
muons onto the central storage orbit. (b) Kicker pulse shape as measured with a laser
magnetometer. The T0 injection pulse is also overlaid for time comparison. Figure from
[53].

middle step is introduced to perform a scraping of the muon beam to remove the off-

momentum particles. The scraping process moves the beam horizontally and vertically

from the nominal orbit so that the particles at the edge of the storage region eventually

hit one of the collimators (whose position is marked in Figure 3.2) and exit the storage

region.

Both the nominal and scraping charging patterns are designed so that the final voltage

is achieved before the start of the measurement period, 30 µs after injection. In Run-1,

two ESQ resistors got damaged and affected the charging characteristic times as shown

in Figure 3.9b, resulting in off-nominal voltages up to 300 µs after injection. The effect

of these broken resistors on the measurement of ωa will be discussed in Section 6.5.3.

3.2.3 Beam monitoring detectors

As the beam circulates inside the storage ring, it oscillates and breathes in the cross

section around the nominal orbit radius. The movements of the beam are mainly caused

by the weak focusing fields generated by the magnet and the quadrupole system. These

oscillations are observed as modulations in the count of the decay positrons, and a precise

modeling of the beam movements is required to keep the systematic uncertainties under
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(a) (b)

Figure 3.9: (a) Picture of a quadrupole section inside the storage ring. (b) Quadrupole
voltages as a function of time. The black line represents a one-step charging mode with
5 µs time constant, while the red dotted line represents the two-step process. The yellow
and blue lines represent the quadrupole containing the two damaged resistors. The
voltage varies well beyond the ωa fit start time of 30 µs. Figure from [53].

control.

Trackers

Two tracking stations are located at approximately 180◦ and 270◦ after the injection

point, as shown in Figure 3.2. Each station is composed of 32 planes of straw tubes

detectors assembled into 8 modules. A picture of a module is shown in Figure 3.10b.

When a muon decays into a positron, the latter curls inward and can pass through the

various planes of a tracker station before hitting a calorimeter placed afterward. Figure

3.10a shows an example of a high energy decay positron traversing a full tracking station.

The straw tubes are filled with Argon-Ethane gas, and a thin tungsten wire positioned

in the axis of each straw collects the drift electrons produced by the ionization of the

passing positron. The reconstruction of the hits in multiple planes into a track allows to

measure the positron momentum and to extrapolate the muon decay vertex. From the

reconstructed decay vertex it is possible to monitor the beam distribution in the storage

ring in the proximity of the two tracking stations. In addition, by matching the track

with a calorimeter hit, it is possible to perform particle identification using the relation

between momentum and energy. This is used to identify muons that exit the storage

region, e.g. after hitting a collimator, before decaying into positrons.
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(a)

(b)

Figure 3.10: (a) Diagram of the tracker measurement of a decay positron. (b) Picture of
a tracker module composed of four planes of straw tubes arranged in U-V configuration.

Fiber harps

A set of two fiber harps detectors are positioned slightly before each tracking station.

They are composed of seven 0.5 mm diameter scintillating fibers read out by SiPMs. For

each pair of harps, one has horizontal fibers and the other one has vertical fibers, so that

together they can directly and destructively measure the beam x − y profile. They are

stored in a retracted position during normal data taking, but can be inserted to measure

the beam momentum distribution, the cyclotron frequency, and the de-bunching of the

muon beam across time. They are also used to increase the number of lost muons for

calorimeter calibration purposes. Figure 3.11 shows a picture of an inserted y-plane fiber

harp detector.

3.3 Calorimeters

The E989 experiment is equipped with 24 electromagnetic calorimeters for detecting the

positrons emitted by the decay of the muons. When a muon decays, the produced decay

positron has less energy than its parent muon and correspondingly a smaller orbit radius

in the storage ring’s magnetic field, and for this reason it curls toward the center of

the ring. The 24 calorimeters are stationed around the inner radius of the storage ring



Chapter 3 | The Muon g − 2 Experiment at Fermilab 59

Figure 3.11: Picture of a fiber harp module inserted into the storage region.

Figure 3.12: Example of two positrons of different energy hitting the calorimeters. The
black curves delineate the storage region, and the dashed line is the nominal orbit. Figure
from [50].

to intercept these decay positrons and measure their energies and arrival times. This

process is illustrated in Figure 3.12. With 24 calorimeters equally spaced azimuthally,

the probability that a decay positron will hit a calorimeter (called the acceptance) is

very high, about 80%, for the highest energy positrons [49].

The calorimeters are the primary instruments for the ωa measurement. The main

purpose of the calorimeters is to establish a time and energy for each detected positron.

Each one consists of a 6 high by 9 wide array of lead fluoride (PbF2) crystals, each one is

a 14 cm long block with a square cross section of side 2.5 cm (Fig. 3.13). Every crystal

is coupled with a monolithic 16-channel Hamamatsu MPPC (S12642-0404PA-50) Silicon

PhotoMultiplier (SiPM) detector (Fig. 3.14), with a sensitive area of 144 mm2. The

properties of these calorimeters are particularly suited to the needs of the Muon g − 2
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Experiment: PbF2 has very high density (7.77 g/cm3), a 9.3 mm radiation length and

a Molière radius of RM = 22 mm for energy deposition. High density allows for decay

positrons to deposit virtually all of their energy in a relatively compact calorimeter. The

crystals are 14 cm long, which is approximately 15 radiation lengths. The width of 2.5

cm is higher than the Molière radius, thus the energy depositions of a typical decay

positron is contained almost entirely within a matrix of 3×3 crystals. The segmentation

of the detector decreases the likelihood of two decay events occurring simultaneously in

the same SiPMs. These double events are referred to as pileup and were a major source

of uncertainty in E821 [49].

Figure 3.13: Model of the E989 calorimeter. The active volume comprises a 6 by 9 array
of PbF2 crystals. There are 24 calorimeters equally spaced around the E989 storage ring.
Figure from [49].

Incoming positrons deposit energy in each crystal by producing an electromagnetic

shower, and the charged particles participating to the shower emit Čherenkov radiation.

The refraction index of PbF2 is 1.8: Čherenkov radiation is produced only by positrons

that travel faster than c/1.8, that is with a kinetic energy of ∼100 keV. All the positrons

emitted by the decaying muons have an energy significantly higher than 100 keV. The

choice of a pure Čherenkov material is driven by the almost instantaneous signal pro-

duced when a positron strikes a crystal, and the light signal is produced within few

nanoseconds. In addition, the PbF2 crystals have a very low magnetic susceptibility,

which is optimal for working in a high magnetic environment without perturbing the

magnetic field itself. Each crystal is wrapped in a black Tedlar® material which, while
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absorbing a portion of the emitted photons, ensures a faster response of the crystal [55].

The SiPM is composed of 57344 pixels arranged in 16 sub-sensors on a 1.2 × 1.2

cm2 device with 50 µm pitch. Each pixel is an avalanche photodiode coupled with a

quenching resistor serving to arrest the avalanche and allow the device to recover with

a time constant of ∼10 ns. The produced electrical current is summed for all the pixels

and converted into a voltage signal by a custom electronic readout board. These signals

are then digitized into 12-bit waveforms with a sampling rate of 800 MHz [56].

Figure 3.14: The silicon photomultiplier (SiPM) detectors and their readout boards.
Figure from [55].

Choosing SiPMs over PMTs is advantageous, as they can be placed inside the storage

ring field without perturbation, avoiding the long light guides that would be needed for

remote PMTs as in E821. On the other hand, SiPMs are very sensitive to temperature

and bias voltage, thus making their gain calibration a challenging and important task.

The gain of the 1296 SiPMs is constantly monitored during the data taking period using

a Laser Calibration System.

3.4 Laser calibration system

The E989 experiment aims to measure the muon anomalous precession frequency ωa

with a precision of 100 ppb, consisting of 70 ppb statistical and 70 ppb systematic uncer-

tainties. To reach this level of accuracy, the systematic uncertainty related to the gain



62 Chapter 3 | The Muon g − 2 Experiment at Fermilab

Figure 3.15: The optical table of the Laser Calibration System. On the right: me.

fluctuation has to be lowered from the 120 ppb final value of E821 to a final goal of 20

ppb [49]. The Laser Calibration System (LCS) (Figure 3.15) was designed and built by

the INFN group in collaboration with the Istituto Nazionale di Ottica (INO) to precisely

monitor the gain fluctuations of the SiPM detectors (SiPM) at the 0.04% level on the

short timescale of a single beam fill (700 µs) and at the percent level on the timescale of

an entire run (days).

3.4.1 Light distribution system

To achieve this goal, the LCS sends almost simultaneous light pulses to all the 1296

calorimeter crystals. The pulses are also sent to the T0 detector for providing time

synchronization. The laser system is assembled in a light-tight and thermally controlled

Laser Hut located right next to the E989 storage ring. The reason why this room is lo-

cated outside the ring is to avoid electromagnetic perturbations of the local field induced

by the current flow used to excite the lasers.

On the optical table, a set of 6 laser heads (Picoquant LDH-P-C-405M) fires short (0.6

ns FWHM) pulses of light into a distribution system which splits the 6 beams into 24 and

sends the laser light into 25 meter long silica launching fibers that bring the light toward

the calorimeters. Before reaching the distribution system, the laser light passes through

a beam splitter which redirects 30% of it to a Source Monitor (SM) which measures

the laser source stability. The non-diverted 70% passes through a motorized filter wheel
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containing a set of neutral density (ND) filters before being split into four beams. The

schematics of the optical table is shown in Figure 3.16. The laser wavelength is 405± 10

nm and it was chosen according to the spectrum of light of the Čherenkov signal produced

by the positrons, the spectral transmission of the crystals, and the quantum efficiency

of the SiPMs.

Figure 3.16: Schematic of the optical table inside the Laser Hut. Most of the major
components are shown and labeled.

3.4.2 Connection to calorimeters

The far end of each launching fiber enters in a light distribution box, where it illuminates

a bundle of 54 short fibers via an optical diffuser. These fibers bring the light to each

crystal of the calorimeter via a light distribution plate made of 1 cm thick Delrin material

placed in front of the calorimeter crystals (Figure 3.17). The panel holds 54 optical prisms

that steer the light at 90◦ into each calorimeter crystals. In addition to the fiber bundle,

the diffused light illuminates two additional 25 m long fibers, one made of quartz and

the other made of PMMA. These two fibers are sent back to the laser hut and their light

is measured by a Local Monitor (LM).
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Figure 3.17: Light distribution box of one calorimeter. The launching fiber (yellow) on
the right brings the light from the Laser Hut. The white panel on the left distributes
the light to the 54 crystals. Figure from [52].

3.4.3 Source Monitor

The SM consists of an aluminum box containing a commercial integrating sphere (Thor-

labs IS200 ) equipped with two large area (1 cm2) photodiodes (Hamamatsu S3590-18 )

and one PhotoMultiplier Tube (PMT) (Hamamatsu H5783 ). In addition, a low activity

Am source coupled to a NaI crystal illuminates the PMT with an average rate of 6 Hz,

providing an absolute calibration reference. The pin diodes are used for calibrating the

laser intensity over the long timescales of the data taking period, and are sampled at 100

MHz rate. A typical pulse is shown in Figure 3.19a. A schematic of the source monitor

is shown in figure 3.18.

3.4.4 Local Monitor

As mentioned earlier, two fibers return to the Laser Hut from each calorimeter and their

light is measured by the Local Monitors. Each of the 24 LMs is a Photonics XP2982

PMT sampled at 800 MHz using the same digitizer electronic which is also used for the

calorimeters. The PMTs are contained in light-tight plastic cases that hold 10 tubes each,

installed in an electronic rack next to the optical table. Before reaching the PMTs, the

light passes through a band-pass filter centered at 405 nm, with 10 nm half width, which

filters out possible background light. The LM receives two signals separated by about 250

ns. The first is brought by a fiber attached to the corresponding SM integrating sphere

(∼3 meters), whereas the second comes from the returning fiber from the calorimeters
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Figure 3.18: Schematic of the vertical section of the Source Monitor. Figure from [52].

(∼50 meters). Figure 3.19b shows a typical signal measured by the LM. The two pulses

can be directly compared since the expected gain fluctuations of a PMT at this timescale

are negligible.

(a) (b)

Figure 3.19: (a) Laser pulse as measured by the Source Monitor pin diodes. The sam-
pling rate is 100 MHz. (b) Laser pulses as measured by the Local Monitor. The first
pulse comes from the SM fiber bundle, while the second has traveled to and from the
calorimeters.

3.4.5 Operating modes

The laser is operated in two distinct modes. The first is enabled during physics runs

when the muon beam circulates in the storage ring, and used to synchronize the SiPMs

to the T0 detector and to measure the gain variations of the SiPMs within the muon fill.
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The second is devoted to dedicated calibration runs, with no beam, in order to study the

SiPM response to two pulses very close in time. The latter is referred as the double-pulse

mode.

Standard mode

When the laser is operated in the standard mode during physics runs, three sets of pulses

are generated, which are represented in Figure 3.20:

• SYNC: a Begin-of-Fill (BoF, also known as SYNC) and an End-of-Fill (EoF) pulse

are sent to all 1296 calorimeter channels a few tens of microseconds before muon

injection and after beam dump, respectively. These signals are used to synchronize

the response of the crystals in such a way that the final accuracy of the time

reconstruction is at the ∼ 30 ps level. This will be discussed in more detail in

Section 5.3.

• IN FILL: During a prescaled subset of muon fills, the laser system fires a fixed

number of pulses. The pulses are shifted in time, for each subsequent fill, in order

to sample all times from the injection time up to several hundred microseconds

later. These signals are used to measure the gain fluctuations within a fill. This

will be discussed in more detail in Section 5.4.2.

• OUT OF FILL: muon injections are interleaved by a time gap of ∼ 10 ms which

allows the laser system to send a set of 4 pulses when no muons are present. These

pulses are used as a long term calibration of the gain. This will be discussed in

more detail in Section 5.4.3.

Double-pulse mode

In the double-pulse mode, two consecutive laser pulses are sent to all crystals with a

delay that can vary from 1 ns up to several hundreds of µs. The goal of this mode is

to test the calorimeter response to two or more consecutive particles. In particular, the

SiPM gain is reduced when two particles enter a crystal within a short time interval.

There are two distinct time dependencies: one at very short time separations (< 100 ns),

due to the recovery time constant of the quenching resistors of the SiPMs, and one at

longer times (∼10 µs), due to the recovery time of the power supply. The double-pulse

mode provides the possibility of checking periodically (each three days of data taking,
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Figure 3.20: Time sequence of the different trigger pulses generated for each muon
injection. (a) The sequence of the muon bunches as provided by the Fermilab accelerator
complex. (b) For each muon fill, the central clock generates two signals before and after
the presence of the muon beam in the storage ring. (c) The Laser Control Board generates
two pulses right before beam injection (sync pulse) and right after beam dump (End-Of-
Fill). (d) Series of In-Fill and Out-Of-Fill laser pulses. Figure from [52].

typically) the gain function for each of the 1296 crystals during data taking which allows

for correction of these effects and for keeping the systematic error under control.

There are several different reasons why it is better to send pulses from two different

lasers, rather than fire the same laser repeatedly:

• two lasers allow for choosing different light intensities for each pulse of the pair;

• the laser maximum repetition rate of 40 MHz does not allow the testing of nanosec-

ond time scale;

• in case of two consecutive pulses, the laser output light for the second one can

be systematically different from the first one, while light fluctuations for different

lasers are uncorrelated;

• as the laser light output can fluctuate up to the percent level from pulse to pulse

and this fluctuation is monitored by the SM (response time tens of microseconds),

it cannot be corrected when pulses are too close in time.
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Figure 3.21: (a) Standard laser configuration where the light of each laser head is split
in four and injected into four fibers to the assigned calorimeters. (b) Modified setup
for double pulse operation in which one laser beam is superimposed into the path of its
paired one by a movable mirror (position IN). A similar set of moving+fixed mirrors is
present also on the upper laser setup to allow the symmetrical operation. Figure from
[52].

For all these reasons, the laser system is capable of sending two different laser pulses to

the same calorimeter by inserting a movable mirror in front of a laser head in order to

redirect it to the optical path of the next laser head. This scheme is shown in Figure

3.21. An external delay generator (DG) (SRS DG645) is used to send prompt and de-

layed signals to the two laser heads respectively.

The Short-Term (20 ns) data structure can be measured by inserting the movable

mirrors and by operating the delay generator so that the second pulse is delayed in the

0-80 ns range. An example of two double-pulse events are shown in Figure 3.22.

The longer time constant is more complex to measure. The gain drop is in fact due

to the overlap of several pulses which overload the HV power supply. Because of this,

the prompt signal is not provided by a single pulse, but by a burst of pulses. The test is

performed as follows:

• The Laser Control Board sends a burst of N laser pulses separated by an interval

∆t = 120 ns, which is the minimum delay allowed by the laser driver. The filter

wheel located after the laser head is set to the maximum transmittance value in

order to saturate the SiPMs response. The number of pulses N is what defines the
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overall gain sag.

• After a delay in the range of [0,40] µs, a test pulse is sent from the second laser.

An example of such a pulse structure is shown in Figure 3.23.

Figure 3.22: Example of two STDP signals produced with a delay of 4 ns (left) and 32
ns (right).

Figure 3.23: Example of a LTDP pulsing pattern. First, a burst of several, equally
spaced, laser triggers is sent to simulate the arrival of multiple particles, and then a final
test laser pulse is sent with a large and variable delay with respect to the burst.
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3.5 Simulation

The E989 Experiment makes use of several simulation programs to precisely predict the

beam behavior and the particle detection and to compare with real measurements. There

are three main simulation programs currently in use and will be described briefly.

3.5.1 gm2ringsim

The gm2ringsim software is a Geant4 [57] simulation capable of simulating the beam mo-

tion from the injection into the storage ring to the detection in calorimeters and trackers

[58]. The complete calorimeter and tracker systems are fully and realistically represented

in the simulation. The geometry for the straw-tracker modules includes coordinates as

determined in alignment surveys. The entire magnet, the vacuum chamber, the kicker

and quadrupoles plates are constructed too, and four realistic electric and magnetic fields

are implemented, including the radially dependent fringe field that extends toward the

center of the ring. The time dependence of the kicker magnetic field is taken from direct

magnetometer measurements made at the center of the plates. The fields associated with

the quadrupole plates are implemented as a multipole expansion. They are dynamically

evolved according to the scraping process and include the perturbations given by the

damaged resistors of Run-1.

3.5.2 COSY

An independent simulation of the storage ring has been developed using a computational

environment called COSY INFINITY [59]. This simulation focuses on the precise model-

ing of the electric and magnetic fields in the storage region, quantifying nonlinear effects

given by the quadrupole system, as well as the higher order magnetic multipoles.

It is based on Differential-Algebraic (DA) methods which allow the preparation of trans-

fer maps that describe the solutions of storage ring beam optics as ordinary differen-

tial equations (ODEs). These methods allow to quickly reach an high statistics parti-

cle tracking in contrast to conventional orbit-integration beam dynamics programs like

gm2ringsim.
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3.5.3 BMAD

BMAD is a library for simulating the dynamics of relativistic beams of charged particles

into beam line elements [60]. The BMAD simulation of the E989 experiment is composed

of the M5 beam line, the inflector, and the storage ring. The latter includes a static

magnetic field, time-dependent quadrupole electric fields and the kicker magnetic fields.

The fields in each element are defined by field maps, multipole expansions, or analytic

expressions. Time dependence for pulsed kickers and quadrupoles is provided by custom

code. This software has been used for the determination of systematic uncertainties due

to the E-field and the pitch correction related to quadrupoles misalignment effect.

3.6 Current status

The E989 Experiment is currently active and collecting data for the sixth consecutive year

of running, Run-6, which will be the last one. Run-1 has been completely analyzed and

published on April 7th 2021, and the complete measurement is described in Chapter 8.

Analysis of Run-2 and Run-3 is in progress, while Run-4 and Run-5 are being produced.

Figure 3.24 shows the number of collected positrons from Run-1 to Run-5 in terms of the

final statistics of the BNL experiment, with a total number of ∼19 ×BNL collected so

far. With the current Run-6, the E989 experiment is expected to reach and exceed the

design goal of 21 ×BNL of statistics with positive muons, which will ultimately allow for

a final statistical uncertainty on the ωa measurement of 100 ppb.

After Run-1, many upgrades have been implemented in order to improve the beam

storage capability and the stability of the experimental conditions. Some of them are:

• The kicker system has been upgraded to provide higher voltages starting from Run-

2 and finally reaching the design values by the end of Run-3. The nominal design

voltage of 165 kV resulted in a stored beam centered around the nominal magic

orbit radius of 7.112 m.

• The quadrupoles conditions have been stabilized and the broken resistors have been

replaced.

• Starting from the end of Run-4, a new quadrupole operating scheme has been

implemented with a radio-frequency (RF) system which reduces the beam betatron

oscillations.

• New specialized detectors have been constructed to measure transient fields gener-

ated by the mechanical vibration of the quadrupole plates and by the eddy currents
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Figure 3.24: Number of accumulated positrons in the first five runs of the Muon g − 2
Experiment at Fermilab in terms of the total statistics of the BNL experiment.

induced by the fast kicker pulse. These measurement will be discussed in more de-

tail in Chapter 8.

• A thermal blanket has been installed around the magnet yoke after Run-1 to reduce

the daily fluctuations of the magnet temperature which affects its physical shape

and magnetic field.

• An air conditioning system has been installed in both the experimental hall and in

the laser hut to drastically reduce the daily and seasonal temperature fluctuations

of the entire equipment from ±2 ◦C to ±0.5 ◦C or better. Figure 3.25 shows the

temperature of the magnet yokes, the calorimeter SiPMs and the laser optical table

from Run-1 to Run-5.

Overall, many systematic uncertainties on both the ωa and ωp measurements are expected

to be significantly reduced in Run-2 and beyond with respect to Run-1 thanks to the

mentioned hardware improvements.
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(a) Magnet yoke temperature

(b) Calorimeters temperature

(c) Laser hut temperature

Figure 3.25: Temperature measurements from Run-1 to Run-5 of the magnet yoke (a),
the calorimeter SiPMs (b) and the laser hut (c).
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Chapter 4

Data acquisition and reconstruction

The Fermilab E989 is a high precision experiment, and in spite of the relatively limited

number of channels compared to other particle physics experiments, the amount of data

that is written, reconstructed, and analyzed is quite sizable.

The 24 homogeneous calorimeters are segmented as matrices of 54 crystals, each one

coupled with a SiPM, totaling 1296 channels each sampled at 800 MHz. The two tracker

stations are composed of 8 modules each, which in turn consist of 64+64 straw tubes

in a U-V plane configuration, totaling 2048 channels read out at 400 MHz. Each g − 2

event is defined as a stored bunch, which lasts for 700 µs. In this time interval, muons

circulate roughly 4500 times while decaying, producing ∼2000 hits on the calorimeters.

Raw files are called subruns, defined to be ∼2 GB in size, each one containing ∼8 seconds

of data and roughly 100 muon events (fills). Out-Of-Fill laser pulses fired to calorimeters

between one bunch and the next are saved as well. When the experiment is running (typ-

ically from autumn to spring), data is collected continuously, producing ∼12000 subruns

and 24 TB of data every day. Subruns are grouped into runs every ∼500 files, summing

to 1 TB size. Finally, the runs are assembled into datasets for production and analysis.

Typically, a dataset contains ∼ 100’000 subruns.

The current data collected in the first 5 years sums up to ∼7 PB. While some data-

quality selection is performed after production, most of the data is actually used for

the determination of aµ, as the goal of the experiment is to collect more than 1011 high

energy positrons (E > 1700 MeV and t > 30 µs) for a final statistical uncertainty of 100

ppb. In order to achieve this, roughly 10 PB of raw data (including simulation) must

be handled, produced, and analyzed entirely, granting the experiment a place in the Big

75
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Data category.

The vast amount of data to be processed is mainly due to the fact that for each

positron detected by the calorimeters, 9 SiPM waveforms are saved on average. Each

waveform is sampled at 800 MHz, and there are ∼40 12-bit samples per waveform [56].

All the detected positrons must be saved and reconstructed: even if the low-energy ones

do not contribute to the measurement of ωa, they participate in the pileup correction

and in the study of the systematics.

The raw data is processed in three ways with different purposes:

• online processing: a small fraction (∼ 10 − 50%) of data is analyzed on the

fly from the detector back-ends for generating Data-Quality-Monitoring (DQM)

purposes. Diagnostic and raw plots are generated for all the experiment detectors

and can be consulted on a live website using the plotly suite.

• nearline processing: all the acquired data is analyzed in a simplified reconstruc-

tion ∼30 minutes after acquisition and the main quantities of interest are plotted

on a website with the help of Bokeh [61] and a ROOT [62] visualizer. This is useful

for quick physics analysis during the fine-tuning of the experiment.

• offline processing: the complete and fully calibrated reconstruction of the data,

submitted on the distributed Open Science Grid with the management tool de-

veloped for Fermilab, Production Operations Management System (POMS) [63],

with a version-controlled art software [64]. This is what generates the reconstructed

output files used for the final analysis of the data.

4.1 Offline production workflow

The reconstruction of a dataset is a process that requires multiple sequential steps. A

single uninterrupted procedure is not possible as the calorimeters need to be calibrated

per subrun (a single raw file) and per dataset. For this reason, the production is split

into a pre-production phase and a full-production phase. Both phases start from the

raw files, but the pre-production only contains the minimum reconstruction needed for

the extraction of the calorimeter calibrations. For convenience, a series of per-fill Data

Quality Checks (DQC) are also performed at this stage.
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The full reconstruction can be broken down into 8 steps as illustrated in Figure

4.1: Pre-staging, Pre-production, Calibration and In-Fill DQC, Database upload and

migration, Test production, Test DQC and validation, Full production, and Final DQC.

A typical dataset contains ∼50k files, and there are 70 datasets from Run-1 to Run-5.

Starting from Run-2 the production was performed in a rolling scheme: each of the 8 steps

happening simultaneously on different datasets, like a typical manufacturing production

chain.

Figure 4.1: The 8 steps of the Muon g − 2 production.

4.1.1 Pre-production

The first step of pre-production involves copying the data from the tape system to the

disk cache. This pre-staging of the data is necessary as the amount of raw data is too

big to be always stored in disks. Moreover, ”on-the-fly” direct copying from tape to the

grid nodes would be extremely inefficient. As the amount of data to be reconstructed

substantially increased from Run-1 to Run-5, this step became increasingly important.

Careful planning is needed so that, while some datasets are being processed, the next

ones are in the prestaging phase and ready as soon as the previous ones are completed.

In addition, the tape system is shared among all the Fermilab experiments, and the

resources must be carefully distributed to avoid periods of competition.

After a dataset has been fully pre-staged, pre-production is performed. It consists

of an unpacking step followed by a light reconstruction of the positron data. At this

stage, only pulse fitting and minimal calibration is executed. Consequently to the pre-

production, analyzer jobs automatically run to extract gain calibration data and quality

checks of individual muon fills. The calibration constants and quality cuts are then

manually verified by calibration responsibles, before proceeding in uploading them to a

condition database. A fill passes the quality checks if it registered the laser sync pulse, if

the measured kicker strength and timing were nominal, and if the T0 detector measured
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a nominal beam profile.

The final step in the pre-production phase consists in uploading the extracted con-

stants and conditions to a development database and then migrating them to a production

database. These constants are stored as data and status tables, each marked with an

Interval of Validity (IoV) which can be a range of runs or subruns. The database is

accessed via a PostgreSQL interface, and when a subrun is reconstructed a https query

extracts the corresponding table from the production database.

4.1.2 Full-production

When pre-production and calibration is done, the dataset is ready to be fully produced.

Full production includes unpacking of raw data and full reconstruction of all detectors,

applying the calibration constants derived from the previous phase. Three independent

reconstructions for the calorimeters are executed.

Before starting the full production, a portion of approximately 10% of the files, uni-

formly distributed across the dataset, is reconstructed to detect potential problems.

Examples are miscalibrations, detector faults, software bugs, or changes in the experi-

ment configuration. A dedicated validation step is performed on the produced files and

many plots are generated to check for physical quantities, such as calorimeter energy

spectra, and anomalies in the calibration constants applied to the data. The different

reconstructions are compared with each other and long-term trends on the beam storage

efficiency are checked. Once the data quality is assessed by shifters and experts, full

production resumes on the remainder of the dataset.

Data quality checks

Finally, when all the files of a dataset have been produced, a second round of validation

is performed and cuts are applied to select high-quality files only. In particular, quality

tests include:

• number of positrons observed in a fill:

• number of muons interacting with collimators, or other obstacles, and exiting from

the storage region before decaying;

• intensity of beam at injection;
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• average fill-quality pass rate in a subrun.

Once this process is complete, typically ∼10% of the files are discarded while ∼99% of

the positrons are actually kept1. The selection of good files is finally delivered to the

analyzer teams.

4.2 Computing resources

The production of many petabytes of raw data requires a non-trivial amount of resources

and careful management of the whole process. This section will summarize the resources

needed for the production of the g− 2 data, the challenges faced and the lesson learned.

Most of the tools for managing the production processes are provided by the FabrIc for

Frontier Experiment (FIFE) project maintained by Fermilab [65]. These tools interface

with the tape libraries, the disk servers, the distributed computing, and the g − 2 data

acquisition back-ends.

4.2.1 Tapes and disks

As already mentioned in section 4.1.1, an important step is the handling of the data

itself. Both the raw and produced files are stored in tape libraries containing thousands

of 12 TB tape cassettes. Each file pertains to a file family meaning that different families

are not mixed in the same tapes. This ensures that, when a file family can be discarded

(i.e. obsolete data), the relative tapes can be recycled.

Figure 4.2: Data movement from DAQ to production. The pre-staging of raw files from
tape to the dedicated GM2 read pool is highlighted in red.

The data can be copied from tape to disks with samweb commands interfacing the

tape ENSTORE [66] system. The Muon g − 2 Experiment has a dedicated ∼1400 TB

disk pool for temporary storage of the raw data to be produced (Figure 4.2). All the

1Most of the discarded files are actually empty or have a very limited statistics.
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output from production goes to a general ∼7 PB pool and is copied to tape. A new

migration mode involving the dump of an entire tape at once recently helped us increase

the efficiency of the pre-staging step.

4.2.2 Computing nodes

The offline production of the data runs both on the Fermilab computing nodes and on

the Open Science Grid (OSG) distributed around the world. The Muon g−2 Experiment

has currently 5700 reserved slots in the Fermilab grid, where each slot consists of a CPU

core and 2 GB of memory.

4.2.3 Shifters

While the multi-step rolling production scheme mentioned in section 4.1 greatly improved

the production efficiency, the increased number of datasets required the organization of

production shifts. Setting up such shifts and providing the full documentation and the

correct instruction required a non-negligible effort by the production managers that I

contributed to coordinate.

4.2.4 Simulation

The simulation of the E989 experiment is an important piece of the physics analysis and

it is developed for studying the beam motion inside the storage ring. Many simulation

packages are used to simulate various parts of both the beamline starting from the

proton target and the storage ring and are described in Section 3.5. The simulation has

to consider electric and magnetic fields, the beam dynamics, the muon decays, and the

interaction with the detectors. This means to precisely track the particles over 220 km of

flight distance, which corresponds to ∼ 5000 turns inside the ring, traveled during the 700

µs storage duration. The most CPU-intensive parts of the simulation are performed with

the help of High-Performance-Computing (HPC) jobs at the National Energy Research

Scientific Computing Center (NERSC).

4.3 Outlook

The data production of the Muon g − 2 Experiment is a challenging but required task

for achieving a new world-best measurement of the muon anomalous magnetic moment.

The data grew almost 20-fold from the Run-1 publication to the current amount, which
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will allow a final statistical uncertainty of 100 ppb on aµ. During the last year, great

efforts successfully increased the resources, the production speed, and improved the man-

agement and the efficiency of the data production workflow.

The full-production step, which is the most resource intensive one, improved by a

factor of two between Run-2 and Run-3, and by another factor of two between Run-3

and Run-4, as shown in Table 4.1. Figure 4.3 shows the timeline of the full-production

iterations for the various datasets. Some of them have been produced multiple times

for testing or debugging the software. Dataset Run-4U was produced five times when

major upgrades were introduced in the g − 2 reconstruction code, one of which is the

new ReconITA reconstruction that will be presented in the next Chapter.

The E989 production team is now starting to produce the Run-5 data, and a new

production scheme is now being tested to perform the pre-production of Run-6 data

directly as soon as it is generated from the experiment.

Dataset N° of files Prod. time [days] Rate [files/day]
Run-2 267152 129 2071
Run-3 538622 122 4415
Run-4 992005 111 8937

Table 4.1: Full-production performance per aggregated dataset.
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Figure 4.3: Timeline of the production of all the datasets from Run-2 to Run-4. For
each data point, the red bar marks the elapsed time between the beginning and the
completion of the dataset. The dot and the error bars mark the median (50%), the 5%,
and the 95% percentiles completion points. Multiple data points on the same horizontal
line correspond to multiple productions of the same dataset. The blue, green, and orange
lines mark the beginning and the end of the Run-2, Run-3, and Run-4 final production
campaigns respectively. Only the full-production step is displayed here.



Chapter 5

The reconstruction of calorimeter

data

The measurement of the muon precession frequency is performed by observing the

positrons emitted by the muons when they decay. The set of 24 calorimeters described

in Chapter 3 has the purpose of measuring the arrival time and energy of the outgoing

positrons. A precise time measurement is necessary for the extraction of the preces-

sion frequency ωa, and a very stable energy measurement is required for determining

the selection of positrons according to the decay asymmetry. The positrons generate

electromagnetic showers inside the PbF2 crystals and the Čherenkov light produced by

the charged particles is collected by each crystal’s SiPM. The readout of each SiPM is

sampled and digitized at 800 MHz. The reconstruction of such signals is an important

step, having the goal of separating unique positrons and measuring their hit time and

energy precisely while maintaining a calibrated and stable detector across time.

This chapter will describe the entire process that transforms raw calorimeter pulses

into reconstructed positrons, as well as my contribution to several steps of this recon-

struction chain. A new procedure for fitting the raw pulses and assembling the positron

hits has been developed under the name of ReconITA.

5.1 Motivation

The ambitious goal of the Muon g − 2 Experiment is to measure the muon anomaly aµ

with a precision of 140 ppb. This requires having both statistical and systematic uncer-

tainties on ωa to be below the 70 ppb level. Such a level of precision and confidence in

83
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the measurement requires meticulous scrutiny of all the possible effects that could bias

the measured value of ωa.

The analysis of the first year of data (Run-1) saw 6 different teams independently

calculating the value of ωa, each utilizing a unique mix of reconstructions, analyses,

and data-driven corrections. These approaches, in spite of being strongly correlated,

have varying sensitivities to potential systematic effects, as well as varying statistical

sensitivities. Among the reconstruction techniques of Run-1, there are three main ap-

proaches. Two of them are based on the reconstruction of the individual positrons hitting

the calorimeters, whereas the third accumulates the total energy sum deposited in the

calorimeters.

Before discussing the motivation and the role of the new ReconITA approach, I will

briefly describe the three mentioned reconstruction techniques first.

5.1.1 The local method

As mentioned in Section 3.3, the calorimeters provide positron signals in the form of

digitized waveforms with a typical length of 50 ns (∼40 samples at 800 MHz). The

waveforms of each SiPM that received a sufficient energy deposit and the surrounding

ones are saved in the raw files.

The first reconstruction technique treats the signal from different SiPMs separately

and reassembles them into positron clusters after being calibrated in energy and time.

For this reason, it is called the local fitting method and will be referred to as ReconWest

(RW) because it was developed mainly by A. Fienberg at the University of Washington

[50]. The reconstruction chain involves the following sequential steps:

1. Pulse fitting

2. Time calibration

3. Energy calibration

4. Clustering

Step 1, pulse fitting, involves the preparation and the template fit of the waveforms. A

typical waveform is shown in Figure 5.1. First, a pedestal correction is applied to the

individual trace samples. The ADC converters (TI ADS5401) mounted on the custom

Waveform Digitizers consist of two interleaved ADCs each operating at half of the ADC
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sampling rate but 180◦ out of phase from each other. Therefore, half of the waveform

samples are digitized by one ADC and half by the other [56]. A small offset between the

two modules introduces an even-odd oscillation of a few ADC units (Fig. 5.1). These

offsets are measured and corrected once per Run and for each SiPM. Then, a template fit

procedure is applied to the pedestal-corrected traces. The pulse templates are extracted

with a dedicated analysis at the beginning of each data taking period, by using data

from dedicated calibration acquisitions. Signals from high energy positrons are accumu-

lated and the average determines the template shape [50]. Each trace can contain one

or more positron signals, and the fitting procedure tries to individuate and fit all of them.

Figure 5.1: Example of a digitized trace before and after the pedestal correction. The
small even-odd sample oscillation is introduced by the ADC converters.

Step 2, time calibration, takes care of the synchronization of the 1296 SiPMs and

the time alignment with respect to the beam injection. The Laser Calibration System

described in Section 3.4 is fundamental in this process, since a sync pulse, fired to all

crystals a few microseconds before injection, serves as a time reference.

Step 3, gain calibration, converts the raw energies extracted from the template fit

into physical MeV units. This step is composed of four sub-steps. The first three make

use of the laser signals to precisely stabilize the gain of the 1296 SiPMs across time.

The three corrections calibrate the channels at the O(10) ns, O(10) µs, and O(10) s

timescales respectively as described in Section 5.4. Finally, the energy is converted into

the absolute MeV scale, equalizing the response of all the different SiPMs.
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Step 4, Clustering, is the final stage, where hits coming from different SiPMs are

grouped together in a cluster representing a single positron. The positron time and

energy measurements are extracted from the cluster information. If hits from different

positrons are mistakenly grouped together in the same cluster, a pileup event is formed.

Such events are then treated at the analysis stage.

5.1.2 The global method

An independent team developed a new reconstruction algorithm based on the strategy of

looking at an entire calorimeter simultaneously instead of fitting individual crystals and

clustering them afterward. For this reason, it is defined as the global fitting approach and

will be referred to as ReconEast (RE) because it was mainly developed by D. Sweigart

at Cornell University [56].

In this approach, the algorithm simultaneously fits all the crystals, within a calorime-

ter, whose waveforms are generated roughly in the same time frame. Each positron with

an energy over a threshold of 60 analog-to-digital counts (ADC) above noise, corre-

sponding to approximately 50 MeV, is identified with a 3×3 cluster of crystals. The

pulse magnitude for each crystal pulse floats independently in the fit, but the peak time

is constrained for each crystal to be at the same value. Clusters that share one or more

crystals must be separated by at least 1.25 ns; otherwise, they will be merged into one

larger cluster and treated later during analysis. This approach also inherently imposes

spatial separation between positrons that hit a calorimeter very close in time, thus re-

ducing the amount of pileup contamination.

5.1.3 The integration method

A third independent reconstruction aims to measure ωa by not identifying individual

decay positrons but combining the raw crystal waveform samples into contiguous 75 ns

windows [67]. This integration approach will be referred to as the QMethod since the

final product is a measure of the deposited charge in the calorimeters versus time. The

time-rebinned waveforms span a time period of -6 µs < t < 231 µs relative to the beam

arrival time. The reduced time range and increased time binning were chosen to limit

the rate and volume of the integrated energy data.
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Ideally, a simple sum of the waveforms over the 54 crystals from a calorimeter would

yield the integrated energy waveform for that calorimeter. As Figure 5.2b illustrates,

while positron pulses appear clearly in a single waveform, the slow recovery of the

pedestal dominates the signal. A threshold is therefore applied to separate the positron

signals from the baseline as shown in Figure 5.2a, after the same gain corrections de-

scribed for the event-based approaches are applied to the data.

The QMethod has the benefit of being immune to the systematic effects given by the

pileup contamination, but has a lower statistical power because of the reduced measure-

ment time window and the inclusion of low energy pulses with negative decay asymmetry.

(a) (b)

Figure 5.2: (a) Diagram illustrating the pedestal calculation algorithm and the appli-
cation of the threshold for the threshold integrated energy waveforms. (b) Integrated
signal for one crystal (top), the corresponding signal sum over all crystals for an entire
dataset (middle), and the final pedestal-removed signal (bottom). Figures from [68].

5.1.4 ReconITA

The Run-1 ωa measurement has an error vastly dominated by the statistical uncertainty,

as will be discussed in Chapter 8. Some considerations and decisions on the techniques

used for the Run-1 analysis were based on that fact. However, Run-1 is only ∼5% of

the currently acquired data, and with the much higher statistics of Run-2, Run-3, and

beyond, the systematic errors will contribute increasingly more. It is then important to

improve the reconstruction and analysis algorithms and study with great detail effects

which were negligible in Run-1.
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Prompted by this motivation, the Italian group started the ReconITA project, of

which I led the software development, with the goal of reducing some of the system-

atic errors, in particular those who fall under the category of Pileup contamination and

Early-to-late effect in Table 5.1.

Pileup is one of the major components, and is due to the contamination of double

or triple positrons in the same reconstructed event. The ReconITA approach aims at

reducing the amount of pileup contamination in the data by increasing the positron sep-

aration efficiency, while also improving the pileup subtraction technique, thus reducing

drastically this systematic error.

Then, the Early-to-late effect is a systematic uncertainty that was introduced be-

cause of residual effects seen in the data whose nature was not completely understood.

A reconstruction effect is among the possible explanations, and the ReconITA approach

also aims at understanding and possibly removing this source of systematic error. More

details on this matter will be discussed in Section 7.6.

Finally, the underlying purpose of the ReconITA project is to have a different ap-

proach on some of the key parts of the positron reconstruction chain, developing an

independent reconstruction and analysis procedure, and building more confidence in the

final E989 ωa measurement.

Uncertainty Run-1A Run-1B Run-1C Run-1D
Time synchronization 4 1 1 1
Gain corrections 12 9 9 5
Pileup contamination 39 42 35 31
Beam dynamics 42 49 32 35
Early-to-late effect 21 21 22 10
Hit randomization 15 12 9 7
Total systematic uncertainty 64 70 54 49

Table 5.1: Systematic uncertainties of the ωa measurement for the four subsets of Run-1.
All values are in parts per billion.

Outline

The main contributions of the ReconITA reconstruction regard the first and last steps of

the local fitting method, listed in Section 5.1.1. The pileup separation efficiency for very
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close positrons is limited by the pulse fitting performance in distinguishing two signals

at very low δt. If two almost simultaneous positrons hit a calorimeter in the same region,

the two signals affecting the same crystal might be too close to be properly characterized

by the template fitting routine. For this reason, the local fitting algorithm implements a

2 ct artificial dead time after each fitted pulse [50]. This means that the template fitter

cannot separate two pulses closer than 2.5 ns.

The ReconITA solution to this problem is to redo the pulse fitting after the first

reconstruction round has been completed, taking advantage of the reconstructed clusters

to constrain the time of the fitted pulses. In this way, signals closer than 2.5 ns that

could not be correctly distinguished in the first reconstruction, can then be separated

thanks to the time information coming from the other surrounding crystals. Then, when

the clustering algorithm is applied again at the end, it can further separate positrons at

very small δt while being robust in accurately reconstructing their energies.

The ReconITA reconstruction software starts from the output of step 3 described in

Section 5.1.1 and perform its own clustering algorithm. Then, the raw traces are passed

through the new pulse fitting algorithm with constrained peak times obtained from the

clusters, in search of hidden pulses. These new hits are then calibrated in time and

energy and a final round of clustering is applied. Figure 5.3 sketches this process. The

details of each step will be discussed in the following sections.

Figure 5.3: ReconITA flow diagram for reconstruction (green) and analysis (red). Our
algorithm is appended at the end of the ReconWest reconstruction.
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5.2 Pulse Fitting

The local-fitting approach only looks at one SiPM at a time, searching for over-threshold

signals and fitting the traces with one or more templates depending on the observed

number of pulses. The threshold is fixed at 75 ADC*ct, which corresponds to roughly

25 MeV, depending on the crystal1. The algorithm also performs noise suppression by

removing the periodic pulses in the SiPMs which are sometimes produced by a 160

MHz noise oscillation of the baseline [56]. In addition, if two subsequent waveforms

belonging to the same SiPM are sufficiently close in time, the template fits are repeated

by propagating the first pulse into the second waveform (Figure 5.4).

Figure 5.4: Example of a chain fit containing waveforms from two separate time windows
and three pulses. The baseline perturbations from the first pulse persist into the second
time window, in which two pulses separated by 5 ns are identified. Figure from [68].

One of the fitter parameters that can be tuned is an Artificial Dead Time (ADT),

set to be 2 ct (2.5 ns), which essentially makes two pulses closer than this value indistin-

guishable by construction as anticipated in Section 5.1.4. This was introduced to limit

the cases where small distortions of the waveform could lead to a double-pulse fit when

only one signal is actually present.

In order to increase the pileup separation efficiency, which also heavily depends on

the clustering algorithm, the ReconITA pulse fitter tries to decrease the dead time. The

1At the time of writing this thesis, the local approach has been upgraded to use thresholds which
vary according to the SiPM gain. The new data reconstructed with this upgrade has not been fully
analyzed yet.
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time information given by the cluster reconstructed during the first round is used to con-

strain the time of one of the possible pulses present in the waveform. The template fitter

then tries to find another pulse, with floating time, in the same waveform. However,

a small but non-zero dead time has to be applied in any case, as a fit of two perfectly

overlapping pulses would result in an indeterminacy of the two energies since the same

template shape is used for both. The same technique is also applied when two nearby

clusters were already successfully separated by the first reconstruction, in search of pulses

belonging to the second cluster that were hidden by the tails of the first cluster pulses.

The most energetic hit of a cluster is used as a time reference for constraining the

fit of the other hits pertaining to the same cluster and will be referred to as the seed.

This choice is motivated by the distribution of the time distance of the cluster hits with

respect to the most energetic one, shown in Figure 5.5, which is strongly peaked at

∆t = 0. In addition, the most energetic hit is the one that provides the most precise fit

parameters because of the higher signal-to-noise ratio.

Figure 5.5: Time distribution of the individual hits with respect to the most energetic
pulse in a cluster. Clusters at the end of the fills are selected to minimize pileup con-
tamination. The most energetic pulse at ∆t = 0 is omitted.

The algorithm then proceeds in performing a template fit with two pulses, one con-

strained to the seed, the other free to float. The constraint is not rigid, as is it applied
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as a parabolic term added to the χ2 calculation of the fit:

χ2 =

[
N∑
i=0

(
y(i)− f(t1, t2, E1, E2)

yerr(i)

)2
]
+

(
t1 − tconstraint
σconstraint

)2

(5.1)

The width of the quadratic term is determined by the parameter σconstraint which is set

to 0.1 ct according to the cluster hit time distribution of Figure 5.5. Figure 5.6a shows a

comparison between a standard and weighted χ2 scan, while Figure 5.6b shows an event

in which the two pulses are correctly separated by ReconITA, whereas they are merged

by the standard algorithm.

(a) (b)

Figure 5.6: (a) Scan of the χ2 function versus t1, the time of the constrained peak.
(b) Example of an artificial island with two pulses separated by 1.8 clock ticks. The
ReconITA fitter manages to correctly identify both peaks.

When the ReconITA algorithm fits two pulses, they are not always accepted as phys-

ically valid. Four criteria determine whether a trace contains two peaks:

• Time separation of at least 0.5 clock ticks

• Absolute energy of at least 75 ADC*ct (∼25 MeV)

• Relative energy of each pulse above a varying threshold T (E)

• Ratio of energies above a time-varying threshold T (∆t)

The first one is an Artificial Dead Time, introduced because of the previously mentioned

indeterminacy of the energies for overlapping pulses, but lowered to the value of 0.5 ct

(0.625 ns) with respect to the standard algorithm. The second one is the minimum energy

that can be extracted for each pulse, and has been chosen to be the same as the local
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approach for consistency. The third and fourth criteria determine if the non-constrained

pulse is physical or not. For example, waveform distortions introduced by noise could

generate fake pulses. The next two paragraphs will discuss the last two criteria.

5.2.1 Simulation studies

A dedicated study was performed on artificially constructed waveforms to determine

whether the result of a double-pulse constrained fit generates fake pulses and to con-

struct a criterion to suppress such cases.

First, artificial traces are constructed by adding a single pulse template to a baseline

(pedestal). The trace is sampled at 800 MHz frequency (1.25 ns per sample) and then

each trace point is smeared according to a Gaussian distribution with mean µ = 0 and

variance σ(t, E), which depends on the time distance from the peak and energy of the

pulse. The variance σ(t, E) has been extracted by analyzing real positron pulses from a

sample near to the end of the beam storage time of 700 µs where pileup contamination is

at minimum. From these events, the difference between the observed trace and the fitted

pulse is analyzed. Figure 5.7a shows the fit residual distribution from the sample, aligned

at the pulse peak for t = 0. The time variance of the distribution is extracted for each

time slice of width 0.1 ct and for each energy value of the pulse. Figure 5.7b shows the

trace variance distribution as a function of energy from 0 to 6000 ADC*ct (≈ 2000 MeV).

(a) (b)

Figure 5.7: (a) Fit residual of a template fit of a single pulse waveform. The pulse peak
is centered at t = 0, and the values on the y-axis are in ADC counts. (b) Fit residual
variance σ(t, E) as a function of pulse energy and trace sample time.

The artificial traces are then fitted with the ReconITA algorithm by fitting for two
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pulses according to Equation 5.1, with one pulse free to float starting at t1 = 0 and

one constrained to be at an arbitrary t2 ̸= 0. As the artificial traces contain only one

real pulse, the energy of the fitted pulse at t2 can be used to construct a criterion to

individuate fake pulses. Figure 5.8 shows the energy distribution of the second (fake)

pulse for different energy ranges of the first (true) pulse, when |t2 − t1| = 2 ct. The

energy is observed to depend on the energy of the true pulse.

Figure 5.8: Energy distribution of the fake pulse found by a constrained fit at t2 = 2 ct,
for different energy ranges of the real pulse at t1 = 0. Courtesy of L. Cotrozzi.

By defining the endpoint En as the energy corresponding to the n-th percentile of the

distribution, a cut such that only energies E2 > E99(t, E1) are considered ensures that

99% of the fake pulses are discarded from the output of the ReconITA fitter. Applying

an energy threshold defined as:

min(E1, E2)

E1 + E2

> λ , (5.2)

the parameter λ can be tuned to minimize the amount of fake pulses being created by

the ReconITA fitter while maximizing the amount of true pileup separation.

Figure 5.9a shows the fraction ϵ1 of traces in which a fake pulse passes the energy cut

of Equation 5.2 as a function of λ. The traces are divided into groups according to the

total fitted energy E1 + E2, which is a proxy for the trace integral. The lowest value of

λ which keeps the ϵ1 value below the percent level strongly depends on the total energy

of the trace.
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A second study is performed by constructing a sample of artificial traces with two

pulses, one at t1 = 0 and one, t2, distributed uniformly in the [−3,+3] ct range. For

both pulses, the energies are assigned randomly according to the observed crystal energy

spectrum from real isolated positrons. The trace is smeared according to Figure 5.7b.

The ReconITA fitter is then applied with one pulse free to float starting at t1 = 0 and

one constrained to be at t2. The fraction of traces in which the fitter is able to separate

the two pulses is defined as ϵ2. This efficiency depends on the λ cut described above and

is shown in Figure 5.9b. For the same value of λ, an higher pulse separation efficiency is

achieved for lower energy values.

The two parameters ϵ1 (false positive rate) and ϵ2 (true positive rate) are compared

as a function of λ to form the ROC curves shown in Figure 5.10a. The chosen values for λ

in the pulse fitter criterion are those who maximize the pulse splitting efficiency ϵ2 while

keeping ϵ1 < 10−3, which is to allow a fake pulse for every 1000 fits. The λ(E) value as

a function of energy is shown in Figure 5.10b and is fitted with an exponential function.

The result is the energy threshold T (E) = λ(E) mentioned in the third criterion.

(a) (b)

Figure 5.9: Fraction ϵ1 of traces where a fake pulse is extracted (a) and pulse separation
efficiency ϵ2 of two real pulses (b) as a function of the threshold parameter λ. The total
energy of the two fitted pulses E1 + E2 is color-coded. Courtesy of L. Cotrozzi.

5.2.2 Data-driven tuning

A first version of the fitter is tested on the positron data by applying the first three criteria

listed in Section 5.2. To test whether the number of fake pulses matches the expected

value of ϵ1 = 10−3, a sample of clusters at the end of the muon fill is selected. The

sample does not have pileup contamination and each positron is sufficiently separated
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(a) (b)

Figure 5.10: (a) ROC curve obtained by comparing 1− ϵ1 and ϵ2 as a function of λ. (b)
Best value of λ which keeps ϵ1 < 10−4 as a function of the sum of the two fitted energies
E1+E2. The exponential fit defines the selection criterion for constrained fits. Courtesy
of L. Cotrozzi.

from the next one in the same calorimeter. The number of pulses which get split by the

fitter is found to be ∼ 3%, of which ∼ 1.2% were already introduced by the ReconWest

fitter. All of these are fake pulses, with a typically low energy (E < 400 MeV), and an

additional cut is set to remove them.

For each time distance |t2 − t1| between the two pulses in the same crystal, the 99th

percentile of the E2/E1 distribution is found and shown in Figure 5.11, where E1 and

E2 are the energies of the first and second pulses respectively. An exponential fit is then

performed to define the new and fourth criterion listed in section 5.2, so that the Re-

conITA fit is rejected in the cases where the energy ratio is below the fitted exponential

function. The same study on real data is repeated with the full set of criteria and the

fraction of fake pulses introduced by the ReconITA fitter is reduced to ∼ 0.07%.

5.2.3 Multi-cluster fitting

The procedure and selection criteria described in the previous sections help separate

positrons which are very close in time and produce overlapping peaks in the same SiPM

trace. The same procedure is used to find additional pulses in two well separated clusters

within the same waveform. The ReconWest algorithm uses different pulse thresholds for

the highest peak in a trace and the other peaks found in the residual of the first [50].

This helps reducing fake hits coming from fluctuations in the pulse tail and from periodic

noise. Thanks to the clusters information, a double pulse fit can be performed on every

trace, constraining both pulse times to be at the two cluster times respectively. An

example is given in Figure 5.12. In such cases, only the first two criteria (δt > 0.5 ct,
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Figure 5.11: Distribution of the 99th percentile of the E2/E1 ratio versus time separation
for the fake pulses. The fitted exponential is used to define the fourth pulse rejection
criterion. Courtesy of L. Cotrozzi.

E > 75 ADC*ct) are used to select the physically-plausible fit results.

Figure 5.12: Two separated clusters populating the waveforms of some crystals at times
t1 and t2. The two times are used to constrain the double pulse fits. The red pulse was
too small to be fitted by the ReconWest method (the amplitude is exaggerated in this
sketch), but recovered with the ReconITA constrained fit.

The simultaneous fitting of two clusters has proven very effective in recovering hits

that would otherwise be hidden by the tails of a preceding pulse. Figure 5.13 shows the

distribution of δt between consecutive hits in the same crystal. Since two consecutive

positrons are independent with respect to each other, the distribution should be flat

at short timescales. The ReconWest distribution shows a decrease in the observed hits

in the [0,40] ct region corresponding to the length of a typical trace. A sharp peak at

∆t ≈ 3 ct is also visible, and is due to a small fraction of fake hits being fitted as part
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of the tail of the first cluster. This will be discussed in more detail in Section 5.5. On

the other hand, the ReconITA distribution is flatter and proves to recover the missing

hits in the [0,40] ct range. A sharp peak at ∆t ≈ 1 ct is still visible, and is due to the

small residual number of fake pulses generated by the new fitter. It is to be noted that

the height of the peak is proportional to the number of total positrons, while the flat

baseline is proportional to the much smaller number of double coincidences, so a direct

comparison between the two features is not significant.

Figure 5.13: Distribution of double hits in the same SiPM, where the first hit is placed
at t=0 ct. ReconWest (blue) and ReconITA (red) are compared. The missing hits in the
[0-40] ct region, which is the average waveform length, are well recovered by ReconITA.

The hits that are recovered by this technique have low energy and are mostly E < 100

MeV, as expected. However, the probability of having a missed pulse because of a

preceding positron decreases as half of the muon lifetime, since the probability of having

two positrons in the same waveform is proportional to the square of the positron rate ρ:

ρ(t) ∝ e
− t

τµ → ρ2(t) ∝ e
− t

τµ/2 (5.3)

Given the shorter lifetime, the missing energies could produce an early-to-late effect

leading to a bias in the measured ωa. Such effect will be described in more detail

in Section 7.3.4, and it is partially fixed by the ReconITA approach as demonstrated

in Section 7.6. It has to be noted that a newer version of the ReconWest algorithm

addresses this issue as well, but it was not yet analyzed.
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5.2.4 Pulse fitting software

The pulse fitting software is composed of two main pieces:

• a C++/ROOT standalone library named ConstrainedFitter which is responsible

of fitting one or more pulses given a trace and the initial guesses and constraints;

• a C++/art producer module named ClusterFitter which interfaces with the art

data and orchestrates the pulse fitting of all the clusters in a single muon fill.

The art producer module sorts the clusters in time and by calorimeter, extracts the

raw traces, and performs the pulse fits.

Since the ReconITA pulse fitter performs a second fitting round after the first Recon-

West estimates, it is not necessary to re-fit every single pulse. For example, at the end of

the 700 µs long fill the rate of positron decays is so low that near-pileup events - which

ReconITA targets - are extremely rare. Therefore, most of the clusters are expected

to remain untouched. Because of this, the ReconITA module actually recycles most of

the ReconWest hits, and replaces the smaller percentage (∼ 0.1%) that actually gets

modified.

The crystal hit islands are chopped with a typical length of ∼40 ct, and the pulse

fit is calculated over this length. However, the pulses produced by the SiPMs last much

longer, with an oscillating tail visible, although small, up to 250 ct after the peak [50].

The ReconWest fitter, analyzing one crystal at a time, performs contiguous fits over

separated islands when two pulses are found closer than 250 ct. The ReconITA fitter

operates over single (or pairs of) clusters at a time, ignoring what happens before and

after the event during the fit routine. To remove the tails belonging to preceding hits, the

pulse traces of the original ReconWest present before the event that is being currently

fitted are subtracted. Since the long tail is present only after the peak, there is no need

to subtract the hits present after the fitted event.

The use of a constrained time in the pulse fitter requires that the crystals belonging

to the same calorimeter are perfectly synchronized. The time synchronization step is

normally applied to the hits after the pulse fitting in the local approach. In the Re-

conITA software, the time correction is temporarily applied to the traces before the fit

is performed.
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Finally, after performing the constrained fit, either the original hits or the newly

constructed hits get saved in the output according to the selection criteria described in

the previous sections.

Software performance

The ReconITA software has been included in the official production workflow of the

experiment. Being an independent reconstruction program, it inevitably requires addi-

tional time, memory, and disk resources. The code has been optimized to be efficient

and to run the pulse fitting over the minimum number of traces necessary.

The same reconstruction chain is applied independently over each of the 24 calorime-

ters. This is a typical process that can easily be optimized with multi-threading. The

code has been written with that parallelization, but unfortunately it cannot be fully

exploited when running over the FermiGrid or OpenScienceGrid because a single core is

allocated to each job. This is because grid slots are composed of one core and 2 GB of

memory. Running with 24 cores would dramatically decrease the experiment efficiency

as 48 GB of memory would be allocated while being unused, and, since most of the work-

flow cannot be parallelized anyway, 23 of the allocated cores would be rendered useless.

To reduce the processing time, a pre-selection is applied to run the fitter over the

bare minimum number of clusters. All the clusters before 25 µs and after 750 µs are

ignored, as the ωa analysis is typically performed in the [30,700] µs range. Since the

decay rate is exponential, the first [0,25] µs range would contribute significantly to the

number of reconstructed positrons.

Then, clusters containing one single hit that are well separated from the others are ig-

nored too, as there is not enough information to perform a significant constrained fit.

Finally, groups of four or more clusters are not processed, as the algorithm is not yet

well suited for such complicated configurations. However, the probability of having four

or more clusters within a few clock ticks in the same calorimeter is extremely rare and

decays with a fast lifetime of γτµ
4

= 16.1 µs.

Figure 5.14 shows the impact of the ReconITA reconstruction chain on the time

and memory resources. The slight increase of both has been approved by the offline

production team of the Muon g−2 Experiment, and the ReconITA reconstruction is part

of the official output starting from Run-4 data. Newer improvements in the production
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flow actually reduced significantly the memory usage, shifting the peak far from the 2

GB mark, which is the limit of individual grid slots.

(a) Processing time (b) Memory usage

Figure 5.14: Time and memory usage for the calorimeter reconstruction with (red) and
without (blue) ReconITA. The large time variability depends on the specific CPU models
used by the grid jobs.

The last performance parameter that must be taken care of is the size of the out-

put on disk. Adding a new reconstruction means saving bigger files too. Even though

the experiment saves both raw and reconstructed data on tapes with high capacity, the

number of files of the Muon g − 2 Experiment is in the order of millions (from Run-1

to Run-5 there are ∼3.5 million raw files). Therefore, a small increase of few megabytes

per file can easily result in hundreds of additional terabytes of needed storage.

Without going too much into the details of how art works, it is sufficient to know that

every time a calibration or fitting module (producer) creates or applies some modification

to the crystal hits, a new dataproduct containing all the crystal hits is saved in the output

file. The various ReconWest fitting and calibration steps that convert the raw traces into

final clusters sum up to 315 MB. This is ∼20% of the size from calorimeter data. The

similar steps for ReconEast have a size of 845 MB (∼54%) and ReconITA finally adds

109 MB (∼7%). The three reconstructions constitute ∼57% of the total output file size.

The small footprint of ReconITA is achieved by dropping the intermediate calibration

dataproducts from the output. Since most of the crystal hits are actually identical to

the ReconWest fit results, it would be useless to keep all the redundant data. For this

reason, only the fit results and the final hits are saved.

Without the intermediate steps, however, the art dataproducts lose the provenance in-

formation, which is the link between a dataproduct and its previous version. To provide
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for it, I developed a linker module which saves the connections between the first and last

dataproducts, as shown in Figure 5.15.

Figure 5.15: Workflow diagram of the calorimeter reconstruction. The top row is the
ReconWest chain, starting with the islands containing the raw traces and ending with
the cluster dataproducts. All the other blocks are part of the ReconITA reconstruction,
which produces two versions of clusters (RITA1, RITA2 ), both before and after the
complete refitting of the traces.

5.3 Time calibrations

A precise measurement of the muon precession frequency, ωa, requires that all the 1296

SiPMs that compose the calorimeters, and in particular those within the same calorime-

ter, must be precisely synchronized in time. As pulse fitting and clustering algorithms

approach the sub-nanosecond scale, it is necessary to have the hits aligned with greater

precision.

The Laser Calibration System described in Section 3.4 fires a synchronization pulse

to all calorimeters and the T0 detector few microseconds before the injection of every

beam bunch. This pulse is used to correct for the exact moment the individual digitizers

start their clocks with respect to the beam injection, while also setting the absolute time

reference for the beginning of each fill.

Dedicated studies using both muon and positron calorimeter data are performed once

per Run period to extract the relative synchronization between different SiPMs. Syn-

chronization among calorimeters is achieved by observing the signal deposited by lost
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muons in two consecutive calorimeters. The synchronization of the crystals in the same

calorimeter is achieved using the positron events, assuming that the energy deposition

from a single positron is simultaneous in all the crystals.

With these techniques a precision of ∼100 ps can be achieved, being limited by the

time spread of electromagnetic showers within a calorimeter. This value is much smaller

than the sampling frequency, which is one sample every 1.25 ns, and it is highly repro-

ducible at the level of ∼10 ps among different Runs throughout the data taking period.

The time correction for an individual pulse is then applied as:

tcorrected = traw − δt , (5.4)

δt = tsync + tT0 + δtSiPM + δtCalo , (5.5)

where tsync is the laser sync pulse, tT0 is the beam arrival time as measured by the T0

detector, and δtSiPM and δtCalo are the time corrections for the SiPMs within a calorime-

ter and between different calorimeters respectively. Figure 5.16 shows the distribution

of δtSiPM for a calorimeter.

Figure 5.16: Time corrections for the synchronization of the SiPMs belonging to the
same calorimeter. The three different groups of columns correspond to the different fiber
lengths bringing the laser light to the front face of the calorimeter [69, 70].
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5.4 Gain calibrations

The energy of the fitted hits is, at this point, uncalibrated. A constant gain response

of the detector is crucial for the determination of the ωa precession value. Any time-

dependent variation in the energy response causes an effective change in the detector

acceptance, thus changing the number of positrons entering the histogram across time.

The phase term ϕ of Equation 2.20 as measured by the calorimeters depends on the

positron energy:

N(t, E) = N(E)e−t/τµ [1 + A(E) cos(ωat+ ϕ(E))] . (5.6)

This dependency will be explained in more detail in Section 7.2.2. Therefore, any vari-

ation in the energy response of the calorimeters induces a variation in the measured

phase:
dϕ

dt
=

dϕ

dE

dE

dt
(5.7)

By writing the phase as a Taylor expansion in time:

ϕ(t) = ϕ0 +
dϕ

dt
t+O(t2) , (5.8)

then any energy variation dE
dt

̸= 0 leads to a direct bias on the measured ωm
a :

ωat+ ϕ(t) =

(
ωa +

dϕ

dE

dE

dt

)
t+ ϕ0 = ωm

a t+ ϕ0 . (5.9)

The fluctuation of the calorimeter gain was the leading systematic uncertainty in the

BNL E821 experiment, with a value of 120 ppb [41]. The new Laser Calibration System

built by the INFN-INO group for the new E989 experiment at Fermilab was specifically

designed to reduce this systematic uncertainty. I contributed building and operating the

system, as well as extracting the gain corrections that will be described in this section

for all the data taking periods.

The laser system allows to precisely monitor and correct the calorimeters gain fluc-

tuations. In order to keep the gain-related uncertainty below the design value of 20

ppb[49], a gain equalized at the O(10−4) level in the 700 µs timescale of a fill, and at the

O(10−2) level over the entire data taking period must be achieved [52].

Three types of gain correction are extracted for each SiPM using the laser calibration sys-

tem, and then applied to the reconstructed crystal hits. Each one covers the fluctuations
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at different timescales:

• Short-Term Correction: this correction is applied when two or more positrons hit

the same crystal in the nanosecond timescale;

• In-Fill Correction: used to equalize the calorimeter response within a fill. It mostly

corrects for the effects due to the splash of particles caused by the beam injection;

• Long-Term Correction: temperature variations and environmental changes in gen-

eral modify the SiPM gain. Although in principle these slow-changing fluctuations

do not bias the measured value of ωa, it is preferable to have a uniform response

throughout the entire data taking.

Finally, an absolute calibration of the detectors, while not directly affecting the mea-

sured value of ωa, evens out the response of one calorimeter and enables an equal treat-

ment of all calorimeters. This calibration is extracted from the signals produced by the

muons that exit the nominal orbit prematurely and hit the calorimeters before decaying.

These are called lost muons and produce a MIP-like signal in the calorimeter crystals.

5.4.1 Short-Term correction

The gain of a SiPM is a function of the bias over-voltage, Vb. When a positron hits a

calorimeter and a Čherenkov photon hits a SiPM, a charge avalanche is initiated. A

quenching resistor arrests the flow of current by dropping the effective bias below the

Geiger threshold. The drop in Vb is proportional to the size of the charge pulse and

thus proportional to the SiPM gain [55]. The SiPM behaves like a charged capacitor

and shortly after the avalanche has ended the charges are replenished by the frontend

electronics. This happens in the scale of O(10) ns, which is the same timescale at which

two positrons must be carefully separated in order to reduce pile-up. As a consequence,

a second positron hitting the same crystals within this time range will be reconstructed

with a reduced gain, thus biasing the energy measurement (Figure 5.17). The effect is

related to the average of number of pixels that fire per positron, which is proportional

to the particle energy.

This effect can be precisely measured with the Laser Calibration System by using

the so-called Short Term Double Pulse (STDP) technique. The laser is operated in the

double-pulse mode (Section 3.4) with two lasers firing toward the same SiPMs with ad-

justable intensity and time delay. Before the beginning of each long data acquisition
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Figure 5.17: Example of the effect of one signal to the next one. The two pulses have
the same energy, but the second is measured to be lower because of the reduced SiPM
gain. The effect has been artificially amplified in this example for easier visualization.

period, right after the calorimeters are turned on and calibrated, a dedicated laser cam-

paign is performed to extract this STDP correction. The campaign is then repeated in

the middle and at the end of the run for consistency checks. Each campaign consists of a

series of measurements taken by scanning time delays from 0 to 100 ns and varying the

energy of the first pulse by using four different neutral density filters (Filter Wheels).

The fully automated sequence is repeated twice: the first time the odd (1,3,5) lasers are

pointed, by using movable mirrors, to the calorimeters calibrated by the even (2,4,6)

lasers. The odd lasers are used to provide the second (test) pulse. This allows to test

half of the calorimeters. Then, the role of odd and even lasers is inverted.

In these dedicated campaigns, double-pulses and single pulses are fired in an alternat-

ing sequence (Figure 5.19). When a double-pulse event is present, the first pulse induces

the gain drop on the second one, whereas in the single-pulse events the first pulse is

absent and the second unaffected pulse is then used as a reference.

The STDP effect on the second pulse is observed as a gain sag with exponential shape

(Figure 5.18). The amplitude is directly proportional to the energy of the preceding

pulse, while the lifetime remains constant and characteristic of each individual SiPM.

The STDP correction is therefore:

E ′
2 =

E2

G(∆t, E1)
; G(∆t, E1;P1, τ) = 1− E1 · P1 · e−∆t/τ , (5.10)
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Figure 5.18: Example for one SiPM of the gain sag as a function of time separation ∆t.
The four different Filter Wheel combinations are plotted together. A lower value for the
first filter wheel (black points) means a higher transmittance, hence a more energetic
pulse on the SiPM and a bigger gain sag.

Figure 5.19: Pulsing scheme of the Short Term Double Pulse study.

where E1 is the energy of the first pulse, P1 is a proportionality constant, and τ is the

recovery lifetime. Each energy setting is fitted with an exponential function and the

(P1, τ) parameters are obtained from linear fits to the four energy configurations (Figure

5.20).

Temperature dependence

The STDP effect is related to the bias voltage, which in turn is sensitive to temperature

variations. It is then possible that the STDP effect can sensibly change in magnitude

between the start and the end of each 8-months acquisition periods. For this reason,

a shorter STDP campaign is performed approximately every three days, in coincidence

with the trolley field measurements described in Section 2.4. The Trolley-STDP cam-

paigns are shorter than the complete STDP campaigns performed to extract the nominal

(P1, τ) parameters and consist of a single energy configuration. It is, however, sufficient

for monitoring long term trends.
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Figure 5.20: Extraction of the P1 (left) and τ (right) parameters from the four Filter
Wheel combinations. The amplitude and lifetime parameters are plotted against the
energy E1 of the first pulse in the double-pulse pair.

Figure 5.21: Averages of the P1 parameter versus the SiPMs temperature, as measured
in 8 Trolley-STDP campaigns taken during Run-2. The fitted slope is ∼5 %/◦C.

The analysis of these periodic campaigns shows that the STDP amplitude scales

linearly with temperature. The P1 parameter increases, on average, by ∼5 %/◦C (Figure

5.21). As a consequence, Equation 5.10 is modified as follows:

G(∆t, E1, T ;P1, τ, α, Tref ) = 1− E1 · P1 · (1 + α (T − Tref )) · e−∆t/τ , (5.11)

where α is the temperature scaling factor, T is the temperature of the calorimeter in

a given run, and Tref is the temperature reference value taken during the initial STDP

campaign.

The temperature effect has been measured and corrected for the Run-2 period only.



Chapter 5 | The reconstruction of calorimeter data 109

Figure 5.22: Average temperature of the SiPMs in Run-1, Run-2 and Run-3. The high
stability from Run-3 is given by a new hall cooling system.

The effect has been discovered after the Run-1 analysis was completed and a systematic

error was assigned to the latter. During the summer between Run-2 and Run-3 a new

hall cooling system has been installed. From Run-3 onward the calorimeter temperature

is stable at the ±0.3 ◦C level, so that a dedicated correction is no longer needed (Figure

5.22).

5.4.2 In-Fill correction

In the first few microseconds after beam injection, the calorimeters are temporarily

”blinded” by the splash of particles that accompanies the muon beam. These particles

quickly exit the storage region and mostly deposit their energy in the first calorimeters

after the injection point. Then, between the start of the measurement period (30 µs)

and the end (700 µs), the muon decay rate drops by more than four orders of magnitude

because of the 64.4 µs lifetime. These transient effects contribute in generating an in-fill

time variation of the SiPMs gain.

Correcting for this gain fluctuation is of crucial importance, since any in-fill effect di-

rectly biases the ωa measurement as explained in section 5.4 and equation 5.9.

To measure the in-fill gain correction, laser pulses are fired during a fill at different

times from the injection. In order to minimize the effect of the laser on normal data

taking, only four pulses, 185 µs apart, are shot within the fill. In addition, the laser is

fired once every 11 fills. These four pulses are then shifted by 2.5 µs each following fill
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in order to cover the full range from 0 to 800 µs in 93 steps. The ranges covered by two

adjacent pulses slightly overlap. This pattern has been slightly changed during Run-3,

decreasing the shift to 1.5 µs, the distance to 162 µs and increasing the number of step

to 117.

For the analysis of Run-1, Run-2 and Run-3 data, the fills containing laser pulses are

not considered for the ωa analysis. Although the laser pulses can be easily identified by

looking for more than 50 simultaneous hits above 1 GeV in a calorimeter, they affect

the detector response to the upcoming positrons. A careful analysis will be carried out

for Run-4, Run-5, and Run-6 datasets so that these fills will contribute to the total

statistics. The fills containing the laser pulses are therefore now used to correct the ones

which do not. The prescale factor of 11 was chosen to be co-prime to the number of

bunches in a booster cycle, 16, so that the fills used for the in-fill gain extraction are

not systematically related to the same bunch profiles. Starting from Run-2, in-fill pulses

are fired for each of the 16 bunches but only once every 11 booster cycles. There is no

longer a need for co-prime numbers but the prescale factor remained the same. Starting

from the end of Run-3, the prescale factor was increased to 22 as the average dataset was

larger than in Run-1 and Run-2 thanks to the increasing stability of the E989 machine.

A lower fraction of laser fills was then needed to extract precise In-Fill gain parameters.

Finally, starting from Run-5 the laser pattern was changed by increasing the number of

laser pulses in the first 50 µs of the fill, while decreasing the number of pulses later in

the fill. This change was motivated by the fact that the gain deviation from 1 is fully

contained in the first 50 µs.

The in-fill gain correction is extracted by looking at the laser energy measured by

the SiPMs, equalized using the Local Monitor, in order to correct for shot-by-shot fluc-

tuations of the laser driver. This energy ratio is then compared to the ratio of out-of-fill

pulses, in order to correct for long term gain fluctuations. The out-of-fill values are

averaged over all the pulses of a subrun, which typically contains 120 fills and O(500)

pulses. The gain function is therefore:

g(t) =

〈
EIF

LMIF

/〈
EOOF

LMOOF

〉
subrun

〉
t

(5.12)

where t is the time within a fill. A typical in-fill gain function is shown in Figure 5.23

where the time axis is cut at 300 kct (375 µs) for aesthetic reasons. The gain function
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Figure 5.23: Example of an in-fill gain function extracted for Calorimeter 1 SiPM 34.
The exponential curve (red) has fixed lifetime parameter from LTDP studies, and fitted
for the amplitude parameter. The dashed line represents the start of the ωa measurement
period, at 30 µs = 24 kct.

can be fitted with a simple exponential of the form:

g(t) = N(1− ae−t/τ )

where a is the amplitude of the sag and τ is the recovery time of the electronics. The

asymptote N is fitted as well since the complexity of the measurements contributing to

Eq. 5.12 can bring small deviations from 1. Figure 5.24 shows the distribution of a and

τ values for all the 1296 SiPMs for a Run-3 dataset. The amplitude distribution reflects

the different amount of splash particles at injection seen by different calorimeters around

the ring. The lifetime distribution depends instead on the electronics of the SiPMs and

shows two bands of values centered at ∼3.2 kct and 6.5 kct respectively. These bi-modal

values can be seen as a specific pattern of the SiPMs in a calorimeter as shown in Figure

5.25 depending on their electronics [69]. The very short average recovery time of the

SiPMs drastically reduces the effect of the splash on the measurement range starting at

30 µs. The average sag goes from ∼2.6% at injection to ∼0.04% at t = 30 µs.

LTDP studies

The relatively small lifetime value means that few points deviate from 1 in the in-fill gain

functions, as visible in Figure 5.23. This problem was mitigated starting from the end of

Run-3 with decreased spacing between points and then in Run-5 with a much denser re-

gion from 0 to 50 µs with one point every 0.5 µs. This, together with the high correlation
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Figure 5.24: Distribution of IFG amplitude and lifetime values for dataset Run-3D. The
amplitude is higher for the calorimeters close to the injection point which receive a bigger
splash of particles. The lifetime values show a bimodal distribution, due to the different
calorimeter electronics for a population of SiPMs.

Figure 5.25: View of the bimodal pattern of the IFG recovery time in calorimeter 1.

between the amplitude and lifetime parameters, results in a bias in the measurement of

the lifetime parameters which depends on the amount of splash seen by the SiPMs. This

effect is visible as ”V-shapes” in the lifetime distribution of the SiPMs when shown in

sequential order from bottom to top (Fig.5.26). In addition to that, the crystals that

receive a small splash have a sag so small that the lifetime cannot be measured with

precision.

To solve this problem, starting from Run-2 the in-fill lifetime parameter is determined

with dedicated laser studies instead of being fitted freely from the in-fill data. Run-1B

and Run-1D datasets are also treated in the same way. These long-term double-pulse

(LTDP) laser studies are performed once before each Run period, together with STDP
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studies, and are described in Section 3.4. The lifetime values are measured with these

studies with a precision of ∼2% for all SiPMs as shown in Figure 5.27.

Figure 5.26: Comparison between the in-fill lifetime parameters extracted from a free
exponential fit (left) and from the dedicated LTDP studies (right) for the first four
calorimeters. The black points are distributed in V-shapes according to the different
amount of splash that SiPMs receive in a calorimeter.

Figure 5.27: Comparison between the in-fill lifetime parameters extracted from a free
exponential fit (left) and from the dedicated LTDP studies (right). Calorimeters 15
to 23 receive little to no splash, resulting in a high uncertainty on the free-fit lifetime
parameter.
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5.4.3 Long-Term correction

As described in Section 3.3, the Čherenkov light emitted by positron showers is collected

by Silicon PhotoMultipliers (SiPM) because their response is very stable in the presence

of strong electric and magnetic fields. However, they are very sensitive to temperature

variations. In particular, the gain response changes by roughly ∼8 %/◦C as shown in

Figure 5.28. While this is not an early-to-late effect and thus does not directly affect

the ωa measurement, a varying gain can change the effective spatial acceptance of the

detectors, other than terribly complicating the combination of results.

Figure 5.28: SiPM gain versus temperature as measured with the laser pulses.

For these reasons, the laser system fires a series of out-of-fill pulses, between each

bunch fill and the next. This provides a continuous monitoring of the SiPM perfor-

mance and allows to build a long-term gain correction. The correction is extracted for

each subrun by averaging over the O(500) pulses as we already saw for the in-fill gain

correction:

g(subrun) =

〈
EOOF

SMOOF

〉
(5.13)

where E is the energy measured by the SiPMs and SM is the laser source monitor which

calibrate the shot-by-shot fluctuations of the laser drivers. Figure 5.29 shows the effect

of the correction on positron data in Run-2. As the temperature varied by as much as

4 ◦C (Fig. 5.22), the average measured energy fluctuated by ±15 %. The long-term

correction reduced the gain variation to a stability better than ±0.5 %.
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Figure 5.29: Mean energy of the positrons as measured with (black) and without (red)
the long-term gain correction. Positrons in the 1000-3100 MeV range are considered for
calculating the average. The graph contains the entirety of Run-2 data, which lasted 86
days from March to June 2019.

5.4.4 Absolute calibration

The final correction to the energy of the calorimeter hits is the absolute calibration of

the energies. While the previous corrections only accounted for variations in gain, the

energies are now still in ADC*ct units. Each SiPMs is configured with a different gain

setting during the preparation phase of each Run period, according to the individual

response to photons. The absolute calibration is needed for both equalizing the response

of the SiPMs and for setting an absolute scale.

The equalization is achieved by normalizing the SiPM response to the same physical

signal. A feature of the Muon g−2 Experiment is the signal from muons that escape the

storage region and hit the calorimeters before decaying. While a high storage efficiency

and small muon momentum spread is desired, the muons which are lost can provide an

excellent calibration tool for the calorimeters. The lost muons are MIP particles which

typically deposit energy in a single crystal of a calorimeter. Because of the small en-

ergy loss, they can even hit multiple calorimeters in their trajectory before being lost

definitively. The coincidence of single-crystal hits on adjacent calorimeters with a proper

Time-Of-Flight constraint ensure easy selection of such events (Figure 5.30).
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The energy deposit of a lost muon in a crystal can be approximated with a Gaussian

distribution. By collecting and fitting the distributions for each SiPM, a calibration

constant can be obtained for each channel by equalizing the peak position on the energy

axis to an arbitrary number.

Figure 5.30: A lost muon depositing signals over three consecutive calorimeters. The
dashed curve depicts the nominal muon beam orbit. The distributions of the measured
Time-Of-Flight and the energy deposit is shown in the insets. Figure from [50].

Now that all channels are equalized in energy response, the absolute scale can be

extracted using the positron signals. The positron spectrum endpoint is defined to be

3100 MeV by kinematic considerations. However, a precise measure of the endpoint is

made difficult by the pileup contamination and the calorimeter resolution affecting the

tail of the distribution. Instead, a simple ωa analysis is conducted with a 5-parameter

fit over the positron data:

N(t) = N · e−t/τµ · (1 + A cos(ωat+ ϕ)) (5.14)

where only the positrons above a certain threshold are considered. By performing a scan

over this energy threshold, the absolute scaling can be extracted by finding the thresh-

old value that minimizes the statistical uncertainty of ωa. The optimal threshold is the

one which maximizes the figure of merit N · A2 [68]. The absolute scaling is then set so

that the optimal threshold coincides with 1700 MeV. This corresponds to having the MIP

energy distribution peaking at 170 MeV. The result of the scan can be seen in Figure 5.31.
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The energy deposited by a MIP particle in a 14 cm PbF2 crystal can be estimated

using the information from the Particle Data Group [10]:

E =

∫
⟨dE
dx

⟩dx ≃ 1.551 MeV · cm2 / g× 7.77 g / cm3 × 14 cm = 168.7 MeV. (5.15)

However, this calculation does not take into account the production of Čherenkov pho-

tons, which are what is actually measured by the SiPMs. In addition, the amount of

light produced by a positron shower of a given energy might differ from the light pro-

duced by a MIP particle depositing the same energy. The close match between the PDG

prediction and the actual calibration value is just coincidental.

Figure 5.31: Scan of the energy threshold for a five-parameter fit of the positron data.
The absolute calibration of the SiPMs is defined such that the threshold which minimizes
the error on ωa is 1700 MeV.

5.5 Clustering

The last step in the reconstruction chain (Fig. 5.3) is the clustering of individual hits

into positron candidates. This step collects the fully calibrated crystal hits and assembles

them into clusters, each one representing a positron. Ideally, the algorithm is always able

to distinguish between different positrons and to assign the correct hits. However, when

two positrons hit the same calorimeter in the same region at the same time, separation
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is not always possible and the clustering algorithm creates the so-called pileup events.

The clustering algorithm developed for the ReconWest reconstruction, and used for

the ωa-Europe analysis of Run-1 data, is based on the time partitioning of the hits.

First, the hits in a calorimeter are listed in a time-ordered manner. Then, starting from

the beginning of this list, the hits are accumulated into clusters. For each group of hits,

a running time is computed as the energy-weighted average:

trunning =

∑
i Eiti∑
i Ei

, (5.16)

where the sum is computed over the hits belonging to the cluster being currently formed.

Each new hit is then either added to the current cluster, or it initiates a new cluster as

follows. By calculating the time difference between the new hit and the running time,

∆t = ti+1 − trunning, the following criteria based on two parameters tlow and thigh are

applied:

• ∆t < tlow: the new hit is always included in the current cluster and the new running

time is computed;

• ∆t > thigh: the current cluster is complete and a new cluster is created starting

with the new hit;

• tlow < ∆t < thigh: the time difference between the new hit and the next one is

computed ∆tnext = ti+2 − ti+1, and the following criteria are applied:

a) ∆tnext > ∆t: the new hit is included in the current cluster;

b) ∆tnext < ∆t: a new cluster is created.

The parameters values (tlow, thigh) = (3, 5) ct were chosen for the reconstruction of

Run-1 data. Since Run-2, they were reduced to (tlow, thigh) = (2, 3) ct for increasing the

pileup separation efficiency. This algorithm will be referred to as Time Partitioning (TP).

As anticipated in Section 5.1.4, one of the largest sources of systematic uncertain-

ties in the measurement of ωa is the presence of pileup. To increase the efficiency of

pileup separation and consequently reduce the related systematics, I have developed a

new clustering algorithm for the ReconITA reconstruction. The same algorithm is ap-

plied both at the end of the ReconWest reconstruction chain, and at the end of the

ReconITA chain, as shown schematically in Figure 5.3. The output positrons from the
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first iteration will be referred to as ReconITA1 (RITA1), whereas the final output will

be called ReconITA2 (RITA2). The analysis of Run-2 and Run-3 conducted by the

ωa-Europe group is based on the RITA1 clusters. The entire ReconITA reconstruction

chain was included in the official production of the E989 experiment starting from Run-

4, and the analysis of Run-4, Run-5, and Run-6 data will be based on the RITA2 clusters.

A new clustering approach was also developed by the University of Washington group

as an improved variation of the ReconWest time partitioning clustering described above

[71]. This was developed roughly in the same period of the development of the work dis-

cussed in this dissertation. For this reason, the next sections will compare the ReconITA

approach to the standard ReconWest clustering.

5.5.1 Space partitioning

The E989 electromagnetic calorimeters are composed of 54 PbF2 crystals arranged in a

6× 9 matrix. Each crystal has a square cross section of side ∼2.5 cm. The PbF2 mate-

rial has a Molière radius of ∼2.1 cm [10], so the energy deposition of an electromagnetic

shower generated by a positron should be 95% contained within a matrix of 3×3 adjacent

crystals, with the central one having the most measured energy. The segmentation of the

calorimeters should enable spatial separation of few positrons hitting different sections

of the calorimeter simultaneously.

To exploit this feature, a space partitioning algorithm was developed. First, the

calorimeter hits are subdivided into groups which are sufficiently separated from each

other. To do this, the standard ReconWest time partitioning algorithm is applied with

(tlow, thigh) = (3, 5) ct. Then, for each group of hits belonging to a temporary cluster,

the following seed-and-propagation algorithm is applied:

1. Find the most energetic hit in the group, the seed, and start creating a cluster;

2. Include all the hits in the adjacent crystals with energy E > Eth;

3. Continue including all the hits that are adjacent to one or more of the previously

selected ones;

4. When no more adjacent hits can be found, find the most energetic hit in the

remaining hits (new seed);

5. Repeat steps 1-4 until all the hits with E > Eth have been included in clusters;
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6. Finally, assign all the remaining hits with E < Eth to the clusters having the closest

seed.

The energy threshold Eth is introduces so that low energy hits, which can be further

away from the seed because of the geometry of the electromagnetic shower, do not act

like ”bridges” by connecting two independent positrons together. The value of Eth = 100

MeV has been chosen. An example of the algorithm is sketched in Figure 5.32.

(a) (b)

(c) (d)

Figure 5.32: Example of the space partitioning algorithm applied to successfully separate
two positron events. The 6× 9 grids represent the calorimeters and the numbers are the
deposited energies in MeV for each crystal. (a) The most energetic hit (seed) is located.
(b) The adjacent hits are associated with the seed. (c) A new seed is located and
propagated. (d) Finally, all the hits with E < 100 MeV are associated with the closest
seeds.

False pileup

A way to measure the algorithm efficiency of separating pileup events is to look at the

distribution of the time distance between two consecutive clusters in a calorimeter. In

fact, for very short timescales, smaller than the cyclotron period, the rate of muon decays

is constant. By setting t0 the time of a cluster, and t1 the time of the next cluster in

the same calorimeter, the distribution ∆t = t1 − t0 is expected to be roughly flat up to
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O(100) ns. Any clustering inefficiency in separating pileup events would be visible as a

decrease in the distribution for small ∆t. On the other hand, if the clustering algorithm

ends up splitting a single positron into two or more clusters, an increase for small ∆t is

expected.

Figure 5.33 shows a comparison between the Run-1 ReconWest time partitioning and

the space partitioning algorithm described above. The ReconWest clustering shows zero

separation efficiency between 0 and 3 ct as expected. The ReconITA space partitioning

clustering shows a discrete improvement from 1 to 3 ct. However, a significant peak at

∆t → 0 and roughly 15 times higher than the baseline is introduced, indicating that

individual positrons are split by mistake.

The source of this peak can be explained by a rare population of positrons that de-

posit fractions of their energy in multiple parts of the calorimeters. This is motivated by

looking at the distribution of the sum of the energies, E0 + E1, of the two consecutive

clusters. Figure 5.34 shows the distributions extracted for six slices of ∆t from [0, 1] ct

to [5, 6] ct. The slices from ∆t > 1 ct show the characteristic energy spectrum of pileup

events, going from 0 to 6000 MeV. The first slice, corresponding to the peak of Figure

5.33, shows a distribution typical of single positrons, on top of a double positron spec-

trum, indicating that it is dominated by individual positrons. Moreover, these events

are distributed throughout the entire beam storage time with the typical muon lifetime

γτµ ≈ 64.4 µs. These events are referred to as false pileup and account for ∼ 1% of all

positrons. The physical explanation for this effect is not completely understood, but a

possible reason is that sometimes the electromagnetic shower is initiated in the material

between the storage region and the calorimeter crystals. This is motivated by the dis-

tribution of the false pileup events, selected with ∆t < 1 ct and E1 + E2 < 3100 MeV,

among the calorimeters, shown in Figure 5.35a. The number of false pileup events is sig-

nificantly lower for calorimeters 1, 17, 18, 23, and 24, all associated by the absence of any

quadrupole or kicker plate in front of them (Figure 3.2). The spatial distribution of the

two energy depositions composing a false pileup is also different for the two calorimeters

placed after the tracking stations (Figure 5.35b), indicating further interaction with the

tracker material.

Since the majority of events separated by the space partitioning are actually false

pileup events, this algorithm has been discarded.
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Figure 5.33: Distribution of time separation ∆t between two consecutive clusters in the
same calorimeter. The ReconWest time partitioning (blue) and the ReconITA space
partitioning (red) are compared. Both distributions are normalized to the value at
∆t = 8 ct.

Figure 5.34: Distribution of the sum of energies E1 +E2 of the two clusters split by the
space partitioning algorithm. Each time difference slice is assigned to a different color.
The black line represents clusters with ∆t < 1 ct which are dominated by the false pileup
events.
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(a) (b)

Figure 5.35: (a) Number of false pileup events versus calorimeter. Calorimeters 1, 17,
18, 23, and 24 have a significantly smaller contamination. (b) Distribution of false pileup
events on the calorimeter crystals. The calorimeters 13 and 19, which are placed after a
tracking station, show a different pattern and are circled in red.

5.5.2 Time propagation algorithm

While the spatial information cannot be used to increase the pileup separation efficiency,

improvements can still be made by using the time information.

The seed-and-propagation algorithm has been modified to act using the time information

of the hits, with slight modifications:

• The hits are included in the cluster initiated by the seed according to a time-based

criterion;

• The low energy hits (E < 100 MeV) are associated at the end, but only if they meet

the same time-based criterion, otherwise they create new independent clusters;

• If the seed crystal has a second hit which did not get associated to any other cluster,

then it gets added to the seed’s cluster.

The reason behind the third criterion will be discussed later.

Time-based criterion

The request of propagating the seed and include the ”nearby” hits is based on the

analysis of a clean sample of single positron clusters, extracted from the end of the fill

when the probability of pileup is very small due to the exponential form of muon decay.

In particular, the time distribution of the hits with respect to the cluster seed (the
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(a) (b)

Figure 5.36: (a) Time distribution of hits with respect to the seed versus hit energy. (b)
Variance of the distribution in (a) versus energy. The graph is fitted with p0 + p1/x (red
line).

most energetic one) is found to depend on their energy, as shown in Figure 5.36a. For

each energy bin, the variance of the time distribution is extracted as shown in Figure

5.36b. An empirical function of the form p0 + p1/x is fitted to the data, and the best fit

parameter values are found to be:

σ(E) = 0.036 +
12.8

E
. (5.17)

This information is used to build the criterion for the propagation algorithm. For two

generic hits of energies Ei, Ej, their variances are added in quadrature in order to

determine the expected deviation between them:

σ(Ei, Ej) =
√

σ2(Ei) + σ2(Ej) (5.18)

To determine whether two hits i and j should be connected in the same cluster, the

following criterion is used:

∆tij < kσ(Ei, Ej) (5.19)

where k is a parameter that can be tuned according to the algorithm performance.

Several values for k has been tested, and the best value is the one that maximizes

the pileup separation while minimizing the splitting of single positrons. Figure 5.37

shows the positron spectrum for the ReconWest time partitioning algorithm compared

to ReconITA with the parameter k ranging between 4.0 and 7.0. The pileup tail is small
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for all the values of k, with the value of k = 4.0 being the most performing one. To test

whether the algorithm splits single positrons, the time distribution of the ReconWest

clusters that get split by the ReconITA algorithm is extracted and fitted with a double

exponential function of the form:

N(t) = A1e
−t/τµ + A2e

−2t/τµ , (5.20)

where A1 measures the contribution due to single positrons (distributed as τµ = 64.4 µs),

and A2 measures the contribution due to pileup events that get successfully separated

(distributed as τµ/2 = 32.2 µs). The time distributions are shown in Figure 5.38a,

while the fitted A1 and A2 amplitudes are plotted in Figure 5.38b as a function of k. A

reasonable value that maximizes A2 while keeping A1 small is found for k = 5.5.

Figure 5.37: Energy distribution of the clusters for the ReconWest time partitioning
clustering (black line) and the ReconITA time propagation algorithm for some values of
k.

Distance-based parameters

With the choice of k = 5.5, the time criterion becomes:

∆tij < 5.5σ(Ei, Ej) . (5.21)
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(a) (b)

Figure 5.38: (a) Time distribution of the ReconWest clusters that get split into two by
the ReconITA algorithm for some values of k. (b) Each distribution of Figure (a) is
fitted with a double exponential (Equation 5.20). The two amplitudes A1 (red) and A2

(blue) are plotted as a function of k.

This equation, however, is not sufficient to make sure that the false pileup events de-

scribed in Section 5.5.1 are always assembled into unique clusters instead of being split

into two parts. Figure 5.39 shows the distribution of hits in a cluster as a function of

time separation and space distance from the cluster seed. A selection of clusters late in

the fill and with energy E < 3100 MeV ensures that no pileup contamination is present

in the distribution. Two interesting features are visible:

• A small population of hits (∼ 1%) is located far from the seed, from 3 to 8 crystals

away, with the higher distance being the width of the entire calorimeter. The

distribution of these hits is also projected in Figure 5.40a, and the time variance

is shown in Figure 5.40b.

• The crystal of the cluster seed contains some additional hits at ∆t > 2 ct (distance

zero from seed), and fewer at ∆t < −2ct.

The first feature is related to the presence of false pileup positrons, and an additional

factor based on distance is needed to include them in the same cluster while applying

the propagation algorithm. A term proportional to the distance is added to the time

criterion and Equation 5.19 becomes:

∆tij < 5.5σ(Ei, Ej) + 0.03∆rij , (5.22)
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where the 0.03 factor has been chosen such that the inclusion factor is higher than the

time variance for the distance ∆r = 8 crystals.

The second feature indicates that sometimes the ReconWest pulse fitter finds an ad-

ditional pulse located shortly after the main peak. The minimum time distance |∆t| = 2

ct at which these extra pulses are found corresponds to the Artificial Dead Time of the

fitter. The distribution of the time separation between two consecutive hits in the same

crystal, shown in Figure 5.41a, confirms that, while no pulses are found within 2 ct from

a pulse, there is an excess of pulses from ∆t > 2 ct up to ∆t ∼ 8 ct. The energy deposited

by a positron in a crystal is measured as the integral of the pulse shape registered by the

SiPM. In principle, the number of pulses found in the same template fit does not bias

the energy measurement of the event, provided that the sum of the pulses equals the

waveform integral. However, if these pulses are sufficiently distant to be separated into

two different clusters by the time clustering algorithm, then the energy measurement is

affected. However, it has to be noted that this is not a rate-dependent effect and should

have little impact on the measurement of ωa.

To make sure that the clustering algorithm does not separate these rare extra pulses,

any hit that is positioned in the same crystal of the seed within 8 ct from the latter is

re-absorbed in the cluster unless it was already part of another cluster. This is the last

criterion listed at the beginning of this section. Figure 5.41b shows the time separation

of two consecutive hits in the same crystal when they belong to two different clusters.

The ReconWest clustering shows the excess peak from ∼ 3 ct as the extra pulses are

not re-absorbed in the original cluster but create a new cluster with only one hit. The

ReconITA clustering effectively treats these hits and the distribution appears flat as

expected.

Summary

The goal of the new ReconITA clustering algorithm is to increase the pileup separation

efficiency while minimizing the probability of splitting individual positrons into multiple

clusters. Figure 5.42a shows the time separation between two consecutive clusters in

the same calorimeter, comparing the performance of the ReconWest time partitioning

and the ReconITA time propagation algorithms. The ReconITA approach manages to

separate clusters at ∼ 100% efficiency up to ∆t ≈ 1.5 ct, and then with a lower efficiency

up to ∆t ≈ 0.5 ct. The distribution is also flatter above ∆t > 2 ct indicating that the
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Figure 5.39: Distribution of hits in a cluster with respect to the cluster seed. On the
x-axis the spatial distance in units of crystals (≈ 2.5 cm) is given, while on the y-axis
the time difference is calculated. The first bin on the left is populated by the hits which
are registered in the same crystal of the seed.

unwanted splitting of single positrons is minimized. This results in an overall reduction

of pileup contamination of ≈ 50%. This can also be measured in the tail E > 3100 MeV

of the cluster energy spectrum shown in Figure 5.42b as the tail above that value consists

of pileup events solely.

This clustering algorithm is applied both at the end of the ReconWest reconstruction

chain and at the end of the ReconITA chain. The performance between the two steps

is quite similar, as shown in Figure 5.43a. Figure 5.43b shows the same time separation

between two consecutive clusters but with the constraint for the second cluster to have

two or more hits. The ReconWest peak after 3 ct is no longer visible, confirming that

it was dominated by individual hits separated from the original cluster. The second

ReconITA clustering (ReconITA2) shows a little excess between ∆t ≈ 1.5 ct and ∆t ≈ 3,

whose effect is considered to be negligible on the ωa measurement.
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(a) (b)

Figure 5.40: (a) Spatial distance distribution of the cluster hits from the most energetic
one (seed). (b) Time separation variance as a function of the distance from the seed.
The red dotted line is the additional term included in the criterion of Equation 5.22.

(a) (b)

Figure 5.41: (a) Time separation between two consecutive hits in the same crystal. No
clustering algorithm has been applied. The baseline of ∼ 100 events can be attributed
to the uniform distribution given by a second positron hitting the same crystal. No
pulses are found between 0 and 2 ct because of the fitter dead time. (b) Time separation
between two consecutive hits in the same crystal pertaining to two consecutive clusters.
The ReconITA clustering algorithm shows a flatter distribution as expected.
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(a) (b)

Figure 5.42: Comparison between clusters from ReconWest (blue) and ReconITA1 (red).
(a) Time distance between two consecutive clusters. (b) Cluster energy spectrum before
pileup correction.

(a) (b)

Figure 5.43: Comparison between clusters from ReconWest (blue), ReconITA1 (violet),
ReconITA2 (red). ReconITA1 is the clustering applied at the end of the ReconWest re-
construction chain, while ReconITA2 is the clustering applied at the end of the ReconITA
chain. (a) Time distance between two consecutive clusters. (b) The same distribution of
(a) but selecting the second clusters to have more than one hit.



Chapter 6

The anomalous precession frequency

measurement

The measurement of the anomalous precession frequency is one of the three key ingre-

dients for obtaining the anomalous magnetic moment aµ. As explained in section 2.3.1,

the parity-violation of the weak force in the muon decay allows the emitted positron to

carry information of the original muon spin. The decay asymmetry is measured by the

calorimeters by selecting positrons above a certain energy threshold. The positron spec-

trum in the laboratory frame of reference depends on the direction in which positrons are

emitted during the decay, and, since the muon spin rotates with respect to the momen-

tum direction, the positron spectrum as seen by calorimeters changes through time. The

number of positrons of a particular energy bin will therefore oscillate with a frequency

corresponding to the anomalous muon precession one: ωa.

As discussed in Chapter 5, the output of the reconstruction of the calorimeter data

is the energy and detection time of the positrons produced by the muon decay. The

distribution of positrons as a function of energy and time is shown in Figure 6.1a. By

integrating over the energies above a certain threshold we obtain the iconic wiggle plot

of Figure 6.1b. Before fitting for ωa however, the data has to be corrected for detector

effects such as pileup. In addition, the dynamics of the beam inside the storage ring

introduce effects that add oscillations and distort the exponential shape. A measure-

ment aiming to a precision of order 100 ppb requires a scrupulous control of all these

beam-related effects, as well as an extremely accurate knowledge of the detector response

to impinging particles.

131
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This chapter presents the techniques used to measure the muon anomalous precession

frequency for the data taken in Run-1, Run-2, and Run-3. The work presented here refers

to the results obtained by the ωa-Europe group, of which I am part.

(a) (b)

Figure 6.1: (a) Uncorrected energy-time histogram as produced by the reconstruction.
(b) Wiggle plot obtained by integrating over the energies E > 1700 MeV of the histogram
in (a). The time axis is wrapped onto itself every 100 µs.

6.1 Data sets

The reconstruction algorithm used for Run-1 is ReconWest, while Run-2 and Run-3 have

been reconstructed using also the ReconITA clustering algorithm. The complete Re-

conITA procedure described in Chapter 5 has been used starting from Run-4.

Run-1, Run-2, and Run-3 are composed of 4, 7, and 11 datasets, respectively. The

increasing number of subsets is due to the increased efficiency of the machine and the

longer data collection times. Each dataset is characterized by having the same beam

storage settings, as field index and kicker strength, and bounded by trolley field ac-

quisitions. Datasets are typically limited to ∼ 105 maximum files for convenience of

production and data handling. Some datasets were discarded after the first round of

production, such as 2A, 2I, 3A, and 3H, either because they were too small or were

used for systematic studies, such as kicker strength tuning, and calibration purposes.

While the analysis of the magnetic field and the data quality checks are carried out

at the dataset level, the ωa analysis combines multiple datasets in order to minimize

the effects of systematic uncertainties which scale with statistics. For this reason, the

combined Run-2 = [2B-2H], Run-3a = [3B-3M], and Run-3b = [3N-3O] are analyzed in
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their entirety for the final estimation of ωa. During the first year of data taking, Run-

1, the storage conditions varied significantly as both the E989 collaboration and the

Fermilab Accelerator Division were trying to optimize the muon beam and its storage

capabilities. In particular, for what regards the experiment, both the kicker currents

and the kick timing, as well as the electrostatic quadrupole high voltages were modified

several times during the data taking period. This forced us to analyze the datasets sepa-

rately. Table 6.1 lists the statistics and storage conditions for all the mentioned datasets.

As explained in Chapter 4, the production process generates one output for each raw

input file, and the reconstructed data is stored in art dataproducts. The positron data

is then extracted from these files and stored in fewer ROOT files containing hundreds of

subruns each. In particular, each file contains information on the time and energy of each

positron, as well as the individual hits composing the positron’s cluster. For convenience,

positrons are stored on a fill by fill basis, which helps find consecutive positrons within

the same 700 µs of beam storage, a feature useful to extract the pileup correction which

will be discussed in section 6.3.

6.2 Hit time randomization

The muon beam enters the storage ring in bunches of ∼120 ns in length. The cyclotron

period, i.e. the time of flight in the storage circumference, is Tc = 149.2 ns. Because

of the bunched structure, the number of positrons detected by a calorimeter during the

first turns is modulated by the cyclotron frequency. As the muons gradually de-bunch,

the modulation flattens out, with a time constant of several microseconds, and muons

become uniformly distributed within the ring, appearing as a continuous signal in the

calorimeters.

During the first ∼ 50 µs, however, the bunched structure of the muon beam is ob-

served as an additional frequency in the time distribution of the positrons and it can

affect the final result of the ωa fit if not properly taken into account. In order to mitigate

its effect, known as fast rotation signal, the wiggle histograms (Figure 6.1b) are binned

using the cyclotron period as the bin width. This way, the modulation is averaged out

within the bin. However, this method is not sufficient to remove the effect completely.

In fact, when performing individual ωa fits for each calo (Figure 6.2a), a sinusoidal os-

cillation of the ωa value around the azimuth angle is present with an amplitude of ∼10

ppm. The frequency of the sinusoidal fit is fixed to the value of 2π/24 corresponding to
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Dataset Number of files CTAGs [×109] Field index Kicker voltage

1A 23560 0.92 0.108 130 kV

1B 27556 1.28 0.120 137 kV

1C 39236 1.98 0.120 130 kV

1D 75512 4.00 0.108 125 kV

2B 13715 0.84 0.108 142 kV

2C 69303 4.11 ” ”

2D 60658 3.25 ” ”

2E 25178 1.25 ” ”

2F 23336 1.27 ” ”

2G 4929 0.26 ” ”

2H 6729 0.36 ” ”

3B 43213 1.57 0.107 142 kV

3C 12767 0.51 ” ”

3D 73347 3.52 ” ”

3E 29392 1.45 ” ”

3F 14746 0.72 ” ”

3G 33485 1.66 ” ”

3I 32619 1.58 ” ”

3J 25138 1.21 ” ”

3K 15656 0.72 ” ”

3L 11262 0.52 ” ”

3M 42315 1.80 ” ”

3N 67307 3.45 0.107 165 kV

3O 50292 2.52 ” ”

Run-2 203848 11.35 0.108 142 kV

Run-3a 333940 15.27 0.107 142 kV

Run-3b 117599 5.96 0.107 165 kV

Run-4 914766 40.19 0.107 165 kV

Run-5 1300000* 50* 0.107 165 kV

Table 6.1: List of the datasets in Run-1, Run-2, and Run-3. CTAGs (Calorimeter TAGs)
are the number of positrons reconstructed by the calorimeters with E > 1700 MeV and
t > 30 µs. *Estimate, production not finalized yet.

one turn around the ring.

To further suppress this effect, a randomization of the hit times is performed. For each
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positron, a random shift in the [−Tc

2
, Tc

2
] ns range is applied to its detection time. Figure

6.2b shows the per-calorimeter fits after this randomization, where the oscillation ampli-

tude is now compatible with zero.

The pseudo-random number generator (RNG) chosen to extract the time shifts is

RANLUX64 which is part of the CLHEP package. A unique random seed for each analyzed

file is provided to the RNG in order to have repeatability when the data is reprocessed.

The final ωa value is obtained by averaging over 200 different random seeds.

(a) (b)

Figure 6.2: Per-calorimeter ωa fits before (a) and after (b) applying a random time shift
to the positron times.

6.3 Pile-up treatment

When two or more positrons hit the same calorimeter very close in time, the reconstruc-

tion procedure does not always manage to separate them. In such cases, a pileup event

occurs and the affected positrons are reconstructed as a single particle. The probabil-

ity of having two positrons in a time window t + δt is proportional to the square of the

positron rate ρ and therefore the distribution of pileup events has an exponential lifetime

of τµ/2 ≃ 32.2 µs. In fact, the positron ”time density” ρ(t) can be written as:

ρ(t) ∝ e−t/τµ · (1 + A cos(ωat− ϕ)) . (6.1)

Therefore, the probability of having a positron at time t and one at time t + δt hitting

the same calorimeter can be written, for small values of δt as:

lim
δt→0

ρ(t)ρ(t+ δt) ∝ e
−t

τµ/2 · (1 + A cos(ωat− ϕ))2 . (6.2)



136 Chapter 6 | The anomalous precession frequency measurement

As a consequence, the pileup contamination, if not properly corrected, modifies the simple

exponential decay introducing an early-to-late effect that can bias the measurement of ωa.

It has to be noticed that even after being corrected, the pileup introduces a systematic

uncertainty on ωa which in Run-1 was among the largest ones, as shown in Table 5.1.

This is one of the main reasons for which the ReconITA clustering, described in Section

5.5, has been developed. This new clustering, applied from Run-2 onward, improves the

separation of pileup positrons achieving ∼100% efficiency at ∆t ≥ 1.5 ns. This reduces

the pileup contamination in the data, decreasing the associated systematic uncertainty

proportionally.

6.3.1 Shadow method

The pileup events can be estimated and subtracted on a statistical basis. The probability

of having two positrons at the same time is approximately the same as observing two

individual positrons separated by a time tgap. This time has to be small compared to the

ωa and τµ timescales, in order for the muon density to remain constant. Because of the

fast rotation effect, tgap should be either very close to 0 or a multiple of Tc to ensure that

the positron rate is not affected by the cyclotron frequency. In order to ensure that the

two individual positrons are well separated and individually reconstructed, the value of

tgap = Tc = 149.2 ns has been chosen. The number of overlapping positrons in a window

[t, t+ δt] is the same as the number of two single positrons in the windows [t, t+ δt] and

[t + tgap, t + tgap + δt]. It is then possible to statistically simulate the effect of pileup

events by artificially shifting the time of the second positron by −tgap, combining it with

the first positron, and obtaining an artificial pileup event to be subtracted from the data.

This technique is called ”shadow window method”.

Figure 6.3: Example of a shadow method coincidence. The combined artificial doublet
will be shifted by tgap/2 after the trigger positron.

The shadow method algorithm searches for pairs of positrons hitting the same calorime-
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ter separated by a time tgap. More specifically, it searches for the second positron in a

small shadow window of width tW starting tgap after the first trigger positron, as schema-

tized in figure 6.3. If a coincidence is found, the two positrons are combined to form an

artificial doublet with time and energy:

tD =
E1t1 + E2(t2 − tgap)

E1 + E2

+
tgap
2

, (6.3a)

ED = E1 + E2 . (6.3b)

The additional factor tgap
2

accounts for the small but non-negligible variation of the

positron rate between t and t+ tgap. Assuming that the positron rate is purely exponen-

tial, ρ(t) = e−t/τµ , the pileup doublet should be placed at the time t′ such that:

ρ2(t′) = ρ(t) · ρ(t+ tgap) , (6.4)

which is true for

t′ = t+
tgap
2

. (6.5)

The real positron distribution, however, is not a pure exponential and contains, at first

order, the oscillation corresponding to ωa. This remaining effect is treated as a system-

atic uncertainty and not considered in the correction.

For each coincidence, both the artificial doublet and the original single positrons

are stored into individual time-energy histograms D(t, E) and SD(t, E). The pileup

correction is then applied by subtracting the doublets and adding the singlets to the

data as follows:

N(t, E) = N ′(t, E) + α(SD(t, E)−D(t, E)) , (6.6)

where N(t, E) is the true positron distribution and N ′(t, E) is the observed positron

distribution. α is a scaling parameter used to tune the pileup correction amplitude. This

accounts for inaccuracies of the shadow window method and for higher order effects due,

for example, to ”triple pileup”. The optimal value for α is determined for Run-1 by a

scan of the parameter over the range [0, 2] and by searching for the value which minimizes

the χ2 of the ωa fit.
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6.3.2 Reconstruction effects

If every positron present in the shadow window is combined to the trigger positron to

form a doublet, this is equivalent to assuming that any two clusters within the time

window [t, t+ tW ] are always merged into one by the positron reconstruction algorithms.

This is not generally true, as the probability of separating the two components of a pileup

event is not exactly a step function as shown in Figure 5.43a. This problem was solved

in Run-1 by applying an artificial dead time (ADT) to the calorimeters at the analysis

level. When two clusters, (t1, E1) and (t2, E2), are closer in time than tADT , they are

merged in a single cluster with time and energy calculated as:

t =
t1E1 + t2E2

E1 + E2

, E = E1 + E2 . (6.7)

This way, the probability of merging two consecutive clusters is a box function equal to

1 in the [0, tADT ] range. The acceptance of the shadow window is a box function as well,

equal to 1 in the [tgap, tgap + tW ] range. By setting tADT = tW , the number of artificial

doublets built from shadow coincidences correctly represents the amount of pileup in the

data.

The optimal value of tADT is the minimum distance such that the pileup separation

efficiency becomes a step function, so that the additional dead time does not significantly

increase the pileup contamination in the data. The Run-1 clustering algorithm described

in section 5.5 achieves 100% pileup separation at ∆t ≥ 5 ct. The chosen value for Run-1

is, therefore, tADT = tW = 5 ct.

Re-clustering

As described in the previous section, the pileup probability, as well as the energy of the

merged cluster, depends upon the details of the reconstruction algorithm. Mostly for

this reason, I have developed the ReconITA clustering which is being applied for the

analyses of Run-2 and Run-3, to be published in the first half of 2023, with the goal

of improving the precision of the pileup correction in order to decrease the associated

systematic uncertainties.

When two positrons are selected by the shadow method, the hits of the second one

are shifted by −tgap and combined with the ones of the first cluster. The ReconITA

clustering is then applied. If this second clustering is able to separate the two positrons,

then the coincidence event is discarded and not considered for the pileup correction. This
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strategy removes the need for an artificial dead time, and makes the pileup correction to

not depend on the width of the window tW . In any case, the shadow window width needs

to be larger than the minimum distance such that the clustering algorithm manages to

separate two positrons 100% of the time. For the ReconITA clustering this is true for

∆t ≥ 1.5 ct. A window size of tW = 4 ct is used for Run-2 and Run-3.

Pulse fit correction

When a pileup event occurs, the showers of the two positrons might overlap spatially

in the calorimeter. In such cases, the SiPMs will receive two signals very close in time

that the reconstruction algorithm might not be able to distinguish, fitting a single pulse

instead. Unless the two pulses are exactly simultaneous, the energy determined by fitting

a single pulse would differ from the sum of the two pulses. Not accounting for this results

in a systematic bias on the observed energy used in Equation 6.3b. Figure 6.4 shows an

example of two overlapping pulses of equal energy which are 1 ct apart. The fit using a

single pulse results in a slightly underestimated energy.

Figure 6.4: Template fit of two pulses when they are ∆t = 1 ct (1.25 ns) apart. A single
template fit is performed as the reconstruction is not able to distinguish between the
two underlying pulses. The measured energy (Efit = 1954.8 ADC*ct) is smaller than
the sum of the two underlying pulses.

To study this effect, real SiPM pulses have been used to create artificial traces by

summing two pulses with arbitrary time separation and energies. The traces are then

sampled at 800 MHz (1.25 ns sampling time) and the points are multiplied by a smearing

factor, extracted randomly from a Gaussian distribution of variance σ = 0.003. The

smearing factor, representing the SiPM read noise, has been extracted from the positron
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data by evaluating the variance of the trace fit residuals. Finally, the trace points are

digitized into integer ADC values and the result is stored in a format which can be

processed by the reconstruction algorithm as if it was real raw data. By analyzing the

fitter response, the following effects are extracted as a function of the time separation

∆t, E1, and E2:

• the efficiency of separating the two pulses,

• the bias in energy of the single fitted pulse,

• the bias in time of the single fitted pulse,

Figure 6.5 shows these corrections on average. When there are two or more pulses on the

same SiPM in a shadow window coincidence, they are merged into one pulse according

to the probability of Figure 6.5a. If merged, the following corrections are applied:

E ′ = fcorr · (E1 + E2) , t′ =
t1E1 + t2E2

E1 + E2

+ tcorr , (6.8)

where both fcorr and tcorr depend on ∆t, E1, and E2, according to the corrections of

Figg. 6.5b and 6.5c respectively.

(a) (b) (c)

Figure 6.5: Pulse fit average corrections for multi-hit crystals in a pileup coincidence.
(a) is the efficiency of separating the two individual pulses, (b) is the ratio between the
fitted energy and the sum of the two pulses, and (c) is the difference between the fitted
time and the energy-weighted average of the two pulses.

6.3.3 Triple coincidences

The probability of pileup events containing three simultaneous positrons goes like ρ3(t),

so if the statistics is limited their effect can be ignored. For this reason, in Run-1
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the positron spectrum is corrected only for the effect of ”double” pileup (pileup of two

positrons). The contribution of the ”triple” pileup has been treated as a systematic

uncertainty, which contributes on the final ωa measure to less than 5 ppb.

From Run-2 and beyond, the larger datasets and higher statistics result in a contam-

ination of triple pileup events which cannot be ignored. This is true even if the pileup

effect is reduced by the ReconITA clustering (Figure 6.6).

Figure 6.6: Run-2 positron energy spectrum before pileup correction is applied. The red
dashed line corresponds to the positron endpoint of E = 3100 MeV. The tails visible at
E > 3100 MeV and E > 6200 MeV are due to double and triple pileup contamination.

Triple pileup is corrected using the same shadow method described in section 6.3.1.

Two shadow windows are used in this case at tgap and 2tgap after the trigger positron.

The three positrons are combined to form an artificial triplet with time and energy:

tT =
E1t1 + E2(t2 − tgap) + E3(t3 − 2tgap)

E1 + E2 + E3

+ tgap , (6.9a)

ET = E1 + E2 + E3 . (6.9b)

In this case, the triplet is shifted as t′ = t+ tgap in order to satisfy:

ρ3(t′) = ρ(t) · ρ(t+ tgap) · ρ(t+ 2tgap) . (6.10)

While the technique is similar, double and triple pileup corrections cannot be extracted

and applied independently. First of all, to avoid double counting, the two double co-

incidences (t1, t2), (t2, t3) that are part of a triple coincidence (t1, t2, t3) must not be
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considered.

Then, we must consider the possibility that one of the positrons used to build a

double coincidence can be a pileup event itself. This contamination is of the same

order as the triple correction. The same effect is present in triplets as well, but ignored

since of higher order: O(ρ4). There are six possible combinations of events in a double

coincidence, listed in Table 6.2.

Trigger Shadow Combination Probability

e+ e+ 2e+ Doublet ρ2(t)

e+ 2e+ 3e+ Triplet ρ3(t)

2e+ e+ 3e+ Triplet ρ3(t)

e+ 3e+ 4e+ Quadruplet ρ4(t)

2e+ 2e+ 4e+ Quadruplet ρ4(t)

3e+ e+ 4e+ Quadruplet ρ4(t)

Table 6.2: Contamination of true pileup events in double coincidences. The trigger and
shadow columns show the number of real positrons contributing to the single clusters
observed.

The first row in Table 6.2 is the desired coincidence of two individual positrons used

to form an artificial doublet. The following rows are included in the ”double pileup”

correction as a contamination and must be subtracted. The last three combinations are

ignored since they contribute at higher order O(ρ4).

By calling D(t, E) and T (t, E) the distributions of double and triple pileup respectively,

a pileup correction on the positron data takes the form:

N = N ′ + (SD −D) + (ST − T ) , (6.11)

where N(t, E) is the true positron distribution, N ′(t, E) is the observed cluster distri-

bution, and SD and ST are the two and three true positrons contributing to the double

and triple pileup respectively. The variables (t, E) have been omitted for clarity.

Because of the contamination cases listed in Table 6.2, the observed pileup distribution

D′ extracted with the shadow method differs from the true distribution D. The first row

contributes as D, while the second and third rows, having 1 + 2 positrons, contribute as

T each:

D′ = D + 2T (6.12)



Chapter 6 | The anomalous precession frequency measurement 143

Similarly, the single clusters selected by the shadow method in the double coincidences

are contaminated too. The first row of Table 6.2 has two individual positrons, and

therefore represents the real singlet distribution SD. However, the second and third rows

contribute each with a single positron and a pair of positrons, with probability ρ3(t).

The single one contributes as much as a positron from a triple pileup coincidence, and it

is distributed as a third of ST . The pair of positrons has the energy of a double pileup D

but is distributed in time as a triple pileup event (∝ ρ3(t)). Its contribution is therefore

the same as D but scaled by ρ(t) = T (t)/D(t).

The sum of the three rows is:

S ′
D = SD +

(
1

3
ST +

T (t)

D(t)
D

)
+

(
T (t)

D(t)
D +

1

3
ST

)
= SD +

2

3
ST + 2ρ(t)D ,

(6.13)

since
T (t)

D(t)
=

ρ3(t)

ρ2(t)
= ρ(t) . (6.14)

As previously mentioned, by ignoring higher order terms O(ρ4) the observed triple coin-

cidences match with the true distributions:

T ′ = T , S ′
T = ST . (6.15)

By combining all the observed distributions from double and triple shadow method

coincidences we have: 

D′ = D + 2T

S ′
D = SD + 2

3
ST + 2ρ(t)D

T ′ = T

S ′
T = ST

. (6.16)

Solving the system for the true distributions D, SD, T , ST :

D = D′ − 2T ′

SD = S ′
D − 2

3
S ′
T − 2ρ(t)(D′ − 2T ′)

T = T ′

ST = S ′
T

. (6.17)
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Finally, Equation 6.11 becomes:

N = N ′ +

(
S ′
D −D′ + 2T ′ − 2

3
S ′
T − 2ρ(t)(D′ − 2T ′)

)
+ (S ′

t − T ′) , (6.18)

where ρ(t) can be empirically extracted from the observed distributions:

ρ(t) =
T (t)

D(t)
=

T ′(t)

D′(t)− 2T ′(t)
. (6.19)

In analogy with Equation 6.6, to account for any inaccuracies of the shadow method

procedure, the formula applied for each time-energy bin is the following:

N = N ′ + fscale

[
fD

(
S ′
D −D′ + 2T ′ − 2

3
S ′
T − 2ρ(t)(D′ − 2T ′)

)
+ fT (S ′

T − T ′)

]
,

(6.20)

where fD and fT are fine-tuning scaling factors for double and triple pileup respectively,

and fscale is a global scaling factor (equal to 1 by default) used for evaluating the pileup

systematic uncertainty.

The optimal values for fD and fT are determined by looking at the ratio between the

positron energy spectrum and the pileup correction in the energy ranges of [3500, 4500]

MeV and [6500, 7500] MeV respectively. The results of the horizontal fits are plugged

into fD and fT , as shown in figure 6.7. The fitted value of fD = 1.08 is close to 1 as

expected, whereas the value of fT has been fixed to 1 because of the high uncertainty

given by the low statistics above E > 6000 MeV. Figure 6.8 shows the time and energy

distributions of the double and triple pileup corrections for the ReconITA clustering for

dataset Run-2C. The double pileup contamination at t = 30 µs is ∼ 2× 10−3 and decays

as τD = 32.2 µs, while the triple pileup contamination is ∼ 4 × 10−6 and decays as

τT = 21.5 µs.

6.4 Positron weighting techniques

The result of time randomization and pileup correction (Sections 6.2 & 6.3) is a fully

corrected 2D time-energy histogram of the positrons detected by the calorimeters, shown

in Figure 6.9.

The amplitude of the oscillation due to the anomalous precession frequency ωa de-
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(a) (b)

Figure 6.7: Ratio between the positron spectrum and the pileup correction (a) for dataset
Run-2C. A horizontal fit in the [3500, 4500] MeV range is performed to finely tune the
correction amplitude. Figure (b) shows the same ratio with the applied scaling fD =
1.079.

(a) (b)

Figure 6.8: Pileup energy (a) and time (b) distributions.

pends on the positron energy as anticipated in Section 2.3. This asymmetry amplitude is

maximum for 3.1 GeV positrons, negative for low energy positrons, and zero for E ≈ 1.0

GeV positrons (Figure 6.10).

By integrating over the entire positron energy range, and assuming perfect detector

efficiency, the observed rate would follow the standard muon exponential decay and no

asymmetry would be visible. In reality, due to the calorimeter geometrical acceptance
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Figure 6.9: Time-energy histogram of positrons after pileup collection.

Figure 6.10: Number of positrons N and decay asymmetry A versus energy as measured
by the calorimeters. For each 30 MeV bin both parameters are extracted with a ωa fit
of the form N(t) = N · e−t/τµ · (1 + A cos(ωat+ ϕ)).

and to its efficiency as a function of energy, a residual asymmetry would still be observed.

In order to maximize this asymmetry, and thus optimize the ωa fit, a proper positron

selection can be applied. More generally, a weighting function w(E) is applied to the

positrons depending on their energy, in order to build the wiggle plot. A simple way to

do this is to apply a box function (Figure 6.11) which is 1 above a given energy threshold

and 0 below. In this way, only high energy positrons, which have the highest asymmetry,

are included in the fit. However, other choices are possible and will be described in the

next sections. In general, the figure-of-merit (FOM) that has to be maximized to reach
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Figure 6.11: Weighting functions for the TMethod and AMethod.

the optimal statistical uncertainty on the ωa fit is [72]:

1

σ2
ωa

≈ Nth ⟨w(E)A(E)⟩2E τ 2

2 ⟨w2(E)⟩E
, (6.21)

where Nth is the number of positrons with E > Eth and w(E) is the weighting function.

6.4.1 Threshold Method

As described above, a simple selection consists in using only the positrons above a given

energy threshold Eth in the fit. This is called the Threshold Method, or TMethod, and it

is the reference method used also in previous experiments. The FOM of Equation 6.21

becomes:
1

σ2
ωa

≈ 1

2
Nth ⟨A(E)⟩2E τ 2 . (6.22)

By reducing the energy threshold, the number of events, and thus the statistical sig-

nificance, tends to increase; at the same time, the asymmetry decreases until all the

information on the muon spin direction is lost. To find the optimal threshold, a scan

is performed by building many wiggle plots varying the threshold itself and then fitting

the resulting histograms with the function

N(t) = N · e−t/τµ · (1 + A cos(ωat+ ϕ)) . (6.23)
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Figure 6.12 shows the uncertainty σωa as a function of Eth for the dataset Run-2C. The

minimum is found for Eth = 1700 MeV.

Figure 6.12: Statistical uncertainty of ωa as a function of the energy threshold Eth for
the TMethod fits. The value of Eth = 1700 MeV minimizes the uncertainty.

6.4.2 Asymmetry Method

It is possible, however, to improve the statistical significance by weighting each event

by its own asymmetry. In this way, high energy positrons, which are strongly correlated

to the muon spin vector, receive a larger weight than intermediate energy ones when

building the wiggle plot. It corresponds to setting w(E) = A(E) and, for this reason, it

is called Asymmetry Method or AMethod. This method is also the one which maximizes

the theoretical statistical power of the positron data as it allows, in principle, to use

all the positron events, even those with negative asymmetry. By setting w(E) = A(E),

Equation 6.21 becomes:

1

σ2
ωa

≈ Nth ⟨A2(E)⟩2E τ 2

2 ⟨A2(E)⟩E
=

1

2
Nth

〈
A2(E)

〉
E
τ 2 . (6.24)

The theoretical lower limit for the precision of ωa is set by the Cramér-Rao limit, which

in our case is [72]:
1

σ2
ωa

=
1

2
Nth ⟨A(E)⟩2E τ 2 . (6.25)

Since ⟨A⟩2 ≤ ⟨A2⟩, the AMethod reaches this limit giving the best possible weighting

function, shown in Figure 6.11. In principle, the best choice for the lower threshold
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would be Eth = 0, thus integrating over all the detected positrons, including the ones

with negative asymmetry. However, because of energy resolution, electronic noise, and

contamination from muons exiting the storage area after interacting with the collimators

(lost muons), the threshold Eth = 1000 MeV is used instead. As visible in Figure 6.13,

the gain in precision from a lower threshold is negligible. Since the asymmetry is not

well defined in the last few energy bins, an upper energy threshold is also applied at

Eup
th = 3000 MeV.

Figure 6.13: ωa figure of merit as a function of the energy threshold Eth for the TMethod
and AMethod fits. The value of Eth = 1700 MeV maximizes the statistical power of the
data for the TMethod.

6.4.3 Ratio Method

A third technique aiming at reducing the effect of slow and early-to-late effects has been

developed. Before integrating over the energies, the data is treated in such a way that

the exponential decay term in the wiggle plot is completely removed.

The positron data is randomly divided into four separate groups. For two of these groups,

u+ and u−, the positron times are shifted by + 1
2
Ta and −1

2
Ta respectively, where Ta =

2π
ωa

is the ωa period. The two remaining groups, v1 and v2, are left untouched. The following

histograms are then built from these groups:

U(t, E) = u+ + u− , V (t, E) = v1 + v2 . (6.26)
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The energy dependence is integrated out by using a weighting function, be it the one

used for the TMethod or the AMethod described previously. Finally, the following ratio

is built:

R(t) =
V (t)− U(t)

V (t) + U(t)
. (6.27)

The result is, at the first order, a flat distribution modulated by the ωa oscillation which

can be fitted with the function:

R(t) = A cos(ωt− ϕ) + R0 +O(A2eT/2τµ) . (6.28)

The resulting function does not show the exponential decay, at first order, and it can be

further improved by weighting the four groups u+, u−, v1, v2 proportionally to eT/2τµ :

e−T/2τµ : 1 : 1. Figure 6.14 shows the Ratio distribution after this reweighing. Only the

ωa oscillations are visible.

Figure 6.14: The wiggle plot R(t) obtained with the Ratio Method.

6.5 The anomalous precession frequency fit

The result of integrating over the positron energies with one of the techniques described

in the previous section is the final wiggle plot ready to be fitted. The precise extraction of

the value of ωa requires fitting with a functional form that describes the time distribution

of the detected positrons in the calorimeters. The simple function described in Equation

6.23 is not sufficient; the fitting function has to incorporate all the effects from the

anomalous precession, the muon exponential decay, the beam dynamics, the lost muons,

and the beating frequencies.
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This section describes the fitting model applied to the Run-1, Run-2, and Run-3 data.

6.5.1 Coherent Betatron Oscillation

The equation describing the physics of the muon decay and the anomalous spin precession

is the five parameter function described in section 2.3:

N(t) = N · e−t/τµ · [1 + A cos(ωat− ϕ)] . (6.29)

This function, however, does not perfectly match the observation from the calorimeters.

Figure 6.15 shows the 5-parameter fit performed to the wiggle plot and the fit residuals.

The oscillations visible in the residuals can be attributed to the movements of the beam

while circulating around the storage ring.

A Fast Fourier Transform (FFT) of the residuals reveals several frequency peaks. The

biggest one is relative to the radial Coherent Betatron Oscillation (CBO), with frequency

fCBO ≈ 0.37 MHz. The two peaks adjacent to fCBO are related to the interference

between the CBO itself and ωa, at fCBO ± fa, where fa = ωa

2π
≈ 0.23 MHz. Further

to the right, another peak corresponding to the Vertical Waist fVW ≈ 2.28 MHz is

visible. A smaller peak next to the latter at fy ≈ 2.22 MHz is related to the vertical (y)

oscillation of the average muon beam position. Finally, the peak at very low frequency

is an indication of slowly varying effects, and it is dominated by the muons which fail to

stay in the storage region and exit before they decay into positrons. These slow effects

are discussed in the next section.

In the Muon g−2 Experiment, both the radial betatron oscillation and the vertical waist

are measured at the frequencies:

ωCBO = ωc − ωtrue
CBO , (6.30a)

ωVW = ωc − ωtrue
V W , (6.30b)

where ωc is the cyclotron frequency (fc =
ωc

2π
≈ 6.7 MHz). The reason is that the actual

oscillations are faster than half of the cyclotron frequency, i.e. ωtrue
CBO > ωc/2. Since the

time binning is set to Tc as described in section 6.2, the Nyquist-Shannon sampling theo-

rem implies that the aliased frequencies of Equations 6.30a-6.30b are measured instead.

The four oscillations of the beam with respect to the horizontal and vertical move-
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Figure 6.15: Run-2 wiggle plot fitted with the five parameter function of Equation 6.29.
On the left, the fitted wiggle plot (top) and the fit residual (bottom). On the right, the
Fast-Fourier-Transform analysis of the fit residual.

ments can be incorporated into Equation 6.29 as modulations of the following form:

NCBO(t) = 1 + ACBO cos(ωCBOt− ϕCBO)e
− t

τCBO , (6.31a)

N2CBO(t) = 1 + A2CBO cos(ω2CBOt− ϕ2CBO)e
− t

τ2CBO , (6.31b)

Ny(t) = 1 + Ay cos(ωyt− ϕy)e
− t

τy , (6.31c)

NVW (t) = 1 + AVW cos(ωVW t− ϕVW )e
− t

τV W , (6.31d)

where the exponential terms model the decoherence lifetime. As shown in Section 2.5,

the characteristic radial and vertical oscillation frequencies depend on the muon mo-

mentum. The storage ring accepts a range of momenta, so the muon beam is affected

by a range of oscillation frequencies. This spread causes any coherent beam motion to

decohere over time, with a decoherence time roughly equal to the inverse width of the

angular frequency distribution.

These four modulations are added to Equation 6.29 bringing the number of parame-

ters from five to 21:

N(t) = Ne−t/τµ [1 + A cos(ωat− ϕ)] ·NCBO(t) ·N2CBO(t) ·Ny(t) ·NVW (t) . (6.32)
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The number of free parameters can be, however, reduced.

First of all, the width oscillations ω2CBO and ωVW have frequencies which are twice the

ones of the oscillation of the mean:

ω2CBO = 2ωCBO , ωVW = 2ωy . (6.33)

Similarly, the decoherence lifetimes are halved as well:

τ2CBO =
τCBO

2
, τVW =

τy
2
. (6.34)

Then, both the radial and vertical oscillation frequencies are related to the quadrupoles

field index n as described in section 2.5:

ωCBO = ωc

√
n , ωy = ωc

√
1− n . (6.35)

The vertical oscillation frequency can therefore be expressed in terms of the radial CBO

frequency:

ωy = ωCBO

√
1− n√
n

= Fy · ωCBO

√
2ωc

Fy · ωCBO

− 1 , (6.36)

where Fy is a correction factor that takes into account the fact that quadrupoles do not

cover the full azimuth and any non-linearities inside the ring. Fy is free to float in the

ωa fit.

This reduces the number of free parameters from 21 to 17.

In addition to the modulation of the number of observed positrons, beam oscillations

also affect the g − 2 phase and asymmetry. The g − 2 phase is directly related to the

positron drift time, which in turn depends on the positron energy. As the beam oscillates

closer and farther from the calorimeters, the average positron drift time change, and so

does the average measured g−2 phase ϕ. The energy dependence of the measured phase

leads also to a periodic distortion of the observed energy spectrum. These effects require

higher order corrections to A and ϕ, which vary over time:

ABO(t) = 1 + AA cos(ωCBOt− ϕA)e
− t

τCBO , (6.37a)

ϕBO(t) = 1 + Aϕ cos(ωCBOt− ϕϕ)e
− t

τCBO . (6.37b)
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The fitting function of Equation 6.32 then becomes:

N(t) =Ne−t/τµ [1 + A · ABO(t) · cos(ωat− ϕ+ ϕBO(t))] ·
·NCBO(t) ·N2CBO(t) ·Ny(t) ·NVW (t) ,

(6.38)

with 21 floating parameters.

6.5.2 Muon loss correction

A small fraction of the muons are lost from the stored beam before they decay into

positrons. If their momentum is smaller (or higher) than the storage ring acceptance of

3.1 GeV ±0.15%, they will eventually hit one of the collimators and, by losing energy,

exit the storage region. While slightly decreasing the number of muons participating in

the ωa signal, the collimators ensure a very sharp muon momentum distribution. The

consequence of this is that the observed decay rate deviates from a pure exponential by

the number of lost muons L(t):

dN

dt
= −N

τµ
− L(t) . (6.39)

Solving this differential equation, we obtain:

N(t) = Ne−t/τµ ·
(
1− kLM

∫ t

t0

L(t′)et
′/τµdt′

)
≡ Ne−t/τµ · Λ(t) , (6.40)

where kLM is a floating parameter in the ωa fit. The distortion caused by the lost muons

is visible both as a non-flat component in the wiggle fit residual and as a low-frequency

peak in the FFT of the same residual, as visible in Figure 6.22.

The function L(t) can be extracted empirically by identifying the muons that hit the

calorimeters before decaying into positrons. Therefore, kLM represents the fraction of

the lost muons that are detected by the calorimeters.

Muon selection

After a muon hits a collimator, it curls inwards as it does not have a momentum sufficient

to stay in orbit. In its path, the muon can cross two or more calorimeters, as shown in

Figure 6.16, before decaying or exiting the calorimeters acceptance. Such muon produces

some characteristic signatures that can be used for its identification. For instance, it
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Figure 6.16: Diagram of a muon lost from the storage region. The particle hits three
consecutive calorimeters before decaying or exiting the calorimeters acceptance region.
Courtesy of M. Sorbara.

generally produces Čherenkov photons in only one crystal as its trajectory is mostly

perpendicular to the calorimeter face. The deposited energy is the one of a minimum

ionizing particle (MIP), which is described by the Bethe-Bloch relation [10] and it has

a value of E ≈ 170 MeV for a 3.1 GeV muon in a PbF2 crystal of length 14 cm.

The center of the distribution as measured in the calorimeters is actually defined to

be 170 MeV by the absolute calibration as described in section 5.4.4. Finally, the lost

muons can produce hits in consecutive calorimeters with a typical time of flight (TOF)

of tTOF ≈ Tc/24 = 6.22 ns.

Figure 6.17: Cluster energy as measured by the calorimeter versus track momentum as
measured by the tracker. The tracker detection efficiency decreases at low momentum
due to its geometrical acceptance. In addition, the momentum of ∼ 3 GeV/c particles
is not precisely measured because of the large radius of curvature.

For the two calorimeters located after a tracking station, muons can be easily iden-

tified by comparing the momentum and the energy measured by the two detectors, as
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shown in figure 6.17. The distribution along the diagonal is populated by positrons,

for which E ≈ p, while the muons are localized in the region at high momentum and

low energy deposit. The cluster observed on the calorimeter is matched to the track

measured by the tracker according to the following time and position cuts:

|tcalo − ttracker − 2| < 8ns , |∆r| < 30mm , (6.41)

where the shift of 2 ns in the time coincidence is the time needed by the muon to travel

between the end of the straw tubes and the calorimeter back face.

By defining a cut on the E/p ratio it is possible to extract a very pure sample of lost

muons. Then, for the calorimeters hit by the selected particles, likelihood functions are

built based on the deposited energy, the measured time of flight tTOF , and the position

distribution.

The lost muons used to build the empirical L(t) are extracted from all 24 calorime-

ters by selecting the particles which satisfy the likelihood cuts in 3, 4, or 5 consecu-

tive calorimeters. Double coincidences are not included, as they contain some residual

positron background. However, they are used to estimate the related systematic effect.

These triple, quadruple, and quintuple coincidences are then combined together to pro-

vide an estimation of L(t) as shown in fig.6.18. The function is then integrated according

to Equation 6.40 and stored as

J(t) =

∫ t

0

L(t′)et
′/τµdt′ . (6.42)

Finally, the integral function is inserted into the ωa fit function as

Λ(t) = 1− kLMJ(t) . (6.43)

6.5.3 Variable CBO frequencies

The beam oscillation frequencies implemented in section 6.5.1 depend on the electrostatic

quadrupole field index as described in section 2.5. The field strength depends on the

charge accumulated in the quadrupole plates and stabilize after the quadrupoles reach

their nominal voltage. The charging process is designed to have a time constant of ∼ 5

µs [49], so that the CBO terms are stable in the measurement window which starts at

t = 30 µs.
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Figure 6.18: L(t) function from triple, quadrupole, and quintuple coincidences.

During the Run-1 data-taking, two resistors connected to one of the quadrupoles were

damaged and changed their resistance during time. This resulted in the quadrupole not

reaching the nominal voltage before the ωa fit start time of 30 µs, as shown in Figure

3.9b. As a consequence, this lead to a higher particle loss rate, a time dependent phase

shift due to the correlation between the beam motion and the detector acceptance, and

time dependent betatron frequencies.

To account for this, the CBO frequencies are allowed to vary as a function of time

in the ωa fit. The tracker system is capable of measuring the beam distribution as a

function of time, and has the possibility to measure these effects directly. Figure 6.19

shows the varying CBO frequency as measured by the two tracker station for the Run-1D

dataset, the one where the resistors were damaged the most. The frequency variation is

modeled as a double exponential function:

ωCBO(t) = ω0
CBO +

A

t
e
− t

τA +
B

t
e
− t

τB (6.44)

where τB represents the nominal quadrupole charging lifetime and τA the slower lifetime

introduced by the damaged resistors. In the ωa fitting function (Equation 6.38) each

instance of ωCBO is substituted with the ωCBO(t) of Equation 6.44. The four parameters

A, B, τA, τB are fixed to the values measured by the trackers, while ω0
CBO remains free

to float in the ωa fit. Because of the relations of Equations 6.33 and 6.36, the oscillation

frequencies ωy(t), ωVW (t), ω2CBO(t) will vary with time too.
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Figure 6.19: Variable CBO frequency as measured by the tracker detectors for the Run-
1D dataset [53].

The damaged resistors have been replaced before the start of Run-2, so the effect of

the quadrupoles on the variation of the CBO terms has been greatly suppressed. How-

ever, the second exponential term of Equation 6.44 remains and, while the time constant

is small (τB ≈ 7 µs), the variable CBO term is included in the fit anyway.

The ωa fitting function is, at this point, the following:

N(t) =Ne−t/τµ [1 + A · ABO(t) cos(ωat− ϕ+ ϕBO(t))] ·
·NCBO(t) ·NVW (t) ·N2CBO(t) ·Ny(t) · Λ(t) ,

(6.45)

with 22 floating parameters.

6.5.4 CBO-VW beat frequency

Starting from Run-2, the running conditions of the experiment are stable enough that

the ωa analysis can be performed to the entire run combined. The number of positrons

collected in all the Run-2 datasets is more than twice of the biggest dataset in Run-1

(Run-1D). Run-3a is even bigger at ∼1.35 times the statistics of Run-2.

One of the benefit of analyzing bigger datasets is the ability to be sensitive to small

effects previously non-detectable. An example is the appearance of a small peak in the

FFT of the residuals of the ωa fit performed with the function of Equation 6.45, shown

in Figure 6.26.

The new peak is one of the beating frequencies between the CBO and Vertical Waist
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terms:

ωCBO±VW (t) = ωCBO(t)± ωVW (t) . (6.46)

A new term is multiplied to the ωa function of Equation 6.45:

NCBOVW (t) = 1 + [A+ cos(ω+(t)t− ϕ+) + A− cos(ω−(t)t− ϕ−)] e
− t

τCBOV W , (6.47)

where the + and− subscripts refer to the CBO+VW and CBO−VW terms respectively.

While only the CBO − VW peak is visible in the FFT plot, both beating frequencies

are included in the ωa fit. This increases the number of floating parameters to 27.

6.5.5 Complete fitting function

The complete model used to fit the positron wiggle plot to extract the anomalous pre-

cession frequency includes all the modulating terms described in the previous sections:

N(t) =Ne−t/τµ [1 + A · ABO(t) cos(ωat− ϕ+ ϕBO(t))] ·
·NCBO(t) ·NVW (t) ·N2CBO(t) ·Ny(t) · Λ(t) ·NCBOVW (t) ,

(6.48)

where the last term NCBOVW (t) is omitted for the Run-1 analysis because of the lack of

sensitivity due to the lower statistics. In addition, the Ny(t) term is very small in the

Run-1A and Run-1B datasets for the same reason and set equal to 1.

The determination of the best-fit parameters is achieved by minimizing the Neyman

χ2 using the TMinuit minimizer included in the ROOT software [62].

Because of the high number of parameters and the very small contribution of some terms,

the fit routine does not converge if the fitting function is not adequately prepared. The

algorithm developed for this analysis proceeds by fitting an increasingly higher number

of parameters, while omitting or fixing the remaining ones. Table 6.3 shows the ordered

list of functions used to reach the final 27-parameter model of Equation 6.48. For each

of the functions, new terms are added according to the highest peak in the FFT of the

residuals. At every step, the fit routine runs twice: the first time, all the parameters

determined in the previous step are kept fixed in order to find an appropriate starting

point for the new terms; the second time, all the parameters are released and the results

are collected.

Uncertainties on the parameters at each step are computed using the MnHesse algorithm,
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which is less time-consuming, while the final fit is performed using the MnMinos algo-

rithm, which is more precise. The difference in the fitted ωa value using the two different

algorithms is < 1 ppb.

Figures 6.15 and 6.21−6.27 show the result at each step of the algorithm.

Label Equation Notes

f5par N(t) = Ne−t/τµ [1 + A cos(ωat− ϕ)]

f9par N(t) = Ne−t/τµ [1 + A cos(ωat− ϕ)] ·NCBO(t)

f12par N(t) = Ne−t/τµ [1 + A cos(ωat− ϕ)] ·NCBO(t) ·NVW (t)

f13par N(t) = Ne−t/τµ [1 + A cos(ωat− ϕ)] ·NCBO(t) ·NVW (t) · Λ(t)

f19par
N(t) = Ne−t/τµ [1 + A · ABO(t) cos(ωat− ϕ+ ϕBO(t))] ·
·NCBO(t) ·NVW (t) · Λ(t) ·N2CBO(t)

f20par
N(t) = Ne−t/τµ [1 + A · ABO(t) cos(ωat− ϕ+ ϕBO(t))] · Variable ωCBO

·NCBO(t) ·NVW (t) · Λ(t) and ωVW

f22par
N(t) = Ne−t/τµ [1 + A · ABO(t) cos(ωat− ϕ+ ϕBO(t))] · Variable ωCBO,

·NCBO(t) ·NVW (t) · Λ(t) ·N2CBO(t) ·Ny(t) ωVW , and ωy

f27par
N(t) = Ne−t/τµ [1 + A · ABO(t) cos(ωat− ϕ+ ϕBO(t))] · Variable ωCBO,

·NCBO(t) ·NVW (t) · Λ(t) ·N2CBO(t) ·Ny(t) ·NCBOVW (t) ωVW , and ωy

Table 6.3: List of labeled functions as used in the ωa fit routine. The number in the
labels represents the number of free parameters.

The choice of the fitting window is driven by achieving a balance between the gain in

statistical power, and the reduction of systematic effects. An earlier fit start time would

introduce more statistics, thanks to the exponential decay shape, but the beam takes

time to stabilize after injection and the quadrupole scraping. For this reason, a fit start

time is chosen to be around 30 µs after injection. A more precise value is determined

such that the systematic effect due to the calorimeter gain fluctuations is minimized.

As demonstrated in Figure 6.20 of reference [56], for any uncorrected slow effect, the

sensitivity of ωa is minimized when the fit starts on a node of the ωa oscillation. For

this reason, the fit start time for each dataset is chosen to be the time bin of the wiggle

plot closest to the ωa oscillation node near 30 µs. If the fit starts one time bin earlier,

for example, the gain in statistical power is outweighed by the systematic precision lost.

On the other hand, both the statistical and systematic uncertainties are not greatly

affected by the fit stop time. Table 6.4 lists the chosen start and stop times for the

Run-1, Run-2, and Run-3 datasets.
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Figure 6.20: A scan over the fit start time when artificially scaling the In-Fill Gain
correction amplitudes by a factor 0 (blue), 1 (black), and 2 (red), for the TMethod
(solid) and AMethod (dashed). The change in R is with respect to that when using the
nominal gain amplitude values. The chosen fit start time is marked by a vertical, dashed
line. Figure from [56].

As mentioned in Section 6.5.3, the damaged quadrupoles resistors caused the beam to

move even after 30 µs, during the measurement window. This effect got worse with time

as the resistors deteriorated during the data acquisition. In order to reduce the related

systematic effects on ωa for the last Run-1 dataset, Run-1D, the start time has been

shifted to the ωa node closest to ∼50 µs.

Dataset Fit start time [µs ] Fit stop time [µs ]

Run-1A 30.1364 650.0210

Run-1B 30.1364 650.0210

Run-1C 30.1364 650.0210

Run-1D 49.8295 650.0210

Run-2 30.1384 650.0644

Run-3a 30.1384 650.0644

Run-3b 30.1384 650.0644

Table 6.4: List of the ωa fit start and stop times for the Run-1, Run-2, and Run-3
datasets.
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Figure 6.21: Run-2 wiggle plot fitted with the 9 parameter function f9par of Table 6.3.

Figure 6.22: Run-2 wiggle plot fitted with the 12 parameter function f12par of Table
6.3.



Chapter 6 | The anomalous precession frequency measurement 163

Figure 6.23: Run-2 wiggle plot fitted with the 13 parameter function f13par of Table
6.3.

Figure 6.24: Run-2 wiggle plot fitted with the 19 parameter function f19par of Table
6.3.
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Figure 6.25: Run-2 wiggle plot fitted with the 20 parameter function f20par of Table
6.3.

Figure 6.26: Run-2 wiggle plot fitted with the 22 parameter function f22par of Table
6.3.
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Figure 6.27: Run-2 AMethod wiggle plot fitted with the 27 parameter function f27par of
Table 6.3. This is the most complete fitting function for Run-2 and Run-3. The χ2/ndf
value of ∼1, the flat residual, and the lack of any pronounced peak in the FFT plot are
indications of a good fitting model.
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Chapter 7

Results

This chapter presents the results of the anomalous precession frequency analysis per-

formed on the data of Run-1, Run-2, and Run-3. The analysis presented here is conducted

by the ωa-Europe group, a collaboration between the Italian (INFN) and UK groups.

While the results of Run-1 have been released to the public in April 2021 [11, 68], the

Run-2 and Run-3 analyses are still ongoing, with a planned publication in 2023. For this

reason, the results are still blinded. Where possible, I will show the preliminary values,

and I will focus on the general improvements on the systematic uncertainties with respect

to Run-1 introduced by the new ReconITA reconstruction, mostly developed by me and

described in Chapter 5.

7.1 Blinded analysis

The ωa analysis of the Muon g − 2 Experiment is performed as blinded, meaning that

the measured value of ωa is artificially shifted with respect to the true value. This is

done to prevent unconscious biases of the analyzers when processing and analyzing the

data. The blinding is applied in two different ways, one at the hardware level, and one

at the software level.

7.1.1 Hardware blinding

The clock timings of the detectors are centrally provided by a 10 MHz Rubidium master

clock. The Rubidium source provides the short-period oscillation stability, while a GPS

receiver provides the long term stability. The master clock generates the signal for

two precision synthesizers (SRS SG-382) which generate the clock signals for the field

and positron measurements respectively. The synthesizer providing the clock to the

167
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calorimeters generates a 40 MHz signal which then gets up-scaled to the sampling rate

of 800 MHz in the calorimeter front-ends. The 40 MHz frequency is purposely detuned

in the range [39.997,39.999] MHz by two Fermilab staff members not part of the Muon

g − 2 collaboration. The actual ”secret” frequencies are noted in two sealed envelopes

and the synthesizers are locked behind a security door. Upon completion of the ωa and

ωp analyses, and after a unanimous decision to unblind the results, the secret frequency

is revealed.

7.1.2 Software blinding

A second level of blinding is applied to the ωa fitting procedure, in order to avoid biases

arising from the comparison of the results between different analysis teams. The fit

routine replaces the ωa term with a dimensionless parameter R defined as:

ωa = ωref
a ·

[
1 + (R + δR) · 10−6

]
, (7.1)

where ωref
a = 2π · 0.2291 MHz and δR is a secret offset that differs for all the analysis

groups. The offset is generated randomly in the [−24,+24] ppm range by transforming a

secret passphrase into a random seed with a MD5 hash function. In the following sections,

I will always refer to the blinded R values when talking about the measured values of

ωa.

7.2 Run-1 results

Run-1 corresponds to the first period of acquisition of physics data for the Muon g − 2

Experiment. As mentioned in Section 6.1, Run-1 is composed of four separate datasets,

collected between March and July 2018, distinguished by the different storage ring con-

ditions. In this section, the results of the ωa analysis described in Chapter 6 for each of

the four datasets are reported.

The fit functions used for the final fit are listed in table 7.1, while the fit start and

stop times were listed in Table 6.4 of Section 6.5.5. Figure 7.1b shows the Fast Fourier

Transform of the fit residual with the complete fitting model for dataset Run-1D. The

absence of peaks corresponding to the beam characteristic frequencies indicates that the

fitting model described in Chapter 6 is correct. Moreover, the absence of a peak at low

frequencies indicates that the treatment of lost muons and pileup contamination is also
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correct.

Dataset Fitting function Parameters

Run-1A
N(t) = Ne−t/τµ [1 + A · ABO(t) cos(ωat− ϕ+ ϕBO(t))] ·
·NCBO(t) ·NVW (t) · Λ(t) ·N2CBO(t)

20

Run-1B
N(t) = Ne−t/τµ [1 + A · ABO(t) cos(ωat− ϕ+ ϕBO(t))] ·
·NCBO(t) ·NVW (t) · Λ(t) ·N2CBO(t)

20

Run-1C
N(t) = Ne−t/τµ [1 + A · ABO(t) cos(ωat− ϕ+ ϕBO(t))] ·
·NCBO(t) ·NVW (t) · Λ(t) ·N2CBO(t) ·Ny(t)

23

Run-1D
N(t) = Ne−t/τµ [1 + A · ABO(t) cos(ωat− ϕ+ ϕBO(t))] ·
·NCBO(t) ·NVW (t) · Λ(t) ·N2CBO(t) ·Ny(t)

23

Table 7.1: List of fitting functions for the Run-1 datasets.

(a) (b)

Figure 7.1: Wiggle fit (a) and Fast Fourier Transform of the fit residual (b) for the
Run-1D dataset. The FFT spectrum shows no remaining peaks with respect to the 5-
parameter fit (light gray), indicating an excellent performance of the fit model [68].

The final ωa-Europe central values of the main fit parameters for the four Run-1

datasets are listed in Table 7.2. The fit results are reported for one randomization seed

only and for both the TMethod and AMethod techniques. The complete tables, which

include all the fit parameters, and the correlation matrices, can be found in Appendix

A.

The ωa values are reported in their blinded form R(ωa), but the same blinding offset is

applied to all the four datasets. Note that the R values need not to be the same, as the

magnetic field B may vary across the run, e.g. for seasonal temperature differences (see

Section 3.6). The variation in the ωCBO values is due to the different quadrupoles field

indexes of n = 0.108 and n = 0.120 used throughout the run and listed in Table 6.1.
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The TMethod and AMethod techniques use different positron energy thresholds as

mentioned in Section 6.4 and therefore their results are related to slightly different,

although highly correlated, samples. Using the simple approximation for a lower bound

on the allowed difference for the Run-1D dataset:

σωT
a −ωA

a
=

√
σ2
ωT
a
+ σ2

ωA
a
=

√
0.742 − 0.672 = 0.31 ppm , (7.2)

where the difference |ωT
a − ωA

a | is 0.2 ppm, approximately 0.6 · σωT
a −ωA

a
, compatible with

the hypothesis of a statistical fluctuation. The Neyman reduced chi-square, χ2
red =

χ2/NDF = 1.009 for the Run-1D AMethod, is consistent with unity within one standard

deviation for all the four datasets and for both the TMethod and AMethod techniques:

σ(χ2
red) =

√
2

NDF
≈ 0.02 , (7.3)

As mentioned in Section 6.4, the AMethod provides the highest possible statistical

power for the determination of ωa. For this reason, the AMethod values have been cho-

sen to extract the final value of ωa. Table 7.3 summarizes the blinded ωa values for the

ωa-Europe analysis obtained by averaging the AMethod values extracted with several

randomization seeds. These values are the ones used in the final average for the compu-

tation of the aµ result published in [11, 68]. The final, unblinded, results are presented

in Section 8.2.

The next sections will present several consistency checks performed to confirm the

stability and reliability of the extracted ωa values. The anomalous precession frequency

of the muons does not depend, within the allowed statistical deviations, on the specific

detectors used for the analysis, nor on the time and energy selection over the ωa fit is

performed.

7.2.1 Start time scans

As discussed in Section 5.4, effects that cause the measured g − 2 phase ϕ to change

within a fill introduce a direct bias to the extracted ωa value. For example, pileup con-

tamination and calorimeter gain fluctuations are two sources of time-dependent effects.

In addition, anything that changes the measured positron energies will result in a time-

dependent change in the effective energy threshold. A non corrected In-Fill gain, for

example, would raise the effective energy threshold in the first microseconds of the fill.

Since the g − 2 decay asymmetry varies with positron energy, as previously shown in
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T-Method A-Method

Dataset Parameter Unit Value Uncertainty Value Uncertainty

Run-1A

N − 3594224. 930. 1617963. 369.

τ µs 64.4411 0.0037 64.4388 0.0033

A − 0.365025 0.000043 0.360934 0.000038

R(ωa) ppm −24.21 1.33 −23.74 1.19

ϕ rad 2.09093 0.00022 2.09052 0.00020

ωCBO rad/µs 2.33830 0.00044 2.33816 0.00035

χ2/NDF - 4041.69/4135 = 0.977 4079.35/4135 = 0.987

Run-1B

N − 5002739. 496. 2251357. 1038.

τ µs 64.4275 0.0018 64.4275 0.0027

A − 0.365243 0.000036 0.360798 0.000032

R(ωa) ppm −22.53 1.12 −22.39 1.01

ϕ rad 2.08329 0.00017 2.08272 0.00017

ωCBO rad/µs 2.61524 0.00055 2.61497 0.00052

χ2/NDF - 4072.97/4135 = 0.985 4199.43/4135 = 1.016

Run-1C

N − 7636215. 2359. 3433721. 1009.

τ µs 64.4390 0.0022 64.4378 0.0021

A − 0.366721 0.000030 0.361882 0.000026

R(ωa) ppm −23.38 0.91 −22.99 0.81

ϕ rad 2.08073 0.00015 2.08020 0.00013

ωCBO rad/µs 2.61026 0.00029 2.60999 0.00023

χ2/NDF - 4182.25/4133 = 1.012 4235.98/4133 = 1.025

Run-1D

N − 15346879. 9618. 6878558. 3322.

τ µs 64.4419 0.0026 64.4415 0.0021

A − 0.370068 0.000024 0.364085 0.000021

R(ωa) ppm −23.28 0.74 −23.08 0.67

ϕ rad 2.07614 0.00014 2.07557 0.00013

ωCBO rad/µs 2.33594 0.00032 2.33591 0.00025

χ2/NDF - 4048.39/4001 = 1.012 4036.15/4001 = 1.009

Table 7.2: Best fit results for the main parameters for the Run-1 datasets. The fitting
functions are the ones listed in Table 7.1. The results are from a single random seed.

Figure 6.10, the resulting effect would be a time-dependent asymmetry term A(t).

A powerful way to check for any time dependence of the fit parameters is to perform

a scan of the ωa fit start time. As the fit model assumes that each parameter is constant,
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Dataset R(ωa) [ppm] σωa [ppm]

Run-1A -23.9467 1.1925

Run-1B -22.4867 1.0107

Run-1C -23.0652 0.8136

Run-1D -23.2811 0.6672

Table 7.3: Blinded ωa best fit values for the AMethod ωa-Europe analysis. These results
are the average of several hit randomization seeds. The reported uncertainty ωωa is the
statistical one.

any observed drift with respect to the fit start time is indicative of some effect that has

not been accounted for. While doing this check, it has to be noted that shifting the

start time of the fit changes the number of positrons participating to the fit, due to

the exponential muon decay time, thus modifying the statistical effects. For a parameter

measured at different start times t1 and t2, with t2 > t1, the one-sigma allowed statistical

drift is approximately given by [41]:

σdiff =

√
σ2
2 − σ2

1

(
2
A1

A2

cos(ϕ1 − ϕ2)− 1

)
. (7.4)

In a start time scan, σ2 will be larger than σ1 because the former is derived from a

smaller dataset than the latter. Equation 7.4 defines a region in the fit start time scans

where the parameters can vary due to statistical fluctuations. The stability of the fitted

parameters implies that all the systematic effects with time constants ≪ τµ are handled

correctly in the analysis and they do not introduce any bias to the results.

Some parameters, such as the lifetime, amplitude and phase of the vertical oscillation

term Ny(t), as well as the higher order terms N2CBO(t), ABO(t), and ϕBO(t) are difficult

to fit at later start times due to their small amplitudes and fast decoherence times. The

same goes for the muon loss normalization term kLM . For this reason, they are kept

fixed to the values found at the nominal start time. The start time scans have been

produced for all the relevant parameters for all datasets. Figure 7.2 shows the fitted

main parameters of interest for the start time scans of the Run-1C dataset.

All the parameters, and in particular the ωa value, are found to be stable within the

1σ allowed statistical drift for the datasets Run-1A, Run-1B, and Run-1C. However, the

start time scans of parameters N and τµ of dataset Run-1D show a significant deviation
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(a) Number of positrons N . (b) Asymmetry A.

(c) Blinded ωa value R. (d) Phase ϕ.

(e) Boosted muon lifetime τµ. (f) CBO oscillation frequency ωCBO.

Figure 7.2: Fit start time scan for the Run-1C dataset. The fit parameters of the f5par
and the CBO oscillation frequency ωCBO are shown. The red lines represent the 1σ
allowed statistical deviation from the nominal starting point of t = 30 µs.

(a) Number of positrons N . (b) Boosted muon lifetime τµ.

Figure 7.3: Fit start time scan for the Run-1D dataset. Only the N and τµ parameters
are shown, which are the ones that significantly deviate away from the allowed 1σ bands
(red lines).
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from the 1σ bands (Figure 7.3). This deviation is caused by a residual early-to-late effect

that will be discussed in the next section.

7.2.2 Energy binned scans

Another consistency check is the fit scan over different positron energies. Systematic

effects on the detectors can cause energy and time dependent phase shifts that can bias

the measured ωa value at different energies, as anticipated in Section 5.4. Uncorrected

detector-based systematic effects are expected to create biases on the order of 100 ppb

[49], which are higher than the precision goal of the experiment. Beam dynamics effects

can also cause energy dependent biases via the energy dependence of the calorimeter

acceptance. Therefore, it is necessary to verify the consistency of the measured ωa and

the other parameters versus positron energy. In particular, energies toward the endpoint

of the positron spectrum (3.1 GeV) are more sensitive to pileup or energy-related effects.

The reason is that the relative impact of such effects is enhanced by the small number

of positrons in high energy bins.

The energy scans are performed by slicing the pileup-corrected time-energy histogram

(Figure 6.1a) into energy bins 30 MeV wide. Each slice is then individually fitted using

the same function as the complete dataset. The same procedure is also used to extract

the AMethod weighting function described in Section 6.4. Due to the low statistics of the

highest energy bins, the fit end time is adjusted to ≈ 400 µs to avoid very low-populated

bins. In addition, the fit routine is performed with the Maximum Likelihood method

included in the TMinuit package [62]. Figure 7.4 shows the fitted main parameters of

interest for the energy scan of the Run-1A dataset. Similar results are found for all Run-1

datasets. The fitted ωa value is sufficiently stable at high energies where the shorter fit

is performed.

The g − 2 phase, ϕ, shows a variable trend which can be explained by the fact that

high energy positrons travel further in space before hitting a calorimeter than low energy

positrons, because of the larger radius of curvature (Figure 7.5). The longer time of flight

means that the high energy positrons observed by a calorimeter are generated further

away than low energy positrons, thus from muons of a different phase. Complementary,

the calorimeter acceptance depends on the positron energy [53].

The muon loss scaling parameter, kLM , shows an unexpected deviation at high ener-
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(a) Number of positrons N . (b) Asymmetry A.

(c) Blinded ωa value R. (d) Phase ϕ.

(e) Boosted muon lifetime τµ. (f) Muon loss normalization kLM .

Figure 7.4: Energy binned scan for the Run-1A dataset. The fit parameters of the f5par
function and the muon loss normalization kLM are shown.

gies. In fact, the parameter is introduced to scale the lost muons function L(t) extracted

empirically to the actual number of muons that are lost before decaying. By construc-

tion, the parameter should not depend on the positron energies and should always be

positive; a negative value would mean that muons are added to the storage ring dur-

ing the fill, which is not physical. Figure 7.4f shows that kLM is not stable across the

energy spectrum and deviates to negative values for high energy positrons. This is a

symptom that could indicate an imperfect gain correction, a time dependence of the lost

muons acceptance for the empirical extraction of L(t), a rate dependent difference in the
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Figure 7.5: Time of flight between the decay vertex and the calorimeter hit versus
positron energy. High energy positrons travel longer than lower energy positrons because
of the larger radius of curvature.

way positrons are reconstructed, or a combination of these and other unknown effects.

Moreover, the same residual systematic effect can account also for the trends in the start

time scans shown in Figure 7.2. The nature of this residual effect is not yet completely

understood, although the current Run-2 and Run-3 analyses point toward the positron

reconstruction as the main contribution. For the Run-1 analysis, the effect is treated as

an additional systematic uncertainty for the final value of ωa, and will be discussed in

Section 7.3.4.

7.2.3 Calorimeter fits

The analysis presented in this Chapter was conducted on the wiggle plot containing the

contribution from all the 24 calorimeters. It is possible to fit each calorimeter individu-

ally for additional consistency checks. Individual calorimeters are more sensitive to the

motion of the beam with respect to the combined data, as close-orbit beam dynamics

effects average out when integrating over the full azimuth angle. Some parameters, such

as τ and kLM are expected to be the same across all calorimeters (Figure 7.6), while the

beam oscillation parameters and A, ϕ, and N may differ depending on the different ma-

terials present in front of the calorimeters. Imperfect per-calorimeter energy calibrations

could also have an effect, and, as mentioned in Section 6.2, the bunched structure of the
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beam produces an effect on the fitted ωa measured by single calorimeters. The latter is

mitigated by the hit randomization technique.

Figure 7.7 shows the fitted ωa value for each calorimeter compared to the fit ob-

tained with all calorimeter combined. The individual fits, as well as their average, are

in excellent agreement with the combined result. The parameter consistency between

calorimeters validates the treatment of beam oscillations, particularly the CBO and the

VW terms.

(a) Boosted muon lifetime τµ. (b) Muon loss normalization kLM .

Figure 7.6: Calorimeter scan of the Run-1D dataset. The two parameters τµ and kLM
show sufficient agreement between the independent calorimeters. The nominal value (red
point on the right) is shown for comparison.

7.2.4 Long term checks

Finally, an additional consistency check is performed to search eventual long-term fluctu-

ations due to environmental factors. Temperature fluctuation of the hall, as well as long

term instabilities of the magnet and beam conditions, could have a detectable effect on

the ωa result. The Run-1D dataset, which is Run-1 biggest one, was sliced into multiple

independent subsets according to different criteria:

• Long-term fluctuations: the dataset is sliced on a per-day basis, where each subset

starts at 7 a.m. Fermilab time and ends at 7 a.m. of the next day;

• Daily fluctuations: the same subsets of the previous item are further divided into

day (7 a.m. - 7 p.m.) and night (7 p.m. - 7 a.m.) slices;
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(a) Run-1A (b) Run-1B

(c) Run-1C (d) Run-1D

Figure 7.7: Blinded ωa values for the calorimeter scans of the four Run-1 datasets. The
points are obtained from AMethod fits for each calorimeter separately. The average of
the 24 calorimeters (blue dashed line) is compared to the nominal result (red point on
the right).

• Magnet measurements: the dataset is sliced in sections bounded by the trolley

measurements of the magnetic field described in Section 2.4;

Figure 7.8 shows the fitted ωa for each subset compared to the nominal fits. The indi-

vidual fits, as well as their average, are in excellent agreement with the combined result,

without showing any trend as a function of the acquisition time. This adds further con-

fidence on the long-term gain corrections applied to the reconstructed data described in

Section 5.4.3.
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(a) Full day fits (b) Half day fits

(c) Trolley groups

Figure 7.8: Blinded ωa values for the long-term scans of the Run-1D dataset. The data
is separated into groups depending on the day (a), the time of the day (b) and the trolley
measurements (c). The average is shown as a blue dashed line.

7.3 Evaluation of systematic uncertainties

The previous sections presented the central values for the Run-1 anomalous precession

frequency analysis, together with the statistical uncertainties. This section will give an

evaluation of the systematic uncertainties related to the measurement of ωa. While, as

we will see, the Run-1 measurement uncertainty is completely dominated by the statis-

tical error, it is of crucial importance to determine and evaluate all the possible biases

that can affect the measured value of ωa. The final goal of the Muon g − 2 Experiment

is to contain the systematic uncertainties of ωa under 70 parts per billion.

Sources of systematic errors are the gain corrections, the pileup subtraction, the phase

acceptance of the detectors, the beam dynamics model, and the electric field. Finally,
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any uncorrected effect that arises from the internal consistency checks must be evaluated.

In this section I will mainly focus on the systematic uncertainties related to the re-

construction and the gain corrections of the positron data. For each systematic study,

in order to compare the results from different histograms, the hit time randomization

described in Section 6.2 has not been applied unless explicitly specified.

7.3.1 Gain corrections

As anticipated in Section 5.4, a high gain stability of the detectors, especially in the

timescale within a single fill, is required. Any time-dependent change in the energy scale

of the calorimeter will introduce a time dependency of the energy acceptance. Therefore,

any uncorrected fluctuation could result in a direct bias in the measurement of ωa.

The long-term gain correction described in Section 5.4.3 does not have a direct effect

on ωa as it is applied on much longer timescales than the 700 µs of the measurement pe-

riod. However, the consistency checks shown in Section 7.2.4 demonstrate the reliability

of such correction.

The technique employed to evaluate the gain systematics is to re-apply the gain

corrections scaled by a certain multiplying factor α. When the factor is α = 0 it is

equivalent as not applying the gain corrections at all, while for α = 1 the nominal

corrections are applied. The difference between these two scenarios gives the overall

ωa sensitivity to the gain corrections. A scan over values close to α = 1 will give the

final estimated systematic uncertainty according to the estimated precision of the gain

correction parameters.

In-Fill gain correction

The In-Fill gain correction described in Section 5.4.2 applies a correction to the SiPM

energies of the form:

gIFG(t) =
1

1− Ae−t/τ
, (7.5)

in order to correct for the gain sag caused by the splash of particles after beam injection.

In order to evaluate the systematic effects of this correction a scan of the amplitude
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parameter A is performed. For each crystal, the actual gain correction is removed by

applying the inverse function to the crystal energy, and then a new gain correction, with

an amplitude scaled by an α multiplier, is applied instead:

E ′ = E
g′IFG(t)

gIFG(t)
= E

1− Ae−t/τ

1− αAe−t/τ
(7.6)

The new positron energy is computed by summing all the modified crystal energies of

the original cluster. The clustering algorithm is not re-applied at this stage. After re-

calculating all the positron energies, the pileup correction routine is run again and the

modified wiggle plot is built. The same procedure is replicated over a range of scaling

factors from α = 0 to α = 2 in steps of 0.25.

Each wiggle plot is then fitted with the standard routine described in Section 6.5.

Figure 7.9: In Fill Gain amplitude scan: on the left the χ2/NDF as a function of the α
multiplier, where the green band represents a χ2

min + χ2
Unit variation. On the right the

fitted R value. The blue band represents a change in R corresponding to one χ2 unit
variation around the expected minimum.

Figure 7.9 shows the fit reduced chi-square χ2
red and the blinded ωa value as a function

of the multiplier factor α for the Run-1D dataset. The multiplier giving the minimum

χ2 value is expected to be ∼ 1, since α = 1 is the nominal correction as measured by

the laser system. A value different than 1 may suggest that other effects are involved in

this gain terms. Similar results are found for all the datasets in Run-1. The χ2 value,

however, might be affected by some of the 22 parameters of the fitting function (Table

7.1) that could change in order to balance out the effect of a wrong In-Fill gain correction.

For this reason, the systematic uncertainty on the In-Fill gain amplitude is extracted
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by multiplying ωa sensitivity to the correction with the average uncertainty of the am-

plitude A parameter as measured by the laser system:

σIFG =
dR

dα
⟨σIFG

A ⟩ . (7.7)

As described in section 5.4.2, the In-Fill gain lifetime, τ , is determined from the long-

term double pulse (LTDP) studies. This allows to measure the lifetimes for each crystal

with a precision of ∼2%. Since the time constant variation can be linearly related to

the amplitude variation when the former is small, all the IFG systematic contribution

is assumed to be inside the amplitude parameter variation and the IFG time constant

uncertainty is set to be zero. Table 7.4 summarizes the systematic uncertainties extracted

for Run-1.

dR/dα [ppb] σIFG [ppb]

Dataset TMethod AMethod TMethod AMethod

Run-1A 110.4 100.1 23.6 21.4

Run-1B 102.5 99.6 6.7 6.5

Run-1C 65.0 59.4 9.9 9.1

Run-1D 4.2 104.1 0.6 3.9

Table 7.4: Summary of the Run-1 sensitivities and systematic uncertainties related to
the In-Fill gain correction for the TMethod and AMethod.

Short-Term gain correction

The Short-Term gain correction described in section 5.4.1 is of the following form:

gSTDP (t) =
1

1− E1Ae−∆t/τ
, (7.8)

where E1 is the energy of the hit preceding the one for which the STDP correction is

applied, and ∆t depends on both hits. For this reason, it is not trivial to re-scale the

correction on the reconstructed data.

In order to evaluate the systematic effect of the correction, each dataset has been

produced again without applying the STDP correction. This is equivalent to having the

α scaling parameter set to α = 0. The difference ∆ωa = ωa − ωNo−STDP
a is taken as

the ωa sensitivity to the STDP correction. In analogy to the In-Fill gain, the systematic

uncertainty is extracted by multiplying ∆ωa with the average uncertainty ⟨σSTDP
A ⟩ of
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the amplitude parameter as measured by the laser system. The results for the Run-1

datasets are reported in Table 7.5. The systematic is very small and mostly < 1 ppb.

Similarly to the IFG systematics, since a small variation in the time constant can

be related to a variation in the amplitude parameter, it has been assumed that all the

STDP systematic contribution lies in the amplitude parameter.

σSTDP [ppb]

Dataset TMethod AMethod

Run-1A 0.1 0.1

Run-1B 0.1 0.1

Run-1C 0.3 0.2

Run-1D 1.2 0.1

Table 7.5: Summary of the Run-1 systematic uncertainties related to the Short-Term
gain correction for the TMethod and AMethod.

7.3.2 Pileup correction

To determine the systematic uncertainty related to the pileup correction, a series of

measurements were performed varying the pileup parameters discussed in section 6.3.

Pileup amplitude

In order to study the systematics related to the overall magnitude of the pileup correction,

a scan similar to the gain correction studies described in Section 7.3.1 was performed.

The pileup correction for Run-1 is of the form (Equation 6.6):

N(t, E) = N ′(t, E) + α(SD(t, E)−D(t, E)) , (7.9)

where the optimal value for the scaling factor α is determined from a scan of the pa-

rameter in a small range around 1, typically 0.9 ≤ α ≤ 1.1. For each scaling parameter

value, a wiggle plot is built and then fitted with the full fitting model. The fit reduced

chi-square, χ2/NDF , is plotted as a function of the scaling value α and the data points

are fitted with a quadratic function in order to find the minimum. The α value used for

the actual pileup correction is the one that gives the minimum χ2/NDF value.
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The same routine is used to extract the related systematic uncertainty, shown in

Figure 7.10 for the Run-1D dataset. By calling δα the shift in α which increases the χ2

value by one unit, the systematic uncertainty related to this parameter is defined to be

the sensitivity of ωa to the pileup scale multiplied by δα. The ωa sensitivity dR/dα is

extracted with a linear fit as shown in Figure 7.10. Table 7.6 summarizes the uncertainties

for the four Run-1 datasets.

Figure 7.10: χ2/NDF (left) and R value (right) for each pileup scale factor for dataset
Run-1D. The green band represents a unit of χ2 variation from the minimum value and
the blue band the corresponding ωa variation.

dR/dα [ppb] δα σα
PU [ppb]

Dataset TMethod AMethod TMethod AMethod TMethod AMethod

Run-1A 334.2 461.9 0.0516 0.0351 17.2 16.2

Run-1B 147.6 495.9 0.0450 0.0283 6.6 14.0

Run-1C 136.0 391.6 0.0387 0.0249 5.3 9.8

Run-1D 233.2 463.7 0.0445 0.0190 10.4 8.8

Table 7.6: Summary of the Run-1 sensitivities and systematic uncertainties related to
the pileup correction α parameter for the TMethod and AMethod.

Triple pileup contamination

The ωa-Europe pileup correction of Run-1 does not include the effect of triple pileup

events. As the probability of a double coincidence is ≈ 0.01, the expected triple pileup

contamination in the data is a factor ≈ 100 smaller than the one from the double pileup.

The systematic uncertainty for not considering the triple pileup contamination is es-

timated by scaling the ωa sensitivity to the double pileup correction, i.e. the dR/dα
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measured by the scans, by a factor 0.01. The bias on ωa is small and summarized in

Table 7.7 for each of the four Run-1 datasets.

σTriples
PU [ppb]

Dataset TMethod AMethod

Run-1A 3.3 4.6

Run-1B 1.5 5.0

Run-1C 1.4 3.9

Run-1D 2.3 4.6

Table 7.7: Run-1 systematic uncertainties due to the triple pileup contamination in the
data.

Pileup cluster energy

A source of systematic uncertainty related to the pileup correction is the energy assign-

ment to the doublet event constructed with the shadow method described in Section

6.3.1. When a double coincidence is found, the associated pileup doublet is constructed

by summing the energies of the two single positrons (Equation 6.3b). However, when

the reconstruction operates on a true pileup event it could result in a different outcome

depending on the energy and time separation of the two underlying positrons.

To assign an uncertainty to this effect, an artificial multiplier is applied to the dou-

blet’s energy:

Edoublet = k · (E1 + E2) . (7.10)

A scan over the k multiplier is performed in an interval of ±0.1 around the nominal

value k = 1. Similarly to the pileup amplitude scaling, the systematic uncertainty for

this parameter is defined to be the variation of ωa in the interval identified by a χ2 unit

variation around the minimum.

Figure 7.11 shows the scan performed for the Run-1D dataset. The minimum of the

χ2/NDF scan is compatible with k = 1, indicating that the pileup correction is suffi-

ciently accurate. The sensitivity of the fitted ωa to the energy scale factor, the slope

dR/dk, is found by fitting the right plot of Figure 7.11 with a linear function. Table 7.8

summarizes the systematic uncertainty extracted for each of the four Run-1 datasets.



186 Chapter 7 | Results

Figure 7.11: Scan of the energy scale parameter in the Run-1D dataset. The green band
represents one χ2 unit variation above the minimum and the blue band corresponds to
the ±σ uncertainty on the R value. Similar uncertainties are found for all the datasets
in Run-1.

dR/dk [ppb] δk σE
PU [ppb]

Dataset TMethod AMethod TMethod AMethod TMethod AMethod

Run-1A 485.8 389.2 0.024 0.018 11.7 7.0

Run-1B 621.6 618.5 0.018 0.013 11.2 8.0

Run-1C 100.9 544.6 0.017 0.012 1.7 6.5

Run-1D 383.6 660.8 0.022 0.001 8.4 7.0

Table 7.8: Summary of the Run-1 sensitivities and systematic uncertainties related to
the pileup energy scale for the TMethod and AMethod.

Pileup cluster time

When a pileup doublet is constructed from a shadow window coincidence, the resulting

doublet assigned time is (Equation 6.3a):

tdoublet =
t1E1 + (t2 − tgap)E2

E1 + E2

+
tgap
2

, (7.11)

where, for Run-1, tgap = Tc. The last term, + tgap
2
, is introduced to account for the

different pileup rate between the trigger and the shadow window.

This time is assigned both to the doublet and to the singlets when building the pileup

histograms. The ωa sensitivity related to the pileup assigned time is evaluated with a

scan performed by shifting tdoublet by an offset tS in the range
[
−Tc

2
, Tc

2

]
.

The systematic uncertainty for the pileup cluster assigned time is set to be the change
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in the measured ωa corresponding to a variation:

tS = ± tW√
12

, (7.12)

where tW = 5 ct is the shadow window width, and where 1/
√
12 is the variance of an

uniform distribution of width 1.

The result for the Run-1D dataset is shown in figure 7.12. Table 7.9 summarizes the

systematic uncertainties extracted for each of the four Run-1 datasets.

Figure 7.12: The fitted R values for a range of different time shift values. The dotted
vertical lines correspond to the ± 5√

12
ct interval, and the horizontal dotted lines show

consequent effect on R.

dR/dtS [ppb/ct] σt
PU [ppb]

Dataset TMethod AMethod TMethod AMethod

Run-1A 8.66 40.82 12.5 58.9

Run-1B 9.85 44.45 14.2 64.2

Run-1C 8.54 39.62 12.3 57.2

Run-1D 5.21 32.91 7.5 47.5

Table 7.9: Summary of the Run-1 sensitivities and systematic uncertainties related to
the pileup cluster time model for the TMethod and AMethod.



188 Chapter 7 | Results

Unseen pileup events

An additional systematic associated to the pileup correction is related to very low energy

positrons. The reconstruction of the calorimeter events applies a low energy threshold of

∼ 50 MeV. Lowering this threshold further would result in a high number of fake pulses

extracted from the noise of the SiPM traces. When a low energy (< 50 MeV) positron

hits a calorimeter at the same time of a higher energy positron in a pileup event, the re-

sulting pileup event will be registered nonetheless. The shadow method is not capable of

correcting for these events, as both the trigger and shadow positrons must be > 50 MeV

in order to be detected. The pileup events that cannot be corrected with the shadow

method technique, for this reason, are named unseen pileup events.

In order to study this effect and to assign a systematic uncertainty, an artificial

threshold Eth = 100 MeV has been imposed to the trigger and shadow window clusters,

so that clusters with E < Eth are not used to build the pileup correction.

As the artificial threshold is twice the one of the calorimeter reconstruction, the system-

atic uncertainty is extracted as the difference between the nominal ωa value and the one

measured with the threshold applied. It is assumed that the difference is the same one

between the nominal ωa value and the one that would be measured if the detector energy

acceptance could reach 0 MeV. The measured systematic effect is small, and the results

for all the Run-1 datasets are summarized in Table 7.10.

σUnseen
PU [ppb]

Dataset TMethod AMethod

Run-1A 5.3 1.1

Run-1B 0.5 2.9

Run-1C 0.6 1.1

Run-1D 0.7 0.8

Table 7.10: Run-1 systematic uncertainties due to the unseen pileup contamination in
the data.

Artificial Dead Time

The Artificial Dead Time (ADT) parameter described in Section 6.3.2 was introduced to

equalize the clustering performance on pileup separation to a box function of size tADT

and height 1. This way, the coincidences found in the window of the shadow method
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match the pileup events more accurately.

However, there are two considerations to be made when applying such parameter.

First, as the clustering performance separates fewer pileup events, the magnitude of the

pileup correction increases and so does the related systematic errors. Then, the cluster-

ing algorithm might not be well represented with a box function. The assumption that

the pileup separation efficiency is exactly 1 for ∆t > tADT might not be true.

In order to estimate the sensitivity of ωa to the choice of the tADT parameter, several

wiggle plots are produced with different tADT values. In order for the pileup correction

to work properly, the shadow window width tW = tADT is scaled accordingly. Each

histogram is then fitted and the ωa sensitivity extracted with a linear fit.

The result of this scan is shown in Figure 7.13. The histograms built with differ-

ent tADT values are partially correlated and an estimate of the uncorrelated statistical

uncertainty of the fitted ωa values is given by:

σi
uncorr ≈

√
σ2
i − σ2

ref , (7.13)

for the i-th data point, where σref is the first point tADT = 3.75 ns.

Figure 7.13: Scan of the Artificial Dead Time parameter for the Run-1C dataset for
the TMethod (left) and AMethod (right). The uncertainties are the uncorrelated errors
calculated according to Equation 7.13. The green line is a linear fit, and the first point
is not included since it has zero error. Courtesy of M. Sorbara.

The systematic uncertainty is evaluated as the variation in the measured ωa for an

ADT shift of ±1.25 ns (= 1 ct) around the nominal value of tADT = 5 ct. This shift
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of ADT values corresponds to the reasonable range of choices based on the clustering

algorithm time partitioning parameters described in Section 5.5.

The sensitivities found in this way appear to vary for different datasets but, since

the uncorrelated statistical uncertainties on the ωa values are roughly estimated, the

significance of the fitted slopes is uncertain. The systematic uncertainty related to the

ADT is therefore evaluated by averaging σADT over the four datasets, separately for

the TMethod and AMethod techniques. The estimated systematic contributions are

σADT = 14 ppb for the TMethod and σADT = 19 ppb for the AMethod.

7.3.3 Muon Losses

The effect of the lost muons in the functional form of the ωa fitting function was described

in Section 6.5.2. An imperfect empirical distribution L(t) can be a source of systematic

uncertainty. The scaling parameter kLM is highly correlated to the fitted number of

positrons N , so any distortion in the lost muons function can be absorbed in the fit by

these two parameters. The muon loss systematics are evaluated by measuring how much

the fitted ωa value changes when varying some of the lost muons function parameters.

First of all, the L(t) function is based on a set of selection cuts applied to extract

a pure sample of muons hitting multiple calorimeters. In order to estimate the system-

atic uncertainty related to these cuts, the energy and time selection criteria have been

changed slightly by relaxing or tightening the cuts. For each set of cuts, the L(t) function

was extracted and applied in the ωa fitting function. The effect on the fitted ωa is always

smaller than 0.1 ppb and therefore considered completely negligible.

Then, a source of systematic uncertainty could be the number of coincidences re-

quired in the selection of the muon sample. As described in Section 6.5.2, the function

L(t) is built with the muons that hit three, four, and five calorimeters in a row. The

systematic bias given by excluding the double coincidences is evaluated by building the

LD(t) function using the double coincidences only. Figure 7.14 shows this integrated

LD(t) function compared to the nominal LTQQ(t) one. The measured systematic bias on

ωa is O(1) ppb for all the Run-1 datasets. Table 7.11 summarizes the uncertainties for

all the four Run-1 datasets.
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Figure 7.14: Comparison between two different lost muons selections based on the num-
ber of calorimeters in a coincidence.

σCuts
LM [ppb] σDoubles

LM [ppb]

Dataset TMethod AMethod TMethod AMethod

Run-1A 0 0 0.7 0.7

Run-1B 0 0 1.1 0.6

Run-1C 0 0 0.8 0.7

Run-1D 0 0 1.2 0.4

Table 7.11: Run-1 systematic uncertainties due to the empirical L(t) function used for
modeling the lost muons distortion of the wiggle plot.

7.3.4 Residual slow-term

The fit start-time scans of Section 7.2.1 suggest the presence of a residual time-varying

effect which is unaccounted for in the data. The energy-binned scans showed in Section

7.2.2 also reveal an energy dependence of the lost muon correction scaling parameter

kLM which should not depend on energy. Both of these effects appear to go away when

applying a time-dependent scale correction to the positron energies of the following form:

E ′ =
E

1− δg · e−t/τµ · [1 + Ag · cos(ωat+ ϕ)]
, (7.14)

where τµ, ϕ, and ωa parameters are taken from the ωa full fit, while δg ≈ 5 · 10−4 and

Ag ≈ 0.2 are specific to this correction. Figure 7.15 show the energy binned scan with

and without the correction applied to the positron energies for the dataset Run-1A.

The functional form of Equation 7.14 takes inspiration from a study which evaluated
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Figure 7.15: Muon loss normalization parameter kLM as a function of the positrons
energy with (red) and without (blue) the slow-term correction of Equation 7.14.

the possibility of an uncorrected rate-dependent gain fluctuation of the calorimeters,

described in [50]. The gain stability of the calorimeters in the measurement window is

monitored by the In-Fill gain correction described in Section 5.4.2. The systematic study

performed to evaluate the In-Fill gain related uncertainty in Section 7.3.1 also suggests

that the slow-effect might be related to the calorimeter gain corrections.

The possibility of an inaccurate modeling of the In-Fill gain variation is tested by ac-

cumulating the fit residual of the In-Fill gain functions to the laser pulses on the SiPMs.

While the In-Fill gain sag amplitude depends on the calorimeter location with respect to

the beam injection point, any rate-dependent effect should be equal in all calorimeters.

However, as the positron hit distribution on the calorimeter surface is skewed toward the

beam storage region, such an effect would be enhanced in the outer-most crystals. Figure

7.16 shows the accumulated fit residual obtained by summing over the 1296 SiPMs for all

the 21 datasets of Run-4. The contribution from the highest-rate crystals is also shown.

Run-4 is the biggest acquisition period currently reconstructed, with more than twice

of the statistics of the Run-3 datasets, thus providing the most precise evaluation for

these residuals. However, the plot shows that the residuals are well contained within

±10−4 bands, thus rejecting the hypothesis of an uncorrected rate-dependent gain fluc-

tuation.
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Figure 7.16: In-Fill fit residuals accumulated over the entire Run-4 acquisition period.
The red histogram shows the contribution from the grid of 4 × 4 crystals closest to the
beam storage region, nicknamed as hot crystals due to the higher positron rate. The
vertical dashed line represents the ωa fit start time of t ≈ 30 µs.

As the nature of this slow-term effect is, at this point, not completely understood, the

correction term of Equation 7.14 is used to evaluate the relative systematic uncertainty.

To do so, the δg parameter is varied from 1 × 10−4 to 1 × 10−3, and the asymmetry

Ag is varied from 0 to 0.4. The wiggle plot is built using the modified positron energies

and the usual pileup and fit routine is performed.

Figure 7.17 shows the χ2/NDF and ωa scans for the Run-1D dataset. The values

Ag ≈ 0.2 and δg ≈ 9.5 · 10−4 minimize the fit χ2/NDF value.

The four Run-1 data sets prefer different values of δg, but all in the order of 0÷1×10−3.

The systematic uncertainty is evaluated as the ωa variation given by the one χ2 unit

around the best δg value. A more conservative estimate would be the difference in the

measured ωa between δg = 0 and δbestg . The results are listed in Table 7.12.

7.3.5 Beam oscillations

The complete ωa fitting function described in Section 6.5.5 contains 27 free parameters,

21 of which are related to the dynamics of the beam in the storage region. The slightly

reduced functions used for Run-1 analysis, listed in Table 7.1, still contain more than 14

beam-related parameters. These parameters do not strongly correlate with the muon pre-
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Figure 7.17: Fit χ2/NDF (top) and ωa values (bottom) as a function of δg for the Run-
1D data set. The five vertical sections of the figure correspond to different values of Ag

from 0 (left) to 0.4 (right).

δg [10−4] dR/dδg [ppb / 10−4] σslow−term [ppb]

Dataset TMethod AMethod TMethod AMethod TMethod AMethod

Run-1A 4.9 8.2 14 -11 12 5

Run-1B 5.6 6.0 -35 -57 33 17

Run-1C -0.7 5.0 6 -38 18 17

Run-1D 9.7 8.7 -52 -43 13 6

Table 7.12: ωa sensitivities and systematic uncertainties due to the residual slow-term
effect for the Run-1 datasets.

cession parameter ωa (Appendix A), but any inaccuracy of the model can systematically

affect its measurement.

CBO Frequency change

As discussed in Section 6.5.1, the damaged quadrupole resistors introduce a time-dependent

variation of the field index, and, as a consequence, variable CBO-related frequencies.

This frequency change is modeled using data from the tracker stations. The uncertain-

ties on these parameters are obtained directly from the fits to the tracker data and are

propagated into an error on ωa by randomly sampling the A, B, τA and τB parameters
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in equation 6.44 according to a Gaussian distribution [53]. The widths of the distri-

butions are given by the uncertainties of the parameters as extracted from the tracker

data. The extraction is repeated for 100 times, and for each set of values the wiggle plot

is fitted with the modified function. The variance of the distribution of the ωa values

obtained with this method is taken as the systematic uncertainty related to the variable

CBO frequency model. Table 7.13 summarizes the uncertainties for the four datasets of

Run-1.

σV ar
CBO [ppb]

Dataset TMethod AMethod

Run-1A 9.8 11.6

Run-1B 11.2 12.2

Run-1C 15.0 17.3

Run-1D 1.4 25.0

Table 7.13: Run-1 systematic uncertainties due to the variable CBO frequency parame-
ters obtained from the tracker data.

CBO lifetime

The CBO oscillations enter the ωa fit via three multiplicative terms:

NCBO(t) = 1 + ACBO cos(ωCBO(t) + ϕCBO)e
− t

τCBO ,

ABO(t) = 1 + AA cos(ωCBO(t) + ϕA)e
− t

τCBO ,

ϕBO(t) = 1 + Aϕ cos(ωCBO(t) + ϕϕ)e
− t

τCBO .

The decay lifetime τCBO is assumed to be the same for all three contributions. In prin-

ciple, however, the CBO model can have three different decay time constants: τNCBO,

τACBO, and τϕCBO, for each of the equations above respectively. The systematic uncer-

tainty associated to the assumption that the three time constants are equal is evaluated

by letting them float in the ωa fit. The difference in the fitted ωa between floating and

fixed parameters is taken as the uncertainty.

The fit with floating parameters fails to converge for the Run-1A and Run-1B datasets

because of the lower statistical power. For these two datasets the τϕCBO has been set equal

to τACBO, and then the fit managed to converge. This choice is motivated by the best fit

parameters for Run-1C and Run-1D datasets, which show τϕCBO ≈ τACBO ≈ τNCBO/2.
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Table 7.14 summarizes the lifetime-related uncertainties for the four datasets of Run-1.

The lower sensitivities found for dataset Run-1D can be explained by the later fit start

time at t ≈ 50 µs.

στ
CBO [ppb]

Dataset TMethod AMethod

Run-1A 2.7 14.2

Run-1B 3.5 2.6

Run-1C 35.0 15.9

Run-1D 0.8 0.6

Table 7.14: Run-1 systematic uncertainties due to the fixed CBO decoherence lifetime
parameters.

CBO decoherence model

The beam oscillation amplitudes decrease through the beam storage time because of the

decoherence effect mentioned in Section 6.5.1. Analysis of the tracker data shows that

this decoherence can be modeled with a multiplicative factor of exponential form:

D(t) = e
− t

τi , (7.15)

where i represents any of the beam related oscillations. Similar terms are applied to the

fitted asymmetry and the phase (Equations 6.37a-6.37b). The systematic uncertainty

related to the CBO lifetime parameter τCBO has been summarized in Table 7.14.

However, the model itself can a source of systematic uncertainty, as the exponential

term might be an approximation to the real phenomenon. Simulations of the g − 2

storage ring show that the betatron oscillations can recohere [53]. A wrong decoherence

model could directly affect the fitted beam frequencies, and therefore indirectly bias the

measured value of ωa.

To test for this, an alternative decoherence model function has been used:

D(t) = e
− t

τCBO

[
1 + C · cos

(
2πt

T
− φ

)]
, (7.16)

with C ∼ 0.135 and T ∼ 700 µs and free to float in the fit. The systematic uncertainty is

assessed as the difference between the ωa values fitted with the two alternative decoher-
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ence models. Table 7.15 summarizes the uncertainties related to the CBO decoherence

model for the four datasets of Run-1.

σD
CBO [ppb]

Dataset TMethod AMethod

Run-1A 22.0 39.7

Run-1B 13.7 7.1

Run-1C 9.5 15.7

Run-1D 9.6 5.0

Table 7.15: Run-1 systematic uncertainties due to the CBO decoherence model.

7.3.6 Hit randomization

The effect of the bunched structure of the beam can be efficiently suppressed with the

hit randomization technique described in Section 6.2. For each seed provided to the

random number generator, a value of ωa is extracted. The final values for ωa (Table 7.3)

have been obtained by averaging the results of several random seeds. The systematic

uncertainty associated to the application of this procedure is evaluated as the standard

error of the mean of the distribution of the ωa values. The number of random seeds over

which the routine is executed has been chosen so that the final uncertainty is compatible

with the other systematic sources at the O(2) ppb level. The number of seeds was limited

by the computational resources available. Table 7.16 summarizes these uncertainties for

the four datasets of Run-1.

σrand [ppb]

Dataset TMethod AMethod

Run-1A 31.4 26.0

Run-1B 26.3 23.6

Run-1C 18.9 18.3

Run-1D 10.9 12.6

Table 7.16: Run-1 systematic uncertainties due to the hit randomization procedure.

7.3.7 Complete systematics table

All the systematic uncertainties described in the previous sections are summarized in

Table 7.17 for the ωa-Europe analysis of Run-1.
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Systematic source
Run-1A Run-1B Run-1C Run-1D

T A T A T A T A

Gain corrections 23.7 21.5 6.8 6.6 10.2 9.3 1.8 4.0

In-fill gain amplitude 23.6 21.4 6.7 6.5 9.9 9.1 0.6 3.9

In-fill gain time constant 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

STDP gain amplitude 0.1 0.1 0.1 0.1 0.3 0.2 1.2 0.1

STDP gain time constant 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Pileup 50.0 87.8 34.0 94.1 21.3 78.5 29.3 68.7

Pileup amplitude 17.2 16.2 6.6 14.0 5.3 9.8 10.4 8.8

Pileup cluster time model 12.5 58.9 14.2 64.2 12.3 57.2 7.5 47.5

Pileup cluster energy model 11.7 7.0 11.2 8.0 1.7 6.5 8.4 7.0

Unseen pileup 5.3 1.1 0.5 2.9 0.6 1.1 0.7 0.8

Triple pileup correction 3.3 4.6 1.5 5.0 1.4 3.9 2.3 4.6

Artificial dead time 14.0 19.0 14.0 19.0 14.0 19.0 14.0 19.0

Lost muons 0.7 0.7 1.1 0.6 0.8 0.7 1.2 0.4

Muon loss time cuts 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Higher-order coincidences 0.7 0.7 1.1 0.6 0.8 0.7 1.2 0.4

Residual slow-term 12.0 5.0 33.0 17.0 18.0 17.0 13.2 6.0

Beam dynamics 34.5 65.5 28.4 21.9 60 48.9 11.8 30.6

CBO frequency change 9.8 11.6 11.2 12.2 15.0 17.3 1.4 25.0

CBO time constants 2.7 14.2 3.5 2.6 35.5 15.9 0.8 0.6

CBO decoherence model 22.0 39.7 13.7 7.1 9.5 15.7 9.6 5.0

Time randomization seed 31.4 26.0 26.3 23.6 18.9 18.3 10.9 12.6

Total 74.7 116.3 63.1 102.9 71.0 98.1 38.6 78.9

Table 7.17: Full systematic table of the ωa-Europe Run-1 analysis. For each category,
the first line represents the total uncertainty and the various contributions are shown
as indented lines. The systematic uncertainties belonging to the same category are
considered 100% correlated and summed linearly. The different categories are considered
uncorrelated and summed in quadrature in the final Total line. All values are in ppb.
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7.4 Current and future analyses

After the Run-1 results were published in April 2021, the collaboration started analyzing

the next datasets. In particular, Run-2 and Run-3 are now being analyzed together, and

a new publication with the results is expected in 2023. As of December 2022, Run-4 pro-

duction is being finalized and Run-5 production is in progress, while Run-6 production

is happening in parallel with the data taking.

After Run-1 analysis, many groups started working to improve the reconstruction

and analyses techniques in order to attempt to reduce the largest systematic uncertain-

ties affecting the Run-1 results. One of the highest contributions to the ωa systematic

uncertainty is the presence of pileup, as visible in Table 7.17. To tackle this, and to try to

improve the positron reconstruction in general, I lead the development of the ReconITA

reconstruction described in detail in Chapter 5. I am also taking part of the Run-2

and Run-3 analyses together with the ωa-Europe group. This section will describe the

analysis improvements for Run-2 and Run-3 as well as the impact of the new ReconITA

reconstruction.

7.4.1 ReconITA

The ReconITA reconstruction has been thoroughly described in Chapter 5. The main

differences between the ReconITA approach and the ReconWest reconstruction of Run-1

are the calorimeter hit pulse fitting procedure and the hit clustering algorithm. However,

the new ReconITA pulse fitting software development was completed after both Run-2

and Run-3 were already produced, and entered the official production workflow starting

from Run-4.

For Run-1 analysis, only two positron reconstructions procedures were available: Re-

conWest (RW) and ReconEast (RE), both described in Section 5.1. Each reconstruction

was coupled with its own clustering algorithm, Time Partitioning (TP) and Energy Par-

titioning (EP) respectively. The reconstruction-clustering used for the ωa analysis were

RW-TP and RE-EP. The Run-1 analysis presented in this Chapter was based on the

RW-TP combination.

The TP clustering algorithm is characterized by two parameters: tlow and thigh, as

described in Section 5.5. For Run-1, the parameters were set to 3 and 5 clock ticks

respectively. The TP clustering was modified starting from Run-2, by lowering those
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parameters to 2 and 3 clock ticks respectively. For convention, the two different config-

urations will be named TP1 and TP2:

TP1 → (tlow, thigh) = (3, 5) ct , (7.17a)

TP2 → (tlow, thigh) = (2, 3) ct . (7.17b)

Starting from Run-2, the ReconITA (RI) clustering is now part of the analysis path.

The ωa-Europe analysis of Run-2 and Run-3 is conducted on the RW-RI reconstruction-

clustering combination. This will be referred to as RITA1 in the following sections. In

addition, another clustering algorithm was also developed by the University of Washing-

ton group referred to as UW [71].

Starting from Run-4, the complete ReconITA (RI) reconstruction was inserted in the

production and analysis paths, and the ωa-Europe group will conduct the analysis on the

RI-RI combination, which will be referred to as RITA2. Table 7.18 provides a summary

of the techniques and the combinations for the various run groups.

Dataset Reconstruction Clustering ωa-Europe analysis

Run-1 RW, RE, Q TP1, EP RW-TP1

Run-2/3 RW, RE, Q TP2, UW, RI, EP RW-RI (RITA1)

Run-4/5 RW, RE, RI, Q TP2, UW, RI, EP RI-RI (RITA2)

Table 7.18: List of reconstructions and clustering algorithms deployed for the analysis
of the various run groups.

7.5 Run-2/3

The analysis of Run-2 and Run-3 is currently in progress and is being finalized by all

the participating groups with the goal of publishing the new aµ value in the first half

of 2023. The software blinding has not been removed yet, and the central values of the

different analysis groups cannot be compared.

This section will discuss the improvements of the new ReconITA clustering with respect

to the standard TP2 algorithm. The same pileup correction algorithm, described in

Section 6.3, has been applied in both cases.
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7.5.1 Pileup

The main goal of the ReconITA clustering is to improve the separation of the pileup

events in order to reduce the systematic uncertainty associated to the pileup correction.

Figure 7.18 shows the positron energy spectrum before and after applying the pileup

correction. The ReconITA clustering manages to reduce the pileup contamination by a

factor of 2 with respect to TP2. This value can be estimated by looking at the number

of events with energy greater than 3500 MeV. This region is populated by pileup events

only, as the kinematic limit for positrons is about 3100 MeV. The TP2 algorithm itself

is an improvement over the Run-1 TP1, with a reduction of ∼1.5 thanks to the new

parameter values. Thus, with respect to the analysis procedure used in Run-1, the

RITA1 algorithm reduces pileup events by a factor ∼ 3. As a consequence, it is expected

that the pileup related systematics listed in Table 7.17 for Run-1 will be greatly reduced

in the Run-2/3 results. As seen in Section 6.3, the pileup correction for Run-2 and Run-3

can be written as (Equation 6.20):

N = N ′ + fscale [fD (SD −D) + fT (ST − T )] . (7.18)

By varying the scaling factor fscale it is possible to test the sensitivity of the fitted ωa

value to the pileup correction. Figure 7.19 shows a scan in which fscale has been varied

from 0.7 to 1.4. Each modified wiggle plot is fitted with the full function; the difference

in ωa is extracted with respect to the nominal value at fscale = 1. The sensitivity in the

RITA1 analysis (245 ppb/mult) is reduced with respect to RW-TP2 (141 ppb/mult) by

a factor ∼ 1.7.

7.5.2 Gain systematics

The gain corrections applied in Run-1, and described in Section 5.4, have been improved

in the Run-2/3 analysis both in terms of software analysis and in terms of the hardware.

In particular:

• The STDP correction for Run-2 includes the sensitivity of the STDP gain sag to

the temperature of the SiPMs, as discussed in Section 5.4.1.

• In the Summer between Run-2 and Run-3, a new air conditioning system has been

installed in the experimental hall which has reduced the temperature fluctuations

around the average value from ±2.5 ◦C in Run-2 to ±0.3 ◦C in Run-3 (Figure 5.22).
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Figure 7.18: (left) Positron energy distribution for dataset Run-2C before any pileup
correction is applied. (right) The same energy distribution after the pileup correction
has been applied, zoomed in the E > 3000 MeV region. The blue curves correspond to
the TP2 clustering, while the red curves correspond to the RITA1 clustering.

Figure 7.19: Pileup amplitude scan for the Run-2C dataset, with both TP2 (blue) and
RITA1 (red) clustering compared. Each point is obtained with a full fit on the AMethod
wiggle plot. The dashed lines are linear fits to the data points. Note that the error bars
are strongly correlated across the different points.
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This has removed the need for any STDP temperature correction and has greatly

reduced the effect of the OOF correction, which depends on temperature too.

• The In-Fill gain correction was extracted with higher precision thanks to the LTDP

dedicated studies described in Section 5.4.2.

The determination of the systematic uncertainty related to the IFG and STDP cor-

rections is evaluated with a technique which is different from Run-1 as described below.

Both the amplitude and lifetime parameters of the two corrections are scaled indepen-

dently and the ωa sensitivity to the scaling factor is extracted. The functional forms of

the two corrections are:

gIFG(t) = N(1− ae−t/τ ) , (7.19)

gSTDP (∆t, E1, T ) = 1− E1 · P1 · (1 + α (T − Tref )) · e−∆t/τ , (7.20)

where the parameters to be artificially scaled are highlighted in bold.

In Run-1, the parameters a and τ are scaled by a factor α from 0 to 2, with α = 1

being the nominal correction.

X ′ = α ·X , (7.21)

The systematic uncertainty is then obtained by multiplying the ωa sensitivity dR
dα

by the

average relative error of the a and τ parameters as obtained from the gain correction

extraction. In Run-2 and Run-3, instead, each parameter is shifted by a multiple of the

measured error:

X ′ = X + α · σX , (7.22)

where σX is the error which is derived from the laser studies. By applying this formula to

all individual SiPMs, a more realistic systematic uncertainty is extracted. Figures 7.20

and 7.21 show the IFG and STDP scans respectively for Run-2. The scaling parameter

α was varied from -2 to +2 except for the IFG lifetime parameter τ (Figure 7.20b). This

parameter is at the exponent of the correction function, thus the correction is highly

sensitive to this parameter and its variation has been limited to ±1. By applying this

procedure, the systematic uncertainty to be assigned to the correction corresponds di-

rectly to the value of the slope dR
dα
. Table 7.19 summarizes the preliminary gain-related

uncertainties for Run-2.

The amplitude and lifetime parameters are highly correlated. The correlation has

been evaluated by extracting the IFG correction without constraining the lifetime pa-
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Method
IFG STDP

Amplitude Lifetime Amplitude Lifetime

TMethod 2.6 2.7 0.1 0.2

AMethod 2.8 2.8 0.1 0.3

Table 7.19: Preliminary systematic uncertainties related to the gain corrections in Run-2
for the ωa-Europe analysis. All values are in ppb.

rameter to the LTDP values. The correlation ρ is calculated as:

ρ =
cov(a, τ)

σaστ

, (7.23)

from the covariance matrix provided by the ROOT fit routine. The correlation between

the IFG parameters is -92% on average. The total IFG systematics uncertainty can then

be written as:

σtot
IFG =

√
(σA

IFG)
2 + (στ

IFG)
2 + 2ρσA

IFGσ
τ
IFG , (7.24)

and equal to ≈ 1 ppb. The correlation between the STDP parameters has not been

evaluated as their effect on ωa is already negligible.

(a) (b)

Figure 7.20: In-Fill Gain amplitude scan for the combined Run-2 dataset. (a) Scan of
the amplitude multiplier, and (b) scan of the lifetime multiplier. Both the TMethod and
AMethod results are fitted with a linear function to extract the sensitivity.

7.5.3 Outlook

The Run-2 and Run-3 ωa analysis is now at the final stages and the various groups

are finalizing the estimation of the systematic uncertainties. The statistical uncertainty
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(a) (b)

Figure 7.21: STDP Gain amplitude scan for the combined Run-2 dataset. (a) Scan of
the amplitude multiplier, and (b) scan of the lifetime multiplier. Both the TMethod and
AMethod results are fitted with a linear function to extract the sensitivity.

is expected to be ∼200 ppb for the AMethod, as the number of observed positrons is

more than twice the Run-1 ones (Table 6.1). All the analysis teams are focusing on the

reduction of the systematic uncertainties. The improvements from the ωa-Europe group

with respect to Run-1 are:

• Improved gain uncertainty estimation, as discussed in this section;

• Reduced pileup correction and related uncertainties thanks to the new ReconITA

clustering described in Chapter 5;

• Removal of the Artificial-Dead-Time and the Triple pileup uncertainties thanks to

the new pileup correction technique described in Section 6.3;

• The residual slow-term is artificially corrected with a gain-like correction term as

in Equation 7.14;

• More accurate modeling of the CBO terms in the ωa fit, including a new CBO-VW

beating term (Section 6.5.4) measured thanks to the higher statistics.

Overall, the systematic uncertainties associated to ωa are expected to decrease by almost

a factor of two, from the Run-1 value of 56 ppb (presented in Section 8.6) to a projected

preliminary value of O(30) ppb.
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7.6 Run-4/5

The analysis of the Run-4 and Run-5 has not started yet. However, the Run-2C dataset

has been reconstructed also by applying the RITA2 procedure in order to evaluate the

additional improvements of RITA2 with respect to RITA1 in view of the final publication

with the full statistics. This section discusses some preliminary results.

7.6.1 Slow-term correction

The main improvement of RITA2 with respect to RITA1 is the new pulse fitting tech-

nique. As described in Chapter 5, the algorithm tries to further separate pileup clusters

that overlap spatially and generate multiple hits on the same SiPM. In addition, even if

two positrons hitting the same calorimeter were already clearly separated, the algorithm

manages to recover some previously missed hits belonging to the second positron. These

missed hits are proportional to the rate of pileup, and are partially responsible of the

residual slow-term effect observed in Run-1 and discussed in Section 7.3.4. This section

will compare the RITA2 reconstruction with the RW one used for Run-2 and Run-3. It

has to be noted that work is in progress also on the RW reconstruction by its developers

in view of Run-4 and Run-5 in order to overcome some of the limits observed in the

current version that RITA2 tries, and manages, to solve.

To investigate the impact of the new ReconITA reconstruction on the residual slow-

term effect, an energy binned analysis has been performed. The RITA2 analysis shows an

improvement in the fitted value of kLM at high energies (Figure 7.22, keeping it positive

to almost 2500 MeV. A reduction of ∼66% on the negative deviation is measured up to

2900 MeV. Consequently, the peak at low frequencies in the Fast Fourier Transform of

the wiggle fit residuals is removed as well (Figure 7.23). While the slow-term effect is

not totally resolved, it is limited to the last few energy points, in which the statistics

decreases down to zero at the kinematic limit of 3.1 GeV, and the related systematic

uncertainty is expected to be reduced.

7.6.2 Start-time scans

One of the standard cross checks performed to identify effects that have not been ac-

counted for is the start time scan, first introduced in Section 7.2.1. Figure 7.24 shows the

comparison between the RW-TP2 and RITA2 reconstruction for the TMethod analysis.

Any significant deviation from the allowed 1σ bands would suggest an unaccounted-for
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Figure 7.22: Energy binned analysis of the Run-2C dataset with the RW-TP2 (blue) and
RITA2 (red) reconstructions. The negative deviation of the Muon loss normalization
parameter kLM at high energies is reduced in RITA2 by ∼ 66%.

Figure 7.23: Fast-Fourier-Transform of the residuals of the wiggle fit for the TMethod
analysis. The peak at very low frequencies visible in the RW-TP2 analysis (blue curve)
is removed by the RITA2 reconstruction (red curve).

effect present in the data. The N , τ , and kLM parameters show deviations in RW-TP2

that are greatly reduced by the RITA2 reconstruction. We have already shown that

the kLM parameter behavior improves with the new reconstruction (Figure 7.22) and its

fitted value goes from a nonphysical negative value to a positive one. The fitted ωa value

is stable for both reconstructions, indicating that these slow-term effects have a limited

impact, which however will have to be quantified, on the measured muon precession

frequency.



208 Chapter 7 | Results

(a) Blinded ωa value R. (b) Number of positrons N .

(c) Boosted muon lifetime τ . (d) Muon loss normalization kLM .

Figure 7.24: Fit start time scan for the Run-2C dataset reconstructed with RW-TP2
(blue) and RITA2 (red). The four fit parameters ωa, N , τ , and kLM are shown. The
solid lines represent the 1σ allowed statistical deviation from the nominal starting point
of t = 30 µs.

7.6.3 Outlook

The Run-4 and Run-5 ωa analysis has not started yet. Run-6 will be possibly analyzed

together as well, as soon as data collection is finished. The statistical uncertainty is

expected to be another factor of two smaller than the combined Run-2 + Run-3, with a

final value of O(100) ppb for the AMethod. Production of Run-4 is now finishing and

the full ReconITA reconstruction has been incorporated. The expected improvements

for the ωa-Europe analysis with respect to Run-2 and Run-3 are:

• Greatly reduced residual slow-term and related uncertainties thanks to the new

complete ReconITA reconstruction described in Chapter 5;

• Possible inclusion of the fills containing In-Fill laser pulses thanks to an improved

rejection algorithm.

This work is currently in progress and it is expected to be concluded at the end of

2024, with the final publication at the beginning of 2025. The total uncertainty with
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the full statistics is expected to reach the Technical Design Report [49] goal of 140 ppb

with the concrete possibility of performing even better. This will be an important and

awaited result in view of the current puzzle between different theoretical predictions.
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Chapter 8

Run-1 aµ measurement

In the previous chapter I have mostly discussed the determination of the muon precession

frequency ωa. This chapter presents the complete aµ determination from the first year of

data taking, Run-1, which was published in April 2021. Additional details can be found

in the four published papers [11, 68, 53, 51]. A similar procedure is currently going

on for the analysis of Run-2 and Run-3, for which the unblinding and the publication

are expected in the first half of 2023. The preliminary results from these two runs are

currently under embargo and cannot be described at the time of publication of this thesis.

8.1 Complete aµ formula

The muon anomaly is calculated with the equation described in Section 2.1:

aµ =
ωa

ω̃′
p(Tr)

µ′
p(Tr)

µe

mµ

me

ge
2
, (8.1)

where the first fraction is the quantity measured by the Muon g − 2 Experiment. The

other terms are known with high precision from other experiments. The proton-to-

electron magnetic moment ratio µ′
p(Tr)/µe is taken from [73] at the reference temperature

Tr = 34.7 ◦C. The electron g-factor is taken from [16], while the CODATA-2018 result

is used for the mµ/me mass ratio [14]. These factors are known with a total uncertainty

of 25 ppb.

The ω̃′
p term can be written in the form:

ω̃′
p = fcalib⟨ωp(x, y, ϕ)×M(x, y, ϕ)⟩ , (8.2)

211
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representing the convolution between the magnetic field strength, expressed in terms of

the Larmor precession of the proton ωp, and the muon distribution M inside the storage

region, all multiplied by the absolute calibration factor fcalib.

In addition to the muon anomalous precession frequency, ωa, and the muon-weighted

proton Larmor precession frequency, ω̃′
p(Tr), additional correction factors have to be

included to take into account beam effects, transient magnetic and electric fields, and

the residual effect to the quadrupole field. The first fraction of Equation 8.1 can be

expressed as:

R′
µ ≡ ωa

ω̃′
p(Tr)

≈ fclockω
m
a (1 + Ce + Cp + Cml + Cpa)

fcalib⟨ωp(x, y, ϕ)×M(x, y, ϕ)⟩(1 + Bk +Bq)
. (8.3)

The next sections will describe each of the terms of Equation 8.3 and their measured

values.

8.2 ωa combination

The results presented in Chapter 7 refer to the measurement of the muon precession

frequency performed by the ωa-Europe group of which I am part of. However, five other

analysis groups participated in the ωa measurement with different reconstructions, cor-

rections, and analysis techniques, for a total of 11 determinations of ωa for each Run-1

dataset (Table 8.1).

Analysis group Reconstruction Weighting method

ωa-Europe ReconWest T, A

Boston University ReconWest T, R

Cornell University ReconEast T, A

University of Kentucky QMethod Q

Shanghai Jiao Tong University ReconWest T, A

Washington University ReconWest T, A

Table 8.1: List of the Run-1 ωa analysis groups and the relative reconstructions and
methods used.

The combination of the different analyses into a single ωa value is not trivial, as the

various reconstructions and methods are highly correlated as the majority of the data is
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Analysis RE-T RE-A RW-T RW-A RW-R Q

RE-T 1.00 0.91 0.95 0.91 0.95 0.51

RE-A 1.00 0.90 0.99 0.90 0.58

RW-T 1.00 0.91 1.00 0.51

RW-A 1.00 0.90 0.57

RW-R 1.00 0.50

Q 1.00

Table 8.2: Statistical correlations calculated with Monte Carlo simulations for the dif-
ferent types of reconstructions and analysis technique for the determination of ωa [68].

shared among them. These correlations have been determined from Monte Carlo sim-

ulations that incorporate the major differences between the various reconstruction and

analysis techniques. The correlation coefficients are listed in Table 8.2.

Given these correlation coefficients, the allowed statistical deviation ∆σ12 between

the fitted ωa values for two different analyses can be calculated as:

∆σ12 =
√

σ2
1 + σ2

2 − 2ρσ1σ2 . (8.4)

The combination of two positively correlated results has a maximum variance for [74]:

ρcrit =
min(σ1/σ2)

max(σ1/σ2)
, (8.5)

and drops to zero when the correlation is ρ → 1. For very high correlations, the weight

of the less precise measurement becomes negative, affecting the stability of the BLUE

(best linear unbiased estimator) procedure used to calculate the ωa average [68].

Because of this, the following decisions have been made for the final combination of ωa:

• For each analysis, the TMethod result is discarded in favor of the more precise

AMethod value. This has been demonstrated in Section 6.4.

• The QMethod results are not included in the final average because they have a

much higher statistical uncertainty and show a moderate systematic shift with

respect to the RW/RE analyses. The impact of the damaged quadrupole resistors

and the different fit stop times can explain differences up to O(200) ppb.

• The Ratio Method result is not included since, for Run-1, it has the same statistical

precision of the TMethod. The new analyses of Run-2 and Run-3 will apply the
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asymmetry weighting to the RMethod too.

• The three analyses using the same ReconWest reconstruction are averaged together

with equal weights.

• The ReconWest combined and ReconEast results are averaged with equal weights.

Overall, four analyses have been combined, three of which are based on the ReconWest

reconstruction, to provide the final value of ωa. The analysis presented in Chapters 6

and 7 conducted by the author as part of the ωa-Europe group is one of the combined

ones.

Finally, the systematic uncertainties from the various analyses are combined assuming

100% correlation within the same systematic category. The blinded combination average

for the four datasets in Run-1 and the relative systematic uncertainties are summarized

in Table 8.3.

Quantity Run-1A Run-1B Run-1C Run-1D

ωa (blinded) -28371 -26986 -27596 -27644

Statistical uncertainty 1207 1022 823 675

Systematic uncertainty 64 70 54 49

Time synchronization 4 1 1 1

Gain corrections 12 9 9 5

Pileup 39 42 35 31

Beam dynamics 42 49 32 35

Residual slow-term 21 21 22 10

Hit randomization 15 12 9 7

Total uncertainty 1209 1025 825 676

Table 8.3: Combined ωa values and uncertainties for the four Run-1 datasets. The
blinded ωa values of different datasets cannot be directly compared because they are
related to different measured magnetic field strengths. All values are in ppb.

8.2.1 Clock blinding factor

As discussed in Section 7.1, the Muon g − 2 Experiment employs a hardware blinding

factor to the clock frequencies that govern the calorimeter digitizers. The first term of the

numerator of Equation 8.3, fclock, represents the factor needed to convert the measured
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ωm
a to the actual unshifted ωa value. The stability of the detuned clock frequency is

continuously monitored and the uncertainty on the fclock factor is negligible.

8.3 Corrections to ωa

There are four corrections to be applied to the measured value of ωa. These terms cannot

be directly extracted from the wiggle plot fit and dedicated studies have been performed.

If ωm
a is the measured precession frequency, then:

ωa ≈ ωm
a (1 + Ce + Cp + Clm + Cpa) . (8.6)

This section will briefly describe the four corrections applied to the Run-1 data. Table

8.4 lists the corrections applied to the four Run-1 datasets.

Correction term Symbol Run-1A Run-1B Run-1C Run-1D

Electric field Ce 471 ± 53 464 ± 54 534 ± 54 475 ± 53

Pitch Cp 176 ± 12 199 ± 14 191 ± 14 166 ± 12

Muon loss Cml -14 ± 6 -3 ± 2 -7 ± 4 -17 ± 6

Phase acceptance Cpa -184 ± 96 -165 ± 74 -117 ± 60 -164 ± 80

Table 8.4: List of corrections to the measured ωa value for the four Run-1 datasets. All
values are in ppb.

8.3.1 Electric field correction Ce

The momentum of the muons has been specifically chosen to minimize the effect of the

focusing electrostatic quadrupole on the precession frequency of the muons. Equation

2.4 for the anomalous precession frequency reads:

ω⃗a = − e

mc

[
aµB⃗ −

(
aµ −

1

γ2 − 1

)
β⃗ × E⃗ − aµ

γ

γ + 1

(
β⃗ · B⃗

)
β⃗

]
, (8.7)

the term due to the electric field E⃗ can be minimized by choosing a relativistic gamma

such that:

aµ −
1

γ2 − 1
= 0 → γ =

√
1

aµ
+ 1 ≈ 29.3 , (8.8)

which corresponds to a magic momentum of 3.094 GeV/c. The distribution of momenta

of the muon beam, however, has a certain spread around the central value of 3.094
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GeV/c. The muons with higher and lower momenta are then affected by the electric

fields and so does the measured ωa. The electric field term vanishes at the magic orbital

radius R0, as a result of the design of the quadrupoles. However, the muon beam is

not perfectly centered, and the momentum spread implies a spread in the distribution

of radial positions.

The mean radial electric field experienced by a muon oscillating around an equilibrium

radius xe in an ideal electric quadrupole is

⟨Er⟩ = kxe =
nβcBy

R0

xe , (8.9)

where k is the electric field gradient, n is the electric field index, and By is the vertical

component of the magnetic field. The electric field correction can be expressed in terms

of the beam radial distribution:

Ce ≈ 2n(1− n)β0
⟨x2

e⟩
R2

0

, (8.10)

where β0 ≈ 0.9994 is the magic speed of the muons.

The beam distribution ⟨x2
e⟩ is measured by analyzing the cyclotron motion of the muons

with a Fourier transform analysis of the calorimeter data [53]. Figure 8.1 shows the

measured distribution for the four different datasets.

Figure 8.1: Radial distribution of the muon beam as measured from the cyclotron fre-
quencies determined with a Fourier transform analysis of the calorimeter data. The
equilibrium radius is defined to be 0 mm at the magic momentum of 3.094 GeV/c. Fig-
ure from [53].
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8.3.2 Pitch correction Cp

The last term of Equation 8.7 represents the contribution to the anomalous precession

frequency given by the component of the muon momentum parallel to the magnetic field.

The quadrupole system used to provide the vertical focusing to the muon beam introduces

vertical betatron oscillations, as described in Section 6.5.1. As the muons oscillate, their

vertical component of the momentum will introduce a shift in the precession frequency.

The correction can be expressed as:

Cp ≈
n

4

⟨A2
y⟩

R2
0

(8.11)

where Ay is the amplitude of the vertical oscillations. The correction is extracted from the

tracker measurements of the beam motion. Figure 8.2 shows the measured distribution

of oscillation amplitudes.

Figure 8.2: The distribution of beam vertical oscillation amplitudes, before (red) and
after (blue) averaging over the azimuthal angle. Figure from [53].

8.3.3 Muon loss correction Cml

Some of the muons that circulate in the storage ring are lost before decaying into

positrons. In general, a muon will be scattered out of the storage region after it strikes

one the collimators that limit the transverse region and the momentum acceptance.

These collimators have an aperture of radius r0 = 45 mm and are centered on the magic

orbit. A muon hitting a collimator loses some energy, and starts curling inward until it

exits the storage region.
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The time distribution of lost muons induces a distortion in the exponential decay

shape as observed by the calorimeters. This has been discussed already in Section 6.5.2

and is part of the ωa analysis procedure.

Monte Carlo beamline simulations and simple analytical calculations both predict

that a correlation exists between the injected muon average spin phase and the particle

momentum [53]. As the probability of hitting a collimator depends on the muon mo-

mentum, the population of muons that are lost is correlated to the ωa phase observed by

the calorimeters. Since the muons are not lost uniformly across the storage time, a slow

drift in the ωa phase is induced. A time-dependent phase can be written as a Taylor

expansion:

ϕ(t) = ϕ0 +
dϕ

dt
t+O(t2) , (8.12)

where dϕ
dt

is a direct bias on the measured ωm
a . The magnitude of the effect is directly

proportional to the number of lost muons, which was especially high during Run-1 be-

cause of the damaged quadrupole resistors.

The correction for this effect has been evaluated by taking three special acquisition

runs where the magnetic field was changed by ±0.67% from its nominal value. Different

magnetic field strengths result in different momentum acceptances of the storage ring,

allowing for the selection of a different portion of the original beam momentum distri-

bution. For each of these three acquisitions, the ωa analysis is performed to extract the

average phase of the muon beam. The relation between the phase variation and the

mean muon momentum is then extracted. Figure 8.3b shows the result for Run-1, with

a measured dependence of:

dϕ

dp
= (−10.0± 1.6)mrad/% (8.13)

The time dependent phase can be expressed as:

dϕ

dt
=

dϕ

dp
· dp
dt

. (8.14)

The first term is the result of Equation 8.13, while the second term was determined by

measuring the muon loss rate as a function of time in special systematic runs where

muon beam momentum was selected using collimators in the delivery ring, before being
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injected into the E989 ring.

The phase angle ϕ(t) is parameterized using a polynomial function, which is then

used to generate a wiggle plot according to the five parameter formula

N(t) = Ne−t/τµ(1 + A cos(ωat− ϕ(t)) . (8.15)

A second wiggle plot was generated by using a fixed ϕ(t) = ϕ(0). The muon loss correc-

tion Cml is finally calculated as the difference in the fitted ωa between the two artificial

wiggle plots.

(a) (b)

Figure 8.3: (a) Distribution of muon hits on the collimators. (b) Phase-momentum
correlation from simulation (blue band) and from a data-driven approach (black). The
three data points are obtained by fits to muon precession frequency data at nominal,
reduced, and increased central magnetic field values. Figures from [53].

8.3.4 Phase acceptance correction Cpa

The g − 2 phase ϕ in the five-parameter expression of Equation 6.29 represents the av-

erage phase of the muons at injection. The measured phase, instead, depends both on

the energy of the decay positron and the position of the decay vertex.

The energy dependence is due to the fact that higher energy positrons have a larger

radius of curvature and therefore a longer trajectory path toward the calorimeters and a

higher time-of-flight. Considering two positrons of different energy hitting a calorimeter

at the same time, the higher energy one was produced further back in the storage ring

from a muon with a different spin angle than the one that produced the lower energy
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positron. A typical time-of-flight for a positron is ∼12 ns, which corresponds to a phase

change of ∼17 mrad.

The position dependence of the phase has two explanations. The first one is related again

to the time-of-flight of the decay positron: if a muon decays closer to the calorimeters,

the resulting positrons will travel a shorter path on average with respect to the ones

that decay more radially outward. The second reason has to do with the direction of the

muon’s spin that maximizes the calorimeter acceptance. As the calorimeters are placed

to the inside of the muon trajectory, the spin orientation that maximizes acceptance into

the calorimeters is not parallel to its momentum but rotated slightly radially inward.

These effects are a function of the transverse coordinates x and y, and the positron

energy E, and generate an effective phase shift ϕpa(x, y, E). The energy dependence was

already observed in the energy-binned ωa fit scans discussed in Section 7.2.2. Figure

8.4 shows the transverse ”phase map” averaged over the azimuth angle as measured by

the asymmetry weighted (AMethod) ωa analysis. The map is generated from a Geant4

simulation of the storage ring [53].

Figure 8.4: The map of the shift in the measured ϕ depending on the decay vertex
position (x, y), averaged over the azimuth angle. Figure from [53].

If the muon beam did not have any motion inside the storage ring, these phase-

acceptance effects would not bias the measured value of ωa. However, the betatron

oscillations and the beam movements due to the quadrupoles generate a time-varying

phase that cannot be accounted for during the ωa analysis.
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The phase-acceptance correction is extracted by measuring the beam distribution

with the two tracker stations and extrapolating the phase maps to all the azimuth an-

gles corresponding to the calorimeter locations with a Geant4 simulation [53]. For each

calorimeter, the phase variation ϕC
pa(t) is extracted as a function of time. Similar to the

Cml technique, a wiggle plot is generated with the full ωa function of Equation 6.45,

including the phase variation ϕC
pa(t). The correction Cpa is extracted as the difference

between the fitted ωa and the value used for generating the wiggle plot.

This correction is particularly relevant for Run-1 due to the additional vertical beam

movements caused by the damaged quadrupole resistors.

8.4 ω̃′
p measurement

The experimental steps for measuring the magnetic field are outlined in Section 2.4.

The field strength is measured by a suite of Nuclear Magnetic Resonance probes, which

measure the Larmor precession of the proton [51] with a sample of petroleum jelly. The

probes themselves cannot be positioned in the storage region while the muon beam is

present, as they would disrupt it otherwise. So, every ∼3 days, a cylindrical ”trolley”,

approximately 30 cm long and with a diameter of 9 cm, corresponding to the storage

region cross section, containing 17 NMR probes is inserted in the storage region to pro-

vide a set of 2D field maps at about 9000 azimuthal locations (one every ∼0.5 cm).

To measure the field variations during the three days separating two trolley measure-

ments, a set of 378 NMR probes are located 7.7 cm above and below the storage volume,

continuously monitoring the field at 72 azimuthal locations. A subset of these probes

is also used to provide a feedback to the magnet supply to actively stabilize the field

strength across time.

The analysis of the probes data provides a 3D map of the average magnetic field

inside the storage region, ωp(x, y, ϕ), over the measurement time of a ωa dataset. Figure

8.5a shows the map averaged over the azimuth angle.

8.4.1 Absolute calibration

Both the trolley and fixed probes are calibrated with a water-sample probe that is in-

stalled on a translation stage in the ring vacuum. The probe can be positioned in the
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same locations as the trolley probes, determining the calibration offsets between the trol-

ley measurements and the actual ωp values. The offsets are caused by the diamagnetic

shielding effects of the petroleum jelly samples, and the trolley body and shape. The

trolley probe calibration offsets are determined with an average uncertainty of 30 ppb

[51].

In addition, dedicated studies in a Magnetic Resonance Imaging (MRI) solenoid pro-

vide an absolute calibration by comparing the water calibration probe response to a
3He magnetometer [75]. Finally, corrections are required to relate the calibration probe

measurements to the ones expected from a proton in water at the reference temperature

of Tr = 34.7 ◦C in order to be able to use the external measurement of the proton-to-

electron magnetic moment ratio µ′
p(Tr)/µe in the final aµ computation (Equation 8.1).

8.4.2 Muon weighting

The calibrated field map, ω′
p(x, y, ϕ), represents the average absolute magnetic strength

inside the storage region. However, the circulating muons have a non-uniform distribu-

tion in the transverse plane of the orbit, as shown in Figure 8.5b. For this reason, the

field maps have to be weighted by the distribution of muons M(x, y, ϕ) that are detected

by the calorimeters in order to obtain the effective final field measurement ω̃′
p.

The muon distribution M is calculated by multiplying the spatial distribution as

measured by the trackers with the positron rate as measured by the calorimeters. As

the trackers are present in two azimuthal positions only, the complete beam distribution

along the entire storage region is extrapolated using a beam dynamics Monte Carlo sim-

ulation.

The interpolated field maps are averaged over periods of roughly 10 s and weighted by

the number of detected positrons during the same interval.

The combined total uncertainty of ω̃′
p from probe calibrations, field maps, tracker

alignment and acceptance, calorimeter acceptance, and beam dynamics modeling is 56

ppb for the Run-1 measurement [51].
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(a) (b)

Figure 8.5: (a) Variations in the azimuthally averaged proton Larmor precession fre-
quency ωp(x, y) relative to the central probe. The locations of the 17 trolley probes
are indicated by (×). (b) Transversal muon distribution M(x, y) as measured by the
trackers. Figures from [51].

8.5 Corrections to ω̃′
p

The magnetic field produced by the storage ring is very uniform and stable across time.

However, any fast variation of the field strength within the storage time would influence

the muon precession frequency and cannot be detected by the NMR probes. Two fast

field transients have been observed, one introduced by the electrostatic quadrupoles

charging process, which induces mechanical vibrations to the quadrupole plates, and one

by the transient currents induced by the kicker magnets. The two correction terms are

determined by dedicated measurements and are introduced into the final aµ formula:

ω̃p ≈ ωm
p (1 + Bq +Bk) . (8.16)

The values are listed in Table 8.5.

Correction term Symbol Value Uncertainty

Quadrupole vibration Bq -17 92

Kicker transient Bk -27 37

Table 8.5: List of corrections to the measured ωp value for Run-1. All values are in ppb.
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8.5.1 Quadrupole correction Bq

The first correction, Bq, accounts for the mechanical vibrations of the charged quadrupole

plates induced by pulsing them. The NMR probes cannot directly measure this effect to

the required precision, primarily due to the skin depth effect of the ∼1 cm Aluminum

vacuum chamber width that separates the probes from the storage region. The perturba-

tion was measured by a customized set of NMR probes inserted in the quadrupoles region

while sealed inside polyether ether ketone (PEEK) plastic tubes for vacuum compatibil-

ity. The quadrupole system is composed of four short and four long sections, covering

roughly ∼43% of the storage ring in total. The NMR measurement time takes 1.2 s,

which is almost as long as the full sequence of 16 muon bunches of a booster supercycle.

The perturbation time dependence was measured by varying the delay time between the

trigger to the quadrupoles and the NMR measurement. Figure 8.6 shows the measured

variation of the magnetic field as a function of time.

The measurement has been performed at several positions inside one of the quadrupoles

and at the center of the others, in order to determine an average correction. The correc-

tion Bq is extracted by weighting the perturbation by the muon decay rate and averaging

over the whole ring [51].

(a) (b)

Figure 8.6: (a) Field perturbation induced by the quadrupole vibrations over the course
of eight subsequent muon bunches. (b) The same time structure zoomed in to a single
beam bunch. Figures from [51].

8.5.2 Kicker correction Bk

A set of three fast pulsed kicker magnets are placed in the storage ring, roughly 90◦

after the beam injection point, with the role of shifting the beam center of curvature so
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that the correct orbit is achieved after the first turn. The kicker system is composed

of three pairs of thin curved aluminum plates, each 1.27 m long, covering 8.5% of the

storage ring. The kick itself lasts ∼150 ns and reduces the 1.45 T magnetic field locally

by roughly 22 mT. The pulse, however, induces eddy currents in the surrounding metal

that last for several milliseconds. These currents generate field perturbations during the

beam storage time, affecting the muon precession frequency.

This effect has been measured by two independent Faraday magnetometers, which

exploit the rotation of the polarization angle of light when passing through a dielec-

tric material submerged in a magnetic field. If the field is parallel to the direction of

propagation of the light, the polarization rotates by:

∆θ(t) = V B(t)L , (8.17)

where V is the Verdet constant of the dielectric material, B(t) is the (varying) magnetic

field, and L is the length of the material. The magnetometers consisted of a terbium

gallium garnet (TGG) crystal placed vertically between the kicker plates and supported

by a structure built without any metal parts. The polarized light was brought to the

crystals with optical fibers for one magnetometer and via open space and mirrors for the

other magnetometer.

The measurement result is shown in Figure 8.7. Field perturbation is obtained by

fitting the data with an exponential function between 30 and 700 µs:

∆B(t) = ∆B(t0)e
−(t−t0)/τB . (8.18)

The fractional effect on the muon anomalous precession frequency measurement for a fit

starting at t = t0 = 30 µs is

Bk =
∆ωa

ωa

≈ ∆B(t0) · k
B(t0)

(
τB

τB + τµ

)2

, (8.19)

where k is a scaling factor equal to 0.085 (corresponding to the kicker coverage) mul-

tiplied by 0.94 (corresponding to the estimated spatial dependence of the transient field).
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(a) (b)

Figure 8.7: (a) Schematic of the fiber magnetometer inserted between the kicker plates.
(b) The field perturbation caused by the eddy currents as measured by the fiber mag-
netometer. The gray shaded band represents the associated uncertainty of ±0.6 µT.
Figures from [51].

8.6 Final Run-1 aµ result

The fully corrected and unblinded Run-1 values for ωa, ω̃
′
p, and their ratio R′

µ are sum-

marized in Table 8.6. The weighted average value for R′
µ is also computed. The quoted

errors are the combination of statistical and systematic uncertainties. A constant fit of

the four different R′
µ shows a χ2/NDF = 6.8/3 that corresponds to a P (χ2) = 7.8%,

indicating a small tension among the datasets. However, this probability is still con-

sidered to be a plausible statistical outcome and not indicative of incorrectly estimated

uncertainties [11]. A comprehensive list of corrections and uncertainties of all the terms

of Equation 8.3 is presented in Table 8.7.

Dataset ωa/2π [Hz] ω̃′
p/2π [Hz] R′

µ

Run-1A 229 081.06(28) 61 791 871.2(7.1) 0.003 707 300 9(45)

Run-1B 229 081.40(24) 61 791 937.8(7.9) 0.003 707 302 4(38)

Run-1C 229 081.26(19) 61 791 845.4(7.7) 0.003 707 305 7(31)

Run-1D 229 081.23(16) 61 792 003.4(6.6) 0.003 707 295 7(26)

Combined 0.003 707 300 3(17)

Table 8.6: Run-1 final results for ωa, ωp, and their ratio R′
µ

Combining the final value of R′
µ with the various corrections and external factors

described in this chapter we obtain the Run-1 measurement of the anomalous magnetic
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Quantity Correction [ppb] Uncertainty [ppb]

ωa (statistical) - 434

ωa (systematic) - 56

Ce 489 53

Cp 180 13

Cml -11 5

Cpa -158 75

fcalib⟨ω′
p(x, y, ϕ) ·M(x, y, ϕ)⟩ - 56

Bq -17 92

Bk -27 37

µ′
p/µe - 10

mµ/me - 22

ge - 0

Total systematic - 157

Total external factors - 25

Total 544 462

Table 8.7: Values and uncertainties for the correction terms and uncertainties of the
other quantities of Equation 8.3 [11].

moment of the muon:

aµ(FNAL, Run-1) = 0.001 165 920 40(54) , (8.20)

with a final uncertainty of 460 ppb dominated by the statistical error. The result is

compatible with the previous BNL measurement1 [41, 10]:

aµ(BNL) = 0.001 165 920 89(63) . (8.21)

The E989 collaboration has carefully assessed any and all possible correlations between

the Fermilab and Brookhaven experiments and has concluded that there are no important

correlations that would impact a weighted average to obtain a correct combined result

[11]. The combination of the two values gives the new experimental world average

aµ(Exp, 2021) = 0.001 165 920 61(41) , (8.22)

1The result reported by the BNL collaboration in 2006 has been updated in Equation 8.21 to the
newest value for the absolute muon-to-proton magnetic ratio λ = 3.183 345 142(71) [14]. The change
induced in aµ with respect to the old BNL value amounts to +10 × 10−11.
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with a precision of 350 ppb.

This value increases the discrepancy with the data-driven prediction of the Standard

Model quoted by the Theory Initiative [19] to 4.2σ. The tension, however, is significantly

smaller between the experimental value and the lattice-QCD prediction provided by the

BMW collaboration [27], at the level of 1.5σ. As discussed in Section 1.3.3, independent

lattice-QCD groups seem to validate the BMW result, contributing to the new puzzle in

the theoretical prediction. These values and discrepancies are shown in Figure 8.8.

Figure 8.8: The Run-1 measurement [11] of aµ compared to the BNL E821 experiment
[41] and the Standard Model predictions provided by the Theory Initiative Group [19]
and the BMW collaboration [27].



Conclusions

The anomalous magnetic moment of a particle, a = g−2
2
, is a fundamental property that

encodes all the possible virtual interactions allowed by nature. Its precise measurement,

together with the continuously evolving theoretical prediction, has represented an impor-

tant test of the Standard Model for the last 75 years. The anomalous magnetic moment

of the muon, aµ, is particularly interesting due to its enhanced sensitivity to massive par-

ticles participating in the virtual quantum loops. Interactions with not-yet-discovered

massive particles could manifest as a discrepancy between a high-precision measurement

and the Standard Model prediction. The Muon g − 2 experiment at Brookhaven Na-

tional Laboratory (BNL), concluded in 2001, observed a discrepancy with the theoretical

prediction which later grew, thanks to further improvements on the theory side, to 3.7σ.

The new E989 experiment at Fermilab was built to improve the experimental measure-

ment by a factor of four and to confirm or disprove the long-standing discrepancy.

The E989 collaboration, of which I am part, published the first aµ measurement on

April 7th, 2021, relative to the first year of data taking, Run-1, that took place in the

months between March and July 2018. The measured value of aµ = 0.001 165 920 40(54),

with a precision of 460 parts per billion, is in excellent agreement with the BNL mea-

surement, and when combining the two experimental values, the discrepancy with the

data-driven theoretical prediction increases to 4.2σ. Recent improvements on the the-

oretical side, however, are starting to question this long-standing discrepancy. Many

independent groups are developing lattice-QCD calculations that provide ab-initio, i.e.

without any external input from experimental data, predictions of the hadronic contribu-

tions to the muon anomaly. While the hadronic light-by-light aHLbL
µ term is in agreement

with the data-driven estimation, the lowest-order hadronic vacuum polarization aHV P,LO
µ

term is creating a tension between the two methods and is moving the overall value of

aµ closer to the experimental one. The Fermilab E989 experiment is collecting its last

run of data taking which will allow for a reduction of the overall uncertainty to 140 ppb.

On the other hand, further improvements on the theoretical front are expected to shine

light on the current discrepancies.

The experimental technique of the E989 experiment consists of injecting a polarized

beam of 3.1 GeV positive muons in a magnetic storage ring and measuring the muon

229
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spin precession frequency ωa. The field is measured with a set of Nuclear Magnetic

Resonance probes and the muon precession is measured by observing the rate of decay

positrons with a set of electromagnetic calorimeters. In addition, two tracker stations

are capable of measuring the beam dynamics of the muons as they rotate in the stor-

age ring. The E989 experiment is currently collecting muons for the sixth consecutive

year of data taking, Run-6, and has accumulated ∼20 times the statistics of the BNL

experiment. My involvement in the key role of production manager for the production

of these petabyte-sized datasets contributed to speeding up the process by a factor of

∼4 for Run-4 with respect to Run-2, as described in Chapter 4.

As the statistical error continues to improve, increasing attention is being dedicated

to reducing systematic uncertainties as much as possible. Many of the highest uncer-

tainties of the Run-1 ωa measurement are related to the reconstruction of the positrons

hitting the calorimeters. Chapter 5 of this dissertation described the new ReconITA

reconstruction, mainly developed by me to provide an independent reconstruction tech-

nique and to improve the related systematics. The new clustering algorithm improves

the separation of overlapping positrons by a factor of ∼3 with respect to Run-1, greatly

reducing the dominant systematic uncertainty of ωa. This algorithm is used by the

ωa-Europe group for the analysis of the upcoming measurement of Run-2 and Run-3.

The new pulse fitting technique improves the separation of two positron signals hitting

the same calorimeter crystal at the nanosecond timescale, while also recovering missed

low-energy pulses in the long tails of the SiPMs waveforms. This is now part of the

official production of Run-4, Run-5, and Run-6 and will reduce the slow-term effect, first

observed in Run-1, by a factor ∼3. The calorimeter gain corrections extracted with the

precise INFN laser calibration system, that I have developed, have been presented in

Chapter 5. New refinements including the temperature dependency of the short-term

correction and the determination of the in-fill gain recovery time constant with dedicated

studies improve the final gain stability.

Finally, the complete ωa determination from the analysis of the reconstructed positrons

and the estimation of all the related systematic uncertainties has been presented in Chap-

ters 6 and 7, and it relies on the reconstruction algorithm I have developed. A first version

of the ReconITA program has been used for Run-2 and Run-3 reconstructions whose re-

sult is expected to be published in Spring 2023. The final publication, with the complete

statistics, is foreseen for early 2025 with the realistic goal of performing even better than

the design expected uncertainty of 140 ppb.
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Appendix A

Run-1 results

This appendix reports the fit values produced by the ωa-Europe analysis on the four

Run-1 datasets. The fitting procedure is described in Chapter 6. Only the results from

the AMethod weighting technique are reported here, as it is the technique used for the

final Run-1 ωa measurement combination. However, these results correspond to a single

randomization seed and the ωa values are different from the ones reported as the final

results. This is because the final result is the average of several fits made using different

seeds in the hit time randomization algorithm.

Together with the central values and statistical uncertainties, correlation matrices pro-

duced with the ROOT method TFitResult::GetCorrelationMatrix are reported as well.
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A.1 Dataset Run-1A

Parameter Unit Result Uncertainty

N − 1617963. 369.

τ µs 64.4388 0.0033

A − 0.360934 0.000038

R ppm −23.73 1.19

ϕ rad 2.09052 0.00020

ACBO 1× 10−3 4.65 0.13

τCBO µs 186. 13.

ϕCBO rad 4.239 0.027

ωCBO rad/µs 2.33816 0.00035

AVW − 0.0110 0.0044

ωVW rad/µs 14.392 0.011

ϕVW rad 5.61 0.43

kLM − 0.01255 0.00040

AA 1× 10−3 0.63 0.23

ϕA rad 4.91 0.36

Aϕ 1× 10−3 0.39 0.24

ϕϕ rad 5.23 0.61

A2CBO 1× 10−3 0.185 0.088

ϕ2CBO rad 4.66 0.47

τVW µs 17.2 3.1

Table A.1: Fitted AMethod parameters from the full 20 parameters fit of the Run-1A
dataset.
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Figure A.1: Correlation matrix from the Run-1A dataset AMethod fit.
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A.2 Dataset Run-1B

Parameter Unit Result Uncertainty

N − 2251357. 1038.

τ µs 64.4275 0.0027

A − 0.360798 0.000032

R ppm −22.39 1.01

ϕ rad 2.08272 0.00017

ACBO 1× 10−3 4.09 0.15

τCBO µs 114.9 7.3

ϕCBO rad 3.650 0.036

ωCBO rad/µs 2.61497 0.00052

AVW − 0.0110 0.0034

ωVW rad/µs 12.8019 0.0071

ϕVW rad 1.99 0.28

kLM 1× 10−3 7.36 0.59

AA 1× 10−3 0.66 0.24

ϕA rad 4.40 0.36

Aϕ 1× 10−3 0.17 0.25

ϕϕ rad 0.94 1.51

A2CBO 1× 10−3 0.14 0.11

ϕ2CBO rad 4.64 0.77

τVW µs 18.0 2.6

Table A.2: Fitted AMethod parameters from the full 20 parameters fit of the Run-1B
dataset.
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Figure A.2: Correlation matrix from the Run-1B dataset AMethod fit.
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A.3 Dataset Run-1C

Parameter Unit Result Uncertainty

N − 3433721. 1009.

τ µs 64.4378 0.0021

A − 0.361882 0.000026

R ppm −22.99 0.81

ϕ rad 2.08020 0.00013

ACBO 1× 10−3 4.253 0.083

τCBO µs 217. 11.

ϕCBO rad 3.933 0.019

ωCBO rad/µs 2.60999 0.00023

AVW 1× 10−3 4.40 0.69

Fy − 1.01563 0.00025

ϕVW rad 1.34 0.14

kLM 1× 10−3 6.59 0.38

AA 1× 10−3 0.36 0.15

ϕA rad 2.92 0.41

Aϕ 1× 10−3 0.64 0.15

ϕϕ rad 4.36 0.24

A2CBO 1× 10−3 0.126 0.055

ϕ2CBO rad 4.54 0.44

τVW µs 29.6 3.1

Ay 1× 10−3 0.39 0.09

ϕy rad 4.83 0.22

Table A.3: Fitted AMethod parameters from the full 22 parameters fit of the Run-1C
dataset.
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Figure A.3: Correlation matrix from the Run-1C dataset AMethod fit.
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A.4 Dataset Run-1D

Parameter Unit Result Uncertainty

N − 6878558. 3322.

τ µs 64.4415 0.0021

A − 0.364085 0.000021

R ppm −23.08 0.67

ϕ rad 2.07557 0.00013

ACBO 1× 10−3 3.83 0.10

τCBO µs 198. 10.

ϕCBO rad 0.219 0.025

ωCBO rad/µs 2.33591 0.00025

AVW 1× 10−3 1.61 0.44

Fy − 1.01545 0.00034

ϕVW rad 2.46 0.30

kLM − 0.01314 0.00063

AA 1× 10−3 0.48 0.14

ϕA rad 5.40 0.28

Aϕ 1× 10−3 0.25 0.14

ϕϕ rad 2.75 0.57

A2CBO 1× 10−3 0.197 0.058

ϕ2CBO rad 2.68 0.29

τVW µs 49.9 9.7

Ay 1× 10−3 0.103 0.060

ϕy rad 3.35 0.57

Table A.4: Fitted AMethod parameters from the full 22 parameters fit of the Run-1D
dataset.
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Figure A.4: Correlation matrix from the Run-1D dataset AMethod fit.
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