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Abstract

This work presents a search for sterile neutrinos based on the 3+1 model in the

MicroBooNE experiment. The 3+1 model examined here expands on the standard

model of neutrinos by adding a fourth neutrino flavor. The search presented relies on

Deep-Learning-based reconstruction tools and looks for charged current quasi-elastic

(CCQE) events kinematically consistent with 2-body interactions.

Along the path to the neutrino oscillation results various reconstruction tools

are examined in more detail with a particular emphasis on the reconstruction of

electrons and photons. Photons can originate from neutral pion decay; one of the

major backgrounds to this analysis. This background source is examined in detail.

Then, using two orthogonal samples of CCQE electron neutrino events and

CCQE muon neutrino events, the 3+1 model allowing for electron neutrino appear-

ance, electron neutrino disappearance, and muon neutrino disappearance is tested

by comparing to MicroBooNE data.

The 3+1 model oscillation parameter set that best fits this data is found to be a

parameter set with high electron neutrino disappearance and little oscillation in the

other channels. Wilks’ theorem indicates that the null model and the global best fit

are excluded at 90% confidence, however initial studies using the Feldman-Cousins’

method indicate that neither of these hypotheses are excluded by the data.
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Terence Blue, Laura Rodŕıguez-Pérez, Alec Drobac, Hannah Johnston, Dr. Travis

Olsen, and Joshua Mills for being the best DND group of all time.

Finally, Mom, Dad, and Ben, thank you for being the best parents and brother

and for being there during the long road to get here. Thank you as well to the rest of

my big crazy family. You are all amazing and your support has been priceless. And

thank you to the various pets over the years, both of the four legged fluffy variety

(Cleveland, Savannah, Molly, Sadie, Vixen, Luke, and Leia) and the tiny aquatic

variety (Sir Lancelot, Sir Mordred, and Sir Merlin).

This work was performed with the support of US DOE grant DE-SC0019032 and

the Tufts Burlingame Fellowship.

Chapter 0 iii



Contents

1 Introduction 1

2 Neutrino Physics and the Standard Model 5

2.1 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Neutrino Interactions in MicroBooNE . . . . . . . . . . . . . . . . . . 7

2.3 Neutrino Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Experimental Oscillation Observations . . . . . . . . . . . . . . . . . 14

2.4.1 Solar Neutrino Oscillations . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Atmospheric Neutrino Oscillations . . . . . . . . . . . . . . . 16

2.4.3 Accelerator Neutrino Oscillations . . . . . . . . . . . . . . . . 16

2.4.4 Reactor Neutrino Oscillations . . . . . . . . . . . . . . . . . . 17

2.4.5 Global Picture . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 3+1 Sterile Neutrino Model 21

3.1 3+1 Sterile Neutrino Model . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Neutrino Oscillation-like Anomalies . . . . . . . . . . . . . . . . . . . 24

3.2.1 Gallium Solar Neutrino Experiments . . . . . . . . . . . . . . 24

3.2.2 Short-baseline Reactor Experiments . . . . . . . . . . . . . . . 25

3.2.3 Short-baseline Accelerator Experiments: LSND . . . . . . . . 26

3.2.4 Short-baseline Accelerator Experiments: MiniBooNE . . . . . 27

3.2.5 Global Picture . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Analysis Outline 34

iv



Katie Mason Tufts University

5 The MicroBooNE Experiment 40

5.1 The Booster Neutrino Beam . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 The Proton Beam and Beryllium Target . . . . . . . . . . . . 41

5.1.2 The Horn and Decay Region . . . . . . . . . . . . . . . . . . . 43

5.1.3 Beam Composition and flux . . . . . . . . . . . . . . . . . . . 45

5.2 Detector Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 The Time Projection Chamber . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Optical Readout System . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Electronics Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5.1 Wire Performance . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5.2 Event Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5.3 2D Deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.6 MicroBooNE Data Collection . . . . . . . . . . . . . . . . . . . . . . 54

5.6.1 Blindness to Data . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 The Deep Learning Reconstruction Chain 56

6.1 Preparation of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2 Cosmic Ray Tagging . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Track-like vs. Shower-like particles . . . . . . . . . . . . . . . . . . . 61

6.4 SparseSSNet Pixel Identification . . . . . . . . . . . . . . . . . . . . . 62

6.5 Vertex Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.6 Track Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.7 Shower Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.7.1 Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . 65

6.7.2 Shower Energy Reconstruction . . . . . . . . . . . . . . . . . . 66

6.8 MPID Particle Identification . . . . . . . . . . . . . . . . . . . . . . . 68

6.9 CCQE Neutrino Energy Reconstruction . . . . . . . . . . . . . . . . . 69

6.10 General Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.11 The Total Reconstruction Chain . . . . . . . . . . . . . . . . . . . . . 71

Chapter 0 v



Katie Mason Tufts University

7 Recovering Trajectories in Unresponsive Channels using a Convo-

lutional Neural Network 80

7.1 Network Training Images . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 Sparse Network Structure . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 Network Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.4 Future Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 Verification of Shower Energy Reconstruction on Data 89

8.1 The π0 Sideband Sample . . . . . . . . . . . . . . . . . . . . . . . . 90

8.1.1 π0 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . 91

8.1.2 Decay Photon Energy Reconstruction . . . . . . . . . . . . . . 96

8.1.3 π0 Rest Mass Reconstruction . . . . . . . . . . . . . . . . . . 99

8.1.4 Best-Fit Shower PIU-to-energy Conversion Points . . . . . . . 101

8.2 The Michel Electron Sideband Sample . . . . . . . . . . . . . . . . . 104

8.2.1 Michel Electron Event Selection . . . . . . . . . . . . . . . . . 105

8.2.2 Best-Fit Shower PIU-to-energy Conversion Points . . . . . . . 108

8.3 Final Verification of the Shower Energy Calculation . . . . . . . . . . 111

9 Detector Effects and Systematic Uncertainties 114

9.1 Flux Modeling and Uncertainties . . . . . . . . . . . . . . . . . . . . 116

9.2 Interaction Model Systematic Uncertainties . . . . . . . . . . . . . . . 116

9.3 Hadron Re-Interaction uncertainties . . . . . . . . . . . . . . . . . . . 118

9.4 Detector Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.5 Uncertainty from Finite Statistics . . . . . . . . . . . . . . . . . . . . 122

9.6 Total Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 123

10 The π0 Background to νe CCQE 1e1p 127

10.1 π0 events in MicroBooNE . . . . . . . . . . . . . . . . . . . . . . . . 127

10.2 The π0 Sideband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

10.3 Determination of π0 weights . . . . . . . . . . . . . . . . . . . . . . . 133

10.4 Application of π0 weights . . . . . . . . . . . . . . . . . . . . . . . . 138

Chapter 0 vi



Katie Mason Tufts University

10.5 Muon MPID distribution cross-check . . . . . . . . . . . . . . . . . . 139

10.6 Isolating Events Similar to 1e1p . . . . . . . . . . . . . . . . . . . . . 141

11 ν CCQE 1l1p Selection 144

11.1 The BDT Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

11.2 11lp Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

11.2.1 1e1p background fitting . . . . . . . . . . . . . . . . . . . . . 149

11.3 Comparison to the MiniBooNE LEE . . . . . . . . . . . . . . . . . . 150

12 3+1 Oscillation Search Strategy and Sensitivity 155

12.1 Wilks’ Theorem Sensitivity Method . . . . . . . . . . . . . . . . . . . 158

12.2 Determining the Best Fit Model Parameters . . . . . . . . . . . . . . 160

12.3 Wilks’ Theorem Sensitivity Results . . . . . . . . . . . . . . . . . . . 164

12.4 Signal Injection Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

12.5 Fake Data Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

13 Results and Comparison to Global Best Fit 180

13.1 Results of Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 180

13.2 Discussion of Statistical Method . . . . . . . . . . . . . . . . . . . . . 187

14 Conclusions and Future Outlook 193

A Abbreviations 196

B Contributions 198

C Further Studies on the π0 Simulation Weights 200

C.1 NC Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

C.2 CC Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

C.3 Effect of Weights on Additional π0 Kinematic Variables . . . . . . . . 203

D High Energy 1e1p Bin Test 206

Chapter 0 vii



List of Figures

2.1 The neutral-current and charged-current weak interaction vertices

(for the 1st generation fermions). . . . . . . . . . . . . . . . . . . . . 8

2.2 CC total scattering cross section per nucleon per unit energy of the

incoming particles vs. neutrino (left panel) and antineutrino (right

panel) energy for all three processes labeled on the curve along with

the total scattering cross sections. Dashed line shows QE scattering,

while the dashed-dotted and dotted lines are the inelastic resonance

(RES) and deep-inelastic scattering (DIS), respectively. The sum of

all the scattering cross sections (TOTAL) is shown by the solid line.

Adapted from Ref. [2]. . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Feynman diagrams νµ and νe CCQE scattering. . . . . . . . . . . . . 10

2.4 Diagram of the relationship between the mass eigenstates (labelled

1, 2 and 3) for neutrinos and the flavour eigenstates (νe , νµ and ντ

).The fractional contribution of each flavour to the mass eigenstates

is indicted by the coloured bars. Adapted from Ref. [14]. . . . . . . 20

3.1 The Lν/Eν distribution for events with Rγ > 10 and 20 < Ee <

60MeV , where Lν is the distance travelled by the neutrino in meters

and Eν is the neutrino energy in MeV. The data agree well with the

expectation from neutrino background and neutrino oscillations at

low ∆m2. Adapted from Ref. [20]. . . . . . . . . . . . . . . . . . . . 27

viii



Katie Mason Tufts University

3.2 The MiniBooNE detector enclosure (left) and a cut-away drawing

(right) of the detector showing the distribution of PMT’s in the signal

and veto regions. Adapted from Ref. [23]. . . . . . . . . . . . . . . . 28

3.3 The antineutrino mode (top) and neutrino mode (bottom) EQE
ν dis-

tributions for νe CCQE data (points with statistical errors) and back-

ground (histogram with systematic errors). Adapted from Ref. [22]. . 30

3.4 The antineutrino mode (top) and neutrino mode (bottom) event ex-

cesses as a function of EQE
ν . (Error bars include both the statistical

and systematic uncertainties.) Also shown are the expectations from

the best two-neutrino fit for each mode and for two example sets of

oscillation parameters. Adapted from Ref. [22]. . . . . . . . . . . . . 31

3.5 MiniBooNE allowed regions in the antineutrino mode (top) and the

neutrino mode (bottom) for events with EQE
ν > 200MeV within a

two-neutrino oscillation model. Also shown are the ICARUS [25]

and KARMEN [26] appearance limits for neutrinos and antineutrinos,

respectively. The shaded areas show the 90% and 99% C.L. LSND

ν̄µ → ν̄e allowed regions. The black stars show the MiniBooNE best

fit points, while the circles show the example values used in Fig. 2.

Adapted from Ref. [22]. . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 A flow chart of the major analysis steps. . . . . . . . . . . . . . . . . 35

5.1 Overhead diagram of the Fermilab experiment site, showing the loca-

tion of MicroBooNE [28]. . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 A cartoon illustrating the general steps in the Booster Neutrino Beam. 42

5.3 A cartoon of the Fermilab Accelerator complex. Adapted from Ref.

[30]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 A schematic of the pulsed electromagnetic horn used in the Booster

Neutrino Beam. Adapted from [29]. . . . . . . . . . . . . . . . . . . . 44

Chapter 0 ix



Katie Mason Tufts University

5.5 Total predicted flux From the BNB by neutrino species when operat-

ing in neutrino mode. Adapted from Ref. [29]. . . . . . . . . . . . . . 45

5.6 Predicted νµ flux (a) and νe flux (b) broken up by parent meson. The

black line shows the total predicted flux. Adapted from Ref. [29]. . . 46

5.7 Cross section view of the cryogenic vessel containing the LArTPC

and the PMT optical system. In this view, the beam direction is out

of the page, towards the reader [28]. . . . . . . . . . . . . . . . . . . 47

5.8 Operational Principle of the MicroBooNE detector [28]. . . . . . . . 49

5.9 A drawing to show the configuration of PMTs and light guide paddles

in the MicroBooNE cryostat from [32]. . . . . . . . . . . . . . . . . . 50

5.10 This figure shows the channel status for each of the three wire planes

in the MicroBooNE detector. The red represents dead wires. The

blue represents non-dead wires. . . . . . . . . . . . . . . . . . . . . . 51

5.11 An example of 2D deconvolution on the U -plane. Run 3493, sub-run

821, event 41075. The y-axis is the time in ticks and x is the wire

number. Adapted from Ref. [36]. . . . . . . . . . . . . . . . . . . . . 54

6.1 A flow chart illustrating the deep learning reconstruction chain. Steps

with a red star are currently composed of deep learning tools. . . . . 57

6.2 An example of a simulated overlay event at the start of the recon-

struction chain in all three MicroBooNE wire planes. The x-axis

corresponds to the wire number, the y-axis corresponds to time ticks,

and the z-axis is PIU (capped at 50 for visualization purposes). . . . 73

6.3 An example of a simulated overlay event in the collection plane after

cosmic background has been removed. The x-axis corresponds to the

wire number, the y-axis corresponds to time ticks, and the z-axis is

PIU with a maximum of 50 PIU for visualization. . . . . . . . . . . 73

6.4 An example of an electromagnetic shower process. Adapted from Ref.

[54]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 0 x



Katie Mason Tufts University

6.5 An example of a simulated overlay event in the collection plane after

SSNet has been run. The x axis corresponds to the wire number, the

y axis corresponds to time ticks, and the z axis is SSNet category.

The image has been cropped to be around the simulated neutrino

interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 Event displays of a simulated CC π0 event showing the raw PIU

image. The leading reconstructed photon is represented by the red

triangle and the sub-leading reconstructed photon is represented by

the magenta triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.7 Simulated electron energy vs Qsh for a sample of generated 1e1p

events. The linear fit is used in the shower energy calculation. . . . . 77

6.8 Example distributions of simulated electron energies (solid lines) and

corresponding Gaussian fits (dashed lines) within two different shower

charge sum ranges. The means of the Gaussian fits are used to gen-

erate the black points in Figure 6.7. . . . . . . . . . . . . . . . . . . 78

6.9 The energy resolution for a sample of simulated electrons as described

by Equation 6.2. The y axis has the raw number of simulated events

without scaling. The dashed vertical line is included at Eres = 0.0 for

reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1 A flowchart illustrating the Infill network structure where E is an

encoding layer and D is a decoding layer. The final output image has

the same spatial dimensions as the original sparse image. . . . . . . 83

7.2 The results of running the network on the test sample, for each of

the three planes. The predicted PIU value vs. the true PIU value

is shown for each pixel in the dead channel. The red line represents

y=x for reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 0 xi



Katie Mason Tufts University

7.3 This set of figures shows the PIU distributions for the test crops in

each of the three planes (note ADC = PIU). The distributions of both

the true image and the network output image are shown. The PIU

distribution is plotted only for the dead wires. . . . . . . . . . . . . 86

7.4 This figure shows an example set of event displays from the U -plane

(a), V -plane (b), and Y -plane(c). The first image is the network input

image with dead wires. The second image is the Infill output image

after thresholds are applied and after being overlay with the network

image. The third image is the true PIU image for reference. . . . . . 88

8.1 The dominant Feynman diagram describing π0− > 2γ. . . . . . . . . 90

8.2 Kinematic distributions at the preselection stage for preliminary data

for variables used in the π0 box cuts. The error bars are statistical

only. The black dashed line indicates the cut value. The black arrow

indicates the side of the cut that is kept. The simulation has been

scaled to match the preliminary data POT. . . . . . . . . . . . . . . . 94

8.3 The π0 mass distribution of the preliminary data with three versions:

no 1e1p BDT cut, 1e1p BDT < 0.7 (used in analysis), and 1e1p BDT

> 0.7. All other π0 ”box-cuts” have been applied. . . . . . . . . . . 95

8.4 The efficiency of the π0 selection at various cut stages. . . . . . . . . 95

8.5 Simulated photon energy vs Qsh for a sample of generated CC π0

events with the π0 box-cuts applied. The best fit is shown for this

sample as well as the best fit from the electron fit. (a): leading

photon, (b): sub-leading photon. . . . . . . . . . . . . . . . . . . . . 97

8.6 The energy resolution for each of the decay photon in the selected

π0 sample. The leading photon is shown in (a) and the sub-leading

photon is shown in (b). The events have been scaled to match the

total data POT of 6.67× 1020. Resolution is defined in Eq. 6.2. The

dashed vertical line is included at Eres = 0.0 for reference. . . . . . . 97

Chapter 0 xii



Katie Mason Tufts University

8.7 The reconstructed photon energies for events passing all selection

cuts. The leading photon is shown in (a) and the sub-leading photon

is shown in (b). The MC simulation samples have been normalized

to the total number of data events. The data events are shown by

black points. The number of events in each category is shown in the

legend in parenthesises. The χ2
CNP/19(dof) = 1.267 with a p-value

of 0.193 for the leading shower and the χ2
CNP/19(dof) = 0.973 with

a p-value of 0.491 for the sub-leading shower. . . . . . . . . . . . . . 99

8.8 The opening angle (θ) resolution of the decay photons in the selected

π0 sample. The events have been scaled to match total data POT of

6.67× 1020. Resolution is defined in Eq.8.5. The dashed vertical line

is included at θres = 0.0 for reference. . . . . . . . . . . . . . . . . . . 100

8.9 The calculated π0 mass for events passing all selection cuts. The MC

simulation samples have been normalized to total number of data

events. The data events are shown by black points. The number of

events in each category is shown in the legend in parenthesises. The

χ2
CNP/19(dof) = 0.976 with a p-value of 0.486 for the MC prediction. 101

8.10 Total χ2 vs. m distributions for all MC simulation(a), data(b), and

good MC simulation(c) that pass the π0 selection criteria. . . . . . . 103

8.11 The dominant Feynman diagram describing µ− decay. . . . . . . . . . 105

8.12 φµ distribution for selected events in both data and MC simula-

tion, corresponding to ≈ 5.3× 1019 POT. The selection cut requiring

φµ < 0.5 radians is indicated by the dotted line. The MC simulation

samples have been normalized to total number of data events. The

data events are shown by black points. The number of events in each

category is shown in the legend in parenthesises. The uncertainty

bars are statistical only. The χ2
CNP/9(dof) = 0.822 with a p-value of

0.596 for the MC prediction. . . . . . . . . . . . . . . . . . . . . . . . 106

Chapter 0 xiii



Katie Mason Tufts University

8.13 Electron energy distribution for Michels in both data and MC simu-

lation after all selection criteria have been applied, corresponding to

≈ 5.3×1019 POT. The MC simulation samples have been normalized

to total number of data events. The data events are shown by black

points. The number of events in each category is shown in the legend

in parenthesises. The uncertainty bars here are statistical only. The

χ2
CNP/9(dof) = 0.608 with a p-value of 0.857 for the MC prediction. . 107

8.14 Top: Michel shower charge sum spectrum in data and MC simulation

along with the corresponding best fit to eq. (8.8) (allowing only Qcutoff

to vary in the fit). This sample corresponds to ≈ 5.3 × 1019 POT.

Bottom Ratio of the data/simulation to the corresponding fit. The

MC simulation and fit result here have been normalized to match the

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.15 χ2 from (8.10) as a function of Qcutoff , for data (a) and MC simulation

(b). This sample corresponds to ≈ 5.3× 1019 POT. The 1 σ allowed

regions from Wilks’ theorem are shown in shaded regions below each

curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.16 The data and MC simulation points from each the π0 sample and

the Michel e− sample are compared with the Qsh-to-MeV electron

calibration line used in the DL analysis from eq. 6.1. The Qsh-to-

MeV photon calibration lines (eq. 8.2 and eq. 8.3) are also included

for reference. The shaded regions represent the statistical uncertainty

of this given calibration line. . . . . . . . . . . . . . . . . . . . . . . . 112

9.1 Flux fractional covariance matrices for (a) null oscillation and (b)

maximum oscillation, and the corresponding correlation matrices (c)

and (d). Bins 0-9 are the original bins of the 1e1p selection (indicated

by red line). Bins 10-11 are the additional high energy 1e1p bins

(indicated by white line). Bins 12-29 are the 1µ1p bins. The z-axis

has been capped to be consistent with each other for comparison. . . 117

Chapter 0 xiv



Katie Mason Tufts University

9.2 Neutrino interaction model fractional covariance matrices for (a) null

oscillation and (b) maximum oscillation, and the corresponding cor-

relation matrices (c) and (d). Bins 0-9 are the original bins of the

1e1p selection (indicated by red line). Bins 10-11 are the additional

high energy 1e1p bins (indicated by white line). Bins 12-29 are the

1µ1p bins. The z-axis has been capped to be consistent with each

other for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9.3 Re-interaction fractional covariance matrices for (a) null oscillation

and (b) maximum oscillation, and the corresponding correlation ma-

trices (c) and (d). Bins 0-9 are the original bins of the 1e1p selection

(indicated by red line). Bins 10-11 are the additional high energy

1e1p bins (indicated by white line). Bins 12-29 are the 1µ1p bins.

The z-axis has been capped to be consistent with each other for com-

parison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.4 An example use of KDE smoothing using the Run 3 SCE effect sam-

ple. This sample has the 1e1p selection applied and uses the recon-

structed Eν (MeV ) as the variable of interest. . . . . . . . . . . . . 122

9.5 Detector variation fractional covariance matrices for (a) null oscilla-

tion and (b) maximum oscillation, and the corresponding correlation

matrices (c) and (d). Bins 0-9 are the original bins of the 1e1p se-

lection (indicated by red line). Bins 10-11 are the additional high

energy 1e1p bins (indicated by white line). Bins 12-29 are the 1µ1p

bins. The z-axis has been capped to be consistent with each other for

comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Chapter 0 xv



Katie Mason Tufts University

9.6 Simulation statistical fractional covariance matrices for (a) null oscil-

lation and (b) maximum oscillation, and the corresponding correla-

tion matrices (c) and (d). Bins 0-9 are the original bins of the 1e1p

selection (indicated by red line). Bins 10-11 are the additional high

energy 1e1p bins (indicated by white line). Bins 12-29 are the 1µ1p

bins. The z-axis has been capped to be consistent with each other for

comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.7 Total fractional covariance matrices for (a) null oscillation and (b)

maximum oscillation, and the corresponding correlation matrices (c)

and (d). Bins 0-9 are the original bins of the 1e1p selection (indicated

by red line). Bins 10-11 are the additional high energy 1e1p bins

(indicated by white line). Bins 12-29 are the 1µ1p bins. The z-axis

has been capped to be consistent with each other for comparison. . . 125

9.8 Systematic uncertainties to the 1e1p selection (a,b) and the 1µ1p

selection (c,d) broken up by contribution type. The y axis has been

set to the same value (0.6) in all plots. . . . . . . . . . . . . . . . . . 126

10.1 Bar graph illustrating the interaction types which produce π0 ’s in

MicroBooNE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

10.2 Feynman diagrams showing the π0 resonant channel . . . . . . . . . . 129

10.3 Shows the calculated π0 mass for events passing all selection cuts.

The simulation has been normalized to the run 1,2, and 3 data POT.

Flux, cross-section, and detector systematics are included. The top

panel shows the event count histogram while the bottom shows the

ratio of data/simulation(MC) in each bin. . . . . . . . . . . . . . . . 131

10.4 Shows the calculated Delta baryon mass for events passing all selec-

tion cuts. The simulation has been normalized to the run 1,2, and

3 data POT. Flux, cross-section, and detector systematics are in-

cluded. The top panel shows the event count histogram while the

bottom shows the ratio of data/simulation(MC) in each bin. . . . . . 132

Chapter 0 xvi



Katie Mason Tufts University

10.5 Shows the calculated π0 momentum for events passing all selection

cuts. The simulation has been normalized to the run 1,2, and 3 data

POT. Flux, cross-section, and detector systematics are included. The

top panel shows the event count histogram while the bottom shows

the ration of data/simulation in each bin. . . . . . . . . . . . . . . . 133

10.6 The pi0 momentum resolution (reconstructed - true)/true for runs

1+2+3 simulation samples. The black dashed line indicates resolution

equals 0.0 to help guide the eye. . . . . . . . . . . . . . . . . . . . . . 134

10.7 This plot shows the MPID muon score for run 1, 2, and 3. The simu-

lation POT is normalized to the POT of the data. Flux, cross-section,

and detector systematics are included. The top panel shows the event

count histogram while the bottom shows the ratio of data/simulation

in each bin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

10.8 This plot shows the purity ((CC or NC π0 )/total π0 ) of both the NC

and CC pi0 samples at various cut values of the MPID muon score. . 135

10.9 This plot shows the R distribution in terms of π0 momentum for

each the NC π0 and CC π0 samples. The best fit polynomials from

equations 10.5 and 10.6 are shown. The error bars are statistical only. 136

10.10The reconstructed π0 mass variable for events passing the π0 selection

criteria. The colored stacked histograms represent the standard sim-

ulation (MC) prediction. The red dashed line is the total weighted

(wMC) prediction. The data points are shown by the black points.

The lower two panels show the data/MC ratio and data/wMC ratio

respectively. The χ2
CNP/20(dof) = 0.709 with a p-value of 0.821 for

the MC prediction. The χ2
CNP/20(dof) = 0.778 with a p-value of

0.744 for the wMC prediction [37]. . . . . . . . . . . . . . . . . . . . . 137

Chapter 0 xvii



Katie Mason Tufts University

10.11Reconstructed π0 momenta for the CC (a) and NC (b) samples. The

colored stacked histograms represent the standard simulation (MC)

prediction. The red dashed line is the total weighted (wMC) predic-

tion. The data points are shown by the black points. The lower two

panels of each figure show the data/MC ratio and data/wMC ratio

respectively. In the CC sample, the χ2
CNP/20(dof) = 0.619 with a p-

value of 0.902 for the MC prediction and the χ2
CNP/20(dof) = 0.405

with a p-value of 0.991 for the wMC prediction. In the NC sample,

the χ2
CNP/20(dof) = 0.555 with a p-value of 0.944 for the MC predic-

tion and the χ2
CNP/20(dof) = 0.490 with a p-value of 0.972 for the

wMC prediction [37]. . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10.12Effect of different NC π0 fit functions on the NC π0 backgrounds to

the 1e1p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

10.13The distributions of MPID image scores presented as log(γ/e) (a)

and γ/(γ + e) (b) for events passing the π0 selection. simulation has

been normalized to the data in for the purpose of determining shape

agreement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10.14The calculated proton energy for events passing all selection cuts.

The simulation POT has been normalized to the run 1,2, and 3 data

sets POT and then re-weighted in true π0 momentum. . . . . . . . . 142

10.15The calculated electron energy for events passing all selection cuts.

The simulation POT has been normalized to the run 1,2, and 3 data

sets POT and then re-weighted in true π0 momentum. . . . . . . . . 142

10.16The calculated neutrino energy for events passing all selection cuts

(treating the event as a 1e1p event). The simulation POT has been

normalized to the run 1,2, and 3 data sets POT and then re-weighted

in true π0 momentum. . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Chapter 0 xviii



Katie Mason Tufts University

11.1 The Importance of various variables in the BDT ensemble for Run 1

for both the 1e1p selection(a) and 1µ1p selection(b). Note that for

the 1µ1p plot, the importance is normalized to 1.0. . . . . . . . . . . 148

11.2 Predicted Ereco
ν spectrum for the full 1e1p (a) and 1µ1p(b) selections,

with the data selection shown represented by black points. Adapted

from Ref [37]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

11.3 Confidence level at which values of the LEE scaling are ruled out

based on the Feldman-Cousins procedure (solid black) and Wilk’s

theorem (dotted gray curve). The shaded regions are the different

Feldman-Cousins confidence intervals. The hashed region is the con-

fidence intervals on the MiniBooNE LEE model with a scaling of 1.0.

Adapted from Ref. [37]. . . . . . . . . . . . . . . . . . . . . . . . . . 152

11.4 Ratio of observed to predicted νe candidate events in each analysis’s

energy range. Statistical errors are shown on the observations (black),

while systematic errors are shown around the prediction (gray). The

expected ratio assuming the MiniBooNE-like eLEE signal model with

its median signal strength is also shown (red). The Reconstruction

and selection utilized in this thesis comprises the first bin of this plot.

Adapted from Ref. [86]. . . . . . . . . . . . . . . . . . . . . . . . . . 153

12.1 The true neutrino energy (MeV) spectrum of 1e1p with no sterile

oscillation (a), the spectrum of maximum BNB νµ → νe oscillation

to illustrate the shape (b), and the 1mu1p selection with no sterile

oscillation (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

12.2 The true neutrino travel distance (m) spectrum of 1e1p with no sterile

oscillation (a), the spectrum of maximum BNB νµ → νe oscillation

to illustrate the shape (b), and the 1mu1p selection with no sterile

oscillation (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

12.3 The χ2 distribution for various degrees of freedom (a) and 3 degrees

of freedom with the 90th percentile highlighted. . . . . . . . . . . . . 160

Chapter 0 xix



Katie Mason Tufts University

12.4 The R distribution for 1000 pseudo-experiments thrown from the

specified set of oscillation parameters. The red spectrum is the result

using only a grid search. The blue spectrum is the result of using

a grid search followed by the minimizer. The Wilks’ theorem 90%

confidence level value is shown and compared to the 90% Rcrit from

the given spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

12.5 The R distribution for 1000 pseudo-experiments thrown from the

specified set of oscillation parameters. The red spectrum is the result

using only a grid search. The blue spectrum is the result of using a

grid search followed by the minimizer. The orange line shows the 3

DOF χ2 distribution for comparison. . . . . . . . . . . . . . . . . . . 164

12.6 2D slices for each ∆m2
41 value tested to construct the Wilks’ 90%

confidence excluded region (∆m2
41 value indicated by the plot title). 165

12.7 2D slices for each Ue4 value tested to construct the Wilks’ 90% con-

fidence excluded region (Ue4 value indicated by the plot title). . . . . 166

12.8 2D slices for each Uµ4 value tested to construct the Wilks’ 90% con-

fidence excluded region (Uµ4 value indicated by the plot title). . . . . 167

12.9 2D slices of the Wilks’ theorem exclusion sensitivity at the grid points

closest to the global best fit point. The global best fit parameters from

Table 3.1 are indicated by the red star. The 90% confidence level is

shown by the white line. The color scale (capped at 20) indicates the

R value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

12.102D slices of the Wilks’ theorem exclusion for the first 5 pseudo-

experiments thrown from ∆m2
41 = 0.05(MeV 2), Ue4 = 0.018, Uµ4 =

0.018. The 90% CL contour is shown by the white line. The red star

indicates the parameters the pseudo experiment was thrown from. . 169

Chapter 0 xx



Katie Mason Tufts University

12.112D slices of the Wilks’ theorem exclusion for the first 5 pseudo-

experiments thrown from ∆m2
41 = 0.33(MeV 2), Ue4 = 0.041, Uµ4 =

0.041. The 90% CL contour is shown by the white line. The red star

indicates the parameters the pseudo experiment was thrown from. . 170

12.122D slices of the Wilks’ theorem exclusion for the first 5 pseudo-

experiments thrown from ∆m2
41 = 13.18(MeV 2), Ue4 = 0.196, Uµ4 =

0.196. The 90% CL contour is shown by the white line. The red star

indicates the parameters the pseudo experiment was thrown from. . 171

12.132D slices of the Wilks’ theorem exclusion for the first 5 pseudo-

experiments thrown from ∆m2
41 = 83.17(MeV 2), Ue4 = 0.428, Uµ4 =

0.428. The 90% CL contour is shown by the white line. The red star

indicates the parameters the pseudo experiment was thrown from. . 172

12.142D slices of the Wilks’ theorem exclusion close to the data best fit

point for fake data set 1. This data set features a large low energy

excess in νe . The 90% confidence level is shown by the white line.

The color scale (capped at 20) indicates the R value. . . . . . . . . . 174

12.152D slices of the Wilks’ theorem exclusion close to the global best fit

point for fake data set 1. The 90% confidence level is shown by the

white line. The color scale (capped at 20) indicates the R value. . . 175

12.162D slices of the Wilks’ theorem exclusion in ∆m2
41 vs sin2(2θee,µµ,µe),

while setting the other two sin2(2θ) terms to their best fit values in

Table 12.2. The 90% CL is shown by the white line. The color scale

(capped at 20) indicates the R value. . . . . . . . . . . . . . . . . . . 175

12.17Figure showing the fake data set 1 spectrum in the 1e1p(a) and

1µ1p(b) selections. The null oscillation prediction (red dashed line)

and the best fit oscillation prediction (stacked histogram) are shown.The

grey dashed line indicates the systematic + statistical uncertainty on

the best fit simulated spectrum. . . . . . . . . . . . . . . . . . . . . 176

Chapter 0 xxi



Katie Mason Tufts University

12.182D slices of the Wilks’ theorem exclusion close to the data best fit

point for fake data set 2. The 90% confidence level is shown by the

white line. The color scale (capped at 20) indicates the R value. . . 177

12.192D slices of the Wilks’ theorem exclusion close to the global best fit

point for fake data set 2. The 90% confidence level is shown by the

white line. The color scale (capped at 20) indicates the R value. . . 177

12.202D slices of the Wilks’ theorem exclusion in ∆m2
41 vs sin2(2θee,µµ,µe),

while marginalizing the other two sin2(2θ) terms. The 90% CL is

shown by the white line. The color scale (capped at 20) indicates the

R value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

12.21Figure showing the fake data set 2 spectrum in the 1e1p(a) and

1µ1p(b) selections. The null oscillation prediction (red dashed line)

and the best fit oscillation prediction (stacked histogram) are shown.The

grey dashed line indicates the systematic + statistical uncertainty on

the best fit simulated spectrum. . . . . . . . . . . . . . . . . . . . . 178

13.1 2D slices for each ∆m2
41 value tested to construct the Wilks’ 90%

confidence excluded region from data (∆m2
41 value indicated by the

plot title). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

13.2 2D slices for each Ue4 value tested to construct the Wilks’ 90% con-

fidence excluded region from data (Ue4 value indicated by the plot

title). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

13.3 2D slices for each Uµ4 value tested to construct the Wilks’ 90% con-

fidence excluded region with data (Uµ4 value indicated by the plot

title). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

13.4 2D slices of the Wilks’ theorem exclusion close to the data best fit

point. The 90% confidence level is shown by the white line. The color

scale (capped at 20) indicates the R value. . . . . . . . . . . . . . . 185

Chapter 0 xxii



Katie Mason Tufts University

13.5 2D slices of the Wilks’ theorem exclusion close to the global best fit

point for fake data set 1. The 90% confidence level is shown by the

white line. The color scale (capped at 20) indicates the R value. . . 185

13.6 2D slices of the Wilks’ theorem exclusion in ∆m2
41 vs sin2(2θee,µµ,µe),

while setting the other two sin2(2θ) terms to be their best fit as found

in Table 13.1. The 90% CL is shown by the white line. The color

scale (capped at 20) indicates the R value. . . . . . . . . . . . . . . 186

13.7 A comparison of the data spectrum (black points), the null oscillation

model (red dashed line), and the best fit oscillation model stacked

histogram) in the 1e1p(a) and 1µ1p(b) selections. The grey dashed

line indicates the systematic + statistical uncertainty on the best fit

simulated spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

13.8 The location of the points used to test the Feldman-Cousins’ method

in ∆m2
41 vs. sin2(2θ) parameter space. . . . . . . . . . . . . . . . . . 189

13.9 The R distribution for 1000 pseudo-experiments thrown from the

specified set of oscillation parameters. The red spectrum is the result

using only a grid search. The blue spectrum is the result of using

a grid search followed by the minimizer. The Wilks’ theorem 90%

CL value is shown and compared to the 90% Rcrit from the given

spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

C.1 Agreement with CV model and NC π0 weights used in the DL anal-

ysis, using the high POT NC π0 sample and simple cuts. . . . . . . . 201

C.2 Different fit functions tested for the NC π0 sample: (a) 5 bin normal-

ization, (b) 5 bin polynomial, (c) 5 bin line + line. . . . . . . . . . . 202

C.3 Comparison with the CV for different fit functions tested for the NC

π0 sample: (a) 5 bin normalization, (b) 5 bin polynomial, (c) 5 bin

line + line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

C.4 The reconstructed delta mass distribution with the π0 weights ap-

plied. The MC has been POT scaled to match runs 1+2+3 data. . . 203

Chapter 0 xxiii



Katie Mason Tufts University

C.5 The reconstructed pi0 energy distribution with the π0 weights applied.

The MC has been POT scaled to match runs 1+2+3 data. . . . . . 204

C.6 The reconstructed leading photon energy distribution with the π0

weights applied. The MC has been POT scaled to match runs 1+2+3

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

C.7 The reconstructed sub leading photon energy distribution with the

π0 weights applied. The MC has been POT scaled to match runs

1+2+3 data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

D.1 1e1p bin test showing Wilks’ theorem results using 1e1p only, νe ap-

pearance only, and a χ2 test metric. . . . . . . . . . . . . . . . . . . 207

D.2 Two example spectra in the 1e1p channel including the new bins. The

green vertical line is the boundary of the original binning and the new

binning for visualization. The blue spectrum is the zero oscillation

prediction. The red spectrum is an example oscillation prediction. . 208

D.3 Two example flux and cross-section covariance matrices for (a) null

oscillation and (b) maximum oscillation. Bins 0-9 are the original

bins of the 1e1p selection (indicated by red line). Bins 10-21 are the

additional high energy 1e1p bins (indicated by white line). Bins 22-

40 are the 1µ1p bins. The z-axis has been capped at 0.25 for better

visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

D.4 Two example spectra in the 1e1p channel with the final binning

scheme. The green vertical line is the boundary of the original binning

and the new binning for visualization. The blue spectrum is the zero

oscillation prediction. The red spectrum is an example oscillation

prediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Chapter 0 xxiv



List of Tables

2.1 The twelve fundamental fermions divided into quarks and leptons.

The masses represent the current best experimental measurements.

Adapted from Ref. [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The four known forces of nature. The relative strengths are approxi-

mate indicative values for two fundamental particles at a distance of

1fm = 10−15m (roughly the radius of a proton). Adapted from Ref. [1] 6

2.3 List of Solar Neutrino Experiments from [6]. (LS = Liquid Scintillator) 15

2.4 List of long-baseline neutrino oscillation experiments from [6] . . . . . 17

2.5 List of reactor anti-neutrino oscillation experiments from Ref [6]. . . . 18

2.6 Experiments contributing to the present determination of the oscilla-

tion parameters. Adapted from Ref [6]. (LBL = long-baseline, MBL

= mid-baseline). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Current global best fit oscillation parameters for the three flavor neu-

trino model for each the normal (NO) and inverted (IO) hierarchy

and the 1σ range [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 A summary of best fit parameters found in Ref. [15] for different

models involving sterile neutrinos (d=decay). . . . . . . . . . . . . . . 33

5.1 A summary table of the wires considered to be dead for this analysis.

The total number is ∼ 862 from all three planes. Adapted from Ref.

[33]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xxv



Katie Mason Tufts University

5.2 Description of the MicroBooNE Run Periods and the amount of POT

delivered after collaboration wide data quality cut. Total good data

POT = 12.263e20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1 The simulation samples used in this study along with the POT for

each run. The Fullosc sample is only used in the sterile neutrino

oscillation analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 SparseSSNet’s track and shower accuracy, for the test sample and

the neutrino interaction central value simulation samples. Results are

obtained from the collection plane. The number of pixels associated

with each class is O(107) pixels except for the full-BNB shower which

is O(105) [55]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Range of parameters for the shower reconstruction algorithm. Pa-

rameters are changed in the second shower search to allow for the

capture of showers detached from the vertex. . . . . . . . . . . . . . 66

7.1 The accuracy when testing the network on 228 test crops for each

plane, measuring how close the PIU of the output pixel is to the true

value. The first four rows are measured only in dead wires and only

where the true value is greater than zero. The last row is measured

over the entire dead region. . . . . . . . . . . . . . . . . . . . . . . . 85

8.1 Characterization of the resolution distributions shown in Figure 6.9,

Figure 8.6, and Figure 8.8 . . . . . . . . . . . . . . . . . . . . . . . . 98

8.2 The best value of m (MeV/Qsh) for each data and MC simulation

sample and the range found using Wilks’ theorem. Results are shown

before accounting for background (top two rows) and after (bottom

two rows). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Chapter 0 xxvi



Katie Mason Tufts University

8.3 The best fit values and 1σ ranges (via Wilks’ theorem) for m along the

χ2/NDF of that fit given by eq. (8.10) for both data and MC simula-

tion. The fit here is the one-dimensional scan over Qcutoff transformed

into m as described in the text. . . . . . . . . . . . . . . . . . . . . . 111

8.4 Data and MC simulation best fit m values from each sample and

comparison to the charge-to-energy conversion factor from eq. (6.1)

(Qsh− to−MeV = me− = 1.26±0.01×10−2). Uncertainties in ratios

are calculated from the 1 σ range of each value. The background

adjusted values are used for the π0 sample. . . . . . . . . . . . . . . . 112

11.1 The suite of BDT training variables. Variables used in the 1µ1p BDTs

and the 1e1p BDT are noted. The analysis has been designed with

substantial variable overlap. If a ∗ appears, the variable is used in

the boosted frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

11.2 Summary table of important kinematic variables derived from the

reconstruction code used in this analysis and used in the BDT’s. . . . 148

12.1 Results of the simple signal injection test. Sens R is the R value

of the model with the given oscillation parameters from the Wilks’

theorem sensitivity study. 1000 pseudo-experiments were used for

each oscillation point. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

12.2 A summary of the fake data tests results showing the best fit oscil-

lation parameters. ”Excluded” is the number of grid points excluded

with 90% confidence divided by the total number of grid points tested. 174

13.1 A summary of the MicroBooNE best fit oscillation parameters. ”Ex-

cluded” is the number of grid points excluded with 90% confidence

divided by the total number of grid points tested (15625). . . . . . . 181

13.2 A summary of the best fit model and null model agreement with the

data. The difference of −2ln(L) for the two models leads to an R

value of 8.7 at the null. . . . . . . . . . . . . . . . . . . . . . . . . . 181

Chapter 0 xxvii



Katie Mason Tufts University

13.3 Results of using the Feldman-Cousins’ method at various test points.

Shown are the new Rcrit, the R value of the data at that point, and

the new resulting p-value of the data. The final column indicates

if the oscillation parameters are allowed (X) when using FC or still

excluded (X) when using a 90% confidence exclusion cut-off. . . . . 191

C.1 Table showing the agreement between the NC π0 fit methods and the

R distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

C.2 Table showing the agreement between the NC π0 fit and the CV model.203

C.3 The agreement between the CC π0 fit options and the data. . . . . . 203

D.1 A summary of binning schemes tested with the number of excluded

bins with 90 % and 99% confidence out of the 10k test bins. LEE

here means a binning scheme of 200-1200 MeV in 100 MeV bins. . . 208

D.2 A summary of binning schemes tested with the number of excluded

bins with 90% confidence out of the 15625 test bins (25x25x25). LEE

here means a binning scheme of 200-1200 MeV in 100 MeV bins.

Frac excluded is the number of 90% excluded bins/ total bins. . . . . 211

Chapter 0 xxviii



Chapter 1

Introduction

Neutrinos, sometimes referred to a ghost particle, are one of the most abundant

particles in the universe. They are called a ghost particle because they are incredibly

difficult to detect. Neutrinos are both electrically neutral and extremely light, even

at the small scale of other particles. They were originally thought to be mass-less.

Even now though many advancements have been made in the field, we have not

been able to measure the mass of a neutrino and can only report upper limits. The

detectors needed to observe such a particle must be both very large and/or very

sensitive.

The story of the neutrino begins in 1930, when Wolfgang Pauli hypothesized a

particle to fix a problem of energy conservation in beta decay. Beta decay is a type

of radioactive decay where a neutron changes into a proton and releases an electron

(or a proton changes to a neutron and emits a positron). If beta decay were simply

electron emission, then the energy of the emitted electron should have a particular

value. However, a broad distribution of energies was observed suggesting that energy

is lost in the process. Pauli proposed that the energy was carried away in the form

of a particle that hadn’t yet been detected. Enrico Fermi named this particle a

neutrino in 1934 in order to describe its lack of charge and incredibly small size.

About 20 years later in 1956, the first experimental evidence of the neutrino was

observed at Los Alamos National Laboratory in the first neutrino reactor experiment

by observing inverse beta decay reactions caused by neutrinos. Inverse beta decay is
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a nuclear reaction involving an electron antineutrino scattering off a proton, creating

a positron and a neutron. This is a common process used to detect neutrinos. As

will be discussed, there are many interactions neutrinos can have with other matter,

depending on the type and energy of the neutrino.

There are three types, or flavors, of neutrinos that we can observe: electron

neutrino (νe ), muon neutrino (νµ ), and tau neutrino (ντ ). The type of neutrino

is determined in experiments based on which other charged particle was involved in

the interaction. For example, electron neutrinos are neutrinos which interact with

an electron. However, the picture is not quite that simple. Neutrinos actually travel

as a mixture of the three flavor states which are known as the mass eigenstates.

This leads to one of their most interesting features. Neutrinos oscillate, or change

their observed flavor type, as they travel. The flavor neutrino created by humans or

nature is not necessarily the one we observe some distance away. Neutrino oscilla-

tions were first predicted by Bruno Pontecorvo in 1957, and the theory was developed

further over the years as more flavors were discovered. It took until 1998 (only 24

years ago) for the first evidence of neutrino oscillations to be observed in the Super

Kamiokande experiment in Japan and SNO in Canada. This also provided evidence

that neutrinos must have non-zero mass. This is striking as the standard model

of particle physics predicts that neutrinos are mass-less. Many experiments since

that time have further verified three flavor neutrino oscillations and made progress

towards determining the parameters governing this oscillation.

However, the observations of some experiments do not fit into the this three

flavor picture. Their observations do not agree with what the standard model with

three neutrino flavors predicts. These neutrino “anomalies” can be broken into

three types: gallium solar neutrino experiments with radioactive source testing,

short-baseline reactor experiments, and short-baseline accelerator experiments.

Of particular focus here are the short-baseline accelerator experiments LSND

and MiniBooNE. Short-baseline indicates that the detector is located close to the

neutrino source. They both observed an excess of νe events originating from a
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primarily νµ beam. This excess cannot be explained by the oscillations of three

flavors. There are many theories attempting to explain these anomalies. The theory

this thesis will focus on is the existence of a fourth flavor of neutrino, which would

allow for additional oscillations. The goal is to put constraints on this theory using

the MicroBooNE experiment.

The proposed fourth neutrino is sterile, or in other words, does not interact

directly with the standard model particles. It would, however, affect neutrino oscil-

lation. In experiments an excess or deficit of expected neutrino of a specific flavor

could signal its existence. In this analysis a deficit of νµ events expected from the

beam, a deficit of νe events from the intrinsic beam backgrounds, and/or an appear-

ance of νe events from oscillations of the νµ ’s created in the beam may be observed

depending on the oscillation parameters of the sterile neutrino.

The exploration of the current state of neutrino physics starts in Chapter 2

which provides an overview of the standard model of particle physics and introduces

neutrino oscillations in the three flavor case. We will also explore various types of

neutrino experiments and how neutrinos can interact with a detector. Chapter 3

details the sterile neutrino model under investigation and how it is motivated by

experimental anomalies.

To put constraints on the sterile neutrino oscillation parameters, the Micro-

BooNE detector data is used. The MicroBooNE experiment and data collection

process is described in Chapter 5. We will also pause here to discuss the analysis

strategy, or how we will determine agreement between the data and this model.

Next we will move into the details of each analysis step. This starts with the

deep-learning (DL) and traditional algorithm tools used in neutrino interaction re-

construction in Chapter 6. Chapter 7 and 8 delve into this reconstruction in more

detail by examining a possible method of recovering information from non-functional

wires in the detector and a validation of the reconstruction of one type of particle

respectively. The methods for evaluating and implementing our uncertainties are

described in Chapter 9 as well as a breakdown of the uncertainty types. Chapter 10
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describes the use of a selection of neutrino events with π0 particles in the final state

as a side check of the main analysis. Then Chapter 11 describes the selection of the

specific neutrino events we will use to test the model.

Chapter 12 outlines the 3+1 model sensitivity in MicroBooNE and shows various

validations of the method. Chapter 13 shows the results on data. The work shown

in this thesis is one step towards an understanding of the experimental neutrino

anomalies. Future work will look at these results in comparison to other event

selections in MicroBooNE and to results from upcoming detectors as part of the

short base-line neutrino program at Fermilab.

Throughout this thesis, I will make use of some abbreviations or technical terms.

For example, the model of an additional sterile neutrino flavor is referred to as the

3+1 model. These will be defined the first time they are used, but the reader can

refer to Appendix A for a list of some of these commonly used terms. Finally, the

development of the test of the MicroBooNE data with the 3+1 sterile neutrino model

and the resulting data fit was performed by the author of this thesis. In order to

provide a complete picture of the data reconstruction, selection, and uncertainties,

work performed by others in the MicroBooNE collaboration is often referred to and

summarized. Appendix B lists the analysis steps on which the author was a primary

contributor for clarity.
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Chapter 2

Neutrino Physics and the

Standard Model

Before delving into the details of this analysis, it is important to first review the

standard model (SM) of particle physics and the current understanding of neutrinos.

This chapter examines standard model neutrinos in Section 2.1 and generally agreed

upon physics. Section 2.2 discusses neutrino interactions with a focus on interactions

that can occur in the MicroBooNE detector. This is followed by a look at three

flavor neutrino oscillations in Section 2.3. Then Section 2.4 presents experimental

observations of three flavor oscillations.

2.1 Standard Model

The standard model (SM) of particle physics is a model that is used to describe

particles and their interactions. It provides a unified picture where the forces are

described by the exchange of particles. Almost all interactions between matter can

be described by the electron, electron neutrino, proton, and neutrons interacting via

the electromagnetic, strong, and weak forces. The proton and neutron themselves

are actually bound states of quarks.

The up quark, down quark, electron, and electron neutrino are known as the first

generation particles. Their important characteristics include charge (Q), mass, spin,
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and color (quarks). These are all believed to be fundamental particles rather than

composite particles. These particles are believed to have exactly two other versions

that have different masses, but are identical to the first generation in all their other

characteristics. Table 2.1 describes these particles.

Table 2.1: The twelve fundamental fermions divided into quarks and leptons. The
masses represent the current best experimental measurements. Adapted from Ref.
[1].

Leptons Quarks
Particle Q Mass/GeV Particle Q Mass/GeV

1st Gen electron(e−) -1 0.0005 down(d) -1/3 0.003
electron neutrino(νe) 0 < 10−9 up(u) +2/3 0.005

2nd Gen muon(µ−) -1 0.0105 strange(s) -1/3 0.1
muon neutrino(νµ) 0 < 10−9 charm(c) +2/3 1.3

3rd Gen tau(τ−) -1 1.7768 bottom(b) -1/3 4.5
tau neutrino(ντ ) 0 < 10−9 top(t) +2/3 174

Particles interact with each other via four fundamental forces: electromagnetism,

weak force, strong force, and gravity. Each of the electromagnetism, weak, and

strong forces are described by a spin 1 force carrying particle known as a gauge

boson. The characteristics of these bosons are summarized in Table 2.2. In a

quantum theory of gravity, the force must be carried by a gauge boson as well.

No workable quantum theory of gravity has yet been developed, though general

relativity dictates that the boson for gravity must be spin 2. As shown in Table 2.2,

the strength of gravity is much smaller than the other forces and as such will not

have a measurable impact.

Table 2.2: The four known forces of nature. The relative strengths are approximate
indicative values for two fundamental particles at a distance of 1fm = 10−15m
(roughly the radius of a proton). Adapted from Ref. [1]

Force Strength Boson Spin Mass/GeV
Strong 1 Gluon(g) 1 0

Electromagnetism 10−3 Photon(γ) 1 0
Weak 10−8 W boson(W±) 1 80.4
Weak 10−8 Z boson(Z) 1 91.2

Gravity 10−37 Graviton(?)(G) 2 0

A particle can couple to a force carrying boson only if it carries the charge of the
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interaction type. These interactions can be written out in the form of Lagrangians.

The strong force’s charge is called color. This force is not often explicitly examined

in this thesis, though it is hidden in the underlying nuclear models used when

simulating particle interactions. The electromagnetic force charge is the electric

charge. In this thesis the electromagnetic force is necessary in the data readout

from the MicroBooNE detector (see Chapter 5). Neutrinos, the primary subject of

this analysis, are electrically neutral and have no color charge. Therefore the only

interactions between neutrinos and other particles occur via the weak force.

In the SM the masses of fermions come from a Yukawa coupling of the scalar

Higgs doublet with the fermion right handed and left handed components. For

leptons the coupling is formed by coupling the left handed lepton doublet with the

right handed charged lepton fields. Spontaneous symmetry breaking then leads to

the charged lepton masses. However, the SM does not contain right handed neutrinos

so no such coupling can be built. Neutrinos have only ever been observed as left-

handed (and antineutrinos as right-handed). It is known that neutrinos must have

some (albeit tiny) mass. Therefore, the SM must be extended in some way to allow

for a non-zero neutrino mass. There are a variety of theories attempting to do so.

One possibility is that neutrinos are Majorana particles. If this is the case neutrinos

are their own antiparticles. This would allow a coupling of the right-handed neutrino

fields and left-handed antineutrino-fields which can be added to the SM Lagrangian.

This is not seen in other particles as it would violate charge conservation. Regardless

of which theory is correct, the end result is that as neutrinos propagate in time they

are able to undergo oscillations to different flavor states.

2.2 Neutrino Interactions in MicroBooNE

It is next important to understand the ways neutrinos can interact in matter.

Neutrinos interact with other matter via the weak force. These can be broken

up further into a variety of interaction types. This section describes some of these

interactions which are more relevant in this analysis using the MicroBooNE detector
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which is filled with liquid argon.

There are two general weak interaction types depending on which of the two

bosons is involved. The first are neutral-current (NC) interactions. These occur

via the Z0 boson. As Z0 is electrically neutral, no electric charge is exchanged

in the interaction. The second type are charged-current (CC) interactions. This

interaction does exchange charge. When a neutrino is one of the incoming particles,

it is changed into it’s corresponding charged lepton from the same generation via

the exchange of charge through the W± boson. Figure 2.1 shows example neutrino

NC and CC interaction vertices.

(a) NC interaction vertex (b) CC interaction vertex

Figure 2.1: The neutral-current and charged-current weak interaction vertices (for
the 1st generation fermions).

Both CC and NC interactions have a variety of different modes. The mode that

occurs is correlated with the neutrino energy. The three most common modes in

MicroBooNE are quasi-elastic (QE) scattering, resonant inelastic processes (RES),

and deep-inelastic neutrino scattering (DIS). Quasi-elastic scattering (particularly

CCQE) is the target interaction type in this thesis. RES and DIS will play a large

part in a particular background that is studied in detail in later chapters which is

neutrino events containing a π0 .

Figure 2.2, adapted from Ref [2], shows the relevant contributions of each type

to the total ν cross-section per nucleon (and similarly for ν̄). Also shown is the data

measurements from a variety of experiments at Argonne National Laboratory and

Brookhaven National Laboratory. This figure indicates the neutrino energy range

for some accelerator experiments including MicroBooNE. It is clear here that quasi-
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elastic scattering is dominant at the lowest MicroBooNE energy scales, and that

RES have a large contribution at higher energies. DIS is less common at the energy

scales of MicroBooNE but still can occur at high energies.

Figure 2.2: CC total scattering cross section per nucleon per unit energy of the
incoming particles vs. neutrino (left panel) and antineutrino (right panel) energy
for all three processes labeled on the curve along with the total scattering cross
sections. Dashed line shows QE scattering, while the dashed-dotted and dotted lines
are the inelastic resonance (RES) and deep-inelastic scattering (DIS), respectively.
The sum of all the scattering cross sections (TOTAL) is shown by the solid line.
Adapted from Ref. [2].

In the discussion of neutrino interactions some terms are used to discuss the char-

acteristics. “Vertex” refers to the interaction point where the boson is exchanged.

“Parent particles” are the particles that exist prior to the interaction. In this thesis

they are generally the incoming neutrino and the protons, neutrons, and electrons

which make up the argon. “Final state particles” are the remaining particles after

the interaction and can include a wide variety of particle types depending on the

mode.

CCQE is the one of the major interaction contributions at low energies. It is a

two-body scatter, (νe +n→ e−+ p and νµ +n→ µ−+ p), where the nucleon recoils

elastically from the impact. The Feynman diagrams for these two event types are
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shown in Figure 2.3. Analogous diagrams could be drawn for the similar NCQE

scatters, though those are not generally detectable with the tools in this thesis.

These reactions are called quasi-elastic because they assume the nucleus can be

treated as quasi-free nucleons. At higher energies, this approximation is no longer

valid. These reactions have two form factors. One for vector coupling and one

for axial vector coupling. These form factors have a high q2 (momentum transfer)

dependence, so the cross-section drops off at higher energies.

(a) νµ CCQE (b) νe CCQE

Figure 2.3: Feynman diagrams νµ and νe CCQE scattering.

Resonant (RES) inelastic processes make up a large portion of interactions at

the higher energies of the MicroBooNE energy scale. These are events where the

neutrino scatters off of the nucleon. Unlike in QE, there is a high enough momentum

transfer to excite the nucleon into a resonant state. These will be discussed further in

Chapter 10, as these resonant states often decay into a π0 . This is one of the major

backgrounds to the CCQE events that are the target of the oscillation analysis.

The final type of neutrino interaction in matter relevant to this thesis is deep

inelastic scattering (DIS). DIS, in neutrino interactions, is when the neutrino scatters

with a quark in the nucleon (ν + d→ µ−+ u and ν + ū→ µ−+ d̄). Neutrinos could

in theory scatter off the higher generation quarks, but the rate is much smaller and

they are not statistically relevant in MicroBooNE [3]. Deep refers to the fact that

there is high momentum transfer from the neutrino. This destroys the nucleon,
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resulting in many possible final state topologies.

2.3 Neutrino Oscillations

When observing neutrino interactions in matter, it was discovered that the num-

ber of interactions of various modes did not match the number of events expected

based on the neutrino source. This led to the discovery of neutrino oscillations

which is the only confirmation that neutrinos have mass. Neutrinos having mass in

this extended standard model opens the door for neutrino oscillations. This section

discusses neutrino oscillation in a vacuum (the formalism changes when neutrinos

travel through matter).

The three SM neutrino flavor states (νe , νµ , and ντ ) do not exist as unique

mass states but instead are a linear combination of three neutrino mass states. The

individual flavor states (να ∈ (e, µ, τ)) can then be described in terms of the mass

eigenstates (νi ∈ (1, 2, 3)) as:

|να >=
N=3∑
i

U∗αi|νi > (2.1)

U here is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix which is a 3x3

unitary matrix giving the parameters for lepton mixing.

U =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 (2.2)

A general 3x3 matrix can be described by nine complex numbers, or 18 total pa-

rameters. However, U is required to be unitary, or:


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



U∗e1 U∗µ1 U∗τ1

U∗e2 U∗µ2 U∗τ2

U∗e3 U∗µ3 U∗τ3

 =


1 0 0

0 1 0

0 0 1

 (2.3)
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The unitarity constraint therefore provides nine constraints (i.e Ue1U
∗
e1+Ue2U

∗
e2+

Ue3U
∗
e3 = 1), leaving nine independent parameters. If the matrix were real it could be

defined just with three rotation parameters and would correspond to the orthogonal

rotation matrix. However, since the PMNS matrix is not real there are six additional

degrees of freedom which are complex phases. Not all of these phases are actually

physically relevant. Generally, with N generations of leptons, there are 2N fields

that can be re-phased. That means 2N-1 of these phases can be reabsorbed in a

redefinition of the lepton fields. As the standard model has 3 generations of leptons,

5 of the 6 degrees of freedom can be re-phased into one. The PNMS matrix can be

then described both in terms of mixing parameters as above, and in terms of three

real parameters and a single charge-parity (CP) violating phase. This standard

format is used when defining the neutrino oscillation parameters. U is then:

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
iδ

0 1 0

−s13e
iδ 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12c23 − c12s23s13e
iδ −c12c23 − s12s23s13e

iδ c23c13

 (2.4)

where cij = cos(θij), sij = sin(θij), and δ is a CP-violating phase.

As a flavor state evolves through time in the lab frame, it’s flavor state becomes:

|να(t) >=
N=3∑
i

U∗αie
−i(Eit−piẋ)|νi > (2.5)

following the Schrodinger picture. The mass and momentum of the given neutrino

eigenstate are represented by m and p respectively. As seen here, as the state evolves

through time, there is some probability of observing a different neutrino flavor at

some time, t. This probability is given by:

Chapter 2 12



Katie Mason Tufts University

| < νβ|να(t) > |2 =
∑

ij U
∗
αie
−itm2

i /2pUβiUαje
itm2

j/2pU∗βj

= δαβ −
∑

ij U
∗
αiUβiUαjU

∗
βj(1− ei∆m

2
ijL/2E) (2.6)

where ∆m2
ij = m2

i − m2
j . As neutrinos are both light and relativistic the approx-

imations p ∼ E and t = x/c ∼ x = L, can be made using c = 1. Based on Eq.

2.6, it can be seen that as long as ∆m2
ij is non-zero and the mixing matrix is not

diagonal, the probability that νβ is observed at time t when the neutrino originated

as να is non-zero. In other words, a neutrino with energy E, can oscillate through

the various flavor states as it propagates over distance L.

It is also noted that from vacuum oscillations alone, the masses of the individual

neutrino flavors cannot be determined as they always appear in terms of ∆m2
ij. An

experimental limit from the KATRIN experiment comes from observing the end

point of the electron energy distribution in the nuclear β-decay of tritium. This

sets the upper limit of the mass of νe < 0.9eV [4]. Further, from cosmological

measurements of the large-scale structure of the universe,
∑
mνi < 1eV [1].

The CP-violating phase, the three mixing angles (θij), and the two independent

mass mixing terms (∆m2
12 and ∆m2

23) completely describe the extended standard

model neutrino oscillations. These parameters can then be used in experimental

setups to predict oscillation probabilities which depend on the energy of the neutrino

and the distance it travels from the source. Using trigonometric identities, Eq. 2.6

can be written in a more useful form.

P (να → νβ) = δij −
∑

ij U
∗
αiUβiUαjU

∗
βj(2 sin2(∆m2

ijL/4E) + i sin(∆m2
ijL/2E))

= δij −
∑

ij 4<[U∗αiUβiUαjU
∗
βj] sin2(1.27∆m2

ijL/E)

+
∑

ij 2=[U∗αiUβiUαjU
∗
βj] sin(2.55∆m2

ijL/E) (2.7)

where P is the oscillation probability of a given event and the coefficients (1.27
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and 2.55) come from reintroducing c3

~ to remove dimensionality for L/E for units of

[m/MeV ].

Experimental observations have proved that these mass differences are non-zero

in neutrinos by observing oscillations as will be discussed in Section 2.4. Therefore

we consider three flavors of neutrinos with non-zero mass and resulting oscillations

as part of an extended SM. Later in Chapter 3 we will extend this even further by

adding a fourth flavor.

2.4 Experimental Oscillation Observations

Three flavor neutrino oscillations have now been observed experimentally from a

variety of sources. Specifically oscillations have been observed from studies on solar

neutrinos, atmospheric neutrinos, accelerators, and nuclear fission reactors. When

looking for neutrino oscillations in these experiments, there are generally two types

of signals. The first signal is neutrino flavor appearance. In these observations,

a flavor of neutrinos not produced by the source reaction is observed. The second

signal is disappearance. In these observations the same flavor produced by the source

is observed, but at a reduced rate as some of the produced neutrinos have oscillated

into a different flavors. In reality, both can occur concurrently, though may not be

observable in a given experiment.

2.4.1 Solar Neutrino Oscillations

Some of the first experiments to observe oscillation were experiments measuring

solar neutrinos. Nuclear fusion in the sun produces a large number of νe ’s through

the pp chain and the Carbon-Nitrogen-Oxygen (CNO) cycle. The combined reac-

tions result in the overall fusion of protons into He (4p →4 He + 2e+ + 2νe). The

average energy of these neutrinos is small: < E2νe >= 0.59MeV [5]. A detailed

calculation of the solar neutrino flux has been done using the Standard Solar Model

(SSM) [6].
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A variety of experiments were used to measure the solar electron neutrino flux.

These are summarized in Table 2.3 which was adapted from Ref [6]. These ex-

periments all observed a deficit in the number of observed neutrinos. For exam-

ple, the latest neutrino flux measured by Super-Kamiokande is (2.345 ± 0.014 ±

0.036)x106cm−2s−1 while the prediction of the SSM is (5.46± 0.66)x106cm−2s−1, or

a deficit of > 50% [6, 7].

Table 2.3: List of Solar Neutrino Experiments from [6]. (LS = Liquid Scintillator)

Name Target E Threshold (MeV) Mass (ton) Years
Homestake C2Cl4 0.814 615 1970-94

SAGE Ga 0.233 50 1989-
GALLEX GaCl3 0.233 100 [30.3 for Ga] 1991-97

GNO GaCl3 0.233 100 [30.3 for Ga] 1998-2003
Kamiokande H2O 6.5 3,000 1987-95

Super-Kamiokande H2O 3.5 50,000 1996-
SNO D2O 3.5 1,000 1999-2006

KamLAND LS 0.5/5.5 1,000 2001-07
Borexino LS 0.19 300 2007-

The solution to these observed deficits was first found by the SNO experiment [5].

SNO was able to observe solar neutrinos via three different interactions. Importantly,

this experiment was able to observe both CC and NC events. The NC reaction is

sensitive to all three standard model neutrinos providing a measure of the total flux,

while the CC reaction is sensitive just to νe ’s. The same νe deficit was seen, but the

total flux from the NC interactions matched the flux predicted by the SSM. This

indicated that the neutrinos were still present, but had changed flavors [6].

It has been determined that the νe disappearance observed by these experiments

can be explained by neutrino oscillation in matter or the MSW effect. This oscilla-

tion effect is similar to the three oscillation in vacuum but with an extra potential

term due to interactions with the particles in the matter. This effect is small for the

neutrinos at the energies observed in MicroBooNE, so is not discussed further here,

but it provides useful proof that neutrinos can change their flavor as they evolve

through time.
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2.4.2 Atmospheric Neutrino Oscillations

Atmospheric neutrinos are neutrinos produced by the decay of pions and kaons

that are generated when cosmic rays interact in the Earth’s atmosphere. They have

a broad energy range from 100’s of MeV to TeV , and can travel many kilometers

before detection (up to 1.3x104 km). Detailed atmospheric neutrino flux calculations

come from the energy spectrum and composition of primary cosmic rays and their

hadronic interactions. While the absolute flux prediction has an uncertainty of

10-20%, the uncertainty on the flux ratio between flavors is <5% [6].

Atmospheric neutrinos oscillation signals can be observed by looking at the ratio

of νµ to νe events observed. The ratio of νµ+ν̄µ
νe+ν̄e

is expected to be around 2 at

energies of 1 GeV . Near this energy most of the cosmic ray muons interact in the

the atmosphere. The rate then decreases at higher energies as more high energy

muons make it to the surface of the Earth without interacting [6].

Many detectors observe some amount of atmospheric neutrinos. Notable early

experiments are Kamiokande [8], IMB[9], Frejus [10], and NUSEX [11]. Super-

Kamiokande was the first to show that neutrino oscillations matched the observa-

tions when a deficit of νµ events was observed, while the νe prediction matched

observation [12]. This indicates that for the energy range and travel distance of

atmospheric neutrinos, νµ’s have some probability of oscillating into ντ ’s.

2.4.3 Accelerator Neutrino Oscillations

The next source of neutrinos are accelerator beams. The neutrino beam used for

MicroBooNE is described in more detail in Section 5.1. Generally, neutrino beams

are produced by colliding high energy protons onto a target producing pions and

kaons which decay into neutrinos. The flux is dominated by νµ (and ν̄µ). In ac-

celerator experiments, the L/E (baseline/energy) is chosen to maximize the desired

oscillation effect. Table 2.4, adapted from [6] is a list of current long-baseline neu-

trino oscillation experiments. MicroBooNE is what is referred to as a short-baseline

experiment. Short-baseline experiments will be further discussed in Chapter 3.
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Table 2.4: List of long-baseline neutrino oscillation experiments from [6]

Name Beam Detector L(km) Eν(GeV) Year
K2K KEK-PS Water Cherenkov 250 1.3 1999-2004

MINOS NuMI Iron-scintillator 735 3 2005-2013
MINOS+ NuMI Iron-scintillator 735 7 2013-2016
OPERA CNGS Emulsion 730 17 2008-2012
ICARUS CNGS LArTPC 730 17 2010-2012

T2K J-PARC Water Cherenkov 295 0.6 2010-
NOvA NuMI Tracking Calorimeter 810 2 2014-

The long baseline accelerator experiments have observed νµ and ν̄µ disappearance

over long baselines. They have also observed that these νµ appear as νe . Further, the

oscillation parameters found from these results are in agreement with the results for

atmospheric neutrinos. There are two future long baseline experiments (DUNE and

Hyper-Kamiodande) that will further measure these oscillation parameters, reduce

the uncertainties, and look at other neutrino physics.

There are three known oscillation questions that these future long-baseline ac-

celerator experiments are expected to help solve. The first is the value of δCP which

is the CP violating phase. It is still unknown with any sort of confidence as seen in

Table 2.7. δCP could be measured form νe appearance measurements. The second

unknown is the exact value of sin2(2θ23). Current experiments point to this value

being maximal (θ23 ∼ 45 deg). If this mixing angle is maximal, it could be an in-

teresting coincidence or it could point to interesting new physics. The third open

question is the question of the mass hierarchy or which flavor of neutrino is heaviest.

This is discussed further in Section 2.4.5

2.4.4 Reactor Neutrino Oscillations

Nuclear reactors are a source of ν̄e in the MeV energy range scale. These are

produced via beta-decay from nuclear fission and can be detected via inverse beta-

decay in a detector. Liquid scinillator is used as the detector material, though it

may be loaded with gadolinium to increase the neutron detection efficiency. The

flux can be estimated from the thermal power output and fuel composition of the

Chapter 2 17



Katie Mason Tufts University

reactor source. Table 2.5 lists reactor experiments which have observed 3 flavor

neutrino oscillations. There are a further subset of reactor experiments which look

for oscillations of a proposed sterile neutrino at ∆m2 ∼ 1eV 2 which are discussed

further in Chapter 3.

Table 2.5: List of reactor anti-neutrino oscillation experiments from Ref [6].

Name Reactor Power (GWth) Baseline(km) Det Mass(t) Year
Kamland various 180 1k 2001-

Double Chooz 4.25x2 1.05 8.3 2011-18
Daya Bay 2.9x6 1.65 20x4 2011-

RENO 2.8x6 1.38 16 2011-
JUNO 26.6 53 20k (2022)

Reactor experiments have observed ν̄e disappearance over distances of ∼ 200 km

and ∼ 1.5 km with different probabilities. These mid-baseline reactor experiments

agree with the oscillations observed in long-baseline accelerator experiments as they

have a similar L/E. The long distance reactor results are consistent with the MSW

effect parameters observed in solar neutrino experiments.

2.4.5 Global Picture

As discussed in Section 2.3, there are six oscillation parameters that describe

three flavor neutrino oscillations in vacuum. These are: two mass splitting terms,

three mixing angles, and a CP-violating phase. Table 2.6 shows how each of the

experiment types described above have contributed to the understanding of these

parameters.

Table 2.6: Experiments contributing to the present determination of the oscillation
parameters. Adapted from Ref [6]. (LBL = long-baseline, MBL = mid-baseline).

Experiment Dominant Important
Solar Experiments θ12 ∆m2

21, θ13

Reactor LBL ∆m2
21 θ12, θ13

Reactor MBL θ13, |∆m2
31,32|

Atmospheric Experiments θ23, |∆m2
31,32|, θ13, δCP

Accelerator LBL (νµ ,ν̄µ disappearance) θ23, |∆m2
31,32|

Accelerator LBL (νe ,ν̄e appearance) δCP θ13, θ23
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The current experimental limits on the three flavor oscillation parameters are

shown in Table 2.7. Note that these values and their uncertainties are regularly

updated as experiments release results.

Table 2.7: Current global best fit oscillation parameters for the three flavor neutrino
model for each the normal (NO) and inverted (IO) hierarchy and the 1σ range [13].

Parameter (NO) Value (IO) Value
∆m2

21 x 10−5eV 2 7.50 ± 0.22 7.50 ± 0.22
|∆m2

32| x 10−3eV 2 2.55 ± 0.03 2.45 ± 0.03
sin2(θ12) 0.318 ± 0.016 0.318 ± 0.016
sin2(θ23) 0.574 ± 0.014 0.578 ± 0.017
sin2(θ13) 0.0220 ± 0.00069 0.0223 ± 0.00070
δCP/π 1.08 ± 0.13 1.58 ± 0.16

In Table 2.7, two things are important to note about the mass splittings (∆m2).

The first is that ∆m2
21 is much smaller than |∆m2

32|. Therefore it is common to

make the approximation (|∆m2
32|=|∆m2

31|).

The second thing to notice is that the sign (±) of ∆m2
32 is not known. Current

experiments are not yet sensitive enough to tell the difference. Therefore there are

two possible mass hierarchies. m3 > m2 is referred to as the normal mass hierarchy

(NO), while m3 < m2 is referred to as the inverted mass hierarchy (IO). Figure 2.4

is a figure illustrating the two possible hierarchies. Note that the sign of ∆m2
21 is

known however. This is due to its role in neutrino oscillations in matter in the sun.
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Figure 2.4: Diagram of the relationship between the mass eigenstates (labelled 1,
2 and 3) for neutrinos and the flavour eigenstates (νe , νµ and ντ ).The fractional
contribution of each flavour to the mass eigenstates is indicted by the coloured bars.
Adapted from Ref. [14].
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Chapter 3

3+1 Sterile Neutrino Model

Though three-flavor extended standard model oscillation predictions match most

experimental evidence, some neutrino anomalies remain which do not fit into this

picture. This chapter outlines these anomalies and explores one possible explanation,

which postulates an additional neutrino with a higher mass than the standard model

neutrino flavors. Section 3.1 describes this model. Section 3.2 outlines the observed

anomalous experimental results. Following this discussion, chapter 4 outlines how

this model will be tested.

3.1 3+1 Sterile Neutrino Model

The model tested in this thesis is one in which there is one sterile neutrino in

addition to the three standard model flavors. Sterile here means that the proposed

neutrino does not interact through any of the standard model forces. This proposed

neutrino is also referred to as light (∼ 1eV ) to differentiate it from theoretical models

with a larger mass sterile neutrino.

The formalism for determining the four-flavor oscillation probabilities is the same

as the three-flavor case discussed in Chapter 2, just now expanded to four flavors
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and four mass states. The PNMS matrix (from Equation 2.2) is expanded to be:

U =



Ue1 Ue2 Ue3 Ue4

Uµ1 Uµ2 Uµ3 Uµ4

Uτ1 Uτ2 Uτ3 Uτ3

Us1 Us2 Us3 Us4


(3.1)

As in the three-flavor case, as a neutrino of flavor α evolves through time, the

probability that it is some other flavor β at time t is given by:

| < νβ|να(t) > |2 =
∑

ij U
∗
αie
−itm2

i /2pUβiUαje
itm2

j/2pU∗βj

= δαβ −
∑

ij U
∗
αiUβiUαjU

∗
βj(1− ei∆m

2
ijL/2E) (3.2)

In order for the 3+1 model to best resolve the anomalies seen in the experiments

described below, a sterile neutrino mass on the order of ∼ 1 eV is needed [15]. This

is far higher than the constraints on the three extended standard model masses.

Therefore the assumption is made that the three extended sterile model masses are

degenerate at 0 eV relative to the sterile neutrino mass.

∆m2
21 ≈ ∆m2

31 ≈ ∆m2
32 ≈ 0eV 2 (3.3)

This assumption can be applied to other experiments with a similar L/E to the

existing anomalous signals (L/E ∼ 1m/MeV 2) and is referred to here as the short

base line approximation.

This allows the oscillation probability equations to be written in a simplified

form as many terms go to zero. The 3+1 appearance probability is:

P (να → νβ) = 4|Uα4|2|Uβ4|2 sin2 x41, (3.4)

Chapter 3 22



Katie Mason Tufts University

and the 3+1 survival probability for disappearance measurements is:

P (να → να) = 1− 4|Uα4|2|(1− |Uα4|2) sin2 x41, (3.5)

where x41 ≡ 1.27∆m2
41L/E, and α and β refer to any of the SM neutrino flavors.

The 3+1 sterile neutrino search in MicroBooNE presented in this thesis is sensi-

tive to 3 oscillation channels: νµ → νe (νe appearance), νe → νe (νe disappearance),

and νµ → νµ (νµ disappearance). The νe content of the beam employed by Micro-

BooNE is not large enough to observe νµ appearance with any statistical significance,

as νe ’s make up < 1% of the neutrino beam. MicroBooNE is also not sensitive to

ντ interactions. The oscillation probabilities are:

P (νµ → νe) = 4|Uµ4|2|Ue4|2 sin2 x41

= sin2(2θµe) sin2 x41 (3.6)

P (νe → νe) = 1− 4|Ue4|2|(1− |Ue4|2) sin2 x41

= 1− sin2(2θee) sin2 x41 (3.7)

P (νµ → νµ) = 1− 4|Uµ4|2|(1− |Uµ4|2) sin2 x41

= 1− sin2(2θµµ) sin2 x41 (3.8)

These oscillations have been written in two formats, one using the explicit ma-

trix terms and the other using the mixing angles. For the purpose of the study

we will search for the best fit explicit matrix terms. There are three independent

parameters that will be fit over: |Ue4|, |Uµ4|, and ∆m2
41. |Ue4|, |Uµ4| best fits to the

MicroBooNE data can be used to calculate the sin2(2θij) parameters for compari-

son to other experiments and current global best fits. The U parameters roughly

correspond to normalization parameters on the size of the oscillation. Meanwhile,
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∆m2
41 corresponds to a term governing the frequency with which oscillations occur

for a neutrino with a given Eν .

3.2 Neutrino Oscillation-like Anomalies

Over the past few decades, some experimental oscillation-like anomalies have

been observed which may point to the existence of light sterile neutrinos, including

the 3+1 model described above. This mass state is expected to have a small flavor

contribution from the standard model neutrino flavors. This is due to experimental

bounds as the oscillation amplitudes must be small and at a relatively low L/E ∼

1 m/MeV [16]. These include observations in the νe disappearance channel from

calibration measurements using the measurement of reactor produced neutrinos with

gallium detectors [17, 18], short-baseline reactor based experiments [19], and two

short-baseline accelerator experiments [20, 21, 22]. This section examines each of

these experimental anomalies.

3.2.1 Gallium Solar Neutrino Experiments

Two Gallium solar neutrino experiments, SAGE and Gallex/GNO, have observed

still unexplained anomalies. These are not in the solar neutrino portion of the data.

Rather, the anomalies were observed when testing the detectors by using a nearby

radioactive source.

The first experiment, SAGE, is a Russian-American experiment designed to mea-

sure solar neutrino capture rate on gallium metal. It took data from 1989-2001. The

detector was filled with 50 tonnes of gallium heated so it is kept molten. Electron

neutrinos are captured via the reaction 71Ga + νe →71 Ge + e− in the detector.

The Ge is regularly extracted and counted to measure the number of reactions.

SAGE observed a capture rate of 65.4+3.1
−3.0(stat)+2.6

−2.8(syst) SNU in the solar neutrino

experiment which agrees with the three flavor prediction [17].

The GALLEX detector contained 30 tons of gallium in a GaCL3 solution and
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was located at the Laborati Nazionali del Gran Sasso. It took data from 1991-

1997 then was reconstituted under the name GNO and took data from 1998-2003.

Likewise to SAGE, the number of neutrino interactions comes from a measure of Ge

in the detector after periods of exposure [18]. When measuring the solar neutrino

rate, the result is in very good agreement with the prediction [18].

While the solar neutrino observations match up with current standard model pre-

dictions and solar flux models, the anomaly for both this experiment and Gallex/GNO

was observed when performing calibration/validation studies using reactor neutri-

nos. For this study, the gallium targets were exposed to a reactor neutrino source

whose activity was close to 1 MCi. Gallex performed this twice, using a 51Cr source.

SAGE also performed this twice, once using a 37Ar source and the other time using

51Cr. The νe flux came out lower than predicted for all four studies with a weighted

average ratio value for the four experiments of R = 0.87± 0.05. The quality of this

fit is quite high with χ2/DOF = 1.9/3 [17]. While this has a variety of explanations

such as an efficiency misunderstanding or mismodelling of the production rate, this

could be explained by the hypothesis of a sterile neutrino with ∆m2 ∼ 1eV 2.

3.2.2 Short-baseline Reactor Experiments

Short-baseline reactor neutrino experiments have the same setup as experiments

described in Section 2.4.4, but are located close to the source reactor. Recent im-

proved calculations have updated the cross section per fission in the calculation

of neutrino flux from nuclear reactors. The new predicted rate is a few percent

higher than observed in short-baseline reactor experiments with L≤100 m. This

anomaly has been observed by a variety of detectors located <100 m from the reac-

tor core including at ILL-Grenoble, Goesgen, Rovno, Krasnoyarsk, Savannah River,

and Bugey. These flux calculation changes were not large enough to have an impact

on the mid to long-baseline reactor experiments [19].

The combined ratio of the observed number of events over the standard model

prediction from these experiments with the new flux calculations is 0.943 ± 0.023
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[19]. It can be explained by a sterile neutrino with the same ∆m2 ∼ 1eV 2. The

theory community is investigating the flux predictions, and future experiments with

detectors at various baselines will help shed light on this anomaly.

3.2.3 Short-baseline Accelerator Experiments: LSND

There are two notable short-baseline accelerator experiments that have observed

anomalies in their neutrino oscillation studies that are not predicted by the standard

model: LSND and MiniBooNE. MicroBooNE is part of an effort to further the

understanding of this short-baseline accelerator anomaly.

LSND (as well as MiniBooNE, MicroBooNE, and others) is one of this class of

short-baseline accelerator experiments. It was located at the Los Alamos Neutrino

Science Center. The detector was filled with 167 t of liquid scintillator, and was

∼ 30 m from the neutrino source. 1220 8-inch Hamamatsu photomultiplier tubes

(PMTs) were placed on the inside surface of the detector and covered ∼ 25% of

the surface. An active veto shield was used to reduce the cosmic background. The

experiment searched for ν̄µ → ν̄e oscillations. Data was taken from 1993-1998. The

beam used was a high intensity proton beam of 798MeV protons. These are sent into

a target producing π+ and other secondary products captured by a beamstop. The

resulting neutrino beam primarily consists of νµ from π+ → µ+νµ and ν̄µ and νe from

µ+ → e+νeν̄µ [20]. Notably, very few ν̄e are produced (1 ν̄µ:∼ 8e10−4ν̄e), making

this a good experiment to study ν̄µ → ν̄e oscillations, though with an irreducible ν̄e

background.

The neutrino interactions in the detector come from interactions on carbon, free

protons, and electrons in the detector liquid. At the energies of the beam neutrinos,

the possible neutrinos are νe , νµ and their corresponding antineutrinos. There are

three categories of processes: standard model leptonic processes, inverse β-decay,

and semi-leptonic processes. Of these, the third has the highest uncertainty in the

cross-sections due to complex nuclear models [20]. The ν̄e events investigated for the

oscillation study are detected via inverse β-decay (ν̄e + p→ n+ e−). The proton is
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usually a free proton in a hydrogen nucleus in one of the liquid scintillator molecules.

The cross section for the process is well modelled. There are two sequential signals.

The e+ produces both Cherenkov and scintillation light which are detected quickly.

Then, the neutron is captured by a proton which produces a 2.2 MeV photon which

is observed as a delayed signal [20].

LSND observed a total excess of 87.9 ± 22.4 ± 6.0 events which corresponds to

an oscillation probability for ν̄µ → ν̄e of (0.264 ± 0.067 ± 0.045)%. The best fit

experimental limits on standard model oscillation parameters do not allow for such

an oscillation. Figure 3.1 (adapted from Ref. [20]) shows the Lν/Eν distribution

from LSND along with the best fit oscillation spectrum (p(ν̄µ → ν̄e, e
+)n).

Figure 3.1: The Lν/Eν distribution for events with Rγ > 10 and 20 < Ee < 60MeV ,
where Lν is the distance travelled by the neutrino in meters and Eν is the neutrino
energy in MeV. The data agree well with the expectation from neutrino background
and neutrino oscillations at low ∆m2. Adapted from Ref. [20].

3.2.4 Short-baseline Accelerator Experiments: MiniBooNE

The next short-baseline accelerator experiment to observe an anomaly was Mini-

BooNE. MiniBooNE was designed with the primary goal of investigating the LSND

excess. As such, it was built with a similar L/E in order to be sensitive to the

Chapter 3 27



Katie Mason Tufts University

same oscillation parameter. MiniBooNE uses the same boosted neutrino beam as

MicroBooNE, which will be described in detail in Section 5.1. It has the capability

to run in both neutrino and antineutrino mode. The beam flux is dominated by νµ

or ν̄µ. The flux peaks at 600 MeV in neutrino mode and 400 MeV in antineutrino

mode [21].

The MiniBooNE detector is a 12.2 m diameter sphere filled with mineral oil

(CH2) located 541 m from the beam. It is a Cherenkov detector. Neutrino interac-

tions in the detector produce charged particles which in turn produce scintillation

and Cherenkov light. This light is detected by 1520 8-inch photomultiplier tubes

(PMT’s) which line the inside of the detector. The neutrino interactions can be

reconstructed from the charge and time information from the PMTs. The total ex-

posure was 11.27 x 1020 protons on target in antineutrino mode. Figure 3.2 shows

a schematic of the detector enclosure and a cut-away drawing of the the detector.

This illustrates the PMT layout and the veto region which contains more PMT’s

specifically designed to identify and tag cosmic ray background [23].

Figure 3.2: The MiniBooNE detector enclosure (left) and a cut-away drawing (right)
of the detector showing the distribution of PMT’s in the signal and veto regions.
Adapted from Ref. [23].

In MiniBooNE, interactions are identified and reconstructed primarily through

the Cherenkov light. It generally cannot detect heavy particles such as protons

and neutrons. The energy of interactions of the beam neutrinos is primarily below

the Cherenkov threshold in mineral oil. The MiniBooNE analysis containing the

anomaly focuses on νe and νµ charged current quasi-elastic (CCQE) events which
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were described in section 2.2. The light from the outgoing e− or µ− respectively is

picked up by the PMTs. They can be differentiated by the light patterns. Muons

are heavier, and so travel in a straighter line and make a sharper ring of light than

electrons. The signal topology for MiniBooNE was defined as 1 lepton + 0 pions +

N protons. Pion production channels with nuclear pion absorption is an irreducible

background to this signal [24]. The reconstructed EQE
ν then comes from using the

reconstructed energy and direction of the outgoing charged particle.

CCQE events are also the main signal for the MicroBooNE analysis presented

in this thesis.

MiniBooNE observed an event excess of 78.4 ± 28.5 (2.8σ) in the energy range

of 200 < EQE
ν < 1250 MeV in antineutrino mode. An ν̄µ → ν̄e oscillation fit to the

excess was found to have a probability of 66% and the background-only file has a

χ2 probability over the best fit of 0.5%. In the data taken while running in neutrino

mode, an excess was also seen of 162.0 ± 47.8 [22]. Figure 3.3, adapted from Ref.

[22], shows this excess, it is notable that the excess appears as low energy peak.

The prediction shown in the colored histogram is what the distribution should look

like if the only νe ’s (or ν̄ ′es) to interact come from intrinsic beam processes and

backgrounds as opposed to oscillation.

MiniBooNE has a variety of important backgrounds. That can create signals

that look like νe CCQE events. These include νµ CCQE, NC π0 , events external to

the detector (dirt), NC ∆, and others as seen in Figure 3.3. Of particular interest

to work shown later in this thesis (Chapter 10) is the NC π0 background. In these

events, the π0 decays into two photons. These photons create a two ring signature

in MiniBooNE. If either the direction of the two photons is similar or one photon

is not reconstructed for some reason, the reconstructed event can be mistaken for a

νe CCQE event. MiniBooNE used a sample of NC π0 events to help constrain this

background to the CCQE signal [25].

As with the other anomalies, the MiniBooNE excess could be explained by the

existence of light sterile neutrinos. Though, as with the other experiments, there
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Figure 3.3: The antineutrino mode (top) and neutrino mode (bottom) EQE
ν distribu-

tions for νe CCQE data (points with statistical errors) and background (histogram
with systematic errors). Adapted from Ref. [22].

may be some other explanation. This could include mismodeled backgrounds or

some other type of new physics beyond the standard model. Also the excess is not

well explained by a light sterile neutrino. Even the best fit oscillation does not fully

explain the shape of the excess. Figure 3.4, adapted from Ref. [22], shows the best

fit oscillation spectrum as well as example spectra. This doesn’t rule out sterile

neutrinos, but provides hints that the full picture may be more complicated.

3.2.5 Global Picture

As discussed previously, the existence of light sterile neutrinos may explain these

anomalies. Whatever extension is proposed can contain at most 3 light active neu-

trinos. In principle there are two classes of possible schemes which can explain the

results of all of these anomalies. These are (3+1) models, or more generally (3+N),
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Figure 3.4: The antineutrino mode (top) and neutrino mode (bottom) event ex-
cesses as a function of EQE

ν . (Error bars include both the statistical and systematic
uncertainties.) Also shown are the expectations from the best two-neutrino fit for
each mode and for two example sets of oscillation parameters. Adapted from Ref.
[22].

where there is a group of three very light neutrinos which are separated by the other

N by a gap of ∆m2 ∼ 1eV 2. The second class are (2+2) where there are two pairs of

close masses, though at this point the (2+2) models have been fairly well ruled out

[6]. Both of these classes have also been theorized to contain other features beyond

the standard model such as neutrino decay. The experiments discussed here have all

observed signals over 2σ. Other experiments with similar setups have not observed

the same results with the same confidence providing useful experimental limits [15].

Figure 3.5, adapted from Ref. [22], shows the allowed oscillation parameter

space found by fitting the LSND and MiniBooNE anomaly results to a two-flavor

oscillation equation. The LSND allowed region is shown by the shaded bands.

The colored contour lines show the MiniBooNE fit. There is some overlap between

the two regions. Also shown are the ICARUS [25] and KARMEN [26] limits, two
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experiments which did not observe a sterile neutrino signal.

Figure 3.5: MiniBooNE allowed regions in the antineutrino mode (top) and the
neutrino mode (bottom) for events with EQE

ν > 200MeV within a two-neutrino
oscillation model. Also shown are the ICARUS [25] and KARMEN [26] appearance
limits for neutrinos and antineutrinos, respectively. The shaded areas show the 90%
and 99% C.L. LSND ν̄µ → ν̄e allowed regions. The black stars show the MiniBooNE
best fit points, while the circles show the example values used in Fig. 2. Adapted
from Ref. [22].

Table 3.1 is one attempt to find a set of global best fit oscillation parameters

for different sterile neutrino models. These results from Ref. [15] incorporate both

anomalous results and experiments that did not report a signal. This thesis will

be fitting to a 3+1 model as it will provide a useful first hint as to whether any

oscillations are observable due to sterile neutrinos in MicroBooNE. The values for

these global best fits will be useful to compare to when looking at the MicroBooNE

sensitivity and data results.
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Table 3.1: A summary of best fit parameters found in Ref. [15] for different models
involving sterile neutrinos (d=decay).

Global Fit |Ue4| |Uµ4| |Ue5| |Uµ5| φ54 ∆m2
41(eV 2) ∆m2

54(eV 2) τ(eV −1)

3+1 0.116 0.135 - - - 1.32 - -
3+2 0.106 0.082 0.252 0.060 0.009 1.32 12.6 -

3+1+d 0.428 0.180 - - - 0.211 - 1.96
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Analysis Outline

MicroBooNE is part of an effort to further analyze the short-baseline anomaly.

It is one of three detectors along the same beamline as MiniBooNE. MicroBooNE,

the first of the detectors to take data, has a 470 m baseline. Together with the

other two detectors (ICARUS and SBND) they comprise the short-baseline neutrino

(SBN) program at Fermilab. ICARUS and SBND have baselines of 600 m and 110

m respectively and will take data in the coming years. Eventually MicroBooNE’s

results will be combined with the other two detectors to help give a more clear

understanding of this anomaly. In particular the rest of this thesis aims to compare

MicroBooNE data the 3+1 sterile neutrino model. This chapter outlines the steps

needed to go from raw data from the detector to a comparison of the model to

provide context. The rest of the chapters will delve into the details of each step.

This oscillation analysis can be broken into four major steps as outlined in Figure

4.1: observation, reconstruction, selection, and model comparison. Observation

involves reading in the data from the MicroBooNE detector. When the neutrinos

from the beam interact in the detector, the information is collected. Photo-multiplier

tubes detect the light from the interaction. A series of 3 wire planes collect the

electrons created when charged final state particles ionize the detector medium.

The details of this data collection and the beam used to produce the interactions

are described in Chapter 5.

The next step is reconstruction. The goal of this step is to take the raw data read
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Figure 4.1: A flow chart of the major analysis steps.

out from the detector and determine the physics properties of the neutrino event

that occurred. One of the most important properties for the oscillation analysis is

the energy of the incoming neutrino. The oscillation probabilities depend on the

energy of the neutrino. Once events are reconstructed they are put in histograms

based off of their energy. This histogram shows how many events in a given energy

bin were observed. It provides a handy framework for comparing the number of

observed events in each energy bin to the number of events predicted in that bin by

various models. Other kinematic variables of interest will be displayed in a similar

fashion.

The reconstruction used here utilizes a combination of deep-learning algorithms

and more traditional algorithm. Chapters 6, 7, and 8 describe this reconstruction.

Particular attention will be paid to the reconstruction of electron showers as well as

the rejection/modelling of π0 background events as the author was a main contrib-

utor to these efforts.

The next major step of the analysis chain is selection. This step involves looking

at the properties of all of the reconstructed neutrino events and choosing those

which have desired characteristics. (In reality the line between reconstruction and

selection is a little more blurry as various reconstruction steps require that the data

has certain characteristics as well.)

CCQE events were chosen as the selection target. CCQE events were described

in Section 2.2. As in MiniBooNE, the intrinsic νe beam backgrounds are irreducible.

However other backgrounds, such as single photon events, could be removed by a

pure event selection. The selection therefore focuses on selecting νe (and νµ ) CCQE
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events and rejecting the backgrounds.

The topology of the final state of CCQE events allows for a pure event selection.

The specific target topology is 1 charged lepton + 1 proton (1l1p). This can be

further broken up by lepton type (e− or µ−) into 1e1p and 1µ1p. Searching for a

topology containing a proton allows for the rejection of single photon events (which

may be mistaken for the electron). In this topology, the charged lepton and the

proton for a ”vee” shape in the data images as will be discussed in Section 6.5. The

kinematics of this ”vee” in CCQE scattering are driven by energy-momentum con-

servation. This means that one can use two-body kinematic scattering constraints

to reduce the number of background events selected.

The goal of this particular reconstruction and selection chain is to place strict

cuts to isolate a high purity, although statistics-limited, signal from CCQE scatters.

The exact selection procedure will be described in chapter 11. A sideband selection

of events with a π0 will also be discussed in chapter 10.

The final step of the analysis is comparison to the model. The model here

is a 3+1 sterile neutrino oscillation model with a range of oscillation parameters.

This requires accurate predictions from the given model with the given oscillation

parameters. In addition to the data from MicroBooNE, the collaboration has created

a large collection of simulation samples designed to mimic the data that will be

observed. The simulation samples will be discussed in detail in chapter 6, but the

general idea is that they provide a way to predict how many events in each energy

bin are expected based on the model of interest.

After everything has been run through the reconstruction and selection the result

is binned energy histograms for both data and simulation. The simulation counts

in each bin can be varied based off the oscillation parameters being tested. We can

then test to see how well each simulation model agrees with the data.

In order to measure the scale of the agreement, the uncertainties on the pre-

diction must first be taken into account. The uncertainties are incorporated into

this analysis using the covariance matrix formalism. A covariance matrix encodes
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the variance (σ2) of the contents of each histogram bin in diagonal entries, and the

covariance between the contents of pairs of histogram bins in off-diagonal entries.

The covariance matrix M is calculated for any given parameter as:

Mij =
1

N

N∑
k

(OCV
j −Ok

j )(O
CV
i −Ok

i ) (4.1)

where N is the number of tested variations for the parameter, OCV is the number

of predicted events in the CV (no variation), and Ok is the number of events in the

kth variation of different uncertainty parameters. The fractional covariance matrix

is used to add the covariance matrices from various parameters. This is defined as:

Mfrac,ij =
Mij

OCV
i OCV

j

(4.2)

Finally in order to illustrate the correlations between bins, correlation matrices are

shown:

Cij =
Mij√
MiiMjj

(4.3)

The systematic uncertainties will be discussed in detail in chapter 9.

Finally, a log-likelihood metric is used to determine the agreement between ob-

served and expected spectra when performing oscillation fits. The χ2-CNP metric

is also described which is used to further quantify agreement between data and a

prediction.

The predicted number of events in each bin, taking into account uncertainties, is

distributed as a multivariate Gaussian. This is because the generation of simulation

events begins with a sampling from predicted distributions of events based on the flux

predictions of each neutrino type. The interaction type is chosen based on GENIE

models and the weights are further determined based on the GENIE MicroBooNE

tune. In this case, starting with N randomly distributed variables (xi) and their
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covariance matrix, M , the probability density function is given by:

f(x1, ..., xN) = A exp [
N∑
i

(−1

2
(xi − yi)M−1(xi − yi)T )] (4.4)

where (yi) are the means of the variables, and A is 1

(2π)N/2
√
|M |

, where |M | is the

determinant of the covariance matrix Mtot determined as in Eq. 9.6.

The likelihood is equal to the probability that a particular outcome µ is observed

when the true value of the parameter is θ. Using the above probability density

function it is then:

L(θ|x) = A exp [
N∑
i

(−1

2
(xi − µ(θ)i)M

−1(xi − µ(θ)i)
T )] (4.5)

where µ is a function of our oscillation parameters (|Ue4|, |Uµ4|, and ∆m2
41) repre-

sented by θ and is the expectation. x is the observed distribution (data).

To find the best fit oscillation parameters in this analysis for a given x, we seek

the maximum likelihood, or equivalently, the minimum − ln(L):

−ln(L) =
N∑
i

[
1

2
(xi − µ(θ)i)M

−1
ij (xj − µ(θ)j)] +

1

2
ln(|M |) +

N

2
(2π) (4.6)

N in this case is the number of bins in reconstructed energy. As N
2

(2π) is a constant,

it can be ignored for the purposes of a fit. We also multiply by a factor of 2 to match

up with Wilks’ theorem since we use it to determine sensitivity. In our binning

scheme our test metric then becomes:

−2 ln(L) =
i=31∑
i,j

[(xi − µ(θ)i)M
−1
tot,ij(xj − µ(θ)j)] + ln(|M |) (4.7)

There are 31 bins coming from the 12 1e1p energy bins and the 29 non-zero 1µ1p

bins. This is the metric that we will use to test agreement to various fit parameters

in this analysis.

A second metric will be used on the results to demonstrate the data agreement
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with the best fit oscillation parameters. This is the χ2-CNP [27].The χ2-CNP is

defined as:

χ2
CNP =

i=N∑
i,j

[(xi − µi)Mij−1(xj − µj)] (4.8)

where x is the predicted number of events, µ is the observed events, and M is the

total covariance matrix which includes all of the systematic uncertainties in addition

to the CNP term:

MCNP :i,i =
3

1
xi

+ 2
µi

(4.9)

This metric is useful as it can be used to directly determine the p-value of agree-

ment. Even if a set of parameters gives a best fit, that does not mean it is actually

a good fit to the data. Chapters 12 and 13 will present various validation studies

followed by the result of comparing the MicroBooNE data to predictions.
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The MicroBooNE Experiment

MicroBooNE is a short-baseline accelerator experiment. While it has many goals,

the two that are most relevant to this thesis are to develop tools to analyze data in

liquid argon time projection chambers (LArTPC) neutrino detectors, and to inves-

tigate the MiniBooNE low energy anomaly discussed in Chapter 3. The other major

goal of MicroBooNE is to perform a variety of precision cross-section measurements

to inform next generation LArTPC experiments.

MicroBooNE is located in Batavia, Illinois at the Fermilab National Accelerator

Laboratory (FNAL). It receives neutrinos from the Booster Neutrino Beam (BNB).

It has a 470 m baseline, and utilizes the same beam as MiniBooNE. An overhead

diagram of the experiment site at Fermilab is shown in Figure 5.1. This shows the

close proximity of MiniBooNE and MicroBooNE as well as their location relative

to some of the other Fermilab experiments. Section 5.1 describes the BNB and

neutrino flux it produces.

Section 5.2 gives an overview of the MicroBooNE detector. This is followed by

Sections 5.3, 5.4, and 5.5 which discusses the liquid argon time projection chamber,

optical readout system, and electronic readout in more detail. The LArTPC tech-

nology used by MicroBooNE is particularly well suited for complicated topologies.

With the BNB flux and energy range, many interaction processes (quasi-elastic, res-

onances, deep inelastic scattering) are possible in the detector. The nuclear effects

in neutrino interactions on argon also result in a variety of final states. The detector
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allows for particle identification and calorimetry.

Finally, Section 5.6 will describe MicroBooNE’s data collection and the data that

is used is this thesis.

Figure 5.1: Overhead diagram of the Fermilab experiment site, showing the location
of MicroBooNE [28].

5.1 The Booster Neutrino Beam

MicroBooNE lies along the Booster Neutrino Beam (BNB). The neutrino beam

originates with a proton beam. The proton beam is directed at a beryllium target.

This creates secondary mesons, primarily pions and kaons. The beryllium target is

inside a pulsed electromagnet which focuses positive secondary particles (or negative

when aiming to produce antineutrinos). These secondary particles enter a 50 m

decay region where they decay into neutrinos, resulting in a neutrino beam [29].

Figure 5.2 is a cartoon illustrating the generation of the neutrino beam and how νµ

are produced. This section describes these steps in more detail starting with the

proton beam and beryllium target in 5.1.1, followed by the horn and decay pipe in

5.1.2. Finally the resulting beam composition and flux is described in 5.1.3.

5.1.1 The Proton Beam and Beryllium Target

The first step in producing the neutrino beam is the production of a proton beam.

Protons originate from the Fermilab Linear Accelerator (LINAC). The LINAC is a

500 ft straight accelerator that creates the proton beam. They are next passed
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Figure 5.2: A cartoon illustrating the general steps in the Booster Neutrino Beam.

into the Fermilab booster synchrotron which is a 474 m circumference synchrotron

operating at 15 Hz. Protons are delivered from the linear accelerator in spills of

∼ 1.6µs duration consisting of 82 bunches of 2 ns width each, with an intensity of

5 × 1012 protons on target (POT) for each beam pulse. The synchrotron serves to

accelerate the protons even further. They are injected at 400 MeV and accelerated

to 8 GeV kinetic energy (8.86 GeV/c momentum) [29]. The LINAC and booster

are used in many other Fermilab experiments including higher energy neutrino ex-

periments, muon experiments, and fixed target experiments. A cartoon of the full

layout is shown in Figure 5.3.

Figure 5.3: A cartoon of the Fermilab Accelerator complex. Adapted from Ref. [30].
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These protons are then directed to a beryllium target. The beryllium target for

meson production is located inside of the magnetic focusing horn (discussed in the

next section). The target is made of seven identical cylindrical slugs of beryllium.

These are arranged in a cylinder that is 71.1 cm long with a radius of 0.51 cm.

The air around the slugs is circulated to allow for cooling during operation of the

beam. Just upstream of the target, the proton beam is monitored using four systems.

These are: two toroids measuring the intensity, beam position monitors, a multiwire

chamber responsible for the determining the width and position, and a resistive wall

monitor which measures the time and intensity of the beam spills [29].

When the protons interact with the beam target it produces predominantly

charged pions and kaons that decay in flight. Secondary protons and neutrons are

also produced which do not contribute to the beam. MicroBooNE’s 470 m beamline

is measured from the beryllium target. Later when performing the oscillation mea-

surement, the distance will be taken as the distance from when the charged meson

decays into a neutrino to the neutrino interaction point. When neutrino interactions

are simulated, this property is included.

5.1.2 The Horn and Decay Region

The beryllium target is encased in an electromagnet called the horn. The purpose

of the horn is to focus the charged mesons from the proton interactions into a beam

with the requested charge (positive or negative). For this data set, running was taken

with magnet polarity that focuses positively charged mesons toward the detector

using this horn. The horn used in the BNB beam is a pulsed toroidal electromagnet

made of an aluminum alloy. The current is a 143 µs long pulse which has a peak of

170 kA. This peak is timed to coincide with the arrival of the proton beam at the

target. In neutrino mode, the current runs along the inner conductor which then

folds outwards via the outer conducting cylinder. In the volume between the inner

and outer conducting cylinders there is a resulting magnetic field that falls as 1/R.

Figure 5.4 is a schematic of this horn. The outer conductor is shown in gray.
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The inner conductor components are in the center in dark green and blue. In this

schematic in neutrino mode the positive current flows from left to right along the

inner conductor. The current is reversed when the beam is operating in antineutrino

mode. This figure was adapted from Ref [29].

Figure 5.4: A schematic of the pulsed electromagnetic horn used in the Booster
Neutrino Beam. Adapted from [29].

These focused charged particles next decay into neutrinos within a 50 m steel

decay pipe. The pipe is filled with air that terminates in a beam stop made of steel

and concrete, followed by largely undisturbed earth until the neutrino beam hits the

detector. A 214 cm long concrete collimator is the entrance to the decay pipe. It

absorbs particles that would not contribute to the neutrino flux. It has a narrow

opening allowing further focusing of the beam. Charged mesons that are off-axis at

this point will be absorbed by the collimator.

The decay pipe itself is filled with air. It has a 3 ft radius and is 45 m long.

In this decay pipe, the charged pions will either decay into forward going neutrinos

or are absorbed in the steel shell of the decay pipe. The pipe ends in a beam stop

made of concrete and steel. Only neutrinos (and some very high energy muons which

interact in the surrounding dirt) can pass through this beam stop.
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5.1.3 Beam Composition and flux

Figure 5.5 shows the neutrino flux resulting from the BNB when run in neutrino

mode [29]. Within this analysis energy range, the neutrino flux is dominated by

muon neutrinos (93.6% νµ and 5.9% ν̄µ) with a small component of electron neutrinos

(0.52% νe and 0.05% ν̄e) referred to as “intrinsic νe ”. The mean νµ energy is

∼ 800 MeV [29, 31].

The beam has an intrinsic component of νe coming from the decay of µ+. Pions

very rarely decay directly into electrons + νe due to helicity suppression (γ(π →

eν)/γ(π → µν) ∼ 1.2x10−4). The intrinsic νe is therefore a small component as

most µ+ produced by the π+ decay are absorbed by the beam stop or the wall of the

decay pipe. These intrinsic νe events are an irreducible background to the oscillation

study presented in this thesis. The same background was present in MiniBooNE as

it is located on the same neutrino beam.

Figure 5.5: Total predicted flux From the BNB by neutrino species when operating
in neutrino mode. Adapted from Ref. [29].

The flux can be further broken up by production process. As seen in Figure

5.6, the νµ ’s are primarily produced by the process π+ → µ+νµ. This changes at
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higher neutrino energy, but this analysis cuts off at 2400 MeV. The subdominant

contributions come from various kaon (k+/−/0) decay channels. The electron neu-

trinos are primarily produced through the decay chain of π+ → νµµ
+, followed by

µ+ → e+ν̄µνe. Another subdominant process is k+ decay.

(a) νµ Flux (b) νe Flux

Figure 5.6: Predicted νµ flux (a) and νe flux (b) broken up by parent meson. The
black line shows the total predicted flux. Adapted from Ref. [29].

5.2 Detector Overview

The MicroBooNE detector consists of a liquid Argon time projection chamber

(LArTPC), a light collection system, and an external cosmic ray tagging device.

The detector is enclosed within a cryogenic vessel. The TPC employs three wire

readout planes which enables 3D position reconstruction. The volume of liquid

argon is exposed to an electric field. Particles that move through the detector ionize

the argon atoms, leaving behind ionization electrons and produce scintillation light.

The ionized electrons drift in the electric fields to the wire readout planes.

The light collection system is a PMT optical system. It collects scintillation light

produced in the interaction and is used for beam triggering. The external cosmic

ray tagging (CRT) system is composed of an array of scintillator panels surrounding

the detector and can be employed to tag thru-going cosmic particles by matching

the hits in the CRT in time to the PMT hits. It will not be utilized in the studies

presented here as it was not operational for the entire data-taking. [28]. A schematic

cross section of the TPC and PMT systems is shown in Figure 5.7.
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Figure 5.7: Cross section view of the cryogenic vessel containing the LArTPC and
the PMT optical system. In this view, the beam direction is out of the page, towards
the reader [28].

5.3 The Time Projection Chamber

As charged particles traverse a volume of liquid argon, they leave trails of ioniza-

tion electrons. A uniform electric field in the detector volume causes these electrons

to drift to one side of the chamber. The anode is parallel to the cathode plane and

parallel to the beam direction. The applied electric field is 273 V/cm, leading to

≈ 0.11 cm/µs electron drift velocity.

The argon in the TPC is highly purified which allows these ionization trails to

be transported over distances of the order of meters. The ionization electrons drift

until they reach the three wire planes located along one side of the active volume

at the anode. The plane-to-plane spacing is 3 mm and the wires in each plane are
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separated by 3 mm. The collection plane is oriented vertically and the induction

planes are at ±60◦ relative to the vertical. The induction planes each have 2400

wires while the collection plane has 3456 wires. Non-uniformities in the electric

field, diffusion, recombination, and space charge effects will modify the electrons as

they are transported to the wire planes. Taking these effects into account is critical

and will be discussed is Chapter 9.

The three wire planes continually read the ionization electrons drifting towards

them, though this information is only stored if the data acquisition system (DAQ) is

triggered (Section 5.5.2). The process of describing which data is kept is discussed

in Section 5.5.2. The electrostatic potentials of the setup results in the ionization

electrons passing through the first two (induction) planes. They end their trajectory

on the third (collection) plane. The induction planes are named the U and the V

planes. The collection plane is the Y plane.

A representative cartoon can be seen in Fig. 5.8. In this cartoon an incoming

neutrino interacts in the detector. The resulting charged particles travel through

the argon creating ionization electrons. These then drift to the wire planes. The

induction planes show a bi-modal waveform from the electron first moving towards,

and then away from, the wires. Then the collection plane has a simpler waveform

from the stopping of the electron. Due to this difference in waveform, the collection

plane (Y ) tends to have a cleaner signal.

The coordinate system employed in this analysis is common throughout the

MicroBooNE experiment. MicroBooNE employs a right-handed coordinate system

to describe the detector, with x-axis toward the cathode, y-axis up, and z-axis

downstream from the beam direction. The angle θ is measured from the z-axis, and

φ is measured from the x-z plane. In the coordinate system the x axis ranges from

0.0 m at the anode to +2.6 m at the cathode. The y-axis is measured from -1.15

m at the bottom of the detector to +1.15 m at the top of the detector. The z-axis

ranges from 0.0 m at the upstream end to +10.4 m at the downstream end.

The LArTPC, along with the light collection system (Section 5.4) are contained
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Figure 5.8: Operational Principle of the MicroBooNE detector [28].

in a single walled cyrostat filled with liquid argon. Front end electronics (Section

5.5) are mounted directly on the LArTPC which amplify the wire signals and pass

the signals out of the cyrostat for further processing.

5.4 Optical Readout System

The optical readout system is composed of 32 “optical units” in Run 1 and 31

optical units in Runs 2-5 (one of the units became non-functional). Each optical

unit consists of an 8-inch Hamamatsu R5912-02mod cryogenic photomultiplier tube

(PMT) located behind an acrylic plate coated with tetraphenyl butadiene to shift

the 128 nm scintillation photons to the visible range [32]. These PMTs are located

behind the wire planes. All of the PMTs are installed inside the cryogenic magnetic

field which helps counteract the effect of weak ambient magnetic fields.

An important feature of the PMTs is the time scale they operate on. Prompt

scintillation light from the argon is emitted on a 3-6 ns timescale. The drift electrons

take milliseconds depending on the location of the interaction. The PMTs operate
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on a ns timescale. This allows the light to be detected and the data collection system

to trigger before the electrons reach the wire planes.

The final component of the optical system are light guide paddles. These are an

alternate way to collect the scintillation light. They are not utilized in this analysis,

but are a useful test of the technology for future LArTPCs [32].

Figure 5.9 shows the layout of the PMTs (circles) and the light paddles (rect-

angles). The beam direction in this schematic is left to right. The optical readout

system provides the event trigger for the experiment and is also used to reject cosmic

rays as discussed in Section 6.2.

Figure 5.9: A drawing to show the configuration of PMTs and light guide paddles
in the MicroBooNE cryostat from [32].

5.5 Electronics Readout

The analog signals that are collected by both the LArTPC and the PMTs next

need to be amplified, digitized, and written to disk for use in analyses. MicroBooNE

implements custom low-noise electronics which are capable of operating in liquid

argon. The data is sent to a readout system which digitizes the signals. These

signals are then passed out to a data acquisition (DAQ) system which stores the

data to disk if the event trigger is passed. This section delves into a few aspects of

this system in more detail. Section 5.5.1 discusses the performance of the wire planes

over time, Section 5.5.2 describes the event trigger, and Section 5.5.3 describes the
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2D deconvolution of the wire signals into a digital readout.

5.5.1 Wire Performance

An unexpected problem that arose in MicroBooNE is the presence of “dead

wires” in the wire readout planes. Dead wires include wires with no readout at all

as well as wires that only sometimes have readout. When the wires are not reading

out data properly, it can cause gaps in the event images. This complicates the event

reconstruction described in Chapter 6. These wires, in each of the three wire planes,

are illustrated in Figure 5.10. The larger clusters of dead wires seen in this figure

are particularly troublesome in event reconstruction.

Figure 5.10: This figure shows the channel status for each of the three wire planes
in the MicroBooNE detector. The red represents dead wires. The blue represents
non-dead wires.
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Table 5.1 describes the different types of wires considered dead for this anal-

ysis [33]. The main causes of the dead wires are shorted wires and their affected

neighboring wires as well as general problems when the detector turned on.

Table 5.1: A summary table of the wires considered to be dead for this analysis.
The total number is ∼ 862 from all three planes. Adapted from Ref. [33].

Number of ”dead” wires Reason
20 Over saturation
96 Poor connection to motherboard
304 Problem on detector startup
126 U-Y shorted wires and surrounding wires
287 U-V shorted wires and surrounding wires
36 other noisy wires

Chapter 7 presents a way to reconstruct the information in these dead wires

using a deep-learning network. This network is not deployed in this analysis due to

computation time and memory restrictions. However, it demonstrates a fix to this

problem which may be utilized in future LArTPC experiments

5.5.2 Event Trigger

The MicroBooNE detector sits very close to the Earth’s surface and is therefore

subject to a large cosmic ray background. In order to reduce the amount of back-

ground saved to disk an event trigger is utilized. Later in Section 6.2, reconstruction

techniques attempt to remove any remaining cosmic ray background.

The BNB described above produces neutrino spills with a rate of about 5 Hz.

Each spill is ∼1.6 µs wide. During the rest of the time the beam is active, no data

is recorded and saved to tape (except to record off-beam data to understand the

cosmic background). In each spill, MicroBooNE receives a trigger from the BNB.

This opens up a window of time for which data is recorded. The window includes

the a 1.6 ms span covering the beam spill ± 1.6 ms on each side totalling a 4.6 ms

total readout window [34, 35].

While the beam triggers on with a rate of 5 Hz to correspond to the beam spills,

a neutrino will only interact in about 1 out of every 500 beam spills. The optical
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trigger is needed to further reduced the saved data volume. The PMTs pick up

scintillation light as discussed in Section 5.4. The appearance of this scintillation

light is used as another trigger, the details of which are described in Section 6.1.

5.5.3 2D Deconvolution

The final step of data collection is to turn the LArTPC wire readout signal into

the number of ionized electrons which passes through the wire planes at any given

time. This process is described in detail in Ref. [36] and summarized here. The

wire signal comes from not only measuring the charge of the ionized electrons, but

from various detector effects such as the electric field and background noise. In

order to get the signal from the electrons, deconvolution is used. Deconvolution is

a technique to extract a real signal S(t) (which in this case is the charge from the

electrons) from a measured signal M(t0) which is the wire readout. M(t0) can be

written as:

M(t0) =

∫ +∞

−∞
R(t, t0)S(t)dt (5.1)

where R(t, t0) is a detector response function. This equation can be solved by a

Fourier transform on both sides of the equation.

This works well for the collection plane. However, the induction planes are more

complicated. Induction wire planes receive a signal both from electrons passing the

wire in question, but also from nearby wires. Therefore in the induction planes a

2D deconvolution is used. In this case Eq. 5.1 is expanded to:

Mi(t0) =

∫ +∞

−∞
(R0(t− t0)Si(t) + R1(t− t0)Si+1(t) + ...)dt (5.2)

where Si is the signal on wire i. This can again be solved with a Fourier transform.

Figure 5.11 shows an example of using 2D deconvolution on an induction plane

signal. The image in the right panel is much clearer than the one on the left without

any convolution. The 2D convolution process is used on all MicroBooNE data.
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Figure 5.11: An example of 2D deconvolution on the U -plane. Run 3493, sub-run
821, event 41075. The y-axis is the time in ticks and x is the wire number. Adapted
from Ref. [36].

5.6 MicroBooNE Data Collection

MicroBooNE began taking data from the BNB in February 2016 and stopped

in March 2020. At this point operations were paused due to the global pandemic

(though this was only slightly earlier than planned). After this point various other

tests were run using the detector. Following these extra tests, the detector was shut

down in October 2021.

Table 5.2 summarizes the BNB data taking Runs. Runs refers to the periods

of time MicroBooNE was regularly taking beam data. In between these Runs, the

detector collected off-beam data or underwent various upgrades such as the addition

of the CRT system. Only Runs 1-3 are analyzed in this thesis as the other data

has not yet been run through the reconstruction, calibration, and selection. This is

simply due to processing time and resource constraints. Protons-on-target (POT)

is the number of protons that interact with the beryllium target in the BNB and

serves a measure of the beam flux.
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Table 5.2: Description of the MicroBooNE Run Periods and the amount of POT de-
livered after collaboration wide data quality cut. Total good data POT = 12.263e20

Run Dates Total Good POT
Run 1 Feb-Sep 2016 1.813e20
Run 2 Oct 2016 - Oct 2017 3.051e20
Run 3a Oct-Nov 2017 0.442e20
Run 3b Dec 2017 - Sep 2018 2.226e20
Run 4 Sep 2018 - July 2019 3.367e20
Run 5 July 2019 - Mar 2020 1.365e20

5.6.1 Blindness to Data

Throughout the development of the analysis presented here, blindness to the data

was implemented. Blindness means that as the analysis tools are under construction,

the data is not examined. This is to avoid biasing the analysis based on what the

data is known to be. The order of the work performed is to first, verify all of the

tools on simulation. Using this simulation and the amount of POT from the beam

make decisions such as bin size and what methods to use to analyze agreement.

Next, the machinery is tested in a variety of ways depending on the context. This

may include looking at a small data set that is not large enough to draw conclusions

from, analyzing fake data sets, or looking at sideband samples. A sideband is a data

sample with different, but similar characteristics to the signal sample. Finally, the

full data set is analyzed.

There were two major data un-blinding steps in this work. The first occurred

after the reconstruction, selection, and systematic uncertainties were finalized. The

purpose of this stage was to specifically look for the MiniBooNE low-energy excess.

All of the 3+1 sterile neutrino oscillation framework was then developed and tested

while once again being functionally blind (Chapter 12). Functionally blind here

indicates that the author had seen the results of the comparison to the MiniBooNE

low-energy excess in Ref. [37], but did not use the data in any algorithm until

unblinding. The author, to the best of her ability, did not allow this preexisting

knowledge to influence analysis choices. This was done by making choices using just

the information from simulation and not data.
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Chapter 6

The Deep Learning

Reconstruction Chain

There are many steps needed to transform the wire pulses recorded in the

LArTPC to the physics data about the neutrino interactions. This chapter de-

scribes the deep learning reconstruction chain used by this analysis. The chain uses

a variety of deep learning tools and traditional algorithms. Figure 6.1 is a flow chart

representation of this chain, the steps of which are described throughout the chapter

in more detail. Event selection, discussed in Chapter 11, also contains deep learning

elements.

6.1 Preparation of Data

The first steps of the reconstruction are common between MicroBooNE analyses.

These steps are the common optical filter, good run selection, noise filtering, and

signal processing. The common optical filter utilizes the PMT system. The light is

collected in time intervals, or “time ticks”, of 15.625 ns. A minimum threshold of

3.5 photoelectrons detected in six time ticks (≈ 100 ns) is first required to trigger

and record events. The common optical filter threshold is applied, requiring > 20

photoelectrons detected within any 6 consecutive ticks in the beam spill window,

and ≤ 20 photoelectrons detected within 6 ticks in the 2 µs period prior to the
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Figure 6.1: A flow chart illustrating the deep learning reconstruction chain. Steps
with a red star are currently composed of deep learning tools.

beam window. This helps reduce non-neutrino triggers and is used in nearly all

MicroBooNE analyses [38, 39].

The data used through this study was taken from 2016 to 2018 which were

recorded over the first three Run periods shown in Table 5.2. Each Run Period

contains a large number of smaller sub-runs which span a few hours. After each

sub-run the quality is verified by a MicroBooNE shift monitor. The POT in this

table is after the good run selection was applied. The good run selection is applied

to the data to only originate from good sub-run periods, which are generally periods

of good DAQ performance. Other reasons sub-runs may be cut include periods of

low argon purity or other temporary detector issues.

Once the data is readout from the detector, it undergoes noise filtering which

is discussed in detail in Reference [33]. This noise filtering is used on data for all

analyses. The main sources of noise in the data are: low frequency noise from voltage

regulator; noise from the HV power supply (which provides power to the cathode);
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and 900 kHz burst noise which is expected to be caused by the PMT power supply.

Various procedures are used to offset these noise sources.

The data next undergoes signal processing to transform it into images as de-

scribed in References [40, 41] and summarized in Section 5.5.3. In this process, the

raw digitized TPC waveform is converted to the number of ionization electrons pass-

ing through a wire plane at a given time. This information is then turned into 2D

images representing the 3 different wire planes. The pixel intensity of the images is

the integrated reconstructed charge waveforms over six time ticks and is measured in

what is referred to here as PIU (pixel intensity units) which represents the amount

of charge on a wire over the given time interval. The effective size of each pixel is 3.3

mm along the y-axis (time direction) and 3.0 mm along the x-axis (wire direction) of

the image. The pixels have an intensity threshold applied to retain only the major

topological features. As the distribution of pixel intensity originating from MIPs

peaks at ∼ 40 PIU, a lower threshold of 10 PIU is applied. Pixels with intensity

≤ 10 PIU are assigned a value of zero.

Next, simulated event samples are generated to compare the data to various

physics models. In order to accurately describe the cosmic rays, noise, and unre-

sponsive regions in the detector as a function of time in the simulation, the analysis

overlays beam-off data taken throughout the three run periods onto simulated neu-

trino events. This creates the overlay simulation used throughout the analyses.

These simulation samples are used both to test analysis tools and compare data to

expectation.

Simulation of events is common throughout analyses performed in the Micro-

BooNE collaboration. For generating simulated events, the collaboration uses GE-

NIE [42, 43, 44, 45] v3.00.06 and model set G18 10a 02 11a as the primary model.

This generator utilized the Valencia CCQE and MEC (2p2h) models [46] and the

Local Fermi Gas nuclear model. These were found to give a good description of the

MiniBooNE CCQE-like data [47]. The generator also has an improved data-driven

final state interaction model and a new tune to bubble chamber data for pion pro-
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duction. To further improve the description, the collaboration undertook a tuning

effort utilizing the T2K νµ charged current, zero-pion data [48], which is fully de-

scribed in Ref. [49]. This provides event weights which are referred to as central

value, or CV, weights. The propagation of particles in the MicroBooNE detector is

simulated using the Geant4 toolkit [50] V10.3.03c.

Events are simulated throughout the total volume of the detector, allowing par-

ticles produced upon interactions with argon outside of the active volume to enter

it, where they may be mistakenly reconstructed as a neutrino interaction. However,

the background rate from these events is found to be negligible at the end of the

reconstruction and event selection. Therefore, we explicitly neglect external events

in this analysis.

There are a variety of overlay sample types used in this study. These are outlined

in Table 6.1 with their simulated POT (along with the data samples). The Data

POT in this table is different than in Table 5.2, as this table is the POT of the

data that is processed through the entire reconstruction chain. This is also true

for the overlay samples. The first (“BNB” sample) is meant to simulate what is

expected from the BNB neutrino beam for the set POT. Next there are a variety

of specialized samples of uncommon event types in order to have a higher number

of events to analyze and reduce the systematic uncertainty. These are “νe intrinsic”

sample (νe events from intrinsic beam background), “CC π0 ” sample, and “NC π0

” sample. Next there is a sample of just cosmic background events with no neutrino

interaction that pass the common optical filter (“ExtBNB” sample). Finally, for

the sterile neutrino part of this study a “fullosc” (full oscillation) sample was used.

This sample assume that all νµ ’s at a given POT oscillate into νe ’s and is used to

make oscillation spectra predictions in the case of a sterile neutrino’s existence.

Figure 6.2 demonstrates an example of a simulated overlay event. This event is

from the CC π0 run3 simulation sample. This example was chosen as it has multiple

particles in the final state of the neutrino interaction which provide a good use case

for each reconstruction stage. As various stages throughout the chapter, this event
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Table 6.1: The simulation samples used in this study along with the POT for each
run. The Fullosc sample is only used in the sterile neutrino oscillation analysis.

Run 1 POT Run 2 POT Run 3 POT
Full Data 1.63e20 2.75e20 2.29e20
Preliminary Data 4.8e19 - -
BNB 1.34e21 1.30e21 8.88e20
νe intrinsic 1.16e23 9.21e22 4.71e22
CC π0 6.95e20 - 5.92e20
NC π0 2.90e21 - 2.49e21
ExtBNB 1.05e20 - 1.54e20
Fullosc 2.72e20 3.34e20 2.74e20

will be used as an example. The lower threshold of 10 PIU has been applied in this

event image.

Table 6.1 also gives the POT of each type of sample for each run. When com-

paring to full data, events in a run of a sample are scaled to match the POT of the

data. It has been found that Run 2 is very similar to Run 3 [37]. Therefore, due to

computing restrictions and few events from these samples appearing in selections,

Run3 CC π0 , NC π0 , and ExtBNB simulation samples are used to compare to Run

2 data. A sample of preliminary data is also included which is used to validate much

of the analysis machinery which is intentionally small to maintain blindness to the

full data.

6.2 Cosmic Ray Tagging

The next step of the reconstruction is removing cosmic rays from the data.

While most are taken care of by the beam trigger (discussed in Chapter 5) and the

common optical filter, cosmic rays concurrent with neutrino interactions still need

to be removed. This is done using the Wire-cell charge-light matching algorithm [51,

52]. This algorithm matches charge clusters to flashes of scintillation light recorded

by the PMTs. Any charge cluster mapped to optical flashes occurring outside the

beam spill are tagged as cosmic. The pixels associated with these clusters are masked

off at this point so they are not used in the next stages of reconstruction.

Figure 6.3 shows the effect of this cosmic ray removal on the Y -plane (collection
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plane) shown in Figure 6.2. To make the display easier to see, the maximum PIU

in the image has been set to 100 PIU. It can be seen in the image that almost

everything not coming from the neutrino interaction has been removed, though

some small pieces of cosmic rays remain.

6.3 Track-like vs. Shower-like particles

As described in Section 5.3, as charged particles traverse a volume of liquid ar-

gon they leave a trail of ionized electrons behind which are collected by the wires.

Different types of charged particles create a variety of patterns. The reconstruc-

tion methods are tuned to expect certain ionization patterns. Therefore, in this

reconstruction process, these patterns are separated into two main types. The re-

construction of each particle type is described in more detail later in this Chapter.

The first type are track-like patterns. These are created by heavy charged par-

ticles including muons, protons, and charged pions. These particles move some

distance though the argon, following a fairly straight path, or track. It generally

begins at the neutrino interaction point (or outside the detector in the case of cosmic

rays). It extends to the point where the particle does one or several of the following:

loses all its energy; interacts again; decays; or exits the detector.

The second type are shower-like patterns. When a high-energy electron interacts

in a medium it radiates a bremsstrahlung photon. These emitted photons can then

produce an e+e− pair or Compton scatter to produce electrons. The same processes

repeats again until all energy is deposited in the detector or the process exceeds the

detector boundaries. This process forms a branching structure that is referred to as

a shower. Reference [53] provides more details on shower characteristics. Figure 6.4

shows an example of how an electromagnetic shower develops.
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6.4 SparseSSNet Pixel Identification

The U , V , and Y plane images (without the cosmic rays removed) are passed into

a deep learning convolutional neural net, called “SparseSSnet,”which is a semantic

segmentation algorithm that labels pixels based on the particle they are from [55].

The network was designed to distinguish pixels coming from track-like versus shower-

like particles. SparseSSNet therefore separates the pixels in the data images as either

track or shower pixels. This information is later used to separately reconstruct each

particle type.

SparseSSNet has a U-ResNet architecture which is a combination of a U-Net [56]

and a ResNet [57] architecture. It also makes use of sparse sub-manifold convolutions

and sparse data structure. This allows for faster processing speeds with reduced

memory usage. This is an improvement from the previous version of the network in

Ref [58].

SparseSSNet outputs 5 pixel labels:

1. Heavily ionizing particles (HIP), produced by protons, typically manifest in a
short, highly ionized track.

2. Minimum ionizing particles (MIP), produced by muons and charged pions,
typically manifest in a longer, fainter (lower dE/dx) track.

3. Showers produced by electrons, positrons, and photons.

4. Delta rays produced from ejected atomic electrons from a hard scattering of
other charged particles, mainly muons.

5. Michel electrons produced from a decay at rest of muons.

These labels are then reduced to ”track”(HIP + MIP) and ”shower”(showers

+ delta rays + Michel electrons) for use in this analysis. Track-like objects and

shower-like objects have different topologies which require different reconstruction

algorithms which are described in Section 6.6 and Section 6.7 respectively. Table

6.2, adapted from [55], shows the accuracy of SparseSSNet track and shower labels

for the SparseSSNet test sample, the BNB overlay sample (primarily νµ events) and
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Table 6.2: SparseSSNet’s track and shower accuracy, for the test sample and the
neutrino interaction central value simulation samples. Results are obtained from the
collection plane. The number of pixels associated with each class is O(107) pixels
except for the full-BNB shower which is O(105) [55].

Test Nue intrinsic BNB
Track 0.992 0.992 0.998

Shower 0.996 0.859 0.823

the nue intrinsic sample (primarily νe events). The track pixel label has an accuracy

of > 99%, while the shower accuracy is > 80%. This table is from Reference [55].

Figure 6.5 shows the result of running SparseSSNet on the same simulation events

shown in Figure 6.3, but cropped around the neutrino interaction. The pixels labeled

as track and shower can be clearly seen. A value of 2 in this image indicates a track,

while a value of 1 indicates a shower pixel. Now by eye, it can be seen that this

event appears to contain two showers (likely from a π0 decay as will be discussed in

Chapter 10) and three track-like particles.

6.5 Vertex Reconstruction

The next step is the reconstruction of neutrino interaction points, or vertices.

Both the 1e1p and 1µ1p events selected for this analysis have a topology of two

prongs intersecting at the neutrino vertex. The 1e1p events consist of one track

and one shower, while the 1µ1p events consist of two tracks. The vertex finding

algorithm has been optimized to find these topologies as described in detail in [59]

and [60], and summarized here.

The vertex algorithm searches for a “vee” shape where two particles meet at a

vertex. There are basic selection criteria in order for this algorithm to run which

require that the two particles are longer than 3 cm and the opening angle in at least

one plane is greater than 10◦. Based on the SparseSSnet pixel tagging, the vee may

be formed of a “track-track” pair or a “shower-track” pair, allowing for the different

event topologies.

More than one vee may be found if there are more than two particles emitted
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from the interaction point or if cosmic background remains after tagging. This is

taken care of in later event selection. Note that in data it is virtually impossible to

have more than one neutrino interaction in a given event and in simulation there

is only one interaction in each event by construction. Once candidate vertices are

found, track and shower reconstruction occurs in two parallel algorithms.

6.6 Track Reconstruction

Track reconstruction is also discussed in detail in Reference [59] and summarized

briefly here. The algorithm begins at the reconstructed vertex and follows ionization

trails outward in 3D, clustering the pixels with non-zero charge into “prongs.” A

prong is a collection of continuous charge, either one line or connected branches

as is the case for showers. Each prong is assumed to come from one particle. In

order to associate a prong with the SparseSSnet identified pixels, the 3D prong is

projected onto the 2D images described above. The pixels in this projection are

then matched to the prong and each prong is labeled at track-like or shower-like.

Shower-like prongs are reconstructed in a separate algorithm discussed in Section

6.7.

The kinetic energies of track-like prongs are calculated using the prong lengths.

The direction of track-like particles is also reconstructed. In the case of two track-

like prongs, the proton is defined as the prong with the higher average pixel-based

ionization density. A fiducial volume containment requirement is enforced on all

prongs. This requirement uses the distance of a prong from the edge of the detector

as the minimal distance from all the prong’s 3D points to a detector edge. It is

required that either the distance of both prongs is > 5 cm from the edge or else that

the combined distance of both prongs is > 15 cm from the edge.
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6.7 Shower Reconstruction

The electromagnetic shower reconstruction algorithm is used to find any associ-

ated shower particles and reconstruct their kinetic energies once a candidate vertex

is isolated. The method described here builds on a previous MicroBooNE shower

reconstruction in Ref. [53]. The new algorithm retains many vital features of the pre-

vious version, especially the use of a semantic segmentation neural network for pixel

labeling, but was rebuilt from scratch. Important updates have been added including

many simplifications of the algorithm made possible by the improved SparseSSnet

described in Sec. 6.4. The work described here was recently published in Reference

[61]. Much of this paper and the algorithm it describes was written by the author

of this thesis and is repeated here.

6.7.1 Clustering Algorithm

The first step of the reconstruction is to mask the image to only use the pixels

identified as shower by SparseSSNet. Pixels with a shower score of >0.5, all other

pixels are masked out for the rest of the shower reconstruction. This SparseSSNet

masking is a critical step for showers close to or overlapping tracks to ensure only

shower pixels are reconstructed.

A template isosceles triangle is placed with its apex at the reconstructed vertex

position, pointing in the positive wire direction. The triangle is optimized to choose

the shower direction, length, and opening angle for which the triangle contains the

most pixels with non-zero charge. These parameters each start at the minimum

value shown in Table 6.3. In order to allow for showers that are detached from the

vertex, a gap parameter is introduced allowing the triangle to start further from the

vertex.

Once a first shower candidate has been found by the reconstruction algorithm,

the pixels found in the shower are masked out. If the total amount of PIU remaining

passing the cuts of a shower score of >0.5 is> 5000 PIU, the second shower algorithm

is run on the masked image. The total range of allowed values for each of the
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template triangle parameters is shown in Table 6.3. In this table “first shower” refers

to the shower found in the first pass of the shower reconstruction which is aimed at

finding showers near the reconstructed vertex. “Second shower” refers to the shower

found on the second run of the algorithm and has expanded parameters to search for

detached showers. In almost every case the first shower is the highest energy of the

two as the algorithm is optimized to find the one with the highest number of shower

pixels with charge first. The parameters in each case are optimized sequentially in

the order of direction, gap size, opening angle, and length.

Table 6.3: Range of parameters for the shower reconstruction algorithm. Parameters
are changed in the second shower search to allow for the capture of showers detached
from the vertex.

Minimum value Maximum value
Direction 0 degrees 360 degrees

Opening angle 17 degrees 75 degrees
Length (first shower) 3 cm 35 cm

Length (second shower) 3 cm 60 cm
Gap Size (first shower) 0 cm 17 cm

Gap Size (second shower) 0 cm 90 cm

Figure 6.6 shows an example display demonstrating the 2D shower reconstruction

on a simulated CC π0 event. This is the same event that is shown in Figures 6.3,6.5.

The final optimized showers are shown in red (first shower) and magenta (second

shower). In this example, the algorithm found the proper gap of the first shower,

but not the second shower. This is acceptable as gap size is not a value that is

currently utilized in any other part of the DL analysis.

6.7.2 Shower Energy Reconstruction

The next step is to reconstruct the energy of the shower particles. Energy re-

construction of electromagnetic showers is a crucial component of this analysis for

the 1e1p selection, which contains electrons from a broad energy range from 35 to

1200 MeV. To determine the energy of each shower, the PIU of all shower pixels

enclosed in the Y -view triangle is integrated. This total shower charge will hereby

be denoted by Qsh. The Y -view is used because it has the highest signal-to-noise
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ratio of the three planes as it is the collection plane [33].

To convert the charge to energy, the Qsh in a sample of simulated events is

compared to the generated energy of the electrons in the events. A Qsh-to-MeV

conversion is determined and shown in Figure 6.7. The simulated electron energy

is plotted versus the reconstructed Y -view total shower charge sum for events in

the intrinsic νe simulation sample selected by the 1e1p analysis preselection (which

is discussed in Section 6.10). In each vertical bin, a Gaussian fit is performed to

find the center point (represented by the black points in Figure 6.7). The edge bins

which have smaller statistics are excluded.

Two examples of the Gaussian fits are shown in Fig 6.8. While the Gaussian

fits capture the bulk of simulated events well, one can see a tail in each distribution

out to higher simulated electron energies which is not captured by the Gaussian.

This is expected, as these tails correspond to electron showers which are not fully

reconstructed (i.e., showers which pass through dead wires, exit the active volume,

or are larger than the shower parameters). The points are then fit to a line. This

equation is used for the Qsh-to-MeV conversion. The resulting equation is:

Electron: E [MeV] = (1.26± 0.01× 10−2)×Qsh [PIU]. (6.1)

where the error corresponds to the uncertainty on the linear fit, which represents the

statistical error on the simulated electron sample used for the fit. The conversion

term of 1.26± 0.01× 10−2 is referred to as me− in this thesis.

Using this shower energy calculation, we look at the energy resolution for a

sample of simulated CCQE νe events containing no final state π0. This isolates

electrons from photons which will be discussed further in Sec. 8.1.1. The following

selection criteria are used for this energy resolution:

• Reconstructed vertex is less than 5 cm from simulated neutrino interaction
vertex;

• One simulated electron contained in event;

Chapter 6 67



Katie Mason Tufts University

• No simulated final state π0;

• One reconstructed shower; and

• 1e1p Boosted Decision Tree (BDT) score is greater than 0.7 [34] (Chapter 11).

The energy resolution is defined here as:

Eres =
Ereco − Esim

Esim
(6.2)

where Esim is the energy simulated by GENIE. The energy resolution for this sample

of simulated events is seen in Fig 6.9. The mean is at -0.07 and the RMS is 0.22.

The shower energy reconstruction has been validated in detail as shown in Chap-

ter 8. As stated earlier, the shower energy is calculated using a MicroBooNE simu-

lation sample comprising of simulated neutrino events overlay with off-beam cosmic

ray data. It is therefore notable that the energy calculated with this sample works

well when applied to data.

6.8 MPID Particle Identification

The final step in the reconstruction is the MPID network [62]. The MPID

network aims to report the particle content of a given event. The input is a cropped

image around a reconstructed neutrino vertex. The network structure is a typical

convolutional neural network (CNN).

It outputs a score for each of five particle types (p,e−,γ,µ−,π±) indicating how

likely it is that the particle is in the event. As there is generally more than one

particle in each event, the network outputs an individual score for each type. For

example, a 1e1p event is expected to have both a proton and electron score close to

1. This network is utilized in separation of CC and NC π0 events in Chapter 10. It

is also used for the final cuts for the νe CCQE and νµ CCQE selections which will

be discussed further in Chapter 11.
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6.9 CCQE Neutrino Energy Reconstruction

Recall the target signal events for this oscillation (1e1p and 1µ1p events) are

CCQE. In principle these are a two-body interaction with fully constrained kine-

matics, even when realistic effects are introduced, assuming the target nucleon is

at rest. For these events, energy and momentum conservation constraints allow the

neutrino energy to be determined completely from the lepton energy and angle, the

proton energy and scattering angle, or a combination of the final-state lepton and

proton measurements.

The neutrino energy can be reconstructed in three ways:

Erange
ν = Kp + K` +M` +Mp − (Mn − B), (6.3)

EQE−p
ν =

(
1

2

)
2 · (Mn − B) · Ep − ((Mn − B)2 +M2

p −M2
` )

(Mn − B)− Ep +
√

(E2
p −M2

p ) · cos θp
, (6.4)

EQE−`
ν =

(
1

2

)
2 · (Mn − B) · E` − ((Mn − B)2 +M2

` −M2
p )

(Mn − B)− E` +
√

(E2
` −M2

` ) · cos θ`
, (6.5)

where K is kinetic energy determined from the track length or charge clustered

into the electromagnetic shower depending on the particle type; θ is measured with

respect to the beam axis; M is mass; p is proton in nucleus; n is neutron in nu-

cleus; and B is the average binding energy, assumed to be 40 MeV [63]. For the

oscillation analysis presented in this thesis, the reconstructed neutrino energy used

is Eν ≡ Erange
ν as in Equation 6.3. However, if a selected CCQE event is well recon-

structed, the three energy calculation methods should be in agreement, within some

variation due to unknown nuclear momentum. A consistency check of the three

energy methods given by:

∆QE =

√
(Erange

ν − EQE−p
ν )2 + (Erange

ν − EQE−`
ν )2 + (EQE−`

ν − EQE−p
ν )2 (6.6)

is a useful handle for the selection CCQE events and is used in the Boosted decision

trees for both the 1e1p and 1µ1p event selection discussed in chapter 11.
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6.10 General Preselection

The reconstructed objects describe here are next utilized in various event se-

lections which will be described in more detail as they are used in the following

chapters. However, some basic preselection criteria are first applied to data and

simulation which are common between the selections.

First, a note on some jargon used throughout the rest of this thesis. An image

is a 2D representation of of time vs. wire for a specific wire plane as described in

Section 6.1. An event refers to a single neutrino interaction. The true vertex is the

3D point at which the neutrino interaction occurs. A reconstructed vertex is a 3D

vertex found by the algorithm defined here.

When performing selections the target is a reconstructed vertex that is at a

true neutrino interaction point of whatever interaction mode is under investigation.

Therefore all selection requirements are placed on a reconstructed vertex and the

reconstructed tracks and showers associated with it. Sometimes, the selection re-

quirements will be satisfied by more than one vertex in an image. In this case a

final requirement is placed to pick just one vertex. The requirement depends on the

desired signal, but is used because it is extremely unlikely that two neutrino inter-

actions occur in the same time window. Further, none of the simulation samples

include such a scenario.

After the reconstruction is complete, there are a set of preselection criteria which

are common between all selections. Some have already been described, but are

repeated here for clarity. They include:

• common optical filter applied;

• part of a good run;

• at least one vertex;

• two reconstructed prongs at the vertex;

• the vertex is in the fiducial volume;

• the vertex is away from the edge of the active volume and outside of a dead-
region in z located at ∼ 700 cm;
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• events are required to be “well-contained” in the active volume i.e. to not
pass close to or across the edge of the active volume;

• an event must be “boostable” to the nucleon rest frame (i.e 0 < β < 1 for the
boost);

• electron kinetic energy > 35 MeV (1e1p only);

• proton and kinetic energy > 50 MeV; and

• the proton cannot be backwards going relative to the beam direction.

Next, an “orthogonality cut” is used to divide the events into two non-overlapping

1l1p samples: 1e1p and 1µ1p. This makes use of the pixel labeling from SparseSSNet.

The fraction of shower pixels for each of the two particles is calculated, and the

maximum shower fraction for the two is found. The orthogonality cut uses the

maximum shower fraction to separate 1e1p (> 20% shower fraction) from 1µ1p

candidates (< 20% shower fraction).

An additional containment cut is applied to the 1e1p sample that removes show-

ers that are partially or fully located in a diagonal region of the detector with poor

charge response. For the 1e1p sample, shower energy must be consistent between

the three planes as defined by [37]:

√
(EU

e − EV
e )2 + (EU

e − EY
e )2 + (EV

e − EY
e )2

EY
e

< 2 (6.7)

6.11 The Total Reconstruction Chain

After all of the steps outlined in this chapter, the reconstructed data that will be

used in the selection stage for each event consists of: neutrino interaction location,

number of and type of prongs, kinematic variables for both track and shower par-

ticles, neutrino energy, and MPID scores. These events have all undergone a basic

preselection which divides out candidates for the three different selections. Data

which does not pass any of the preselection criteria is no longer considered.

Now that there is a clear picture of the general event reconstruction chain used in

this analysis, a more in depth look at various aspects of the reconstruction is provided
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before proceeding on to the 1l1p event selection and its use in 3+1 sterile neutrino

search. The next chapters review work by the author of this thesis searching for

improvements, verifying parts of the reconstruction, and analyzing samples which

are backgrounds to the main 1l1p event selection. Chapter 7 presents a deep learning

neural network that was explored to reconstruct dead channels in MicroBooNE.

Chapter 8 describes the verification of the shower reconstruction using selections of

both π0 events and Michel electron events. Then Chapter 10 examines the use of

the same sample of a π0 as a sideband to the 1l1p event selection.
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(a) U -Plane Image

(b) V -Plane Image

(c) Y -Plane Image

Figure 6.2: An example of a simulated overlay event at the start of the reconstruction
chain in all three MicroBooNE wire planes. The x-axis corresponds to the wire
number, the y-axis corresponds to time ticks, and the z-axis is PIU (capped at 50
for visualization purposes).

Figure 6.3: An example of a simulated overlay event in the collection plane after
cosmic background has been removed. The x-axis corresponds to the wire number,
the y-axis corresponds to time ticks, and the z-axis is PIU with a maximum of 50
PIU for visualization.
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Figure 6.4: An example of an electromagnetic shower process. Adapted from Ref.
[54].
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Figure 6.5: An example of a simulated overlay event in the collection plane after
SSNet has been run. The x axis corresponds to the wire number, the y axis corre-
sponds to time ticks, and the z axis is SSNet category. The image has been cropped
to be around the simulated neutrino interaction.
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Figure 6.6: Event displays of a simulated CC π0 event showing the raw PIU image.
The leading reconstructed photon is represented by the red triangle and the sub-
leading reconstructed photon is represented by the magenta triangle.
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Figure 6.7: Simulated electron energy vs Qsh for a sample of generated 1e1p events.
The linear fit is used in the shower energy calculation.
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Figure 6.8: Example distributions of simulated electron energies (solid lines) and
corresponding Gaussian fits (dashed lines) within two different shower charge sum
ranges. The means of the Gaussian fits are used to generate the black points in
Figure 6.7.
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Figure 6.9: The energy resolution for a sample of simulated electrons as described by
Equation 6.2. The y axis has the raw number of simulated events without scaling.
The dashed vertical line is included at Eres = 0.0 for reference.

Chapter 6 79



Chapter 7

Recovering Trajectories in

Unresponsive Channels using a

Convolutional Neural Network

Recall that MicroBooNE reads in data from 3 wire planes in a LArTPC. As

presented in Section 5.5.1, these wire planes suffer from dead wires, oversaturated

wires, and noisy wires. (For the purpose of this network, all of these categories

in Table 5.1 are labeled as ”dead”.) To try to address the problem of these dead

wires, a convolutional neural network (CNN) has been developed that recovers the

trajectories of particles that pass through these wires.

Convolutional neural nets have been used in the field of deep learning to search for

patterns in images and to alter images. This chapter presents the results for training

a generative convolutional neural network, referred to as the “Infill” network, that

reconstructs the PIU values in simulated dead wires for a LArTPC detector output.

While the results of this network are not used in the rest of the analysis presented

in this thesis, it shows that machine learning methods can be utilized to solve this

problem. Future MicroBooNE analyses using more machine learning methods, as

well as future LArTPC experiments, can make use of this fact.
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7.1 Network Training Images

As discussed in Chapter 5 and summarized here, the MicroBooNE experiment

contains three wire-readout planes (U ,V ,Y ). Images are created for each of the

three planes that show the amount of charge deposited on each wire in the plane

over readout time window. The wire and time information is transformed into row

and column number where the value of each pixel corresponds to the amount of

charge deposited or PIU value. The operating status of each wire is known.

This network has been trained on data events rather than simulation. This is

a great advantage as no simulation can perfectly model data. The Infill network’s

function is to reconstruct dead wires. By overlaying regions with no dead wires

with “fake” dead wires, training on data instead of Monte Carlo simulation becomes

feasible. This is beneficial when the network is deployed on data as it does not suffer

any penalties due to inconsistencies between data and simulation.

The data for this network is prepared in the same way as the data that is fed into

the deep learning reconstruction, but no further reconstruction is performed. This

network is designed to be inserted at the start of the chain. The data samples used

in this training are from a sample of off-beam data events (“ExtBNB” in Table 6.1).

This means the events are unlikely to contain neutrino events and instead contain

cosmic ray background. To create images necessary for training, a crop with no

dead regions is taken from a full plane.

The crops have size 512x496 pixels. The width was chosen as the largest region

of the U plane without any dead wires. The height was chosen to work well in

the network structure (512 = 29, allowing for many decoding layers which decrease

image size by a factor of 2). For consistency, crops from the other planes are the

same size. This crop becomes the “true” PIU image needed for training.

To create the network input image with dead wires, the true image is overlay

with a dead wire pattern from a different part of the plane. All PIU values in the

specified wires are set to zero. This means that the dead channel pattern on the

images is as realistic as possible. The network’s main goal is to predict whether or
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not there should be non zero values in the dead wires, as this will aid in topological

reconstruction methods. A secondary goal is to predict the PIU values that are as

close to the true values as possible.

7.2 Sparse Network Structure

The network is a sparse network created using Facebook’s SparseConvNet [64].

SparseConvNet makes use of submainfold convolutions in order to handle sparse

data, or data with a large number of zero pixels like the MicroBooNE images.

Submanifold convolutions are different from regular convolutions in that output

features from non-active sites are discarded. In other words, an output pixel will

be nonzero if and only if the central pixel of the convolved field is nonzero in the

inputs. The sparseness of the data is therefore retained through a convolution,

while a classic dense convolution will spread information to pixels which originally

contained no information which leads to image dilation and an increase in memory

usage. Similarly, activation functions, batch normalization, and pooling layers are

restricted to active sites. In the case of the Infill network, active sites are pixels

which either have non-zero PIU or are located in the dead regions.

The SparseConvNet operates on sparse data which only includes a subset of

the pixels in the image. For the Infill network the pixels that are used are all

non-zero pixels as well as pixels in dead wires. The input image and true image

are transformed from 2D matrices to a sparse matrix of size Nx3, where N is the

number of pixels saved. The first two columns represent the row an column value of

the pixel. The third represents the PIU value. The network can only generate PIU

values for pixels saved at this stage. This results in matrices with far fewer pixel

values saved. In the U -plane, ∼ 40% of values are kept. In the V and Y planes,

which have fewer dead wires, ∼ 10% of values are kept. However, these percentages

vary wildly depending on how many dead wires are in a given cropped image as well

as the number and energy of cosmic rays in the event.

Using a sparse network instead of a traditional dense network has two main
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Figure 7.1: A flowchart illustrating the Infill network structure where E is an en-
coding layer and D is a decoding layer. The final output image has the same spatial
dimensions as the original sparse image.

advantages. The sparse nature allows for faster processing speeds. In a previous

dense version of this network, an image took 2 seconds to process on a GPU. With

the sparse network the time has been reduced to 0.6 seconds. Secondly, each image

takes up significantly less memory. This allows for larger batch size while training.

The Infill network is a UResNet structure consisting of five encoding layers and

five decoding layers [56]. This is the same structure as SparseSSNet [55, 58], which

was described in Section 6.4. A diagram of the network layers is shown in Figure 7.1.

An encoding layer consists of 1/2 down-sampling and sparse ResNet convolutions,

while the decoding layers consist of x2 up-sampling with sparse ResNet convolutions.

The arrows in the flow chart represent connections between layers. The horizontal

arrows in particular represent the concatenations that combine the outputs of the

convolution layers from the encoding to the decoding side. The output is a sparse

image with a generated PIU value at each location. It has the same spatial size as

the input.
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The loss function is an L1 loss with weights. This loss function gives a measure

of how closely the output of the network matched the “true” image. There are five

different weights utilized:

A: non-dead region,

B: pixels in dead wires with 0 < true PIU < 10;

C: pixels in dead wires with 10 < true PIU < 40;

D: pixels in dead wires with 40 < true PIU < 70;

E: pixels in dead wires with true PIU < 70.

The loss is then given by:

L =
A|Ta − Pa|

Na

+
B|Tb − Pb|

Nb

+
C|Tc − Pc|

Nc

+
D|Td − Pd|

Nd

+
E|Te − Pe|

Ne

(7.1)

where, A,B,C,D,E represent weights, Ti are the true PIU values for the category,

Pi are the network predicted PIU value for the category, and Ni are the average

number of pixel per image in the given category taken over 228 test images. Weights

were adjusted during training in order to increase performance in the various pixel

value classes. Classes (C) and (D) were given the highest weights as the network

displayed a bias towards predicting PIU values on the extreme of the distribution.

The network uses the RMSProp optimizer function [65]. The learning rate was

decreased as training progressed. The decision to lower the learning rate was based

off of visual inspections of the loss function. When the loss leveled off, the learning

rate was decreased.

7.3 Network Results

The network has been trained on a set of 160,000 crops for each plane of the

detector. Each plane was trained independently. The U -plane was trained for three
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Table 7.1: The accuracy when testing the network on 228 test crops for each plane,
measuring how close the PIU of the output pixel is to the true value. The first four
rows are measured only in dead wires and only where the true value is greater than
zero. The last row is measured over the entire dead region.

U -Plane V -Plane Y -Plane
< 2 PIU 27.24% 20.22% 25.20%
< 5 PIU 45.33% 37.36% 43.83%
< 10 PIU 66.82% 56.37% 66.73%
< 20 PIU 84.47% 75.14% 84.88%

Binary Accuracy 98.40% 99.13% 99.16%

epochs, the V -plane for three epochs, and the Y -plane for four epochs. (In one epoch,

the network sees each training image once). Results from deploying the network on

228 cropped images (test sample) for each plane which it had not encountered in

training are shown in Table 7.1. The test sample is a set of images not used in

training. Testing over previously unseen examples ensures that the network is not

simply memorizing the training set.

For each plane, the accuracy is calculated for various thresholds for pixels in the

dead wires where the true PIU value is greater than zero. To better understand the

impact of the PIU scale, the process of MicroBooNE shower reconstruction can be

used. As discussed, in Section 6.7 a shower’s energy is reconstructed from the total

PIU of the shower object. This PIU is then converted to an energy using a scale

factor of 0.01256 MeV/PIU in Eq. (6.1). This means that 20 PIU in a shower object

corresponds to 0.2512 MeV of deposited energy. So, even the largest range in the

accuracy table results in a small change in energy.

Additionally, a binary accuracy is calculated in the dead wires based on whether

or not the network placed either less than ten PIU or greater than ten PIU charge

correctly. (Ten PIU is chosen because anything less is removed from the final recon-

struction techniques in Section 6.1). As seen in the binary accuracy of Table.7.1,

the network fairly accurately places PIU charge over threshold where there should

be charge, while not adding charge where there should not be charge.

Figure 7.2 shows the comparison between the true PIU value and the value

predicted by the network. Each pixel contained in a dead region with non-zero
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true PIU has been plotted. The histogram contains the results from the entire test

sample. A red line representing y=x has been included for visual comparison. It

should be noted that the final images have thresholds of 10 PIU, so large differences

for PIU less than 10 will have no impact on the final product.

Figure 7.2: The results of running the network on the test sample, for each of the
three planes. The predicted PIU value vs. the true PIU value is shown for each
pixel in the dead channel. The red line represents y=x for reference.

Figure 7.3 shows the PIU distribution for both the set of true test images and

the set of corresponding network outputs. Once again, only pixels in the dead wires

are plotted. Both of these figures show the best performance in the y-plane. This

plane begins with the best signal quality and is the main plane used in the DL

reconstruction chain described in Chapter 6.

Figure 7.3: This set of figures shows the PIU distributions for the test crops in each
of the three planes (note ADC = PIU). The distributions of both the true image
and the network output image are shown. The PIU distribution is plotted only for
the dead wires.

Once an image is fed into the network, the output is overlaid on the input image,

but only in the dead wires. This ensures that the network does not alter non-dead
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regions. The entire image has a threshold of 10 PIU. This output image is then

passed into the other networks in the chain. Figure 7.4 shows event displays for

each plane corresponding to the network input image, network output image, and

true image. As in previous event displays in Chapter 6, the x-axis of these images is

the wire direction and the y-axis is the time dimension. The pixel value corresponds

to the the PIU (or predicted PIU).

Overall, the network performs well when placing non-zero PIU. This should be

helpful as inputs for other reconstruction algorithms that are primarily topology

based. However, the accuracy in generating the precise PIU is too low to use this

network in applications requiring an accurate PIU (i.e. in shower energy calcula-

tions).

7.4 Future Applications

The Infill network has not yet been incorporated into the total reconstruction

chain. However, it is a demonstrated deep-learning solution for a hardware problem.

Future LArTPC experiments may encounter a similar problem. If that occurs, the

network structure could be used with a different data set as one possible solution.

Due to computing resource restriction it has not yet been run over the full Micro-

BooNE simulation and data. A new and improved second generation reconstruction

is currently under development. The Infill network is one possible step that is under

consideration for the next generation of tools.
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(a) U -plane

(b) V -plane

(c) Y -plane

Figure 7.4: This figure shows an example set of event displays from the U -plane (a),
V -plane (b), and Y -plane(c). The first image is the network input image with dead
wires. The second image is the Infill output image after thresholds are applied and
after being overlay with the network image. The third image is the true PIU image
for reference.
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Chapter 8

Verification of Shower Energy

Reconstruction on Data

The next reconstruction step that was examined in more detail by the author

of this thesis is the shower energy calculation discussed in Section 6.7.2. Shower

reconstruction is a critical part of reconstructing the CCQE 1e1p events utilized

in this analysis. Extensive work was performed to ensure the validity of using the

simulation-derived energy calculation. Note that as with the shower reconstruction,

the work described here was recently published in Reference [61]. Much of this

paper and the algorithm it describes was written by the author of this thesis and is

repeated and adapted here.

To verify this shower energy calculation, two event selections have been used.

The first is a selection of π0 events described in Section 8.1. The second is a selection

of Michel electrons in neutrino events described in Section 8.2. For each of these

selections a best fit PIU-to-energy conversion value is found for both simulation and

data. Section 8.3 combines these results and shows that the use of the simulation-

derived energy calculation is valid.
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Figure 8.1: The dominant Feynman diagram describing π0− > 2γ.

8.1 The π0 Sideband Sample

The first sample used to analyze the performance of the shower reconstruction is

a sample of π0 events which decays into two photons as shown in Figure 8.1. The π0

interactions are discussed in more detail as a sideband to the 1l1p events in Chapter

10.

The selection of this sample includes the preselection common across all of the

event selections utilizing this reconstruction chain that was presented in Section

6.10. The reconstruction chain was not optimized to reconstruct every possible

event containing a π0 . The events selected here must start from the two-prong

vertices. Therefore, the bulk of π0 events selected for this analysis are one of two

topologies. The most prevalent topology in this study is from charge current (CC)π0

events where the scattered muon and the proton from the ∆ decay form the vertex,

and there are two additional disconnected electromagnetic showers from π0 decays.

The second is from neutral current (NC)π0 where one photon converted within the

0.3 cm wire spacing and thus forms can form a reconstructed vertex proton, while

the second photon is displaced from the vertex. As a result, contributions to the

π0 selection discussed here will come from NC π0 and CC π0 , as well as CCπ−

and CCπ+ events where the π+/π− undergoes charge exchange within the nucleus.

The π0 itself is invisible in the MicroBooNE detector as it is electrically neutral.

However it then decays into two photons. These photons can produce an e+e− pair

or Compton scatter which produces showers. From these photons the momentum

and energy of the π0 can be reconstructed.

The identification and reconstruction of π0 events is presented here. This is

Chapter 8 90



Katie Mason Tufts University

followed by both a verification of the Qsh-to-MeV conversion value agreement to

data and simulation, and a verification of agreement between data and simulation.

Recall Qsh represents the PIU sum of the SparseSSNet tagged shower pixels enclosed

in the reconstructed shower. This is accomplished by using a well-measured physical

quantity: the π0 invariant mass (135 MeV/c2 [6]).

8.1.1 π0 Event Selection

Before proceeding to event selection, an extra reconstruction step is needed for

events with a π0 . The reconstruction of π0 events relies on the 2D shower recon-

struction described in Section 6.7. For this study, this is extended by introducing

a simple 3D shower reconstruction. This is necessary to reconstruct the 3D direc-

tion and therefore the kinematics of the π0 event. These quantities are essential for

reconstructing the π0 invariant mass which is used to test the shower reconstruction.

In order to characterize a full 3D shower, 2 2D projections on different planes

that match in time are needed. So, the 2D reconstructed showers on the different

wire planes are compared for overlap in time. The overlap fraction is defined as:

Foverlap =
Noverlap

Ntot

(8.1)

where Noverlap is the number of pixels in the Y -plane shower that overlap in time

with shower pixels from a 2D shower in another plane and Ntot is the number of

pixels in the Y -plane shower. The U and V planes are considered separately. If the

overlap fraction is > 0.5 in either or both planes, the pixels that overlap between

the collection plane shower and the shower in another plane with the highest overlap

fraction are used to calculate a cluster of 3D shower points. The 3D shower direction

is found by using the calculated center of the 3D point cluster and the event vertex.

This 3D reconstruction leads to what is referred to as the “shower quality cuts”.

These are requirements that are necessary in order to reconstruct two 3D showers

for the π0 selection.
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• Two collection plane showers, each with reconstructed energy greater than 35
MeV;

• Both collection plane showers have an overlap fraction with a shower in another
plane greater than 0.5; and

• The two collection plane showers cannot match to the same shower in another
plane.

If a collection plane shower matches with showers in both the U and V planes,

the one with the highest overlap fraction is chosen.

After the preselection (described in Section 6.10) and shower quality cuts have

been applied, some of the remaining events have showers that are poorly recon-

structed. The sample also contains a large number of backgrounds such as cosmic

muons. To improve the selection, the following requirements are introduced that re-

move events with poor reconstruction and remove backgrounds. These are referred

to as “box cuts” as they are hard cuts designed to remove background events at the

tails of the distributions of various variables.

One of the variables used in these “box cuts” is a ∆ mass test variable and re-

quires a bit more calculation than others to obtain. The 4-vector of the reconstructed

showers are used along with the 4-vector of the proton-like track as described in sec-

tion 6.6. These three objects are assumed to have come from a ∆ decay and are

therefore used to reconstruct a ∆ rest mass. The tails of this distribution are com-

prised of poorly reconstructed π0 events and cosmic muon backgrounds which allows

for another box cut. The box cuts are performed at a vertex level and are defined

to be:

• Reconstructed π0 mass is less than 400 MeV/c2;

• Reconstructed energy of the leading photon is greater than 80 MeV/c2;

• The charge sum of all pixels (both track and shower) within 2 cm of the vertex
> 250 PIU counts;

• Leading photon reconstructed angle w.r.t. beam direction < 1.5 radians;

• The angle between the two photons < 2.5 radians; and
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• ∆ mass test variable is between 1000 and 1400 MeV.

Figure 8.2 shows the distributions from which these cuts were chosen. These

distributions of box-cut variables are made at the preselection stage which were used

to determine the π0 box cuts. These distributions are compared to the preliminary

data sample (Table 6.1) as this was used to make the cut decisions. The cut values

are indicated with dashed black lines. These plots only contain statistical error.

The main backgrounds these sought to remove were cosmic rays (bright pink) and

mis-reconstructed π0 events (dark green). The well reconstructed π0 events are in

light green (CC π0 ) and light blue (NC π0 ).
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(a) π0 Mass [MeV/c2] (b) Leading Eγ [MeV/c2]

(c) PIU sum around vertex (d) Leading θγ [rad]

(e) γ Opening Angle [rad] (f) ∆ Mass [MeV/c2]

Figure 8.2: Kinematic distributions at the preselection stage for preliminary data
for variables used in the π0 box cuts. The error bars are statistical only. The black
dashed line indicates the cut value. The black arrow indicates the side of the cut
that is kept. The simulation has been scaled to match the preliminary data POT.

Here, “leading photon” refers to the simulated photon with the highest energy.

The reconstructed “leading photon” is determined to be the shower with the highest

PIU sum. An additional requirement on the DL 1e1p BDT of < 0.7 is further added

at this stage to maintain blindness to the LEE for this study as was described

in Section 5.6.1 [34]. This requirement has a flat ≈ 3% effect across the energy
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spectrum. The effect of this cut is shown in Figure 8.3. As shown in the plot, the

cut removes very few events. If more than one reconstructed vertex remains at this

point, the vertex with the highest leading-photon energy is chosen.

Figure 8.3: The π0 mass distribution of the preliminary data with three versions:
no 1e1p BDT cut, 1e1p BDT < 0.7 (used in analysis), and 1e1p BDT > 0.7. All
other π0 ”box-cuts” have been applied.

The efficiency of each cut stage is seen in Figure 8.4. A sample of events with

a true π0 in the final state, the neutrino vertex in the fiducial volume, and with

both decay showers starting in the fiducial volume is used to test the efficiency. The

numerator is the number of events remaining after each cut stage. The efficiency is

shown as a function of the simulated neutrino energy. The biggest drop in efficiency

just comes from finding a vertex with one reconstructed shower. This is because the

vertex finding algorithm was not designed with π0 events as the primary target.

Figure 8.4: The efficiency of the π0 selection at various cut stages.

For the purpose of studying this sample in the next sections, the simulation has
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been broken into various categories. “NC π0 ” are neutral current π0 events with a

well reconstructed vertex, which is a vertex within 5 cm of the true generated vertex.

“CC π0 ” are defined similarly for charged current π0 .“Offvtx π0 ” are π0 events

with poorly reconstructed vertices. The reconstructed vertex is further than 5 cm

from a true generated neutrino vertex (often placed instead at a shower start). If

the vertex is in the wrong position, the 3D shower directions of both showers cannot

be trusted, nor any quantities built from these. “Non π0 ” events are broken into

on and off vertex as well. νe events are all events that originated from a νe . Cosmic

background events also remain after selection. In some discussions the exact type

of background is not necessary to differentiate. In these cases all events without a

π0 in the final state are simply referred to as “background”.

8.1.2 Decay Photon Energy Reconstruction

Using the shower energy calculation from the electron sample on both electron

and photon showers assumes that the energy of both shower types is reconstructed

the same way. To demonstrate that this assumption is valid, the same simulated

energy vs Qsh plot and fit (as was used in Section 6.7.2) is performed on two samples

of photons: leading and sub-leading photons from a sample of simulated CCπ0

events. To ensure this fit is performed only over well-reconstructed events, the π0

box cuts are applied. This is shown in Figure 8.5. The resulting fit equations are:

Leading Photon: E [MeV] = (1.25± 0.02× 10−2)×Qsh [PIU]. (8.2)

Sub-leading Photon: E [MeV] = (1.20± 0.02× 10−2)×Qsh [PIU]. (8.3)

It is seen from the fit results that the leading photon fit matches the electron fit

as expected while the sub-leading photon fit does not match as within the statistical

error. This is due to the worse reconstruction in the sub-leading photon. However it

is a difference of < 6% which is well below the energy resolution for both electrons

(shown Figure 6.9) and photons (shown in Figure 8.6). The energy reconstruction
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(a) Leading Photon (b) Sub-leading Photon

Figure 8.5: Simulated photon energy vs Qsh for a sample of generated CC π0 events
with the π0 box-cuts applied. The best fit is shown for this sample as well as the
best fit from the electron fit. (a): leading photon, (b): sub-leading photon.

of all showers therefore uses the charge-to-energy (Qsh-to-MeV) conversion value

found for the simulation electron sample, me− = 1.26× 10−2 MeV/PIU .

Simulated energy resolution of the decay photons is presented in Figure 8.6,

where resolution is defined in Eq. 6.2. This plot is made using the specialized high

POT CCπ0 and NCπ0 simulation samples. For the purpose of scaling the different

samples and background contributions, the events are POT scaled to match the total

data POT. This distributions in this plot have all of the π0 selection cuts applied.

The energy resolution is shown separately for the leading (highest energy) photon

and sub-leading photon.

(a) Leading Photon (b) Sub-leading Photon

Figure 8.6: The energy resolution for each of the decay photon in the selected π0

sample. The leading photon is shown in (a) and the sub-leading photon is shown
in (b). The events have been scaled to match the total data POT of 6.67 × 1020.
Resolution is defined in Eq. 6.2. The dashed vertical line is included at Eres = 0.0
for reference.
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Table 8.1 shows the mean and RMS of the distributions shown in Figures 8.6

and 6.9 for comparison. Both the leading and sub-leading photon Eres mean is close

to zero for all samples. The leading photon has a smaller RMS than the sub-leading

photon, which is more broad and has a larger tail. The resolution of photon energy

from π0 decay is worse than that seen in the electrons, but they have similar bias

as indicated by the mean.

There are two main causes for the difference between leading and sub-leading

photons. The first is that the sub-leading photon is generally the lower energy of

the two. Failing to reconstruct a small number of pixels will have a larger effect on a

lower energy shower which has fewer true shower pixels associated with it. The other

cause are events where the leading and sub-leading shower are close together. Part

of the sub-leading shower is reconstructed as part of the other shower as the leading

shower is prioritized. Of these two sub-leading photon reconstruction failure modes,

the first is dominant. Some of the other poorly reconstructed photons in both the

leading and sub-leading plot are caused by mistakes in SparseSSNet, overlapping

cosmic rays that were not removed properly, and dead wires in the collection plane.

These common mistakes also effect electron reconstruction.

Table 8.1: Characterization of the resolution distributions shown in Figure 6.9,
Figure 8.6, and Figure 8.8 .

Mean Esim Mean Eres RMS of Eres
Electron 744.8 MeV −0.07 0.22
Leading Photon 230.3 MeV −0.07 0.36
Sub-leading Photon 98.8 MeV 0.04 0.69

Mean θsim Mean θres RMS of θres
Between two photons 54.1◦ 0.05 0.50

Figure 8.7 shows a data to MC simulation comparison of the reconstructed pho-

ton energies in the π0 sample. The uncertainty bars on the simulation distribution

represent the statistical uncertainty based on the number of simulated events. The

total number of simulation events has been scaled to match the total number of

data events for this chapter to remove any effect due to π0 rate modeling. This

a notoriously difficult problem and will be discussed further in Chapter 10 . This
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plot uses the BNB simulation samples combined with the high POT π0 simulation

samples and the νe intrinsic sample, and data as described in Section 6.1. The χ2

which is reported in the caption of this plot is a combined Neumann-Pearson (CNP)

χ2 [27] which is discussed in great detail in Chapter 12.

(a) Leading Photon (b) Sub-leading Photon

Figure 8.7: The reconstructed photon energies for events passing all selection cuts.
The leading photon is shown in (a) and the sub-leading photon is shown in (b). The
MC simulation samples have been normalized to the total number of data events.
The data events are shown by black points. The number of events in each category
is shown in the legend in parenthesises. The χ2

CNP/19(dof) = 1.267 with a p-value
of 0.193 for the leading shower and the χ2

CNP/19(dof) = 0.973 with a p-value of
0.491 for the sub-leading shower.

The spectra seen in Figure 8.7 closely mirror the shower energy scale of the

MiniBooNE LEE [21]. This makes the π0 sample ideal for verifying the simulation-

derived shower energy calculation is valid on data.

8.1.3 π0 Rest Mass Reconstruction

In order to further verify the shower energy calculation, it is necessary to use a

known physical quantity. For the π0 sample that quantity is the π0 rest mass of 135

MeV/c2 [6]. The π0 mass can be calculated using the equation:

M0
π =

√
4 sin2(

θ

2
)(E1)(E2) (8.4)

where E1 is the leading photon energy and E2 is the sub-leading photon energy. The

3D opening angle between the photons is θ.
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Figure 8.8 shows the resolution of θ. The opening angle resolution is defined as:

θres =
θreco − θsim

θsim
. (8.5)

This figure uses the same simulation samples as Figure 8.6 with all of the π0 box

cuts applied. The distribution is characterized in Table 8.1. The mean is close to

zero indicating little bias.

Figure 8.8: The opening angle (θ) resolution of the decay photons in the selected
π0 sample. The events have been scaled to match total data POT of 6.67 × 1020.
Resolution is defined in Eq.8.5. The dashed vertical line is included at θres = 0.0 for
reference.

The π0 invariant mass can now be reconstructed. The result of this reconstruc-

tion is shown in Figure 8.9. As in Figure 8.7, the total number of simulation events

has been scaled to match the total number of data events. A Gaussian fit to the

simulation gives a mean of 132.39 ± 1.716 MeV/c2 and a width of 39.8 ± 1.724

MeV/c2. A Gaussian fit to the data gives a mean of 137.51 ± 2.585 MeV/c2 and a

width of 48.96 ± 2.631 MeV/c2, both of which match the true value of 135 MeV/c2

within uncertainty and overlap with each other within uncertainty. This indicates
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good initial agreement between the data and simulation.

Figure 8.9: The calculated π0 mass for events passing all selection cuts. The MC
simulation samples have been normalized to total number of data events. The data
events are shown by black points. The number of events in each category is shown
in the legend in parenthesises. The χ2

CNP/19(dof) = 0.976 with a p-value of 0.486
for the MC prediction.

8.1.4 Best-Fit Shower PIU-to-energy Conversion Points

The π0 sample is next used to verify the agreement in data and simulation of

the shower energy scale using the known π0 invariant mass Mπ0 . Instead of simply

using the Qsh-to-MeV factor derived from simulated electrons, test points are found

representing which Qsh-to-MeV conversion factor (m) gives the best fit to Mπ0 = 135

MeV/c2. This is done for a sample of each simulation and data. The goal for each

is to find the value of m that yields a π0 mass distribution that peaks closest to

the true value of 135 MeV/c2. This value of m is then compared between data and

simulation and to the electron value found in Section 6.7.2 denoted here by me− .

Chapter 8 101



Katie Mason Tufts University

To find the optimal m for the sample, the following χ2 formula is minimized:

χ2 =
∑
i

(
(135[MeV/c2]−M i

π0)

dM

)2

. (8.6)

where i is each π0 event in the given sample, dM is 29.8 MeV/c2 based on the

width of a Gaussian fit to the good simulation π0 distribution (the NC π0 and CC

π0 categories in Figure 8.9). M i
π0 represents the π0 mass and is given in this case

by:

M i
π0 =

√
4 sin2(

θ

2
)(m× (Qsh)1)(m× (Qsh)2) (8.7)

where Qsh is the reconstructed shower charge and θ is the reconstructed opening

angle between the two showers.

The same χ2 formula is minimized for both MC simulation and data. The 1-σ

range is calculated on these fit points by looking at the range of m values for each

data and simulation which give a χ2 value satisfying the Wilks’ theorem condition

|χ2(m)−minm[χ2(m)]| < 1 [66]. The χ2 distributions can be found in Figure 8.10 for

simulation (a) and data (b). The resulting best fit m values can be seen in the first

two rows of Table 8.2. Agreement is seen between the data and the simulation best

fit points indicating that the simulation derived shower conversion factor is valid to

use on data.

Another important consideration is how closely the best fit m values derived

here match me− in Eq. (6.1). The best fit value of m derived from the π0 sample

has the potential to be affected by many factors. The largest of these factors is the

amount of background events selected. The π0 selection contains many background

events, which should not necessarily reconstruct as a π0 mass of 135 MeV/c2. To

account for this background in simulation a second fit is performed only using good

simulation events. In this instance good simulation is defined as simulated events

that pass all π0 cuts, have a simulated final state π0 , and have a reconstructed

vertex within 5 cm of the true simulated neutrino interaction vertex. A further cut

of π0 mass < 200 MeV is added to prevent poorly reconstructed events from having
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(a) Fit to all selected MC simulation events (b) Fit to selected data events

(c) Fit to good selected MC simulation
events

Figure 8.10: Total χ2 vs. m distributions for all MC simulation(a), data(b), and
good MC simulation(c) that pass the π0 selection criteria.

a large effect on the χ2.

To account for the background events in data, the optimal m found previously

is next shifted by the same amount that the MC m is shifted when backgrounds

are included (7.11× 10−4) as seen the last two rows in Table 8.2. Data (un-shifted)

are the results from minimizing Eq. 8.6 over all data points. Data (shifted) shows

the results of applying the shift found by comparing the fit over all simulation to

the fit over good simulation. This shift retains the excellent data and simulation

agreement. The shifted result on data only differs by 1.6% from the value seen in

Eq. 6.1. This indicates that, at the photon energy scale seen in the π0 sample,

the charge-to-energy conversion factor is valid. The disagreement seen between the

un-shifted data best fit and me− is therefore interpreted to be due to the purity in

the sample. Data and simulation agreement of these results and agreement to me−

is discussed further in Section 8.3 and examined in combination with the results
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from the Michel e− sample.

Table 8.2: The best value of m (MeV/Qsh) for each data and MC simulation sample
and the range found using Wilks’ theorem. Results are shown before accounting for
background (top two rows) and after (bottom two rows).

Sample m [MeV/Q] m range χ2/NDF
All MC 1.159× 10−2 [1.156× 10−2, 1.160× 10−2] 25310.3/9473 = 2.7
Data (un-shifted) 1.165× 10−2 [1.159× 10−2, 1.170× 10−2] 5984.7/1973 = 3.0
Good MC 1.230× 10−2 [1.225× 10−2, 1.234× 10−2] 4694.9/3039 = 1.5
Data (shifted) 1.236× 10−2 [1.230× 10−2, 1.241× 10−2] 5984.7/1973 = 3.0

8.2 The Michel Electron Sideband Sample

To validate the shower energy reconstruction at lower energy showers, a sample of

Michel electrons is used. Michel electrons are electrons resulting from muon decay

as shown in Figure 8.11. As discussed in Section 6.5, the DL vertices search for

the intersection of two ”prongs”. A muon decay into a Michel electron forms this

pattern and is therefore often reconstructed at the initial vertex stage of the event

reconstruction. Muons in MicroBooNE result from both the cosmic background and

CC νµ events. This selection will focus on electrons from CC νµ events. In order to

compare the simulation to data, Michel electrons coming from cosmic background

are treated as background to the desired selection.

This is the first time a Michel sample has been reconstructed in a LArTPC which

is dominated by Michels from νµ interactions. As in Section 8.1, the event selection

criteria for this sample is described first. Next, the data/simulation agreement in the

Michel shower energy spectrum is examined. Finally, the agreement of the Michel

sample with the physical Michel cutoff of mµ/2 = 52.8 MeV is assessed through

a fit procedure analogous to that performed in Section 8.1.4. The data and MC

simulation results of this fit agree, validating the use of the νe simulation-derived

Qsh-to-MeV on data. Both the data and νe simulation fits also show consistency

between the simulation-derived Qsh-to-MeV conversion value validating the absolute

shower energy scale of the reconstruction in the low energy region (. 50 MeV).
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Figure 8.11: The dominant Feynman diagram describing µ− decay.

8.2.1 Michel Electron Event Selection

The Michel electron sample has been chosen in order to validate the reconstructed

energy scale of lower-energy electrons. This scale below the energy of most electrons

in the DL-LEE search. Previous work has been performed in MicroBooNE using a

larger sample than presented here, as seen in Ref. [67]. The study presented here

uses a different selection and is designed to test the reconstruction of showers used

in the 1e1p selection utilized in this thesis.

Muon-Michel vertices are identified through the following requirements which

treat the longer of the two prongs as the candidate muon and the shorter as the

candidate electron.

• Two prongs at the vertex;

• Long prong track-length > 100 cm;

• Short prong track-length < 30 cm;

• Long track consists of < 20% SparseSSNet shower-like pixels;

• Short track consists of > 80% SparseSSNet shower-like pixels; and
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• φµ < 0.5 radians,

where φµ is the azimuthal angle of the muon with respect to the horizontal plane,

where φµ = 0.5 rad corresponds to downward-going muons.

The last requirement is particularly useful in removing cosmic backgrounds as

they are predominantly downward moving as seen in Figure 8.12. Lastly, in events

with more than one selected vertex, only the first vertex is kept.

Figure 8.12: φµ distribution for selected events in both data and MC simulation,
corresponding to ≈ 5.3 × 1019 POT. The selection cut requiring φµ < 0.5 radians
is indicated by the dotted line. The MC simulation samples have been normalized
to total number of data events. The data events are shown by black points. The
number of events in each category is shown in the legend in parenthesises. The
uncertainty bars are statistical only. The χ2

CNP/9(dof) = 0.822 with a p-value of
0.596 for the MC prediction.

For Michel electrons in events passing these cuts, the electromagnetic shower

reconstruction algorithm from section 6.7.1 is applied to find Qsh. This is then

converted to a shower energy via Eq. 6.1. Figure 8.13 shows the shower energy

distribution for Michel electrons in both data and simulation using this conversion.

Note that data here comes from the preliminary data set to ensure blindness to the

low-energy signal region at the time this analysis was performed. The simulated

Chapter 8 106



Katie Mason Tufts University

events are broken into various categories to indicate which type of event caused

the muon. This selection is the only one presented in this thesis which cannot

discount external neutrino events. These are neutrino interactions occurring outside

the detector volume where the final state particles travel into the detector. A muon

from such an event can decay into a Michel electron in the active volume. This

appears in the figures as “Ext. ν Background”.

Figure 8.13: Electron energy distribution for Michels in both data and MC simula-
tion after all selection criteria have been applied, corresponding to ≈ 5.3×1019 POT.
The MC simulation samples have been normalized to total number of data events.
The data events are shown by black points. The number of events in each category
is shown in the legend in parenthesises. The uncertainty bars here are statistical
only. The χ2

CNP/9(dof) = 0.608 with a p-value of 0.857 for the MC prediction.

One can see that the high-end tails for the shower energy distribution in both

data and simulation fall off around 60 MeV. The high energy tail above the true value

of 52.8 MeV likely is due to over estimation of shower energy reconstruction seen in

Figure 6.9. The shower energies of this sample are much lower than those seen in

the π0 sample. The good data/simulation agreement within statistical uncertainty

indicates that the shower algorithm performs well down to low energies.
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8.2.2 Best-Fit Shower PIU-to-energy Conversion Points

A validation of the absolute shower energy scale is now performed and the

data/simulation agreement with the Michel sample is analyzed in a manner analo-

gous to the π0 study described in Section 8.1.4. In this case, instead of fitting to

a single value, the spectrum is fit to function. The Michel spectrum cutoff is used

as the known physical quantity. The Qsh (reconstructed shower charge) spectrum

shown in Figure 8.14 is fit to the following five-parameter function representing this

cutoff:

f(x =
Qsh

Qcutoff

;σ,N) = N

∫ 1

0

(3y2 − 2y3)
1√

2πσ2
exp
−(x− y)2

2σ2
dy (8.8)

where:

σ = y

√
r2

1 +
r2

2

yQcutoff

+

(
r3

yQcutoff

)2

. (8.9)

Here, f(x) represents a parameterization of the true Michel spectrum convoluted

with a Gaussian representing charge resolution [68]. N is a floating normalization

parameter, and {r1, r2, r3} represent contributions to the charge resolution corre-

sponding to a constant noise term, a statistical charge-counting term, and a Gaussian

noise term, respectively. Qcutoff represents the cutoff of the Michel shower energy

spectrum, which, after the Qsh-to-MeV conversion, should correspond to the Michel

energy cutoff of mµ/2 ≈ 52.8 MeV. The integration over the variable y represents a

scan over the simulated shower charge spectrum. The expression is invariant under∫ 1

0
I(y)dy → Q−1

cutoff

∫ Qcutoff

0
I(Q∗sh/Qcutoff)dQ∗sh, where I(. . . ) represents the integrand

in Eq. 8.8.

There are five parameters (Qcutoff , N, r1, r2, r3) that need to be determined, mak-

ing this fit more complicated than the π0 version. f(x) is fit to the Michel spectrum

in data and simulation by varying all five parameters. This is done by minimizing

the χ2 which has a similar structure to the π0 fit:
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χ2(Qcutoff , N, r1, r2, r3) =
∑
i

(
(Oi − f(x = (Qsh)i

Qcutoff
;N, r1, r2, r3)

σi,stat.

)2

(8.10)

where Oi is the number of observed Michel events in Qsh bin i and σi,stat. =
√
Oi is the

Poisson error. The 2D confidence regions for Qcutoff versus the different resolution

parameter are found in Ref. [61]. They are calculated by fixing the remaining three

parameters at their best fit values and using Wilks’ theorem for two free parameters.

(Note that Wilks’ theorem confidence levels are discussed in great detail in Chapter

12). In data, the 1σ r1 contour prefers a fractional resolution of ≈ 0.3, while the 1σ

r2 and r3 contours are both consistent with zero. In simulation, the 1σ r1 contour

prefers a fractional resolution of ≈ 0.25. The 1σ r3 contour is consistent with zero,

but the 1σ r2 contour prefers a value of ≈ 13 [PIU]1/2.

Figure 8.14: Top: Michel shower charge sum spectrum in data and MC simulation
along with the corresponding best fit to eq. (8.8) (allowing only Qcutoff to vary
in the fit). This sample corresponds to ≈ 5.3 × 1019 POT. Bottom Ratio of the
data/simulation to the corresponding fit. The MC simulation and fit result here
have been normalized to match the data.

Chapter 8 109



Katie Mason Tufts University

Next, the parameters {N, r1, r2, r3} are fixed at the minimum χ2 values (re-

spectively for data/simulation) and a χ2 scan over Qcutoff is performed, this time

only including the tail of the Qsh spectrum (Qsh > 3000 PIU). The purpose of this

one-dimensional scan is to obtain the χ2 minimum and corresponding 1σ interval

on Qcutoff using Wilks’ theorem for one fit parameter [66]. Figure 8.14 shows the

observed Michel shower charge spectra in data and simulation along with their re-

spective best fits from the 1D scan.

Figure 8.15 shows χ2 as a function of Qcutoff . The Wilks’ theorem 1σ interval

on Qcutoff corresponds to the points for which χ2(Qcutoff)−min{χ2;Qcutoff} ≤ 1. In

order to get the charge to energy conversion factor m from Qcutoff , m = 52.8 MeV
Qcutoff

.

The best fit and 1σ intervals for m are given in Table 8.3 along with the χ2/NDF

of the best fit. One can see excellent agreement between data and simulation,

demonstrating the consistency of the shower reconstruction. The data/simulation

agreement and consistency with Eq. (6.1) demonstrated by this study are discussed

further in Section 8.3 in combination with the results from the π0 sample.

(a) (b)

Figure 8.15: χ2 from (8.10) as a function of Qcutoff , for data (a) and MC simulation
(b). This sample corresponds to ≈ 5.3 × 1019 POT. The 1 σ allowed regions from
Wilks’ theorem are shown in shaded regions below each curve.
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Table 8.3: The best fit values and 1σ ranges (via Wilks’ theorem) for m along the
χ2/NDF of that fit given by eq. (8.10) for both data and MC simulation. The fit
here is the one-dimensional scan over Qcutoff transformed into m as described in the
text.

Sample m [MeV/Q] m range χ2/NDF
Data 1.341× 10−2 [1.282× 10−2, 1.401× 10−2] 2.17/6 = 0.4
MC 1.308× 10−2 [1.279× 10−2, 1.334× 10−2] 2.73/6 = 0.5

8.3 Final Verification of the Shower Energy Cal-

culation

Both the data/simulation agreement of the shower reconstruction and the ab-

solute scale of the νe simulation-derived Qsh-to-MeV conversion are validated by

utilizing the π0 invariant mass of ≈135 MeV and the Michel electron spectrum

cut-off at ≈52.8 MeV. Comparison points were obtained separately for data and

simulation in each sample. These points are shown with statistical uncertainties in

Figure 8.16. The Qsh-to-MeV conversion factor or m values found in Section 6.7.2

for electrons, leading photons, and sub-leading photons are shown by shaded bands

in Figure 8.16. In principle, one expects agreement between the points and the elec-

tron and leading photon calibration line. The 1σ ranges in the m value from both

the data/simulation Michel cutoff study and the data/simulation π0 mass study

agree well with the best-fit m values from simulated electrons and leading photons.

Agreement with the sub-leading photon line is not necessarily expected because of

the reconstruction failure cases discussed previously.

Table 8.4 shows the agreement of data and MC simulation for each point, as well

as the agreement of each data and simulation point to the electron best fit value from

Eq. (6.1). It is seen here that the best fit m values agree between data and simulation

for each sample. This validates the use of the same simulation-derived Qsh-to-MeV

conversion value (me−) for both data and simulation. While the best fit m values

for each sample do not exactly match me− within statistical uncertainty, there are

factors that may affect this value. These include: detector response modeling, sub-

leading photon reconstruction in the π0 sample, and backgrounds in the Michel
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Figure 8.16: The data and MC simulation points from each the π0 sample and the
Michel e− sample are compared with the Qsh-to-MeV electron calibration line used
in the DL analysis from eq. 6.1. The Qsh-to-MeV photon calibration lines (eq.
8.2 and eq. 8.3) are also included for reference. The shaded regions represent the
statistical uncertainty of this given calibration line.

e− sample. Therefore, the 2-6% difference gives an estimate of the scale of the

possible data to simulation bias on the shower energy reconstruction. This size

effect is acceptable for use in this thesis analysis. The < 6.5% difference between

each (mMC , mData) and me− gives the scale of the detector systematic uncertainty

in this reconstruction process.

Table 8.4: Data and MC simulation best fit m values from each sample and com-
parison to the charge-to-energy conversion factor from eq. (6.1) (Qsh− to−MeV =
me− = 1.26± 0.01× 10−2). Uncertainties in ratios are calculated from the 1 σ range
of each value. The background adjusted values are used for the π0 sample.

Sample mMC [MeV/Q] mData [MeV/Q] mData/mMC mMC/me− mData/me−

π0 1.230+0.004
−0.006 × 10−2 1.236+0.005

−0.006 × 10−2 1.005+0.006
−0.006 0.984+0.009

−0.009 0.979+0.008
−0.009

Michel e− 1.31+0.03
−0.02 × 10−2 1.34+0.06

−0.06 × 10−2 1.025+0.051
−0.049 1.038+0.022

−0.024 1.064+0.048
−0.048

In addition, as shown in Figure 8.7 and Figure 8.13, the showers found in the
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two samples are at different energy ranges. The assumption has been made in

this analysis that the Qsh-to-MeV factor does not change with shower energy. The

samples cover the range of values of interest for the DL 1e1p analysis. The Qsh-to-

MeV value given in Eq. 6.1 is valid for EM showers in both data and simulation at

the energy ranges and precision relevant for the oscillation search presented in later

chapters.
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Chapter 9

Detector Effects and Systematic

Uncertainties

The predicted event spectra used throughout this work have a range of associ-

ated uncertainties that correspond to how well various aspects of the experiment

are known. These generally arise from five sources: the beam flux prediction, the

neutrino–nucleus interaction model, the hadron re-interaction model, the detector

simulation, and the finite statistics in the samples used to form the prediction. As

discussed in chapter 4, this analysis makes use of the covariance matrix (Eq. 4.1).

This chapter details the various uncertainties used in the analysis. For each type,

the covariance matrix and correlation matrix (Eq. 4.3) are shown for both null

oscillation and maximum oscillation.

The beam flux prediction uncertainties, the neutrino–nucleus interaction model

uncertainties, and the hadron re-interaction model uncertainties are reweightable.

Variations can be produced that are changes to the parameters in the model. These

variations are used to assigned a relative probability of each event in the sample.

This means that any variations of these types result in the same observed events,

but with different probabilities that the event occurs based on the underlying truth

information. Meanwhile the detector variations are non-reweightable, as they have

the potential to change how the events are reconstructed. This can also lead to
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changes in which events are selected depending on how these values shift. A large

category of this type of uncertainty is changes in the waveform read by the wires.

This can lead to variations in the reconstructed energy. These two major types of

systematic uncertainty are evaluated in different ways.

The systematic uncertainties used in this analysis use the same scheme as that

presented in Ref [37] (the deep-learning LEE paper) and Ref. [69]. However there are

a few key differences from the LEE analysis that affect the systematic uncertainties.

These are:

1. Change in 1e1p binning (discussed in Appendix D);

2. Weight capping of high systematic weights (discussed in Section D);

3. changing the 1µ1p selection to include the high stats π0 samples (change is
within simulation statistical error); and

4. removal of the background fitting performed on the νµ background to the 1e1p
selection (the largest change).

The removal of the background fitting in the 1e1p selection was necessary as the

backgrounds would need to be refit at each oscillation parameter. As a result the

background spectrum in the 1e1p sample is affected by statistical fluctuations and

the systematic covariance matrix for some variations has large bin to bin fluctuations.

There are many studies throughout this thesis that use systematic uncertainty

and have their own covariance matrix with the events binned in the kinematic vari-

able under investigation, but the general process is always the same. For illustration

purposes, the covariance matrices shown here are those used in the 3+1 sterile neu-

trino search. Events are binned by reconstructed neutrino energy for the ranges 1e1p:

[200-1200] in 100 MeV bins + 1200-1600 MeV + 1600-2400 MeV and 1µ1p:[250-

1200] in 50 MeV bins. It should also be noted that as the oscillation prediction

changes, the contributions to the covariance matrix from the different event types

changes. To illustrate this, both the null oscillation and maximum oscillation covari-

ance and correlation matrices are shown in this chapter. The next sections detail

how each type of systematic uncertainty is calculated. Section 9.6 then describes
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how all the types of systematic uncertainty are combined to make a total covariance

matrix.

9.1 Flux Modeling and Uncertainties

The systematic uncertainties on the flux prediction can be grouped into three

main sources: hadron production in the target, secondary hadron interactions, and

the properties of the magnetic focusing horn. The flux re-weighting method is based

on the techniques previously developed by the MiniBooNE collaboration [29] and

adapted to the MicroBooNE detector location [31].

The hadron production parameters comprise of changes to the rate and spectrum

of the hadrons that are produced when the proton beam interacts with the target.

The secondary hadron interaction parameters allow for variation in the cross sections

for the hadrons interacting with the target and focusing horn. The focusing horn

properties that are allowed to vary are the electric current and resulting magnetic

field of the horn.

Figures 9.1(a) and (b) show Mflux for the bins used in the 3+1 sterile neutrino

oscillation analysis. These matrices are presented in terms of reconstructed bins

where bins 0-9 are the original bins of the 1e1p selection used in the MiniBooNE

LEE analysis (Chapter 11 indicated by red line), bins 10-11 are the additional high

energy 1e1p bins (indicated by white line), and bins 12-30 are the 1µ1p bins. Figures

9.1(c) and (d) represent the corresponding correlation matrices.

9.2 Interaction Model Systematic Uncertainties

The neutrino interaction model is made up of a wide variety of re-weightable pa-

rameters that can be broken down into two broad categories: parameters associated

with each interaction type, and parameters for final state interactions (FSI) that

affect all neutrino interaction modes. Each interaction type has a set of parameters

that depends on the cross section model used. This set of uncertainties can also be
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(a) covariance matrix, no osc (b) covariance matrix, max osc

(c) correlation matrix, no osc (d) correlation matrix, max osc

Figure 9.1: Flux fractional covariance matrices for (a) null oscillation and (b) max-
imum oscillation, and the corresponding correlation matrices (c) and (d). Bins 0-9
are the original bins of the 1e1p selection (indicated by red line). Bins 10-11 are the
additional high energy 1e1p bins (indicated by white line). Bins 12-29 are the 1µ1p
bins. The z-axis has been capped to be consistent with each other for comparison.

thought of as the uncertainties on our neutrino background estimate and uncertainty

on the signal.

Events are re-weighted according to the properties of the neutrino’s interaction

with the nucleus and the interactions of the resulting particles as they exit the

nucleus. These parameters and their uncertainties are described in detail in Refs.

[49, 69]. The majority of GENIE model parameters are varied together using a

single weight calculator. The remaining parameters are:

• strength of the RPA effect in the Valencia CCQE model;

• shape of the CCQE cross section due to the axial form factor;

• shape of the CCQE cross section due to the vector form factor;
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• angular distribution of decaying nucleon pairs in MEC events;

• shape of the CC MEC cross section in q0 − q3;

• angular distribution of decaying nucleon pairs in MEC events;

• two parameters for the angular distribution in ∆ decays;

• two parameters for the normalization of CC/NC coherent pion production;
and

• two parameters for corrections to the neutrino–nucleon elastic scattering form
factors.

The largest uncertainties on the interaction model come from the variations

related to CCQE and final state interactions (FSI). These are all encompassed in

the GENIE weight calculator. The machinery for performing the re-weighting for the

interaction model systematic uncertainties relies on code provided by GENIE which

was combined with code developed in MicroBooNE [43, 45, 49]. The covariance and

correlation matrices from the neutrino interaction model uncertainties are shown in

Figure 9.2.

9.3 Hadron Re-Interaction uncertainties

The systematic uncertainties on hadron re-interactions consider variations in the

hadron–argon interaction cross sections for protons, π+, and π−. These are uncer-

tainties on any secondary interaction of these particles after they leave the nucleus.

Hadron re-interaction systematic uncertainties are evaluated by re-weighting events

according to the Geant4 truth information that describes the trajectories of the

hadrons after they leave the argon nucleus [70].

The covariance and correlation matrices from the re-interaction model uncer-

tainties are shown in Figure 9.3. The contribution from this type of uncertainties is

sub-dominant when compared to the other systematic contributions.
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(a) covariance matrix, no osc (b) covariance matrix, max osc

(c) correlation matrix, no osc (d) correlation matrix, max osc

Figure 9.2: Neutrino interaction model fractional covariance matrices for (a) null
oscillation and (b) maximum oscillation, and the corresponding correlation matrices
(c) and (d). Bins 0-9 are the original bins of the 1e1p selection (indicated by red
line). Bins 10-11 are the additional high energy 1e1p bins (indicated by white line).
Bins 12-29 are the 1µ1p bins. The z-axis has been capped to be consistent with
each other for comparison.

9.4 Detector Variations

The detector-related systematic uncertainties are evaluated using a set of sam-

ples in which the detector simulation has been varied. Comparisons between these

modified samples and the nominal simulation are used to estimate the uncertainty

on the prediction. The variations include:

1. modifications in the amplitude and width of signals on the wire waveforms as
a function of x position;

2. (y, z) position and detector angles θXZ and θY Z of the local particle trajec-
tory [71];

3. variations in the electron-ion recombination parameters;
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(a) covariance matrix, no osc (b) covariance matrix, max osc

(c) correlation matrix, no osc (d) correlation matrix, max osc

Figure 9.3: Re-interaction fractional covariance matrices for (a) null oscillation and
(b) maximum oscillation, and the corresponding correlation matrices (c) and (d).
Bins 0-9 are the original bins of the 1e1p selection (indicated by red line). Bins
10-11 are the additional high energy 1e1p bins (indicated by white line). Bins 12-29
are the 1µ1p bins. The z-axis has been capped to be consistent with each other for
comparison.

4. an alternative electric field map in the TPC; and variations in the light yield,
the light attenuation, and the Rayleigh scattering length.

The total detector covariance matrix is the sum of the matrix from each variation.

The samples used to evaluate these uncertainties have high statistical uncertainty.

To get around that, this analysis uses a method to reduces the statistical fluctuations.

The underlying true spectra (e.g., the neutrino energy spectrum) are expected

to be smooth, so a kernel density estimator algorithm [72] is used to estimate most

contributions to our detector variation predictions. For a given detector variation

sample, each event is assigned a kernel function with some width, and the final

Chapter 9 120



Katie Mason Tufts University

spectrum for this variation is obtained by summing all kernels. This is given by:

f(x) =
1

Nh

N∑
i

K(x− xi;h) (9.1)

where K is the kernel function, h is the bandwidth of the Kernel, and xi is the

value of the data point in the sample. N is the number of simulated events. KDE

smoothing works well if N is O(5k). The kernel used here is the Epanechnikov kernel

as it gives the smallest mean squared error.

K(x;h) =


3
4
(1− x2

h2 ) −h < x < h

0 otherwise

(9.2)

This allows a reduction of the effect of the statistical fluctuations in the spectrum

obtained from each detector variation sample without making any other assumptions

about the impact of the variation on our analysis variables.

Figure 9.4 shows the effect of this smoothing on one variation (Run 3 variations

on the space-charge effect with the 1e1p selection applied). The reconstructed energy

distribution of selected events in the sample (POT scaled) is shown in (a) along

with the smoothed version. Then the resulting covariance matrix for this variation

is shown.

The only case where KDE smoothing is not used for evaluating the detector

response uncertainties is the misidentified νµ backgrounds to the 1e1p prediction.

The limited statistics in the detector variation sample combined with the high purity

of the 1e1p selection leave us with too few events to obtain robust results from

the KDE algorithm. A 20% systematic uncertainty is instead assessed on these

backgrounds, based on the magnitude of the differences observed in the detector

variation samples within the limited statistics available. This uncertainty is treated

as uncorrelated between the analysis bins. This will have a small effect compared to

the O(100%) Poisson statistical errors on the number of muon neutrino and neutral

current events in each 1e1p analysis bin. The covariance and correlation matrices
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(a) Reconstructed Eν (MeV ) (b) covariance matrix

Figure 9.4: An example use of KDE smoothing using the Run 3 SCE effect sample.
This sample has the 1e1p selection applied and uses the reconstructed Eν (MeV )
as the variable of interest.

from the detector variations are shown in Figure 9.5.

9.5 Uncertainty from Finite Statistics

The predicted spectra are also subject to statistical uncertainties due to finite

statistics in the samples used to form the prediction. The statistical uncertainty in

each bin is calculated as

σpred stat =

√∑
i

w2
i (9.3)

where the sum runs over all of the events in the bin and wi is the weight of each event,

including the scaling factor needed to match the data POT, the cross section model

tune weight, and the π0 weights where applicable. The covariance and correlation

matrices from the simulation statistical uncertainties are shown in Figure 9.6.
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(a) covariance matrix, no osc (b) covariance matrix, max osc

(c) correlation matrix, no osc (d) correlation matrix, max osc

Figure 9.5: Detector variation fractional covariance matrices for (a) null oscillation
and (b) maximum oscillation, and the corresponding correlation matrices (c) and
(d). Bins 0-9 are the original bins of the 1e1p selection (indicated by red line). Bins
10-11 are the additional high energy 1e1p bins (indicated by white line). Bins 12-29
are the 1µ1p bins. The z-axis has been capped to be consistent with each other for
comparison.

9.6 Total Covariance Matrix

The total fractional covariance matrix is then a sum of the covariance matrices

for each type of uncertainty and is:

Mfrac = Mflux +Mxsec +Mreint +Mdet +Mstat (9.4)

where Mflux,Mxsec,Mreint,Mdet,Mstat are the contributions from the flux, neutrino

interaction, hadron re-interaction, detector variations, and limited statistics respec-

tively. This total fractional covariance matrix is shown in Figure 9.7.

The contributions of each type of uncertainty to the total spectrum is shown in
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(a) covariance matrix, no osc (b) covariance matrix, max osc

(c) correlation matrix, no osc (d) correlation matrix, max osc

Figure 9.6: Simulation statistical fractional covariance matrices for (a) null oscilla-
tion and (b) maximum oscillation, and the corresponding correlation matrices (c)
and (d). Bins 0-9 are the original bins of the 1e1p selection (indicated by red line).
Bins 10-11 are the additional high energy 1e1p bins (indicated by white line). Bins
12-29 are the 1µ1p bins. The z-axis has been capped to be consistent with each
other for comparison.

Figure 9.8. This has been broken up into the 1e1p and 1µ1p spectrum. The result is

shown for both no oscillation and maximum oscillation. The dominant uncertainties

are detector variations, flux uncertainty and neutrino interaction (Xsec in the figure

legend) uncertainty.

The total systematic covariance matrix (M) can be calculated by:

Msys =
∑
i,j

Mfrac,ijµiµj (9.5)

where µi is the expected number of events in the bin.

To account for the statistical error between the observation and the prediction,

the Combined Neyman-Pearson method is used [27]. This method has been shown
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(a) covariance matrix, no osc (b) covariance matrix, max osc

(c) correlation matrix, no osc (d) correlation matrix, max osc

Figure 9.7: Total fractional covariance matrices for (a) null oscillation and (b) max-
imum oscillation, and the corresponding correlation matrices (c) and (d). Bins 0-9
are the original bins of the 1e1p selection (indicated by red line). Bins 10-11 are the
additional high energy 1e1p bins (indicated by white line). Bins 12-29 are the 1µ1p
bins. The z-axis has been capped to be consistent with each other for comparison.

to reduce bias in cases of low event statistics when used in goodness of fit tests

when compared to the individual Neyman or Pearson methods. Therefore the total

covariance matrix becomes:

Mtot = Msys +Mstat (9.6)

where Mstat is zero except for the diagonal. The diagonal terms are:

Mstat:i,i =
3

1
xi

+ 2
µi

(9.7)

where xi is the observed number of events. This Mtot is the covariance matrix form

used throughout this analysis.
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(a) 1e1p selction, no osc (b) 1e1p selction, max osc

(c) 1µ1p selction, no osc (d) 1µ1p selction, max osc

Figure 9.8: Systematic uncertainties to the 1e1p selection (a,b) and the 1µ1p se-
lection (c,d) broken up by contribution type. The y axis has been set to the same
value (0.6) in all plots.

The process outlined here is used in the rest of this thesis to apply uncertainties

to the simulation for a variety of selections and reconstructed variables. Addition-

ally, in the 3+1 oscillation study, it must be recalculated for each set of oscillation

parameters as different contributions will have different event probabilities. The

contributions from the flux, neutrino–nucleus interaction model, and the hadron

re-interaction model need to be re-scaled depending on the relative contributions of

the different neutrino interactions at different parameters.
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Chapter 10

The π0 Background to νe CCQE

1e1p

Chapter 8 described the π0 selection and used it to verify the shower reconstruc-

tion on data. However in that study, all distributions shown were area-normalized

to the number of data events. The π0 sample has further use to the analysis as it is

an important background to the 1e1p selection. Events with one decay photon close

to the neutrino interaction vertex and one further away may be mis-reconstructed

as 1e1p.

Section 10.1 describes events with a π0 in the final state. Section 10.2 shows

the π0 selection again but without normalization of the prediction and with the

systematic errors applied as described in Chapter 9. Then Sections 10.3, 10.4, 10.5,

and 10.6 show the use of this sample as a sideband including: determining π0 event

weights due to disagreement between data and prediction, a cross check of the MPID

network, and modeling 1γ1p events.

10.1 π0 events in MicroBooNE

Figure 10.1 shows the different mechanisms that create π0 ’s in MicroBooNE.

Simulation events with a simulated π0 from the BNB simulation sample that pass

the π0 selection were analysed for this plot. There are five different mechanisms at
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play: quasi-elastic scattering, resonant production, deep-inelastic scattering, coher-

ent production, and meson exchange current interactions. Some of these interaction

types were described in Section 2.2, but are discussed here in the context of events

creating a π0 .

Figure 10.1: Bar graph illustrating the interaction types which produce π0 ’s in
MicroBooNE.

π0 events here are classified as any event with a π0 . Therefore a subset of events

may also come from π± events that charge-exchange into a π0 . These are the quasi-

elastic and meson exchange current interactions, which make up a relatively small

contribution of selected events. The π0 events are primarily produced through the ∆

resonance (hence the use of reconstruction of the ∆ invariant mass as a π0 selection

cut in Section 8.1.1). In resonant π0 production, a neutrino interacts with a neutron

or a proton which excites the nucleon into a ∆0 or ∆+. This delta then decays back

into a neutron or proton, emitting a π0 [73]. This mechanism is:

ResonantNC : νN → ν∆0 → νπ0N (10.1)

ResonantCC : ν(n/p)→ µ−∆+/− → µ−π0(p/n) (10.2)

Figure 10.2 shows the Feynman diagrams for the NC π0 resonant and CC π0 resonant
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channels.

(a) NC (b) CC

Figure 10.2: Feynman diagrams showing the π0 resonant channel

The second largest source of π0 events are deep inelastic scattering events (DIS)

[74]. DIS was discussed in Section 2.2. The complicated final state topologies

may include π0 ’s. This cross-section is difficult to model as it involves complicated

nuclear effects. More experimental data is needed to fully model this process, though

recent progress has been made based on results from the MINERvA collaboration

[75].

The final mechanism for NC π0 events is coherent production. In this case a π0

is created from the sum of scattering from all the nucleons

Coherent : νA→ νAπ0 (10.3)

This makes up a small fraction of the simulated events.

Regardless of how the π0 is produced, it very quickly decays into two photons

(τπ0 ∼ 8e10−17 s [73]). These decay photons may be mistakenly identified as a single

electron if one shower is mis-reconstructed or one shower exits the detector making

this an important background to model correctly. This chapter shows the use of the

π0 selection as a sideband in the 1e1p selection, the calculation and applications of

π0 events in simulation, and a study of 1γ1p-like π0 events. Note that much of the
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work described here was recently published in Reference [37]. The relevant sections

of that paper were written by the author of this thesis and are repeated here with

additional details.

10.2 The π0 Sideband

The first use of this sample is to check the agreement of simulation with data.

Using the selection presented in Section 8.1.1, the simulation events are POT scaled

to match the data POT. Here and in other comparisons to data, the simulation has

been tuned within the MicroBooNE collaboration using fits to the T2K “CCpi0” νµ

data. The νe cross section assumes the same underlying cross section parameters;

hence it differs from the νµ cross section mainly due to lepton-mass threshold effects

[49].

The resulting π0 mass peak is shown in Figure 10.3 with flux, cross-section,

and detector systematics as described in Chapter 9. Both the standard simulation

samples and the high POT π0 samples are used. These samples were described in

detail in Table 6.1. The standard simulation events that match the type of events

in the π0 sample are removed and replaced with those from the high POT sample.

This prevents overlap between the types of events in each sample. If this step was

not taken, some π0 events would essentially be double counted. The POT of each

simulation sample is independently POT scaled to match the data. Adding in the

high POT π0 sample therefore has no impact on the shape of the distributions, but

decreased the simulation statistical error.

The simulation has been broken into various categories based off the type of

interaction. As in Section 8.1.1,”NC π0 ” are neutral current π0 events with a well

reconstructed vertex, which is a vertex within 5 cm of the true generated vertex. ”CC

π0 ” are defined similarly for charged current π0 . ”Offvtx π0 ” are π0 events with

poorly reconstructed vertices. There are 4 background categories without a true

π0 . These are divided into Offvtx, νµ backgrounds, νe backgrounds, and cosmic

backgrounds. These have been separated in some figures to make the contribution
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Figure 10.3: Shows the calculated π0 mass for events passing all selection cuts.
The simulation has been normalized to the run 1,2, and 3 data POT. Flux, cross-
section, and detector systematics are included. The top panel shows the event count
histogram while the bottom shows the ratio of data/simulation(MC) in each bin.

of each type clear. Figure 10.3 also shows the full systematic uncertainty on the

simulation.

One can further test the reconstruction quality by reconstructing the Delta

baryon invariant mass as resonant interactions are the dominant interaction types.

This variable is used in the π0 selection (Section 8.1.1). Recall that the ∆ can decay

into a proton+π0 . The reconstructed neutrino vertices used in this analysis target

events with two prongs. In a resonant event those two prongs may be the proton +

one decay photon. This reconstruction of the ∆ invariant mass is then performed by

finding the invariant mass of the 4-vector of the π0 from the reconstructed photons,

and the track identified as the proton by 3D reconstruction. The result is shown in

Figure 10.4. A convincing peak is observed. There is a tail of high invariant mass

that represents poorly reconstructed events and events from other interaction types.

In each of these distributions, the ratio of the number of data events over the

number of simulation events is 0.87 ± 0.23. This agrees with 1.0 within uncertainty,
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Figure 10.4: Shows the calculated Delta baryon mass for events passing all selection
cuts. The simulation has been normalized to the run 1,2, and 3 data POT. Flux,
cross-section, and detector systematics are included. The top panel shows the event
count histogram while the bottom shows the ratio of data/simulation(MC) in each
bin.

but is low. It can be seen in the lower ratio plot that the ratio in each bin also

agrees with 1.0 within uncertainty. As this effect is seen across various MicroBooNE

analyses [76], this indicates that there is a real effect due to π0 production mis-

modeling. In order to account for this here, a re-weighting scheme has been applied.

Simulated π0 events have been scaled based on the true π0 momentum of the event.

The reconstructed π0 momentum distribution is shown in Figure 10.5. In the

bottom panel it is noted that as momentum increases, the ratio in general decreases.

This further motivates the use of π0 momentum for determining weights that can

be used to correct the simulation prediction.
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Figure 10.5: Shows the calculated π0 momentum for events passing all selection
cuts. The simulation has been normalized to the run 1,2, and 3 data POT. Flux,
cross-section, and detector systematics are included. The top panel shows the event
count histogram while the bottom shows the ration of data/simulation in each bin.

10.3 Determination of π0 weights

As the weighting is performed in terms of π0 momentum, it is important to first

look at the performance of this reconstructed kinematic variable. Fig 10.6 shows

the momentum resolution of selected π0 events. This distribution gives confidence

in using this variable, even though the sub-leading photon energy is often under

reconstructed as shown in Figure 8.6. The resolution is symmetric.

The first step in this process is to break the sample up into CC and NC events

as one cannot assume the weights are the same. This is done by making use of

the MPID network described in Section 6.8. The MPID muon score is used here to

separate out the CC and NC π0 events. Figure 10.7 shows this score distribution.

The NC π0 distribution peaks near zero in this variable, while the CC π0 distribution

peaks near one making this a useful variable to separate them.

A cut on the MPID muon score can then be used to differentiate the two samples.

Figure 10.8 shows what the purity of each sample is as the cut value is changed.
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Figure 10.6: The pi0 momentum resolution (reconstructed - true)/true for runs
1+2+3 simulation samples. The black dashed line indicates resolution equals 0.0 to
help guide the eye.

Figure 10.7: This plot shows the MPID muon score for run 1, 2, and 3. The
simulation POT is normalized to the POT of the data. Flux, cross-section, and
detector systematics are included. The top panel shows the event count histogram
while the bottom shows the ratio of data/simulation in each bin.
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Figure 10.8: This plot shows the purity ((CC or NC π0 )/total π0 ) of both the NC
and CC pi0 samples at various cut values of the MPID muon score.

Here purity is the number of CC or NC events out of all of the selected π0 events

with the given cut value. A cut value of 0.05 was chosen as this keeps the purity

of both samples above 0.60. Events below this value are considered to be the NC

sample and events above make up the CC sample. The CC and NC samples are

then treated separately to determine the simulation weighting.

The simulation in each sample is then broken into two categories: good and

background. Good simulation events for the purpose of this re-weighting study

includes all selected events which contain a true π0 in the final state. Simulation

and Data from runs 1, 2, and 3 are used in this process as well as the specialized high

POT π0 samples. The final re-weighting is done based on a fit to the distribution

R in π0 momentum. R is defined as:

R =
(Data - background) : unfolded reco momentum

(Good simulation Events): true momentum
(10.4)

The numerator represents ”good” data events, with the reconstructed distri-

bution unfolded back to truth. To get the data minus background reconstructed
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Figure 10.9: This plot shows the R distribution in terms of π0 momentum for each
the NC π0 and CC π0 samples. The best fit polynomials from equations 10.5 and
10.6 are shown. The error bars are statistical only.

momentum distribution, the expected background based of simulation is removed

from each bin. In simulation, ”good” events are considered to be all those with a

true π0 in the final state, both on and off vertex.

Unfolding was performed using the RooUnfold package [77]. The Bayes method

is used with 4 iterations. The unfolding matrix was constructed using the simulation

events. The resulting R distribution is shown in Figure 10.9. A polynomial has been

fit to each distribution. These fits give re-weighting formula where p is the true π0

momentum in MeV . The resulting formulas are:

CC Weight = (3.43e10−6)p2 − (0.0039)p + 1.784 (10.5)

NC Weight = (1.89e10−6)p2 − (0.0032)p + 1.442 (10.6)

The weight formula is then applied to every simulation event that contains a true

π0 . The resulting π0 reconstructed mass distribution is seen in Figure 10.10. The

reconstructed π0 momentum is shown separately for the NC π0 and CC π0 samples in

Figure 10.11. These figures were created for use in Ref [37]. The weighted simulation

is indicated by the red dashed line on the plot. Additional π0 kinematic plots with

the weights applied can be seen in Appendix C.
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Figure 10.10: The reconstructed π0 mass variable for events passing the π0 selection
criteria. The colored stacked histograms represent the standard simulation (MC)
prediction. The red dashed line is the total weighted (wMC) prediction. The data
points are shown by the black points. The lower two panels show the data/MC
ratio and data/wMC ratio respectively. The χ2

CNP/20(dof) = 0.709 with a p-value
of 0.821 for the MC prediction. The χ2

CNP/20(dof) = 0.778 with a p-value of 0.744
for the wMC prediction [37].

A Gaussian fit to the weighted Monte Carlo simulation in Figure 10.10 gives

a mean of 136.18 ± 1.716 and a width of 41.09 ± 1.724. A Gaussian fit to the

data in Figure 10.10 gives a mean of 129.59 ± 2.585 and a width of 43.83 ± 2.631.

Additionally, a p-value of 0.757 is calculated, indicating good agreement between

data and MC. This weight formula will further be applied to selected 1e1p and 1µ1p

events which contain a true π0 in the final state. Further studies on the weights

used can be found in Appendix C.
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(a) CC Sample (b) NC Sample

Figure 10.11: Reconstructed π0 momenta for the CC (a) and NC (b) samples. The
colored stacked histograms represent the standard simulation (MC) prediction. The
red dashed line is the total weighted (wMC) prediction. The data points are shown
by the black points. The lower two panels of each figure show the data/MC ratio and
data/wMC ratio respectively. In the CC sample, the χ2

CNP/20(dof) = 0.619 with a
p-value of 0.902 for the MC prediction and the χ2

CNP/20(dof) = 0.405 with a p-value
of 0.991 for the wMC prediction. In the NC sample, the χ2

CNP/20(dof) = 0.555 with
a p-value of 0.944 for the MC prediction and the χ2

CNP/20(dof) = 0.490 with a
p-value of 0.972 for the wMC prediction [37].

10.4 Application of π0 weights

The π0 weights described above are applied to all events with a true π0 in the

final state in all three selections: the 1µ1p selection, the 1e1p selection, and the π0

selection. Note that in the 1µ1p selection, π0 events are a very small background so

the effect is negligible.

Figure 10.12 shows the effect of the different NC π0 fit functions on the 1e1p

backgrounds. Appendix C shows studies into the use of these alternate fit functions.

”Standard” here refers to the 2nd degree polynomial that was chosen. The total

number of backgrounds with different fitting schemes are (run 1+2+3 POT scaled)

are:

• 10 bin 2nd degree polynomial: 1.03

• 5 bin 2nd degree bolynomial: 1.29
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Figure 10.12: Effect of different NC π0 fit functions on the NC π0 backgrounds to
the 1e1p

• 5 bin line+line: 1.21

• Normalization: 1.35

In the case of more than one π0 , the particle used in determining the weight is

that of the highest momentum. π0 weights have been applied to all distributions for

both 1µ1p and 1e1p selections (and side bands) throughout this document unless

otherwise noted.

Further, while it is possible in principle to reduce the uncertainties on events with

a π0 in the final state when the weighting is performed it is not necessary to do at

this point. This is because the uncertainty is currently dominated by flux and cross

section systematics, so reducing the uncertainty in the fit values will have a small

impact on the total uncertainty. The 1e1p selection is also limited by statistical

uncertainty.

10.5 Muon MPID distribution cross-check

Another use of the π0 sideband is to examine the effect on π0 events of one of

the specific cuts in the 1e1p selection (Chapter 11). This cut is the use of the ratio
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of MPID image scores for photons and electrons to identify potential background

events with π0 ’s in them for the purpose of the 1e1p selection. Specifically,the goal

of this selection criteria is to help remove the π0 events that did not have a second

reconstructed shower from the 1e1p selection.

The distribution of the score ratio of γ/(γ + e) is in Figure 10.13 for events in

the π0 selection. The cut value that will be used will remove events in the 1e1p

selection with this ratio is > 0.67 (shown on the plot). The value of the cut was

chosen based on MPID simulation results, not on the π0 sample. It is implemented

as removing events with γ/e > 2, but since the γ/e tail is long leading to many

empty bins, it is more convenient to present the ratio γ/(γ + e) to demonstrate the

data-to-simulation agreement. This is a very loose criteria, and one can see that

many π0 ’s actually pass this cut. This is likely due to the presence of delta rays

or Michel electrons in the event image. Figure 10.13 is a useful reference to see

data/simulation agreement in this variable. There are also no unexpected features.

There is good shape-agreement between data and simulation.

(a) log(γ/e) (b) γ/(γ + e)

Figure 10.13: The distributions of MPID image scores presented as log(γ/e) (a) and
γ/(γ + e) (b) for events passing the π0 selection. simulation has been normalized to
the data in for the purpose of determining shape agreement.
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10.6 Isolating Events Similar to 1e1p

The π0 sample finally provides a useful check of our reconstruction for events

with a proton and a shower attached at the vertex. This is done by applying a cut

on the muon MPID score < 0.1. The muon MPID distribution can be found in the

above section (Figure 10.7). The DL reconstruction finds events with two prongs

at the vertex. In the case of the π0 selection, the majority of events have a muon

produced in a CC neutrino interaction. The DL vertex finding algorithm. then

often finds 1 muon and 1 of the 2 photons connected at the vertex, with the other

reconstructed photon disconnected from the vertex. A small proton is often missed

in these events. In other cases a muon and proton are found with 2 disconnected

showers.

Once these types of events are removed by removing events with a muon, the

selection is then dominated by events with 1 proton and 1 photon connected at the

vertex. This topology matches the 1e1p topology and therefore allows us to isolate

these events and analyze the data/simulation agreement. This sample is similar to

the NC sample used to determine the π0 weights. Due to the reconstruction process

the NC π0 reconstructed events often have the topology of 1γ1p at the vertex, with

a second disconnected γ.

First, the proton energy and the energy of the leading shower is examined. The

proton is the track reconstructed in the event, since events with muon tracks were

removed. π0 weights discussed above are applied to the simulation, and only simu-

lation stat errors are used. There is excellent data/simulation agreement for both

the proton in Figure 10.14 and the leading shower in Figure 10.15.

Next, treating the leading shower as the electron, ignoring the second shower,

and using the proton, the energy of the neutrino is reconstructed as though it were

a 1e1p event using Erange
ν as discussed in Section 6.9. The result can be seen in

Figure 10.16. There is agreement across the full energy spectrum. This study gives

us further confidence in our ability to reconstruct the energy of low-energy 1e1p

events.
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Figure 10.14: The calculated proton energy for events passing all selection cuts. The
simulation POT has been normalized to the run 1,2, and 3 data sets POT and then
re-weighted in true π0 momentum.

Figure 10.15: The calculated electron energy for events passing all selection cuts.
The simulation POT has been normalized to the run 1,2, and 3 data sets POT and
then re-weighted in true π0 momentum.
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Figure 10.16: The calculated neutrino energy for events passing all selection cuts
(treating the event as a 1e1p event). The simulation POT has been normalized to
the run 1,2, and 3 data sets POT and then re-weighted in true π0 momentum.
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Chapter 11

ν CCQE 1l1p Selection

Now that the reconstruction is complete and there is a more complete under-

standing of the backgrounds and systematic uncertainty, we can proceed on to the

target event selection. This chapter outlines the selection and shows a comparison

of the data to the MiniBooNE low-energy excess (LEE). Section 11.1 describes the

BDT ensemble formalism used to make the selections. Section 11.2 describes the

selection itself. Finally, Section 11.3 compares these data selections to a specific

MiniBooNE low-energy excess model.

11.1 The BDT Ensemble

The selections shown here utilize Boosted Decision Trees (BDTs). Decision trees

are a machine learning model. It has a flowchart like tree structure. Each node

denotes a feature of the data set and each decision make can be thought of as a

branch. In the application used here the output is a score from 0 to 1 indicating

the probability that a given event is the sought after type (1e1p or 1µ1p final state

topology). The ”boosted” part of a BDT means that instead of a single tree, inside

the algorithm a series of decision trees are used. The first tree is trained on all the

events, then a second tree is trained on a smaller sample, half of which were classified

by the first tree [78]. The next tree is trained on examples where the first two give

differing results, and so on. This method has been used in many HEP experiments,
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including MiniBooNE [79].

One of the main problems that arises with BDTs is over-fitting. This means that

the BDT has memorized the content of the training set, but hasn’t actually learned

any features. So, when it is given a new example not in the training set it fails. An

ensemble of BDTs is one way to combat this. In an ensemble, a number of BDTs are

trained in parallel where each BDT is trained on a random subset of the simulation

sample. This reduces both bias and variance in the final results when compared to

a single BDT [80].

This implementation of BDTs is performed using Python XGBoost library [81].

Both selections are trained independently on each of the three runs resulting in six

BDT ensembles. The 1µ1p BDTs contain 10 individual trees and the 1e1p BDTs

contain 20. Each individual tree is trained on 50% of the simulation samples for

that run presented in Table 6.1. The 1e1p ensembles are also trained on a sample of

high stats low energy (Eν < 500 MeV ) νe intrinsic events with: Run 1 = 6.05 ×1023

POT, Run 2 = 7.49 ×1023 POT, and Run 3 = 5.97 ×1023 POT. This was done to

enhance performance in the MiniBooNE excess range. Data is run through all trees

in a sample and the score is taken as the average from each tree. When using the

ensemble on simulation samples, only BDTs that don’t contain a given event in its

training sample are included when calculating the average BDT score.

11.2 11lp Selection

The next step is to perform a selection on the simulation samples and data to

isolate the two samples of 1e1p and 1µ1p events. Recall in Section 6.10, a general

preselection has been applied to both the data and simulation samples at this point

and the 1e1p and 1µ1p selections have been broken up by an orthogonality cut.

Following the preselection, each use ensembles of BDTs trained independently for

each date run for each selection.

Each BDT categorizes events on the basis of kinematic measurements. These

variables are related to transverse momentum, energy, angle, and combinations that
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test the correlations between these variables. Four measurements related to ioniza-

tion charge are also included: total charge within 5 cm of the vertex (both), shower

pixel fraction in the electron prong (1e1p only), shower pixel fraction in the proton

prong (1e1p only), and the ratio of the number of shower pixels in the image to the

number of shower pixels connected to the electron prong(1e1p only) . The 1µ1p

BDT ensemble has an additional transverse φ angle variable in order to capture

information on planarity of the event. Table 11.1 lists all of these variables and

defines which selection the variable is used in. They have been grouped by type.

The BDT selection relies heavily on the kinematic variables. These help select

specifically for two-body scattering. Table 11.2 defines many of the variables used

in the BDTs. Figure 11.1 shows the importance of various BDT training variables

in each selection for Run 1 (similar behaviour was seen for Runs 2 and 3). Variables

with a higher importance have more impact on the final BDT ensemble score of an

event.

The most important variables in the 1e1p BDT have to do with the shower

variables. Importance here means having the largest effect on the BDT scores. This

is likely due to to a large number of backgrounds not containing a well reconstructed

shower. Meanwhile, the most important variable in the 1µ1p BDT ensemble is the

transverse momentum ratio. The next two important variables are xBj and QE

consistency. The transverse momentum ratio is expected to be near zero for two-

body scattering since the neutrino enters along the z axis. Similarly, xBj and QE

consistency are dependent on how well two-body scattering describes the event,

making them powerful variables.

The BDT scores are normalized to the range [0, 1], where higher values indicate a

higher probability for the event to come from a true interaction of the type targeted

for the selection. The analysis requires the average BDT score within the ensemble

to be > 0.95 for the 1e1p ensemble BDT and > 0.50 for the 1µ1p BDT.

Finally the selections have one more set of final selection criteria designed to

remove common backgrounds that pass the BDTs:
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Table 11.1: The suite of BDT training variables. Variables used in the 1µ1p BDTs
and the 1e1p BDT are noted. The analysis has been designed with substantial
variable overlap. If a ∗ appears, the variable is used in the boosted frame.

Variable Used in 1µ1p BDT Used in 1e1p BDT
Variables Used in BDTs, Based on Ionization

Charge within 5 cm of vertex Yes Yes
Shower charge in event image /
shower charge clustered as electron No Yes
Proton shower fraction No Yes
Electron shower fraction No Yes

Variables Used in BDTs, Related to Energy Measurements
Neutrino Energy Yes Yes
Energy of electromagnetic shower No Yes
Lepton length Yes Yes
Proton length No Yes
pz − Eν No Yes

Variables Used in BDTs, Related to 2-Body Scattering Consistency
Bjorken’s x Yes * Yes *
Bjorken’s y Yes * Yes *
QE Consistency Yes * Yes *
Q0 Yes Yes
Q3 Yes Yes

Variables Used in BDTs, Related to Transverse Momentum
αT Yes Yes
Event pT Yes Yes
Event pT/p (“PTrat”) Yes Yes
φT Yes No

Variables Used in BDTs, Related to Angles
Proton φ Yes Yes
Proton θ Yes Yes
Lepton φ Yes Yes
φp − φ` Yes Yes
θp + θe No Yes

Variables Useful for Comparison, Not Used in Either BDT
η (Norm. Avg. ionization difference) No No
Opening Angle No No
x Vertex No No
y Vertex No No
z Vertex No No

1. Mπ0 < 50 MeV/c2 (1e1p);

2. the MPID γ/e image score ratio < 2 (1e1p);

3. the MPID muon interaction score < 0.2 if Ee > 100 MeV (1e1p);
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(a) 1e1p (b) 1µ1p

Figure 11.1: The Importance of various variables in the BDT ensemble for Run 1
for both the 1e1p selection(a) and 1µ1p selection(b). Note that for the 1µ1p plot,
the importance is normalized to 1.0.

Table 11.2: Summary table of important kinematic variables derived from the re-
construction code used in this analysis and used in the BDT’s.

Variable Name Definition

Kp Kinetic energy of proton [59]
Kl Kinetic energy of charged leptons [59, 61]

Ml, Mn, Mp Masses of the lepton, neutron and proton [6]
cos θp, cos θ` pzp/pp, p

z
`/p`

φp, φ` atan2(pyp, p
x
p), atan2(py` , p

x
` )

Pp = (Ep, pp) 4-vector of the proton
P` = (E`, p`) 4-vector of the lepton

B Binding Energy for Ar=40 MeV [63]
Erange
ν (Default value of Eν) Eq.6.3

EQE−p
ν Eq.6.4

EQE−`
ν Eq.6.5

∆QE 2-Body scattering Consistency: Eq.6.6
Q2 2Erange

ν (E` − P z
` )−M2

`

Hadronic Energy (Ehad) Erange
ν − E`

Björken’s Scaling x (xBj) Q2/2MnEhad
Björken’s Scaling y (yBj) Ehad/E

range
ν

Opening angle cos−1(p̂` · p̂p)
pT

√
(px` + pxp)

2 + (py` + pyp)2

pL pzp + pz`

αT cos−1

(
−
~P l
T · ~PT
|~P l
T ||~PT |

)

φT cos−1

(
−
~P l
T · ~P

p
T

|~P l
T ||~P

p
T |

)
pTfermi pTp + pT`
pzfermi pzp + pz` − Erange

ν
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(a) 1e1p (b) 1µ1p

Figure 11.2: Predicted Ereco
ν spectrum for the full 1e1p (a) and 1µ1p(b) selections,

with the data selection shown represented by black points. Adapted from Ref [37].

4. the MPID proton score < 0.9 if Eν < 400 MeV (1µ1p).

Then, for both selections in events with more than one identified vertex passing

all the other criteria only the vertex with the highest BDT score is considered.

Figure 11.2 shows the results of applying the selection to both MC and data as

used in Ref [37]. The MC has been scaled using the CV weights, the π0 weights [37],

and POT weights to match the data POT. These weights have no sterile neutrino

signature. The uncertainties were calculated as discussed in chapter 9. Note that

the data is shown here as the plots were taken from [37], but is not yet considered

throughout the rest of the this study.

11.2.1 1e1p background fitting

Note that the results shown in the rest of this chapter employ a method to

smooth the νµ background spectrum to the 1e1p spectrum as described in Ref.

[37]. This is performed to reduce statistical uncertainty in the predicted spectrum.

This method will not be used in the following chapters discussing the 3+1 sterile

model search. It would require refitting the νµ background spectrum at each set of

oscillation parameters as the spectrum may change. This fit would need to be well

verified which is not feasible when 25x25x25 parameters sets are tested.
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11.3 Comparison to the MiniBooNE LEE

The first use of these selections is to compare the result to the MiniBooNE LEE

anomaly. This is shown in Ref. [37] and is summarized here. The model used for

comparison in this Section is based off the MiniBooNE LEE signal observed in Ref.

[82]. Obtaining this model was not straight forward as there is no consensus on the

cause of the anomaly. MicroBooNE developed a purely-phenomenological, simplified

model for the LEE. This MicroBooNE LEE signal prediction is obtained by unfolding

MiniBooNE simulated and measured neutrino spectra with reconstructed neutrino

energy >200 MeV [82] producing a “true” underlying νe flux distribution. The

revised flux is then applied to νe events in the MicroBooNE simulation at truth-level.

This LEE signal contribution is added to the beam-intrinsic CC νe and misidentified

background prediction from the standard simulation to obtain the total predicted

event rate under this model.

In this model, there is no observable change in the 1µ1p spectrum. This selection

is then used as a constraint using the method originally developed for MiniBooNE

[83]. The result is an updated prediction for the 1e1p selection and an associated

updated covariance matrix incorporating the information provided by the data ob-

servation in the 1µ1p compared to its prediction. 25 data 1e1p events are selected,

while a total of 29.0±1.9(sys)±5.4(stat) (27.4±3.8(sys)±5.2(stat)) events are predicted

for the analysis range (200–1200 MeV) with (without) the 1µ1p constraint. Note

that since the 3+1 search performed in this thesis is a joint fit with the 1e1p and

1µ1p channels, it does not implement this method.

In Ref. [37], the agreement of the 1e1p observation with two different hypotheses

(the standard model, SM, and the LEE model) is detailed. Three statistical tests

are used. The first is to check the goodness of fit between each model and the

data. This is performed using the χ2-CNP method described in chapter 4, eq. 4.8.

[27]. This metric will also be used when examining the results of the 3+1 model fit

in Chapter 13. A frequentist method is then used to determine the corresponding

p-value.
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The frequentist studies are performed using 105 pseudo-experiments that are

generated from the given model under investigation. The method of generating

pseudo-experiments is discussed further in Chapter 12, and is performed in the SB-

NFit software package [84]. These pseudo-experiments are used to create probability

distributions for the χ2-CNP for the given hypothesis. The value of the χ2-CNP in

data is compared to this probability distribution in order to determine the p-value.

This test found a p-value for the comparison between the 1e1p observation and the

expected background prediction to be 0.014 for the SM prediction this indicating a

2.5σ tension with the SM. However, the agreement with the LEE was even worse

with a p-value of 5.0x10−4.

The second set of statistical test is two-hypothesis test which determines com-

patibility between the observed 1e1p data and the H0 (SM) and H1 (LEE) hypothe-

ses.The test statistic is:

∆χ2 = χ2
H0
− χ2

H1
(11.1)

where each χ2 is computed using the χ2-CNP formalism. This ∆χ2 is as an approx-

imation of the log-likelihood ratio. The sensitivity to exclude H1 if H0 is true is

based on the probability that a ∆χ2 from the H1 pseudo-experiments is less than

the median ∆χ2 from the H0 experiments.

The ∆χ2 for the data between the H0 and H1 predictions is found to be −11.08.

The observed ∆χ2 is significantly below the median of both distributions. This is

a result of the observation being generally lower than the H0 prediction as seen in

Figure 11.2(a). The probability that a ∆χ2 value sampled from the H0 distribution

is smaller than the observed ∆χ2 is 0.020. This indicates 2.1σ tension between

the data and the H0 (SM) hypothesis. Further, the probability that a ∆χ2 value

sampled from the H1 distribution is smaller than the observed value is 1.6 × 10−4.

This test therefore rejects the H1 (LEE model) hypothesis with a significance of

3.6σ. As shown by this test, the data agrees better with the SM than with the

specific MiniBooNE LEE model that was tested. However, the possibility remains

that some set of 3+1 oscillation parameters may give a better fit to the data than
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the SM hypothesis.

The third statistical test that we consider is a fit for the LEE signal strength

parameter, xLEE. This checks for agreement with different normalization scaling of

the LEE model. A best fit scaling is found by minimizing χ2
CNP using the Feldman-

Cousins method [85] (discussed further in Chapter 12). The best-fit value is found

to be xLEE = 0. Using the Feldman–Cousins procedure, confidence intervals on the

signal strength were found. The 90% confidence interval has an upper bound at

xLEE ≤ 0.25, and the 2σ (∼95%) interval has an upper bound at 0.38. These results

are unsurprising given the results of the other tests. Figure 11.3 shows the results

of this test. The confidence intervals of 1 and 2 σ are shown to have no overlap with

the allowed MiniBooNE LEE model with a scaling of 1.0 even with both statistical

and systematic uncertainty included.

Figure 11.3: Confidence level at which values of the LEE scaling are ruled out based
on the Feldman-Cousins procedure (solid black) and Wilk’s theorem (dotted gray
curve). The shaded regions are the different Feldman-Cousins confidence intervals.
The hashed region is the confidence intervals on the MiniBooNE LEE model with a
scaling of 1.0. Adapted from Ref. [37].

This analysis was one of multiple investigating this specific MiniBooNE LEE

model. One looking for specifically a photon-like excess is shown in Ref. [76] and also
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saw better agreement with the SM than with an LEE model. There were also three

more analyses looking for an electron-like excess using different reconstruction tools

and target signals [38, 39]. No MiniBooNE-like excess was seen in these analyses

either [86]. Figure 11.4 shows the results of these different analyses. The selection

utilized in this thesis is in the first bin of the figure (indicated by the blue circle).

Three of the four eLEE analyses shown heavily favored the standard model over the

LEE. The fourth did not have strong discrimination power between the two models.

Figure 11.4: Ratio of observed to predicted νe candidate events in each analysis’s
energy range. Statistical errors are shown on the observations (black), while system-
atic errors are shown around the prediction (gray). The expected ratio assuming the
MiniBooNE-like eLEE signal model with its median signal strength is also shown
(red). The Reconstruction and selection utilized in this thesis comprises the first
bin of this plot. Adapted from Ref. [86].

As has been shown in this section, the observed selected data agrees more closely

with the standard model than with the unfolded MiniBooNE LEE model. However,

that does not rule out sterile neutrino oscillations completely, especially as there is a

remaining tension with the standard model. Fewer events were observed in the 1e1p

channel than are predicted in the SM. The following chapters will test the agreement
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of these data selections with a 3+1 light sterile neutrino model.
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Chapter 12

3+1 Oscillation Search Strategy

and Sensitivity

The final step of this analysis is comparing the 1l1p CCQE MicroBooNE data

to the 3+1 sterile neutrino model described in Chapter 3. This analysis combines

the 1e1p selection with the 1µ1p selection in a joint fit and tests three oscillation

channels concurrently. νe appearance (Eq. 3.6), νe disappearance (Eq. 3.7), and

νµ disappearance (Eq. 3.8) are all allowed to occur. There are three independent

parameters that will be fit over: |Ue4|, |Uµ4|, and ∆m2
41.

One change has been made to the selection presented in previous chapters. In

order to search for the MiniBooNE low-energy excess, the binning for the 1e1p

selection was set to be 200-1200 MeV in 100 MeV bins (here referred to as LEE

binning). The lower bound was set due to reconstruction efficiencies at low energies.

The higher bound was set based off where the prediction matching the MiniBooNE

low-energy excess went to zero. However for this study, the prediction does not

necessarily go to zero depending on the oscillation parameters used. A test was

performed to determine the best binning to use for this analysis as described in

Appendix D. The binning scheme used in this study is 200-1200 MeV in 100 MeV

bins 1 bin from 1200-1600 MeV + 1 bin from 1600-2400 MeV .

The true neutrino energy spectra for the simulation samples used in this analysis
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is shown in Figure 12.1. This is broken up into 1e1p with no sterile oscillation (a),

the spectrum of maximum BNB νµ → νe oscillation to illustrate the shape (b), and

the 1µ1p selection with no sterile oscillation (c). The baseline for the same samples

is shown in Figure 12.2. This baseline is the total travel distance in meters from the

meson decay in the decay pipe of the beam to the interaction point in the detector.

The two truth variables are used in determining the oscillation probability.

(a) 1e1p, no sterile osc (b) 1e1p, maximum BNB νµ → νe oscillation

(c) 1µ1p, no sterile osc

Figure 12.1: The true neutrino energy (MeV) spectrum of 1e1p with no sterile
oscillation (a), the spectrum of maximum BNB νµ → νe oscillation to illustrate the
shape (b), and the 1mu1p selection with no sterile oscillation (c).

When the predicted spectra for a given set of oscillation parameters, the starting

point is the predicted spectra shown in Figure 11.2 (though with an extended energy

range). The events in each simulation sample starts with a weight incorporating

POT scaling to match data, GENIE interaction weights based on the cross section

model, and π0 weights described in Chapter 10. This is what is referred to as the
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(a) 1e1p, no sterile osc (b) 1e1p, maximum BNB νµ → νe oscillation

(c) 1µ1p, no sterile osc

Figure 12.2: The true neutrino travel distance (m) spectrum of 1e1p with no sterile
oscillation (a), the spectrum of maximum BNB νµ → νe oscillation to illustrate the
shape (b), and the 1mu1p selection with no sterile oscillation (c).

null model. This oscillation fit is performed in bins of Erange
ν (MeV ) as determined

in Section 6.9.

Next, each event is assigned a weight equal to the oscillation probability for a

given set of 3+1 parameters, using the simulation Eν and baseline. The oscillation

equation used depends on the event. All of the simulation sets described in Table

6.1 are used. If the event is a νµ event from the BNB, Eq. 3.8 for νµ disappearance

is used. If the event is part of the intrinsic BNB νe background, Eq. 3.7 for νe

disappearance is used. Finally a simulation sample not previously utilized is used

to model νe appearance. This is the FullOsc sample from Table 6.1. This sample is

from a simulation assuming the entire BNB νµ flux oscillated into νe . These events

have all the standard weights applied. In the null model the oscillation probability
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is zero, so they are not included in the spectra. However in a 3+1 model, the event

weights are multiplied by weights representing the oscillation probability based on

Eq. 3.6.

This chapter describes the fit strategy and sensitivity before moving on to data

results in Chapter 13. Everything shown in this Chapter was performed while re-

maining functionally blind to the data. Section 12.1 explains the method used to

determine sensitivity using Wilks’ theorem. Section 12.2 describes how the best fit

oscillation parameters will be found between observation and data for a given obser-

vation. This is followed by Section 12.3 which provides the results of this sensitivity

study. Section 12.4 demonstrates a simple signal injection test. Finally, Section 12.5

shows a test of this machinery on two fake data sets.

12.1 Wilks’ Theorem Sensitivity Method

Recall that the test metric used to determine the agreement of the model with

data is −2ln(L) as outlined in Chapter 4. The sensitivity of the 1l1p selection in

MicroBooNE to the 3+1 sterile model under investigation can be determined using

this metric. The sensitivity that will be investigated is the exclusion sensitivity.

This test determines which 3+1 oscillation parameters will be excluded if the data

matches the null model exactly.

The method used to determine this exclusion sensitivity in this study utilizes

Wilks’ theorem [66]. Wilks’ theorem states that, as long as some general conditions

are satisfied, −2ln(L) approaches a χ2 distribution in the limit where the data

sample is large [6]. In other words, if the data x is distributed according to the

likelihood function for model parameters θ, the maximum ln likelihood ratio (R)

follows a χ2 distribution with n degrees of freedom (DOF). R, which is defined here

as:

R = −2 ln
L(θ|µ)

L(θbf |µ)
(12.1)
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goes as:

R ∼ χ2
n (12.2)

as long as N is large, where L is given by equation 4.5, L(θ) is L for a given set of

oscillation parameters, and L(θbf ) is the L for the best fit oscillation parameters. R

written out fully for this analysis is therefore:

R =
i=N∑
i,j

[(xi − µ(θ)i)M(θ)−1
tot,ij(xj − µ(θ)j)] + ln(|M(θ)|)

−
i=N∑
i,j

[(xi − µ(θbf )i)M(θbf )−1
tot,ij(xj − µ(θbf )j)]− ln(|M(θbf )|) (12.3)

To build the Wilks’ theorem exclusion sensitivity, R is calculated at each point

in parameter space in a scan with µ(θ) and M(θ) as the expected number of events

and covariance matrix for the parameters. x is the null oscillation spectrum, and

µ(θbf ) and M(θbf ) are the oscillation parameters giving the minimum −2 ln(L) when

compared to the null oscillation.

As R can be treated like a χ2 under Wilks’ theorem, the value can be compared

to the χ2 distribution. Figure 12.3(a) shows the χ2 distribution for various degrees

of freedom. If the value of R is greater than some percentile in this distribution it

is chosen to be excluded. The 90% level was chosen for this analysis as it is subject

to large statistical uncertainty (especially in the 1e1p channel). For 3 DOF (corre-

sponding to the three free oscillation parameters in this study), the 90% exclusion

value is 6.251 [87]. Figure 12.3(b) shows the χ2 distribution for 3 DOF and shows

where the 90% percentile is.

At each point in parameter space under investigation R is compared to this value.

If R at the point is greater than 6.25, it is considered to be part of the excluded

region. This sensitivity test shows that in this analysis, if the data matches the null

oscillation exactly, which region of parameter phase space will be excluded under

Wilks’ theorem with 90% confidence.
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(a) N DOF (b) 3 DOF

Figure 12.3: The χ2 distribution for various degrees of freedom (a) and 3 degrees of
freedom with the 90th percentile highlighted.

12.2 Determining the Best Fit Model Parameters

A grid scan is a method in which the oscillation parameters come from a set

list of allowed values. This breaks up the smooth parameter space into a coarse

grid. The resolution of a grid scan can be increased by decreasing the step size in

parameter values which increases the total number of parameters. The amount of

computation time required increases as a function of number of oscillation points

tests. Increasing the resolution of a grid scan with 3 oscillation parameters quickly

becomes computationally prohibitive. Therefore in this analysis, a relatively coarse

grid of 25x25x25 is used.

A grid scan over the parameters will work well to determine Wilk’s theorem

excluded parameter ranges. However, in order to determine the best fit parameters

with data, this analysis will use a minimizer in order to achieve a more fine resolution

for the best fit. A minimizer is an algorithm that minimizes a given function which

in this case find the oscillation parameters which minimize −2 ln(L) for the observed

data.

The 90% confidence levels will then be found via a more coarse grid search

method. This best fit point represents the bf , or best fit terms used in equation

12.1. Then, the likelihood L is calculated at each point in the grid search parameter
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space and used to find R at that point. If the resulting R value is > 6.251, that

point will be considered excluded with 90% confidence. This Section describes the

use of the minimizer and validates its use. The method is illustrated in Section 12.5

using a fake data set and used in the final results in Chapter 13.

The minimizer utilized in this study is TMinuit from Root [88]. It was run in

”SEEk” mode which causes a Monte Carlo minimization of the function. Random

values of the variable parameters are chosen uniformly over a hypercube centered

at the current best value. The hypercube size was set to be 3 standard deviations.

The minimizer requires specification of a start point, or initial parameters to fit

with. Based on a handscan of a few test runs, the best performance is found when

the starting point is the minimum from a grid search. When instead starting at the

null oscillation point it was found that the minimizer often became stuck in a local

minimum. Due to this issue it was decided that the best use of the minimizer is to

use it in conjunction with a grid search. To find the best fit oscillation parameters

for a given spectrum, a standard grid search is run first to find the grid point

in parameter space with the lowest −2 ln(L) . This is then fed to the minimizer

algorithm as a test point. This process allows for a finer resolution when finding the

best fit oscillation. The parameter values tested in the initial grid search are:

• ∆m2
41, 25 logarithmic spaced values, range: [0.01,100] MeV 2;

• Ue4, 25 logarithmic spaced values, range: [0.01,0.5];

• Uµ4, 25 logarithmic spaced values, range: [0.01,0.5].

and discussed further in Section 12.3. The resulting 3D grid is the 25x25x25, or

15625 test parameter sets.

One complication that needed to be addressed was the speed with which the

minimizer algorithm runs. With each iteration or step of the minimizer a new

expectation spectrum with the test oscillation parameters is needed. The minimizer

often requires ∼ 300 iterations before converging. This is computationally fast when

changing just the two U parameters as they create a scaling effect in the spectrum.
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However, when changing ∆m2
41 every simulation event needs to be re-weighted (as

opposed to changing the size of the entire bin). Recomputing the spectrum at each

∆m2
41 is computationally expensive. The workaround this analysis uses is:

1. Pre-generate 400 spectra with ∆m2
41 logarithmically spaced between 0.01-100

MeV 2. U parameters are set to the maximum.

2. Find the ∆m2
41 from the spectra library that is closest to the value tested by

the minimizer.

3. Re-weight the pre-generated spectra based on the Ue4, Uµ4 values being tested
in each minimizer step.

The result is that the minimizer is only allowed to test certain ∆m2
41 values,

resulting in a step-like phase space. However using 400 values still allows for more

resolution in this parameter than provided by the grid search alone.

To illustrate the performance of this process, 1000 pseudo-data sets were thrown

from various 3+1 oscillation test points. To generate each pseudo-experiment, the

multivariate normal distribution is sampled from as defined by the mean prediction

that test point and the associated covariance matrix. The pseudo-data set genera-

tion is carried out in the SBNfit software package, which provides support for such

calculations [84]. In each bin, we then sample from a Poisson distribution defined by

the rate parameter (mean) that is equal to the value sampled from the multivariate

normal distribution. This gives a pseudo-observation that has integer numbers of

events in each bin and incorporates both systematic and statistical uncertainties.

The SBNfit software package also contains many libraries that are critical to oscil-

lation studies and the generation of systematic covariance matrices and is utilized

behind the scenes throughout much of this thesis [84].

The minimum −2 ln(L) was found for each pseudo-experiment from both the

grid search only and the grid search with the additional minimizer. The test points

used were smallest oscillation (∼ null oscillation), maximum oscillation, and the

global best fit.

Fig. 12.4 shows R for each pseudo-experiment for each of these test points

which is the difference between the −2 ln(L) at the point the pseudo-experiment
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was thrown from and the minimum −2 ln(L) for that data set. Both the grid search

only and the grid search + minimizer are shown. The corresponding vertical lines

represent the value for which 90% of R values are below for that test point. This

value is referred to as Rcrit. Also shown is 6.251 which is the 90% confidence level

(CL) according to Wilks’ theorem.

(a) Null Oscillation (b) Maximum Oscillation (c) Global best fit

Figure 12.4: The R distribution for 1000 pseudo-experiments thrown from the spec-
ified set of oscillation parameters. The red spectrum is the result using only a grid
search. The blue spectrum is the result of using a grid search followed by the min-
imizer. The Wilks’ theorem 90% confidence level value is shown and compared to
the 90% Rcrit from the given spectrum.

There are two important features to note. The first is that for each test point,

Rcrit of the combined grid search and minimizer is higher than the grid search on

its own. This verifies that the minimizer is performing as expected and finding a

lower −2 ln(L) than the grid search alone and validates the use of the combined grid

search and minimizer to find the best fit parameters to a given observation.

Additionally, the Wilk’s theorem 90% confidence level value for 3 degrees of free-

dom (6.251) is shown as a black vertical line. Another common oscillation analysis

method is to use a Feldman-Cousins method to determine the exclusion contours

[85]. In the Feldman-Cousins method, instead of comparing to the χ2 distribution,

90% Rcrit would be determined based on what R value 90% of pseudo-experiments

are less than. This method is discussed further in Section 13.2.

Figure 12.5 again shows the minimizer test with the global best fit oscillation

parameters. The χ2 distribution for 3 DOF is now shown. There is fairly good

agreement between the χ2 distribution and the minimizer with a grid search R

distribution. This good agreement is not seen at all test points.
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Figure 12.5: The R distribution for 1000 pseudo-experiments thrown from the spec-
ified set of oscillation parameters. The red spectrum is the result using only a
grid search. The blue spectrum is the result of using a grid search followed by the
minimizer. The orange line shows the 3 DOF χ2 distribution for comparison.

12.3 Wilks’ Theorem Sensitivity Results

Finally, using the chosen binning along with the well-vetted reconstruction and

analysis, the Wilks’ theorem exclusion sensitivity can be determined. This follows

the method described in Section 12.1. The parameter values tested are the same as

in Section 12.2. The ranges were chosen to be consistent with the SBND prospects

study in Ref. [89]. The only exception is the minimum Ue4 and Uµ4 which were

chosen to give oscillation amplitudes ∼ 10−4. Observing oscillation any lower than

this is not statistically possible in our analysis.

Out of the 15625 sets of parameters tested in this study, 1474 parameters sets are

excluded if the observation matches the null prediction. This translates to 09.56%

of the parameters. This is not the same as the percentage of the parameter space

as the grid points are logarithmically spaced.

As confidence levels in 3D parameter space are not intuitive to visualize, the

sensitivity result is instead displayed in 2D slices at each of the 25 parameter values
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tested for each of the 3 parameters. The result is shown in Figures 12.6, 12.7, and

12.8 for ∆m2
41, |Ue4|, and |Uµ4| respectively. For a given value of a parameter, the

2D confidence level in terms of the other 2 parameters is shown. The color scale

represents the R value at each parameter grid point and has been capped at 20.0

to allow for better visualisation for R close to 6.25 (Wilks’ 90% exclusion level for 3

degrees of freedom). The confidence level is indicated by the white contour lines.

As the value of a given parameter increases, the size of the excluded region in the

2D parameter space slice also increases. Another interesting feature is that for the

highest parameter values tested, the entire 2D slice is not excluded. For example

with maximum Ue4, a region of low ∆m2
41 is still allowed as this results in small

oscillation probabilities.

Figure 12.6: 2D slices for each ∆m2
41 value tested to construct the Wilks’ 90%

confidence excluded region (∆m2
41 value indicated by the plot title).

A region of particular interest to analyze is the global best fit 3+1 oscillation

parameters (from Table 3.1 in Chapter 3). The 2D slices for these parameters are
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Figure 12.7: 2D slices for each Ue4 value tested to construct the Wilks’ 90% confi-
dence excluded region (Ue4 value indicated by the plot title).

shown again in Fig 12.9, with the global best fit point shown by the red star. Note

that the 2D slices are not exactly at the global best fit, but at the closest parameter

value tested. This point is not in the excluded region. This means that if the

data matches the null model, then global best fit 3+1 model will not be excluded.

When performing data/fake data studies, this region of parameter space will be of

particular interest.
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Figure 12.8: 2D slices for each Uµ4 value tested to construct the Wilks’ 90% confi-
dence excluded region (Uµ4 value indicated by the plot title).

(a) Uµ4 Slice (b) Ue4 Slice (c) ∆m2
41 Slice

Figure 12.9: 2D slices of the Wilks’ theorem exclusion sensitivity at the grid points
closest to the global best fit point. The global best fit parameters from Table 3.1
are indicated by the red star. The 90% confidence level is shown by the white line.
The color scale (capped at 20) indicates the R value.
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12.4 Signal Injection Test

A simple signal injection test has been performed to further verify performance.

For this test, 1000 pseudo-experiments were thrown from a set of oscillation param-

eters. For each of these data sets the best fit parameters are found as in Section

12.2. Then the difference between the −2 ln(L) from this best fit and the −2 ln(L)

at the null oscillation point was found. Following Wilks’ theorem if this difference

was greater than 6.251 the null is considered to have been excluded. Table 12.1

shows the results of this study. The percentage of the pseudo-experiments which

excludes the null is given for each oscillation parameter set.

Table 12.1: Results of the simple signal injection test. Sens R is the R value of
the model with the given oscillation parameters from the Wilks’ theorem sensitivity
study. 1000 pseudo-experiments were used for each oscillation point.

∆m2
41[MeV 2] |Ue4| |Uµ4| Sens R Null Excluded(%)
0.05 0.018 0.018 2.06 30.2
0.33 0.041 0.041 2.07 29.9
13.18 0.196 0.196 10.86 92.7
83.17 0.428 0.428 227.90 100.0

These results provide further validation of the methods. This test is almost the

opposite of the test in Section 12.3. It measures how often the null oscillation hy-

pothesis can be excluded at 90% confidence if the data arises from a set of oscillation

parameters. If the data comes from a universe where there is near maximum oscil-

lation, the null hypothesis is excluded 100% of the time. It is also notable that two

sets of parameters with nearly identical R values in the sensitivity test in Section

12.3 are also nearly identical in how often they reject the null in this signal injection

test (rows 1 and 2).

Figure 12.10 shows the 2D excluded regions of the first five pseudo-experiments.

The 2D slices are slices of the parameters that the pseudo experiment was thrown

from. The results shown in this Figure are from the first row in Table 12.1. Figures

12.11, 12.12, and 12.13 show the results of rows 2,3, and 4 respectively. The examples

shown are the first 5 from each 1k set and were not cherry-picked.

In most pseudo experiments, the parameters the pseudo-experiment are thrown
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from are not excluded using Wilk’s theorem (though it is not always the best fit

point). Pseudo-experiment 5 in Figure 12.11 is an example where this is not case.

Figure 12.10: 2D slices of the Wilks’ theorem exclusion for the first 5 pseudo-
experiments thrown from ∆m2

41 = 0.05(MeV 2), Ue4 = 0.018, Uµ4 = 0.018. The
90% CL contour is shown by the white line. The red star indicates the parameters
the pseudo experiment was thrown from.
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Figure 12.11: 2D slices of the Wilks’ theorem exclusion for the first 5 pseudo-
experiments thrown from ∆m2

41 = 0.33(MeV 2), Ue4 = 0.041, Uµ4 = 0.041. The
90% CL contour is shown by the white line. The red star indicates the parameters
the pseudo experiment was thrown from.
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Figure 12.12: 2D slices of the Wilks’ theorem exclusion for the first 5 pseudo-
experiments thrown from ∆m2

41 = 13.18(MeV 2), Ue4 = 0.196, Uµ4 = 0.196. The
90% CL contour is shown by the white line. The red star indicates the parameters
the pseudo experiment was thrown from.
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Figure 12.13: 2D slices of the Wilks’ theorem exclusion for the first 5 pseudo-
experiments thrown from ∆m2

41 = 83.17(MeV 2), Ue4 = 0.428, Uµ4 = 0.428. The
90% CL contour is shown by the white line. The red star indicates the parameters
the pseudo experiment was thrown from.

12.5 Fake Data Tests

To test this analysis’s machinery and performance on data, two fake data sets

generated by the MicroBooNE collaboration were analyzed. These fake data sets
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were originally designed for the LEE analysis and are utilized here as a test before

looking at the real data set. Both sets deviate with to a varying degree from the null

spectrum used by this analysis. The properties of these data sets that differentiate

them from the standard MicroBooNE simulation without sterile neutrinos are as

follows. Fake data set 1:

1. used untuned GENIE v3 (instead of incorporating the MicroBooNE GENIE
tune);

2. included an electron-LEE signal at 3.5x the median unfolded MiniBooNE sig-
nal;

3. included an enhanced NC Delta to gamma rate at 4.5x the standard model
rate.

Fake data set 2:

1. enhanced normalization of QE and Meson exchange current (MEC) interac-
tions;

2. increased final state interactions (FSI) for nucleons, such that nucleons created
in the initial neutrino interaction are more likely to interact in the initial
nucleus;

3. slight change to FSI for pions.

Based of the descriptions of these sets it is expected that fake data set 1 has

a large excess of events in the 1e1p selection possibly mimicking sterile neutrino

oscillation and fake data set 2 looks similar to the null prediction.

Each data set was analyzed with the following procedure which mirrors the

analysis plan for the actual MicroBooNE data. First the set was run through the

DL reconstruction and the 1l1p selection and the the number of events in each

energy bin was calculated. Since this was fake data, the events were POT scaled to

better match the POT from the actual data set to understand the performance at

the expected POT.

Next the −2 ln(L) value between data and the prediction was calculated at each

point in parameter space. The smallest value from this grid search was used to
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initialize the minimizer which then found the parameters that give the best fit to

the observation. The −2 ln(L) of this best fit point was subtracted from the −2 ln(L)

at each grid point to find R. If the R of a parameter point was > 6.25, the point is

excluded based of the data at 90% confidence.

Table 12.2 summarizes the results of the two fake data sets. For each data set,

the % of grid points that are excluded, the best fit oscillation parameters, and the

agreement with the data at the best fit are provided using the χ2-CNP metric Eq.

4.8. The U parameters are also given in terms of sin2(θi). The conversion of the

parameters can be derived from Eqs. 3.6,3.7, and 3.8.

Table 12.2: A summary of the fake data tests results showing the best fit oscillation
parameters. ”Excluded” is the number of grid points excluded with 90% confidence
divided by the total number of grid points tested.

Excluded ∆m2
41eV

2 |Ue4| |Uµ4| sin2(2θµe) sin2(2θee) sin2(2θµµ)
χ2

1e1p

11dof

χ2
1µ1p

18dof

1 99.96% 0.278 0.475 0.488 0.214 0.698 0.725 8.18 1.21

2 14.16% 3.44 0.010 0.249 2.5e−5 4e−4 0.232 1.25 0.71

These results will now be analyzed in more detail starting with set 1. Fig. 12.14

shows 2D slices at the grid point closest to the best fit to the data (indicated by the

red star). The allowed region is very small for this data set, indicating that there

are few oscillation parameters that agree with this data set.

(a) Uµ4 (b) Ue4 (c) ∆m2
41

Figure 12.14: 2D slices of the Wilks’ theorem exclusion close to the data best fit
point for fake data set 1. This data set features a large low energy excess in νe .
The 90% confidence level is shown by the white line. The color scale (capped at 20)
indicates the R value.

Next Fig. 12.15 shows 2D slices at the global best fit point for this data set.

This shows that the global best fit would be excluded if this were the actual data.
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(a) Uµ4 (b) Ue4 (c) ∆m2
41

Figure 12.15: 2D slices of the Wilks’ theorem exclusion close to the global best fit
point for fake data set 1. The 90% confidence level is shown by the white line. The
color scale (capped at 20) indicates the R value.

In order to compare to results from other experiments the 90% CL contours are

next presented in terms of sin2(2θee,µµ,µe) to allow for comparison to other experi-

ments. The oscillation probaility equations in this form are shown in Eq. 3.6, 3.7,

and 3.8. For this test, a 2D parameter space is used of ∆m2
41 vs sin2(2θee,µµ,µe) (one

for each θ) and the other parameters are set to the best fit found previously in Table

12.2. The resulting R at each point in parameter space is then used to construct

the exclusion contour in ∆m2
41 vs. sin2(2θee) 2D space. For this test the sin2(2θ)

values are 25 logarithmically spaced points in the range [0.0001, 1.0].

Figure 12.16 shows the result of this test for fake data set 1. The red star on

these plots represents the best fit value as found by the minimizer in the 3 parameter

fit in Table 12.2. The null oscillation result is still clearly excluded by this data set.

(a) sin2(2θµe) (b) sin2(2θee) (c) sin2(2θµµ)

Figure 12.16: 2D slices of the Wilks’ theorem exclusion in ∆m2
41 vs sin2(2θee,µµ,µe),

while setting the other two sin2(2θ) terms to their best fit values in Table 12.2. The
90% CL is shown by the white line. The color scale (capped at 20) indicates the R
value.
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Finally, Fig. 12.17 (a) and (b) show the fake data spectrum in the 1e1p and

1µ1p selections respectively. This is compared to the null oscillation prediction

(red dashed line) and the best fit oscillation prediction (stacked histogram). The

Y axis represents the number of events in 100 Me (1e1p) or 50 MeV (1µ1p). The

grey dashed line indicates the systematic + statistical uncertainty on the simulated

spectrum. The categories shown in the stacked histograms are: BNB (νµ events

from the beam), νe intrinsic (νe events from the beam), FullOsc (νµ events that

oscillated into νe events), and extbnb (cosmic background. The χ2/ndof between

the data and the best fit spectrum is in Table 12.2.

(a) 1e1p (b) 1µ1p

Figure 12.17: Figure showing the fake data set 1 spectrum in the 1e1p(a) and
1µ1p(b) selections. The null oscillation prediction (red dashed line) and the best fit
oscillation prediction (stacked histogram) are shown.The grey dashed line indicates
the systematic + statistical uncertainty on the best fit simulated spectrum.

For this data set a strong 3+1 oscillation model is the best fit as seen from

the large FullOsc contribution and the best fit parameter values. Additionally, the

data is lower than the null oscillation spectrum in the 1µ1p channel, causing a νµ

disappearance signal to be favored. However, the large χ2/ndof of 6.22 in the 1e1p

selection indicates that, though the best fit this model does not agree with the data.

If this was seen in actual data one would conclude that no 3+1 sterile neutrino

model with the tested oscillation parameters agrees with our data. This would hint

that there is a different explanation for the observed excess. Since the underlying
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truth information is known, the explanation in this case is due to a large unfolded

MiniBooNE excess signal rather than sterile neutrino oscillations.

Moving on to the second fake data set, the same analysis is performed. The

best fit oscillation parameters are given in Table 12.2. As with fake data set 1,

Figures 12.18 and 12.19 show 2D slices of the 90% excluded region at the data best

fit and the global best fit respectively. However, unlike fake data set 1, there is a

much smaller excluded region in this data set. 13.26% of the grid points tested are

excluded. This is comparable to the 09.56% grid points excluded in the sensitivity

study. For this data set, the global best fit point is not excluded.

(a) Uµ4 (b) Ue4 (c) ∆m2
41

Figure 12.18: 2D slices of the Wilks’ theorem exclusion close to the data best fit
point for fake data set 2. The 90% confidence level is shown by the white line. The
color scale (capped at 20) indicates the R value.

(a) Uµ4 (b) Ue4 (c) ∆m2
41

Figure 12.19: 2D slices of the Wilks’ theorem exclusion close to the global best fit
point for fake data set 2. The 90% confidence level is shown by the white line. The
color scale (capped at 20) indicates the R value.

Figure 12.20 shows the fit results in terms of ∆m2
41 vs. sin2(2θ). The null

oscillation is still not excluded. The largest excluded region is seen in sin2(2θµe).
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(a) sin2(2θµe) (b) sin2(2θee) (c) sin2(2θµµ)

Figure 12.20: 2D slices of the Wilks’ theorem exclusion in ∆m2
41 vs sin2(2θee,µµ,µe),

while marginalizing the other two sin2(2θ) terms. The 90% CL is shown by the
white line. The color scale (capped at 20) indicates the R value.

Fig. 12.21 (a) and (b) show the 1e1p and 1µ1p spectra respectively. The plot

format is the same as for fake data set 1. In this case, there is not much difference

between the null oscillation and the best fit oscillation to this data. The χ2/ndof

for these spectra (Table 12.2) indicate good agreement. If this were real data it

would be concluded that this sterile model is still potentially consistent with data.

However, it is not conclusive evidence for the existence of sterile neutrinos as both

the null model and the global best fit for sterile neutrinos are in the allowed region.

This makes sense with the underlying truth model for this data set which did not

contain sterile neutrino oscillations, but had slight modifications to the null model.

(a) 1e1p (b) 1µ1p

Figure 12.21: Figure showing the fake data set 2 spectrum in the 1e1p(a) and
1µ1p(b) selections. The null oscillation prediction (red dashed line) and the best fit
oscillation prediction (stacked histogram) are shown.The grey dashed line indicates
the systematic + statistical uncertainty on the best fit simulated spectrum.
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This chapter provided detailed documentation of the 3+1 sterile neutrino anal-

ysis strategy. The exclusion sensitivity utilizing Wilks’ theorem when creating con-

fidence levels was found. This showed what the excluded region will be if the data

matches the null oscillation spectrum. It was notable that the global best fit is not

excluded if this is the case. Next a minimizer to find the best fit oscillation param-

eters was described and verified. Finally, fake data studies were performed using

the minimizer to find the best fit parameters. The excluded region was found using

Wilk’s theorem. This fake data studies validate the analysis strategy and provide

results consistent with the truth information of the data sets.
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Chapter 13

Results and Comparison to Global

Best Fit

The event reconstruction and selection have been optimized and well vetted. The

analysis method for comparing data to a 3+1 sterile neutrino oscillation model has

been decided upon and carefully verified. It is finally time to look at the results on

the MicroBooNE data set. Recall that the data shown here comes from the first 3

MicroBooNE run periods and corresponds to 6.67x1020 POT after processing. As

in Chapter 12, the oscillation parameter values tested are: ∆m2
41, 25 logarithmic

spaced values, range: [0.01,100] MeV 2; Ue4, 25 logarithmic spaced values, range:

[0.01,0.5]; and Uµ4, 25 logarithmic spaced values, range: [0.01,0.5].

13.1 Results of Data Analysis

The analysis of the data set follows the same procedure used in Section 12.5 on

the fake data sets. First, a grid search is be run to find the −2ln(L(θ)) at each

point in the oscillation parameter space. Next the minimizer will be run with the

oscillation parameters with the minimum −2ln(L(θ)) as the initial values. This

provides the best fit oscillation parameters and the corresponding −2ln(L(θbf )). R

(Eq. 12.1) is then calculated for each tested set of oscillation parameters. If the R is

greater than 6.251, that set of parameter values is considered to be excluded under
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Wilks’ theorem. Finally, the 1e1p and 1µ1p spectra will be examined individually.

Table 13.1 provides a summary of the best fit values. Immediately a few pieces

of this result stand out. The first is the calculated sin2(2θee) is much higher than

the other two sin2(2θ) parameters. In other words the best fit model is one in

which very few νµ ’s from the beam oscillate into νe ’s. However, the intrinsic νe

backgrounds have a high disappearance rate in this best fit model. It is also notable

that the exclusion region using Wilks’ theorem is quite large. This will be examined

later in this chapter.

Table 13.1: A summary of the MicroBooNE best fit oscillation parameters. ”Ex-
cluded” is the number of grid points excluded with 90% confidence divided by the
total number of grid points tested (15625).

Excluded ∆m2
41eV

2 |Ue4| |Uµ4| sin2(2θµe) sin2(2θee) sin2(2θµµ)
99.17% 3.57 0.432 0.010 7.5×10−5 0.607 4×10−4

Table 13.2 shows how well the data agrees with the model at two points, null

oscillations and the best fit oscillation model. The first column −2ln(L), is deter-

mined as in Eq. 4.7 and is the sum of ln(|M |) and χ2
tot in the table. The R value for

null oscillation is 8.7 and is the difference of the two −2ln(L) values. This R value

has roughly equal contributions from the determinant term and the total χ2 term.

Table 13.2: A summary of the best fit model and null model agreement with the
data. The difference of −2ln(L) for the two models leads to an R value of 8.7 at
the null.

Model −2ln(L) ln(|M |) χ2
tot/31 (ndof)

Null Model 215.08 124.09 90.99/31=2.94
Best Fit 206.34 119.57 86.79/31=2.80

Figure 13.1, 13.2, and 13.3 show the 2D slices of the 3D parameter space in slices

of ∆m2
41, Ue4, and Uµ4 respectively. R for each parameter is shown by the color scale

(capped at 20 for visualization). The white lines show the 90% exclusion contours.

An immediately obvious feature on these plots is the large portion of parameter

space with values just above the 90% limit.
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Figure 13.1: 2D slices for each ∆m2
41 value tested to construct the Wilks’ 90%

confidence excluded region from data (∆m2
41 value indicated by the plot title).
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Figure 13.2: 2D slices for each Ue4 value tested to construct the Wilks’ 90% confi-
dence excluded region from data (Ue4 value indicated by the plot title).
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Figure 13.3: 2D slices for each Uµ4 value tested to construct the Wilks’ 90% confi-
dence excluded region with data (Uµ4 value indicated by the plot title).

Next, two particular slices are examined in more detail. The first, shown in

Figure 13.4 are the 2D slices closest to the data best fit. The R values are indicated

by the z axis and are evaluated at the centers of the bins. Recall that this is slightly

offset from the values in Table 13.1, as those values were found by the minimizer.

These slices highlight the small allowed region. The red star is the best fit from the

minimizer of the two parameters shown in the slice. As such, the red star is slightly

offset from the lowest R values in the 2D slice shown. The grid slices were decided

upon before the minimizer was run and as such are slightly offset from the actual

best fit values.
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(a) Uµ4 (b) Ue4 (c) ∆m2
41

Figure 13.4: 2D slices of the Wilks’ theorem exclusion close to the data best fit
point. The 90% confidence level is shown by the white line. The color scale (capped
at 20) indicates the R value.

Figure 13.5 highlights the 2D slices closest to the global best fit parameters

(Table 3.1). No contour lines are shown on these slices because the entire region is

considered excluded when using Wilks’ theorem. However, the yellow region of the

plot which indicates very high R values is similar to the shape of the yellow region

observed when testing the MicroBooNE sensitivity in Figure 12.5.

(a) Uµ4 (b) Ue4 (c) ∆m2
41

Figure 13.5: 2D slices of the Wilks’ theorem exclusion close to the global best fit
point for fake data set 1. The 90% confidence level is shown by the white line. The
color scale (capped at 20) indicates the R value.

Next, Figure 13.6 shows 2D slices of R in sin2(2θ) parameter space. As in the

fake data studies, for each slice of ∆m2
41 vs. sin2(2θX), the other two sin2(2θY )

terms have been set to their best fit value in Table 13.1. The red stars indicate the

best fit points from this table. It is noted that the best fit value of sin2(2θµe) is

below the minimum shown on this slice so is displayed in this plot as on the y-axis

at the best fit ∆m2
41. As will be discussed in Section 13.2, while these contours show

a large region excluded at 90% confidence, more work is required to fit them into
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the global picture.

(a) sin2(2θµe) (b) sin2(2θee) (c) sin2(2θµµ)

Figure 13.6: 2D slices of the Wilks’ theorem exclusion in ∆m2
41 vs sin2(2θee,µµ,µe),

while setting the other two sin2(2θ) terms to be their best fit as found in Table 13.1.
The 90% CL is shown by the white line. The color scale (capped at 20) indicates
the R value.

Finally, Figure 13.7 show the best fit model spectrum compared with data for

both the 1e1p and 1µ1p selections. The null oscillation model is indicated by the

red dashed line. The best fit oscillation model is shown by the stacked colored

histograms with the systematic uncertainty shown by the grey dashed boxes. The

data with Poisson error bars is shown by the black points.

The strong νe disappearance is seen in Figure 13.7 (a). It is interesting that

there the best fit oscillation parameters are such that there is large disappearance

in the bins where no data is observed and less disappearance near where the data

has bins above the null oscillation model. The data in the 1e1p bins does not match

either the null oscillation or the best fit model well. This, along with the large

excluded region, indicates that the 3+1 model in general does not agree well with

the MicroBooNE 1e1p CCQE selection.

Figure 13.7 (b) shows the 1µ1p selection. The observed data is slightly higher

that the null oscillation which is what leads to the best fit oscillation model having

minimal νµ disappearance. The data in the 1µ1p selection agrees fairly well with

the best fit model.
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(a) 1e1p (b) 1µ1p

Figure 13.7: A comparison of the data spectrum (black points), the null oscillation
model (red dashed line), and the best fit oscillation model stacked histogram) in the
1e1p(a) and 1µ1p(b) selections. The grey dashed line indicates the systematic +
statistical uncertainty on the best fit simulated spectrum.

13.2 Discussion of Statistical Method

The results in the previous section require further discussion. For this study

Wilks’ theorem has been used to determine whether various oscillation parameters

are allowed by our data. For Wilks’ theorem to correctly estimate the coverage of

the confidence level contours, there are necessary conditions that must be met when

applied both to this data and oscillation experiments. This section will look at these

conditions and discuss a different method of determining whether parameters are

excluded: the Feldman-Cousins method (FC) [85].

In order to use Wilks’ theorem to determine the excluded region a number of

conditions must be met as outlined by Ref. [90]. These are:

1. N (number of events) is sufficient;

2. the true values of the parameters should be in the interior of the parameter
space tested;

3. different values of the parameters are identifiable (no degeneracy);

4. the null hypothesis is a limiting case of the model;
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5. the systematic uncertainties are correctly estimated, are not too small, and
can be approximated as a multivariate Gaussian;

6. the expectation varies approximately linearly as a function of the model pa-
rameters.

Of these conditions, the two that immediately require more consideration for this

oscillation study are (1) and (5). Defining the necessary number events is difficult as

in principle N should go to infinity for Wilks’ theorem to hold. In practice one aims

for > 10 events per bin. It is clear that in our case, especially now that the 1e1p

data selection has been observed, this assumption is not valid. Though it may have

been more valid if the existence of a sterile neutrino caused a very large increase in

the number of νe events. Additionally, this study is testing a theory that may not

be true in nature, which could cause the observed tension throughout most of the

parameter space. Even if a sterile neutrino exists, our model may be inaccurate if

there was a problem in our simulation or uncertainty calculations.

As an alternate to Wilks’ theorem, one may use the FC method to determine

confidence level contours. This method does not make the assumptions that Wilks’

theorem does in order to relate the test statistic to a frequentist confidence level,

but instead explicitly calculates the explicit distribution of the test statistic using

pseudo-experiments. In this method, one uses the same R value as calculated by Eq.

12.3 at each point in parameter space with the observed data. The best fit oscillation

parameters are still the same. What changes is how a set of parameters is considered

excluded. Instead of comparing to the 6.25 value, a new value is determined at each

point in parameter space referred to as Rcrit. This Rcrit takes the place of 6.25 in

that this is the value the R value is compared to. If R > Rcrit at a set of oscillation

parameters that parameter set is considered excluded.

The first step of determining Rcrit at a point in parameter space is to generate

pseudo-experiments from that point as described previously in Section 12.2. The R

value is calculated for each of these experiments. Rcrit is set to be the R value which

X% of experiments are less than. For example, in the case of the 90% exclusion limits

analyzed for this analysis, Rcrit is the value for with 90% of pseudo-experiments are
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less than. This process is repeated at each point in parameter space, which here

would result in a 3D grid of parameter values. In other studies the FC method has

been found to give a range of Rcrit values that do not match the value from Wilks’

theorem based on the number of degrees of freedom [85].

As may have been gleaned from this description, the reason this method was

not used at first was the computational limits. To calculate the R value for a single

experiment requires a grid-scan over all 15625 parameter sets followed by the use

of the minimizer as was performed for the data. This currently takes ∼ 15 minutes

of computer time. To perform a complete Feldman-Cousins’ method, this is done

for ∼ 1000 pseudo-experiments at each of the 15625 parameter sets. This was not

feasible as a first analysis. However, current efforts within MicroBooNE to decrease

the computational time are underway. Future oscillation studies as well as the one

presented will be updated to use a full Feldman-Cousins’ method.

In the meantime, in order to see what effect switching to an FC method for

determining Rcrit has, the method has been tested at a handful of oscillation pa-

rameters. The points chosen to be tested are the smallest oscillation parameters (∼

null), the maximum oscillation parameters, the grid point closest to the global best

fit parameters, and five points near the Wilk’s 90% exclusion contour in the sensi-

tivity shown in Section 12.3. Note that the first three of these points were already

tested in this way in Section 12.2, but are now examined in the FC context instead

of to verify the use of the minimizer. Figure 13.8 shows the distribution of these

test points in ∆m2
41 vs. sin2(2θ) parameter space.

(a) sin2(2θµe) (b) sin2(2θee) (c) sin2(2θµµ)

Figure 13.8: The location of the points used to test the Feldman-Cousins’ method
in ∆m2

41 vs. sin2(2θ) parameter space.
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Figure 13.9 shows the result of this FC test. The red spectrum is the result using

only a grid search. The blue spectrum is the result of using a grid search followed

by the minimizer, which would be the ideal implementation of this method. The

vertical lines in the corresponding color indicate Rcrit for the given test point. The

black line shows the Wilks’ theorem 90% exclusion value of 6.25 for reference. It is

clear just from this test, that a larger value of the oscillation parameter space would

be allowed if using the Feldman-Cousins’ method to determine the exclusion from

the R values. In the future it will be informative to compare the exclusion contours

from the two statistical methods.

(a) Null Oscillation (b) Maximum Oscillation (c) Global best fit

(d) Wilks’ 90% point 1 (e) Wilks’ 90% point 2 (f) Wilks’ 90% point 3

(g) Wilks’ 90% point 4 (h) Wilks’ 90% point 5

Figure 13.9: The R distribution for 1000 pseudo-experiments thrown from the spec-
ified set of oscillation parameters. The red spectrum is the result using only a grid
search. The blue spectrum is the result of using a grid search followed by the mini-
mizer. The Wilks’ theorem 90% CL value is shown and compared to the 90% Rcrit

from the given spectrum.
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A final useful metric for quantifying the agreement between data and the model is

a p-value. The p-value is the probability of obtaining test results at least as extreme

as the observed data. It is a way to quantify the statistical significance of the result.

Smaller p-values are used as evidence against the model. In the FC method the

p-value for given parameters is calculated by the number of pseudo-experiments

with R values greater than data divided by the total number of pseudo-experiments

generated from that point (1k in this test).

Table 13.3 summarizes the results of the FC test points. The new p-value using

this method is shown. Three of these test points would be considered allowed.

Critically, both the null model (smallest oscillation) and the global best fit points

are allowed with this statistical methods. Recall that one limitation with using

Wilks’ is the assumption that the number of events are sufficiently large. Based on

the FC test at maximum oscillation it appears that the assumption may hold for

certain regions in parameter space with a large νe appearance contribution to the

oscillation. At the maximum oscillation value tested, Rcrit is much closer to 6.25. If

more data is used in the future from the rest of the MicroBooNE runs or the other

two detectors that are part of the Short-Baseline Neutrino program, Wilks’ theorem

may be valid through more of the parameter space.

Table 13.3: Results of using the Feldman-Cousins’ method at various test points.
Shown are the new Rcrit, the R value of the data at that point, and the new resulting
p-value of the data. The final column indicates if the oscillation parameters are
allowed (X) when using FC or still excluded (X) when using a 90% confidence
exclusion cut-off.

Test Point Rcrit Rdata p-value Allowed?
Smallest Oscillation 14.70 8.73 0.20 X

Maximum Oscillation 7.46 215.86 0.00 X
Global Best fit 21.22 16.32 0.17 X

Near Wilks’ 90% #1 21.20 20.43 0.11 X
Near Wilks’ 90% #2 7.58 220.70 0.00 X
Near Wilks’ 90% #3 23.66 47.41 0.01 X
Near Wilks’ 90% #4 15.56 20.02 0.07 X
Near Wilks’ 90% #5 17.88 20.41 0.08 X

The Feldman-Cousins’ method here appears to be a promising step forward.

Other oscillation analyses in the field are exploring a variety of other methods to
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determine the allowed vs. excluded regions such as using Bayesian statistics. Re-

gardless of which method is used, this chapter has found the best fit oscillation

parameters for this selection in MicroBooNE. This best fit 3+1 sterile neutrino os-

cillation model still has tension with the data as indicated by the high χ2. This

implies that there is more to be understood about this data. It is entirely possible

that the fluctuations seen in the 1e1p selection are just a statistical fluctuation. Al-

ternatively, there may be some other beyond SM physics that may explain it such as

a more complicated sterile neutrino model (i.e. 3+2, or 3+1 with a decaying sterile

neutrino). Analyzing this result in context of other MicroBooNE selections as well

as expanding to the full MicroBooNE data set will help shed light on the question

of sterile neutrinos.
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Conclusions and Future Outlook

The standard model of particle physics is a very successful theoretical model,

but it does not seem to completely explain neutrinos. Strong experimental evidence

of three flavor neutrino oscillations has shown that neutrinos have non-zero mass.

Even assuming non-zero mass and 3 flavor oscillations both in vacuum and through

matter interactions, some experimental anomalies remain: in gallium solar neutrino

experiments using a radioactive source, short-baseline reactor experiments, and two

short-baseline accelerator experiments. One possible solution to these anomalies is

a fourth, light sterile neutrino in a 3+1 model.

The MicroBooNE detector is the first in a series of three planned short-baseline

accelerator experiments. It is on the same beam as MiniBooNE with a very similar

baseline. The detector is a LArTPC which aims to have finer resolution event

reconstruction and better background rejection than was possible in MiniBooNE.

The results in this thesis made use of novel deep-learning tools as well as tradi-

tional clustering algorithms to reconstruct the detector data with particular atten-

tion paid to shower reconstruction. The accurate reconstruction of shower particles

(electrons and photons) proved critical to the utilized event selections.

The target event type used in this analysis are CCQE 1l1p events. An important

sideband to these events are neutrino events which contain a π0 in the final state.

Using this sideband, a normalization disagreement was seen between the standard

model prediction and data. Using this information, a method was developed to
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reweight the simulation events based on the π0 momentum. π0 backgrounds to the

1l1p selections have these weights applied.

The use of the two body scattering CCQE events as a target signal allowed for

a pure event selection through the use of BDTs and other kinematic cuts. A first

test compared these selection to a model of the MiniBooNE low energy excess to the

MicroBooNE flux. It was observed that the MicroBooNE data more closely matched

the standard model prediction than the MiniBooNE signal, though remaining ten-

sion was observed with the standard model prediction.

Using the joint selections of 1e1p and 1µ1p events the 3+1 light sterile neutrino

model was tested with MicroBooNE data. Three oscillation channels of: disap-

pearance of the intrinsic νe background of the beam, disappearance of the νµ beam

flux, and appearance of νe events due to the existence of a sterile neutrino were fit

for simultaneously. 90% confidence levels were found assuming Wilks’ theorem and

the best fit oscillation parameters were found via the use of a minimizer algorithm,

TMinuit.

The data presented here shows best fit oscillation parameters with high νe dis-

appearance, and very little νe appearance or νµ disappearance. This best fit makes

sense when looking at the spectra shown in Figure 13.7 in that this spectra matches

the data more closely than the null oscillation model. However, it is still not a very

good fit, especially in the 1e1p selection as indicated by the high χ2 value at the best

fit. Further, throughout much of the parameter space, the R value is just above the

Wilks’ theorem 90% exclusion value. The nature of the measurement and the model

likely means that Wilks’ theorem is inadequate to determine the confidence level

contour lines. Future work may look at other methods for deciding which param-

eters are allowed by the MicroBooNE data such as the Feldman-Cousins’ method

that was explored here. These other methods are currently computationally time

consuming but do not make the same assumptions as Wilks’ theorem.

While Wilks’ theorem indicates that the null model and the global best fit are

excluded at 90% confidence, initial FC studies indicate that neither of these hy-
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potheses are excluded by the data. More work will be needed to determine whether

sterile neutrinos exist and if they do, what the oscillation parameters are. This can

be strengthened in the future by the addition of the remaining MicroBooNE data

(which will ∼ double the amount of data). Other ongoing MicroBooNE analyses

are fitting 3+1 model to the data using different event reconstructions and target

selections. Comparison to these other future results will be critical in understand-

ing this puzzle. Different theoretical models besides sterile neutrinos to explain the

remaining neutrino anomalies continue to be developed. Two more short-baseline

accelerator detectors, SBND and ICARUS, will shortly come online to join Micro-

BooNE as part of the SBN. The combined results from all three experiments will be

critical in understanding the short-baseline neutrino anomaly.
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Appendix A

Abbreviations

This appendix outlines some of the abbreviations symbols used in this document

for reference (listed alphabetically).

• 1e1p: 1 electron 1 proton final state topology

• 1l1p: 1 lepton 1 proton final state topology

• 1µ1p: 1 muon 1 proton final state topology

• 3+1: shorthand for the standard model extended with one light sterile neutrino

• BDT: Boosted Decision Tree

• BNB: Boosted Neutrino Beam

• CC: Charged Current neutrino interaction

• CCQE: Charged Current Quasi-Elastic neutrino interaction

• CL: Confidence Level

• CV: Central Value (simulation weights used to model the standard model
prediction)

• DIS: Deep Inelastic Scattering (neutrino interaction type)

• DL: Deep-learning

• DOF: Degrees Of Freedom

• FC: Feldman-Cousins’ method of determining excluded regions in parameter
space

• LAr(TPC): Liquid Argon (Time Projection Chamber)
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• LEE: Low Energy Excess (referring to the MiniBooNE low energy excess sig-
nal)

• me− : conversion factor to go from pixel intensity to shower energy

• NC: Neutral Current neutrino interaction

• PIU: Pixel Intensity Units

• PMT: PhotoMultiplier Tube used in light collection in the MicroBooNE de-
tector and other experiments

• POT: Protons On Target, a measure of the beam flux

• RES: Resonant inelastic neutrino interaction

• SBN: Short-Baseline Neutrino program

• SM: Standard Model of particle physics (extended to include non-zero ν mass)
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Appendix B

Contributions

The work shown here was performed with the aid of the entire MicroBooNE

Collaboration. Specifically, the event reconstruction, selections, systematic uncer-

tainty, and comparison to the MiniBooNE LEE was performed by the deep-learning

analysis group in MicroBooNE. This appendix lists the work that was performed

primarily by the author of the thesis for clarity. Though as part of the group, the

author contributed to discussions, cross checks, and general assistance to portions

that are not listed here. Contributions are listed in order of appearance.

• Sparse implementation and optimization of the algorithm performing direc-

tion and energy reconstruction of shower particles. Assisted performing the

reconstructed PIU to MeV conversion using the algorithm results.

• The addition and optimization of a second shower search for events with mul-

tiple showers to the shower reconstruction algorithm.

• Design, implementation (including input formatting decisions), training, and

testing of the Infill Network.

• Development of the π0 event selection.

• The use of π0 selection for the shower algorithm verification and combining

this with the Michel electron verification.
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• All π0 sideband studies and determination of π0 weights.

• Expansion of the 1e1p selection to higher energy bins for the 3+1 sterile neu-

trino study and the resulting updates to the systematic covariance matrix.

• Development of the joint 1e1p and 1µ1p 3+1 sterile neutrino sensitivity study,

analysis verification, and results on MicroBooNE data. (The principle mea-

surement of this thesis).

• The author also contributed to MicroBooNE by taking shifts monitoring the

detector and as a member of the data management team working to process

data sets and simulation through various algorithms.
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Appendix C

Further Studies on the π0

Simulation Weights

This appendix presents further studies on the π0 simulation weights discussed in

Chapter 10.

C.1 NC Sample

As seen in Figure 10.11, the NC sample used for the π0 weight functions has lower

stats than the CC sample. Additionally, the weights for the NC result in a higher

suppression than the weights for CC events. Further studies have been performed

on this sample to understand both the agreement with the CV model and the effect

on the NC π0 backgrounds in the 1e1p selection.

Using the high POT MC NC π0 sample for both runs 1 and 3, a comparison

between the CV model and the π0 weights was made. Simple selection cuts to

isolate only NC events that make it through the reconstruction stage were applied.

1. Reconstructed vertex is in the fiducial volume.

2. Reconstructed vertex is < 5 cm away from the true vertex.

3. Reconstructed proton KE ¿ 50 MeV.
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Figure C.1: Agreement with CV model and NC π0 weights used in the DL analysis,
using the high POT NC π0 sample and simple cuts.

4. Both showers start inside the detector in truth.

Figure C.1 shows the agreement between the CV model and the NC π0 weights.

The CV model points include both statistical uncertainty and cross section system-

atics. The χ2/ndof for the distributions is 34.46/20=1.72. This gives a P-value of

0.023. This means the disagreement between the CV model and the π0 weights is

2.27σ. There is some tension, but the weights do not exclude the CV model.

I further tested various weight functions and present the results here. To sum-

marize, we test 3 additional weight functions (polynomial, line + line, and a normal-

ization) using 5 bins instead of 10 to account for the low stats. All three give worse

agreement with the reconstructed data, but better agreement with the CV. There-

fore, we have chosen to use the 10 bin polynomial fit as it gives the best agreement

to the reconstructed data. We further show that switching between the various fit

functions results in little change in the 1e1p background counts.

Figure C.2 shows the different fit functions that were tested. The agreement

between the fit and the reconstructed data can be seen in Table C.1. It can be seen

that the 10 bin polynomial fit used in the analysis gives the best agreement to the
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(a) 5 Bin Normalization (b) 5 Bin Polynomial (c) 5 Bin Line+Line

Figure C.2: Different fit functions tested for the NC π0 sample: (a) 5 bin normal-
ization, (b) 5 bin polynomial, (c) 5 bin line + line.

Fit Function chi2/ndof P-value
10 Bin polynomial 2.59/9 = 0.29 0.978

5 Bin normalization 6.88/4 = 1.72 0.142
5 Bin polynomial 12.54/4 = 3.13 0.014
5 Bin line + line 10.8/4 = 2.7 0.029

Table C.1: Table showing the agreement between the NC π0 fit methods and the R
distribution.

data.

We have tested the agreement with the CV for each of the fits. The results can

be seen in Fig. C.3 and Table C.2 . The best agreement is with the normalization

fit. This is by construction as the distributions have the same shapes.

C.2 CC Sample

We have also tested two further weight functions for the CC π0 sample to verify

that the function used in this analysis is an optimal choice. We have tested both an

exponential fit and a two line fit. As seen in the following table, the best agreement

(a) 5 Bin Normalization (b) 5 Bin Polynomial (c) 5 Bin Line+Line

Figure C.3: Comparison with the CV for different fit functions tested for the NC π0

sample: (a) 5 bin normalization, (b) 5 bin polynomial, (c) 5 bin line + line.
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Fit Function chi2/ndof P-value
10 Bin polynomial 34.46/20=1.72 0.023

5 Bin normalization 1.22/20 = 0.067 0.999
5 Bin polynomial 27.6/20 = 1.38 0.11
5 Bin line + line 20.77/20 =1.04 0.41

Table C.2: Table showing the agreement between the NC π0 fit and the CV model.

Fit Function chi2/ndof
2nd degree polynomial 0.70/9 = 0.08

exponential 2.30/9 = 0.26
line +line 54.64/9 = 6.07

Table C.3: The agreement between the CC π0 fit options and the data.

is the the 2nd degree polynomial used in the analysis.

C.3 Effect of Weights on Additional π0 Kinematic

Variables

The following set of plots show extra π0 kinematic variables with the π0 weights

applied. The plots contain stat + flux + xsec + detector systematic uncertainties.

Figure C.4: The reconstructed delta mass distribution with the π0 weights applied.
The MC has been POT scaled to match runs 1+2+3 data.
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Figure C.5: The reconstructed pi0 energy distribution with the π0 weights applied.
The MC has been POT scaled to match runs 1+2+3 data.

Figure C.6: The reconstructed leading photon energy distribution with the π0

weights applied. The MC has been POT scaled to match runs 1+2+3 data.
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Figure C.7: The reconstructed sub leading photon energy distribution with the π0

weights applied. The MC has been POT scaled to match runs 1+2+3 data.
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Appendix D

High Energy 1e1p Bin Test

This appendix describes the series of studies performed to test the extension of

the 1e1p selection energy range from 200-1200 MeV in 100 MeV bins (referred to

as LEE binning) to 200-1200 MeV in 100 MeV bins 1 bin from 1200-1600 MeV +

1 bin from 1600-2400 MeV (referred 3+1 binning). Arriving at the chosen binning

scheme involved a few intermediate tests. Everything shown in this section was

performed on simulation only, while staying functionally blind to the data.

A variety of binning schemes to test were chosen that were similar to the LEE

binning, but some of which added extra high energy bins of various sizes. The

original LEE version was also tested. For each binning scheme the 90% Wilks’

theorem excluded region was found (procedure described in Section 12.1). In this

test, only a χ2 metric was used instead of the full −2 ln(L) metric described in

Section ??, as this test was performed before the −2 ln(L) metric was decided upon.

Only the 1e1p channel with νe appearance was used. The 1µ1p selection and the

other two oscillation channels were ignored for simplicity. Before performing this

study it was decided that the binning scheme with the largest 90% excluded region

would be chosen for the rest of this analysis. A logarithmic grid of parameter values

was used with ∆m2
41 from 0-100 MeV and sin2(2θµe) from 0-1. 100 values were

tested for each parameter resulting in a parameter space of 10k bins.

Fig. D.1 shows the results of this test which are summarized in Table. D.1. Each

plot shows the 2D parameter space with the χ2 between the CV spectra and the
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oscillated spectra with the given parameters on the the z-axis. The Wilks’ theorem

90% excluded region for 2 degrees of freedom (χ2 > 4.25) and 99% excluded region

(χ2 > 9.21) boundaries are indicated by the white contour lines. All of the binning

schemes have similar shapes, but the exact contour lines change.

(a) LEE + 1x400 MeV bin
+ 1x800 MeV bin (b) LEE

(c) 200-2400 in 100 MeV
bins

(d) 200-2400 in 200 MeV
bins

(e) 200-2400 in 400 MeV
bins

(f) LEE + 1x1200 MeV
bin

(g) LEE + 3x400 MeV bin (h) LEE + 2x600 MeV bin

Figure D.1: 1e1p bin test showing Wilks’ theorem results using 1e1p only, νe ap-
pearance only, and a χ2 test metric.

Based on the results of this test, using the previously designed metric, the binning

for the 1e1p selection of 200-2400 MeV in 100 MeV bins was examined for this

analysis. This binning scheme is very similar to the LEE binning, but with higher

energy bins. No other part of the selection has been changed. Figure D.2 shows the

new total CV spectrum as well as an example oscillation near maximum allowed

oscillation. It can be seen that the 1e1p selection now captures the tail of the

oscillation, even for the strong parameters used in this example.
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Table D.1: A summary of binning schemes tested with the number of excluded bins
with 90 % and 99% confidence out of the 10k test bins. LEE here means a binning
scheme of 200-1200 MeV in 100 MeV bins.

Binning Scheme 90% excluded bins 99% excluded bins
LEE + 1x400 MeV bin + 1x800 MeV bin 4186 3863
LEE 4184 3862
200-2400 in 100 MeV bins 4194 3882
200-2400 in 200 MeV bins 3867 3564
200-2400 in 400 MeV bins 3548 3247
LEE + 1x1200 MeV bin 4184 3862
LEE + 3x400 MeV bins 4186 3863
LEE + 2x600 MeV bins 4185 3863

Figure D.2: Two example spectra in the 1e1p channel including the new bins. The
green vertical line is the boundary of the original binning and the new binning for
visualization. The blue spectrum is the zero oscillation prediction. The red spectrum
is an example oscillation prediction.

However, upon closer inspection, various complications were found with this

binning. The first, and most critical, is that the highest energy bins have ∼ O(0)

expected events. Additionally, unexpected features were observed in the combined

flux, neutrino–nucleus interaction model, and the hadron re-interaction model co-

variance matrix (here abbreviated to ”flux and cross-section covariance matrix”.

These seem to be due to the very low simulation statistics in the high-energy bins.

Figure D.3 shows the flux and cross-section covariance matrix with both the null

oscillation and maximal oscillation. The z-axis has been capped at to 0.25 to keep
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(a) Null oscillation (b) Maximum oscillation

Figure D.3: Two example flux and cross-section covariance matrices for (a) null
oscillation and (b) maximum oscillation. Bins 0-9 are the original bins of the 1e1p
selection (indicated by red line). Bins 10-21 are the additional high energy 1e1p
bins (indicated by white line). Bins 22-40 are the 1µ1p bins. The z-axis has been
capped at 0.25 for better visualization.

the scale the same for the purpose of visualization. In the high energy bins, a striped

pattern is observed. This is due to low simulation statistics cause large uncertainty

weights for certain events.

The solutions to these two problems (low number of expected events and large

covariance matrix weights) is two-fold. The first is to put a cap on the uncertainty

weights used to construct to the covariance matrix. An investigation into these

weights found that 0.02% of the weights used were greater than 10. Of these large

weights, ∼90% were in the high energy bins of the 1e1p selection in the FullOsc simu-

lation sample. An additional ∼5% were in the high energy bins of the 1e1p selection

in the nue intrinsic simulation sample. The final ∼5% were scattered throughout

the rest of the selection. Therefor the uncertainty weights used in calculating the

flux and cross-section covariance matrix were capped at 10.

However, this did not completely fix the stripe behaviour seen in the covariance

matrix and does not fix the problem of ∼ O(0) expected events in the highest energy

bins. Therefore, a new binning was investigated from the previously defined list of

options in Table D.1. The option chosen was [200-1200] in 100 MeV bins + [1200-

1600] in 1 400 MeV bin + [1600-2400] in 1 800 MeV bin (first option in Table
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D.1).

The spectrum with this binning can be seen in Fig. D.4. Now, only the highest

bin has low expectation at maximum oscillation, instead of six bins in the previous

proposal. As seen in Figure 9.7 in Chapter 9, the covariance matrix also has much

smoother features using this final binning scheme, even at maximum oscillation.

Figure D.4: Two example spectra in the 1e1p channel with the final binning scheme.
The green vertical line is the boundary of the original binning and the new binning
for visualization. The blue spectrum is the zero oscillation prediction. The red
spectrum is an example oscillation prediction.

As mentioned previously, the test shown in Table D.1 was performed using 1e1p

only, νe appearance only, and a χ2 test metric instead of the more correct −2 ln(L)

test metric described in Section ??. Therefore, in order to analyze the difference in

performance between the binning schemes, the test was repeated with 1e1p+1µ1p,

all oscillation channels, and the −2 ln(L) test metric. For each of the two bin-

ning schemes that were closely considered, the size of the Wilk’s theorem 90% CL

excluded region was found. The results are shown in D.2.

The performance between the two binning schemes is very similar. Therefore,

the final binning chosen for this 3+1 sterile neutrino analysis is [200-1200] in 100

MeV bins + [1200-1600] in 1 400 MeV bin + [1600-2400] in 1 800 MeV bin. Though

it doesn’t have the maximum size excluded region, we have more confidence in the

covariance matrix and the behaviour of our test metric when we don’t have multiple
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Table D.2: A summary of binning schemes tested with the number of excluded bins
with 90% confidence out of the 15625 test bins (25x25x25). LEE here means a
binning scheme of 200-1200 MeV in 100 MeV bins. Frac excluded is the number of
90% excluded bins/ total bins.

Binning Scheme 90% excluded bins frac excluded
LEE + 1x400 MeV bin + 1x800 MeV bin 1494 0.0956
200-2400 in 100 MeV bins 1837 0.1175

bins at high energy with close to zero expectation.
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