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Justin A. Vasel

NOvA as a
SUPERNOVA OBSERVATORY

Extra-solar system neutrino astronomy was born in February 1987 when a supernova in a nearby
satellite galaxy deposited a couple dozen neutrino events across three solar neutrino and nucleon
decay experiments. This marked the first-ever observation of supernova neutrinos, as well as the first
supernova in our galactic neighborhood visible to the naked eye in nearly 400 years. There is still
much we do not know about the dynamics of these powerful explosions, but one thing is certain:
neutrinos play a central role in driving a supernova. They also provide a unique opportunity for
probing the interior conditions of a collapsing stellar core. Since 1987, the number of neutrino
detectors around the world has grown. When the next supernova occurs, detectors must be ready to
seize the moment and record data from this rare event that only happens a couple times per century.
The NOvA experiment has been prepared for this for some time, but it has been unclear how well
NOvA will be able to separate supernova-like events from the large cosmogenic backgrounds and
extract meaningful physical insight. In this thesis, I show that the cosmic-induced backgrounds in the
NOvA detectors—especially the far detector—can be reduced to an acceptable level for core-collapse
supernovae within∼15 kpc and that a determination of the neutrino mass ordering can be made for
nearby supernovae under certain conditions. This thesis paves the way for future sensitivity studies
and eventual analyses of real supernova data, and shows that NOvA’s liquid scintillator neutrino
detectors are a capable supernova observatory.
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CHAPTER 1

Introduction

It happened in the year 185, and again in 393. Then it happened in 1006 and 1054 and 1604 and many
times in between. In each case, a bright object appeared in the sky where none had existed before,
confounding all who observed it. These “guest stars,” as some called them, did not move across the
night sky as comets were known to do, and they twinkled like stars. Over a period of weeks or months,
they would fade and eventually disappear, as if they had never been there at all.

We now know these as supernovae, a term coined in 1934 to describe the dramatic death of large
stars. The cores of massive stars collapse under their own weight once they run out of nuclear fuel
to fuse, and when they cannot collapse any further, the in-falling stellar material rebounds and blows
the star apart, leaving behind either a neutron star or black hole and an expanding nascent nebula.
Supernovae are extremely luminous events, often outshining their home galaxies. But despite their
prolific photon emission, core-collapse supernova are primarily neutrino emitters.

The neutrino is a weakly-interacting chargeless lepton that exists in three flavors like its charged
counterparts, the electron, muon, and tau lepton. For decades, neutrinos were thought to be massless
like photons, but the observation of oscillations—a process by which a neutrino produced as one fla-
vor interacts as another flavor after having traveled some distance—in the late 1990s confirmed that
neutrinos must have a non-zero albeit small mass [1, 2].

The proposition of core-collapse supernovae as neutrino emitters was first made in the early 1940s
[3], but it wasn’t until the mid 1960s that they were understood to be the primary mechanism by which
energy from the core is transferred to the stellar mantle during the explosion [4]. This was the first
indication that neutrinos are not simply a by-product of core collapse, but play a pivotal role in the
dynamics and evolution of the explosion.

The exact nature of their role is not fully understood today, and this is largely due to a lack of
nearby core-collapse events in recent history against which theoretical models can be compared and
constrained. This type of supernova is believed to be rare on a human timescale in or near a galaxy like
ours, occurring only 2 or 3 times per century on average. The last such event occurred in February of
1987.

Supernova 1987Awas humanity’s first opportunity to detect neutrinos from a nearby core collapse,
and was therefore the first multi-messenger transient astronomical event. The supernova occurred
outside of theMilkyWay in the nearby LargeMagellanic Cloud, but it was close enough to be detectable
by three detectors dedicated to the search for proton decay. Collectively these detectors registered 25
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neutrinos [5–7].

Since then, neutrino detectors have proliferated around the world. From the subterranean caverns
under the Apennine mountains in Italy to crystal-clear ice below snowdrift dunes at the South Pole to
the NorthWoods of Minnesota, a dozen neutrino observatories stand ready for the next galactic core-
collapse supernova, and that number will grow in the coming decades. These detectors are connected
to one another through the Supernova EarlyWarning System (SNEWS), a global coincidence network
that allows individual detectors to crowd-source triggering decisions and to disseminate an alert when
the supernova signal is finally detected. SNEWS will play a critical role in coordinating the global
response in themoments after the supernova neutrino burst arrives at Earth, and every capable detector
must be prepared to make their contribution [8].

The NOvA experiment has two such capable neutrino detectors. They both use liquid scintillator
as an interaction medium and together the detectors are 14.3 kt in mass. The two-detector design is
ideal for studying the phenomenon of neutrino oscillations by sampling Fermilab’s NuMI beam both
near and far away from the source, but supernova neutrinos pose some challenges. For example, the
accelerator neutrinos they were designed for are roughly one-hundred times more energetic than those
produced in a supernova, which causes several problems. For one, the spatial resolution of the detector
is too coarse for detailed reconstruction of these low-energy events. Additionally, some supernova
neutrino energies fall below detection threshold, truncating the lower end of the energy spectrum.
Another challenge is related to the placement of the detectors. The far detector, which contains the
majority of NOvA’s detector mass, sits on the Earth’s surface with a modest overburden and is exposed
to a high rate of cosmogenic background activity.

Repurposing NOvA as a supernova observatory is not trivial. It is truly a needle-and-haystack type
of task: a smattering of low-energy depositions with little-to-no distinguishing topological character-
istics awash in a sea of cosmic backgrounds, detector effects, and noise. But there is hope. What the
NOvA detectors lack in low-energy spatial resolution they make up in fine timing; individual hits can
be timestampedwith nanosecond precision. Additionally, while most of NOvA’s mass is on the surface,
not all of it is. The 300 t near detector is 100m underground, providing a quieter environment that is
largely free from the cosmogenic bombardment present at the far detector.

Despite the difficulties, the NOvA detectors are capable supernova observatories. In this thesis, I
will demonstrate that non-supernova activity at the far detector can be reduced to an amount thatmakes
identifying supernova neutrino events possible, and that by combining data from both detectors, NOvA
will be able to make meaningful contributions to physics if the experiment is still running when the
next galactic core-collapse supernova occurs.

This thesis is organized into two parts. The first part (chapters 2–4) centers on the physics and
history of neutrinos and core-collapse supernovae. The second part (chapters 5–9) focuses in on the
NOvA detectors. Chapter 5 describes the design of the detectors and the DAQ, timing, and triggering
systems that support its operation. Chapter 6 delves into modeling supernova neutrino interactions in
the NOvA detectors and how we used simulations to develop a data-driven supernova trigger. In that
chapter, I also describe a system that I developed to continuously monitor the stability and integrity
of data-driven and event-driven supernova triggers. Chapters 7–9 contain the bulk of original work
that I did for this thesis, including the rejection of background activity at both detectors, clustering
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supernova-like hits together, selecting clusters as supernova neutrino candidates using machine learn-
ing techniques, and demonstrating NOvA’s ability to constrain progenitor distance and signal arrival
time for several supernova model scenarios. Also in chapter 9, I demonstrate using two methods that
NOvA is sensitive to the neutrino mass ordering under certain assumptions.
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CHAPTER 2

The Neutrino

Neutrino history began at the moment of the Big Bang, when they were produced in copious amounts
within the maelstrom of a hot and dense universe. Approximately one second later, the universe had
expanded and cooled enough to become transparent to neutrinos, allowing them to decouple from the
surroundingmedium and travel freely through space. The photons—which today constitute the cosmic
microwave background (CMB)—would not have their freedom for another 380,000 years. Humanity’s
awareness and understanding of the neutrino began roughly 13.8 billion years later, beginning in the
early twentieth century and continues to the present day.

Neutrinos are an abundant particle in the universe, second only to photons, but their small masses,
lack of electrical charge, and low interaction probabilities make them notoriously difficult to detect.
With typical cross sections on the order of 10−44 cm−2 (Eν/1MeV), a neutrino can pass through a
light-year of lead and still have a 50% chance of emerging from the other side. It’s no wonder these
ghostly particles have evaded the searchlight of scientific discovery for so long.

Twenty-six years elapsed between the first postulation of the existence of the neutrino and the first
detection. Another sixty-four have passed since then, and our efforts to understand the neutrino are
still underway. Many questions remain unanswered about their nature and their relevance to other
unsolved mysteries in physics and cosmology. In this chapter, I will lay out the theoretical foundations
of neutrino physics as we know them today and explain some of the more impactful experimental
developments that have lead us to this understanding.

2.1 A brief history
If humanity’s experience with the neutrino was written as a novel, the prologue would be set in Paris
in 1896. Wilhelm Röntgen had just discovered x-rays the year before, and the French physicist Henri
Becquerel was investigating emissions from phosphorescent uranium salts. These materials glowed
after being exposed to sunlight, and Becquerel wanted to know if they produced x-rays. His experiment
involved exposing these uranium crystals to the sun, wrapping them in black paper, and placing them
next to a photographic plate, but one cloudy week in Paris thwarted his measurements. He placed the
salts wrapped in their paper on the photographic plates in a desk drawer. Serendipitously, he decided to
develop the photographic plates anyway, and they revealed that the uranium compound had continued
to expose the plates; the uranium was producing radiation by itself.

Becquerel published his findings [9], and theywere soon followed up by additional studies byMarie
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and Pierre Curie, among others. Marie Curie was the first to coin the term “radioactivity” to describe
the phenomenon, and she soon discovered that uranium was not the only substance to exhibit it; tho-
rium was also radioactive. She and her husband began to systematically study uranium ores, which
were curiously more radioactive than pure uranium alone, a sign that there were other radioactive
elements present in the ores. They discovered two new elements, one which Curie named after her
native Poland—polonium—and another which was much more radioactive than any substance known
at that point—radium. Radium was difficult to produce, but it proved to be much more convenient
for research than uranium and ultimately had many applications beyond the lab. Radium would also
go on to have a disturbing legacy as humanity’s first experience with the devastating health effects of
radiation on the human body.

Soon, the study of radioactivity was a busy area of research internationally. Three distinct types
of radiation were discovered, characterized by their penetrating power. Alpha radiation was known
to be a form of neutral radiation with the lowest ability to penetrate materials, which would turn out
to be align helium isotope emitted from a nucleus. The second form, beta radiation, was a lightweight
charged particle of some sort. It would bend in a magnetic field, and was eventually discovered to be
an electron (or its antiparticle, the positron). The third and most penetrating form is that of gamma
radiation, high-energy photons.

The beta decay problem
It was an exciting time for physics research, but a conundrum soon emerged. Chadwick showed in
1914 using a magnetic spectrometer and an electron counter that in beta decay processes, the energy
spectrum of emitted beta particles was continuous [10]. The decay was known to produce a proton and
an electron, and such a two-body decay should have produced mono-energetic electrons. The contin-
uous nature of the distribution suggested that some energy was missing. But where else could it have
gone? One possible explanation was that one of the most bedrock pillars of physics, the conservation of
energy, did not apply to this phenomenon. This result was concerning. In a letter to Ernest Rutherford
in June 1914, Chadwick admitted that “there is probably a silly mistake somewhere.” [11]. He never
managed to find one, and eventually Ellis and Wooster definitively confirmed the result (Fig. 2.1) in
1927 [12]. In 1930, Lise Meitner wrote to Ellis to say that she had also confirmed his result, “but I do
not understand this result at all.”

For the first time since it had been established, the law of energy conservation was up for debate.
Neils Bohr emerged as a prominent skeptic of energy conservation, while Wolfgang Pauli considered
abandoning the “energy law” to be sacrilege. Pauli teased Bohr about this in their personal correspon-
dence: “What is the current status of your new ideas?” Pauli asked in a postcard to Bohr in March
1929 [13]. “Do you intend to continue with the maltreatment of the poor energy law?” Later that sum-
mer, Pauli implored him to refrain from publishing a paper on the topic, advising him to “...let the note
rest for a long time. And let the stars shine in peace!” [14].

Dear radioactive ladies and gentlemen
Pauli soon came upon an alternative explanation, but it was a long shot and he knew it. He postulated
the presence of a hitherto undiscovered particle, which, if emitted along with the beta particle, would
carry some of the energy away with it and produce a continuous beta spectrum as seen by the experi-
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Figure 2.1: The continuous spectrum of beta particles from the decay of 210Bi as measured by Ellis andWooster
in 1927 [12].

ments. This idea was perhaps evenmore absurd than abandoning the principle of energy conservation.
At the time, the only known elementary particles were the electron and the proton1. Inventing a new
particle to explain an experimental result was not commonplace like it is today. Nevertheless, the sit-
uation was dire and called for out-of-the-box thinking. Pauli introduced his idea in a now-infamous
letter2 [15] to Lise Meitner which was read aloud to colleagues at a workshop in Tübingen, Germany
in December of 1930:

Dear radioactive ladies and gentlemen,

I have hit upon a desperate remedy to save the ‘exchange theorem’ of statistics and the law of
conservation of energy. Namely, the possibility that in the nuclei there could exist electrically neutral
particles, which I will call neutrons, that have spin 1/2 and obey the exclusion principle and that
further differ from light quanta in that they do not travel with the velocity of light. The mass of the
neutrons should be of the same order of magnitude as the electron mass and in any event not larger
than 0.01 proton mass. — The continuous beta spectrum would then make sense with the assumption
that in beta decay, in addition to the electron, a neutron is emitted such that the sum of the energies
of neutron and electron is constant.

The “neutron” that Pauli refers to here is what would soon come to be known as the neutrino, after
Chadwick discovered the neutron in 1932. There was some confusion as to whether Chadwick had de-

1The photonwas known at the time as the “light quanta”, but it was not considered a particle. The protonwould eventually
be understood to not be elementary, but rather a collection of quarks and gluons.

2An English translation of the letter is available at
https://www.symmetrymagazine.org/sites/default/files/legacy/pdfs/200703/logbook_letter_translation.pdf
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tected Pauli’s “desperate remedy”, but it would turn out that Chadwick’s particle was much too massive.
Pauli goes on in his letter to describe some additional predictions about his new particle before

addressing the elephant in the room:

But so far I do not dare to publish anything about this idea, and trustfully turn first to you, dear
radioactive people, with the question of how likely it is to find experimental evidence for such a
neutron if it would have the same or perhaps a 10 times larger ability to get through [material] than
a gamma-ray. I admit that my remedy may seem almost improbable because one probably would
have seen those neutrons, if they exist, for a long time. But nothing ventured, nothing gained...

He concludes by expressing his regret for his absence at the workshop in person; he had to attend a ball
in Zürich on the same night. Pauli’s reluctance to publish his idea demonstrated his hesitance to make
such a proposal with no direct experimental evidence to support it, but his idea had nowmade it out of
his mind and out into the world, and it attracted interest. Efforts were soon underway to understand
and detect this elusive particle.

From theory to discovery
The Italian physicist Enrico Fermi took Pauli’s idea and ran with it. Incorporating Pauli’s particle and
renaming it the “neutrino”, meaning “little neutral one”, to distinguish it from Chadwick’s neutron,
Fermi developed and published a theory of beta decay in 1934 [16]. This was a monumental work, and
would later be generalized to describe other weak interaction processes. His theory described a neutron
converting into a proton, and in the process emitting an electron and a neutrino3:

n → p+ ν + e−. (2.1)

Pauli’s invention of the neutrino as a product of beta decay had begged the question: where in the
nucleus does the neutrino hide? The assumption behind this question is that the neutrino exists in
the nucleus and is simply ejected during the decay, but Fermi’s theory offered the alternative that the
neutrino may be created at the time of emission, much like a photon. The experimental data favored
Fermi’s theory, and in that same year, Hans Bethe and Rudolf Peierls expanded upon this idea. If a
neutrino can be created, there must be a corresponding annihilation process. They imagined running
the beta decay process in reverse and calculated the neutrino cross section to be σ < 10−44 cm2 [17].
While they noted that this cross section would grow with increasing neutrino energy, the interaction
probabilities would still be too low to ever produce any appreciable signal. “...there is no practically
possible way,” they concluded, “of observing the neutrino.”

But that did not stop people from trying. M. E. Nahmias attempted to detect neutrinos inDecember
of 1934. This first underground neutrino experiment took place in the Holborn station of the London
Underground. Nahmias placed a radioactive source near two Geiger-Müller counters shielded on all
sides by lead. The hope was that, despite neutrinos having no electrical charge, if they had a sufficiently
large magnetic moment, they could still produce ionization as they passed through the detectors. The
result was null, and the neutrino magnetic moment was estimated to be smaller than 1/7000 Bohr
magnetons [18]. More recently, a reporter asked Underground commuters for their thoughts on the

3This process specifically emits an electron antineutrino ν̄e, but it was not yet known at the time that neutrinos have
flavors or antiparticles
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Holborn station having been used for a famous physics experiment, to which one woman cheekily
replied “I loathe the Holborn station... If I was a neutrino, I wouldn’t stop there either.” [19]

The following decade saw a precipitous drop in theoretical and experimental developments in all
areas of modern physics, including neutrino research, due to the deteriorating political situation in
western Europe. The time between world wars saw a rapid modernization and institutionalization
of physics, which until then had mostly been pursued by individuals or small groups in private labs.
Physics research was increasingly seen as an important instrument of national power. Germany was
arguably the center of gravity of that research in the early 1930s, and the Nazi’s rise to power in 1933—
and subsequently World War II—would have a profound effect on scientific output for years to come.
Neutrino physics was no exception; many individuals were force to upend their work and their lives to
escape the Nazi regime. Peierls fled in 1933 to the United Kingdom. Bethe left Germany for the United
States in 1935. Fermi left Rome in 1938, accepted his Nobel Prize in Stockholm, and promptly fled to
the United States. Also in 1938, Meitner made a daring and illegal escape from Berlin to Stockholm to
save her own life. Pauli temporarily moved to the United States in 1940, fearing a German invasion of
Switzerland. These are only a few examples; there are many others.

By the end of World War II, there was still no experimental evidence for the existence of the
neutrino, or that obtaining experimental evidence was even plausible. But the Italian-Soviet nuclear
physicist—and protégé of Enrico Fermi—Bruno Pontecorvo had an idea. In 1946 [20], he suggested
that neutrinos might be detected through the inverse beta process

ν + Z → e− + (Z + 1). (2.2)

If 37Cl were used as the target, 37Ar would be produced by the process and one could look for its decay
products. Pontecorvo also mentioned the need for a powerful neutrino source and recommended the
sun or a nuclear reactor. This idea was picked up by Frederick Reines and Clyde Cowan at the Los
Alamos Scientific Laboratory in the United States. Their idea was an experiment consisting of a target
of roughly 400 liters of water and calcium chloride. The interaction of an antineutrino with the target
would produce a positron and a fast neutron. The positron would quickly annihilate with an electron
creating a prompt flash of light, while the neutron would take some time to thermalize before being
captured by a nucleus, which would then de-excite and produce a secondary flash of light. These flashes
of light would be detected by an array of photomultiplier tubes. The experiment would be placed next
to a nuclear reactor at the Hanford Site in Washington State.

Reines and Cowan proposed their experiment—called “Poltergeist”—in the winter of 1953. By
spring, it was taking data, and in the summer, they published their results. They may have detected
the neutrinos, but the backgrounds were too large to be conclusive [21]. Undeterred, they moved their
experiment a couple years later to the Savannah River nuclear plant in South Carolina, which offered
better shielding. In 1956, they did what Bethe and Peierls had once thought would be impossible: they
had detected neutrinos [22]. While this result, twenty-six years in the making, was celebrated and
would eventually win Reines a Nobel Prize in 19954, it did not come as much of a surprise. At this
point, the existence of the neutrino had been broadly accepted. Upon hearing the news, Pauli casually
replied to Reines and Cowan by telegram: “Thanks for the message. Everything comes to him who

4Clyde Cowan died in 1974.
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knows how to wait.”
The neutrino that Reines and Cowan observed in 1956 came from a nuclear reactor and were elec-

tron neutrinos. At the time, only one neutrino flavor was known, but there was the question about
whether there were more types of neutrinos. Pion decay had been observed in the 1940s, which pro-
duces a neutrino and a muon. So are these two neutrinos the same? Melvin Schwartz, Leon Lederman,
and Jack Steinberger set out to find out. They built an experiment at Brookhaven National Laboratory
which used a 15 GeV beam of protons colliding with a Be target to produce pions. The detector was
placed behind several layers of concrete, steel, and lead to absorb the muons. The detector was a spark
chamber and what they found were muon tracks coming away from the neutrino interaction vertices.
They thus concluded that the neutrinos they observed must be distinct from those observed by Reines
and Cowan in 1956 [23]. Within six years (1962) of discovering the neutrino, a second flavor of neu-
trino had been discovered, for which they were awarded the 1998 Nobel Prize in Physics. This was also
the first instance of studying an accelerator-based beam of neutrinos.

Two families of neutrinos and their associated charged leptons had been discovered and by the
mid 1970s, a second family of quarks had been discovered with the observation of the J/Ψ particle at
Brookhaven and SLAC independently. A picture was beginning to emerge of a connection between
the quarks and the leptons.

In 1975, Martin Perl et. al. discoverd the τ lepton at SLAC and thus discovered a third family of
charged leptons [24]. Only months later, the b quark was discovered, confirming the existence of a
third quark family. This triggered the search for a third neutrino family: the τ neutrino. Detecting
τ neutrinos can be tricky due to the large energies involved, so it took a while for the discovery to be
made. But finally in 2001, τ neutrinos were observed by the DONUT experiment at Fermilab [25].

In 1989, the LEP experiments at CERN used an electron-positron collider to produce and study
Z bosons. The width of the Z mass is expected to increase with the number of lepton families, as
it mediates weak interactions for all of them. LEP was thus able to deduce the total number of light
active neutrino familiesNν based on their measurement of the Z width. Combined, four experiments
measured Nν = 3.10 ± 0.105 [26–28] Despite having discovered all flavors of neutrinos that were
thought to exist, themysteries surrounding this ubiquitous-yet-elusive particle only continued to grow.

The solar neutrino problem
Detecting neutrinoswas not the only difficult aspect to understanding their nature. In 1939, Hans Bethe
and others had proposed that the sun produces its energy through nuclear fusion of primarily hydrogen
into helium [29], for which he would win a Nobel Prize in 1967. This process would produce a copious
amount of neutrinos. John Bachall developed a solar model and predicted the expected flux of solar
neutrinos at Earth in 1964 [30, 31].

Soon thereafter, Ray Davis set out how test Bachall’s prediction by setting up a 390,000 liter tank of
C2Cl4 underground at theHomestake goldmine in SouthDakota. The ideawas simple: neutrinos from
the sun interacting with the 37Cl to produce 37Ar. Measure the amount of 37Ar present in the tank at
the end of the experiment and deduce from that the neutrino flux. According to Bachall’s prediction,
Davis expected to observe a few interactions each day [32]. He only saw about 0.2 each day [33], much
less than predicted. This was still a major discovery, and it earned Ray Davis a Nobel Prize in 2002, but

5This value has been further constrained in the years since by additional LEP experiments, cosmology, and SN 1987A.
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a new problem had been born: where were the missing neutrinos from the sun?
The eventual solution wouldn’t come until the late 1990s, when the Super-K experiment measured

neutrino oscillations for the first time [1]. The neutrinos, it turned out, could change their flavor after
propagating for some distance. They may have all been born in the core of the sun as one flavor, but by
the time they made it to Bachall’s detector in South Dakota, a significant fraction had transformed into
another flavor. Final confirmation came from the SNO experiment near Sudbury, Canada, which had
added 3He detectors to its water Chereknov vessel [34] to gain sensitivity to neutral current interactions
which are agnostic to neutrino flavor [2].

The mystery was solved: neutrinos could oscillate into new flavors. This has an interesting impli-
cation. It means that neutrinos must experience the passage of time, and therefore travel slower than
the speed of light, and therefore must have a mass. For a long time, neutrinos had been thought to be
massless, but this discovery disproved that outright. As is typical with neutrino physics, this lead to
more questions than answers. The Standard Model predicts that the neutrinos should be massless, so
how do they get their mass? If their mass is not zero, what is it? We still do not have definitive answers
to these questions.

2.2 Neutrinos Physics
The Standard Model of particle physics is one of the most successful theories in terms of its predictive
power. It is the product of decades of theoretical development and experimental study about the most
fundamental constituents of matter and the forces that govern their interactions.

The Standard Model of today describe two classes of elementary particle (Fig. 2.2): the bosons—
most of which mediate three fundamental forces—and the fermions—spin-1/2 particles which are the
building blocks of matter. Of the bosons, the photon γ is the particle of light and mediates the electro-
magnetic force, the gluon gmediates the strongnuclear force, and theW± andZ bosons are responsible
for weak force interactions such as nuclear decays. The Higgs boson H is not associated with a fun-
damental force, but is responsible for giving particles their masses. The fermions are further split into
two groups: quarks and leptons. Quarks constitute the bulk of ordinary matter by forming protons and
neutrons. The leptons are the electron e, muon µ, tau τ , and their chargeless counterparts, the elec-
tron neutrino νe, muon neutrino νµ, and tau neutrino ντ . Each of these fermions have an associated
antiparticle.

Mixing, mass, and oscillations
Neutrinos can be described by two categories of quantum mechanical eigenstates: flavor states |νf ⟩
which govern neutrino interactions, and mass states |νi⟩ which govern neutrino propagation. The
flavor states can be expressed as a linear combination of the mass states; that is,

|νf ⟩ =
∑
i

U∗
fi |νi⟩ . (2.3)

This is known as “neutrino mixing”. Since there are three known active neutrino flavors, U is a uni-
tary6 3 × 3 matrix. The time-evolution of the mass eigenstates |νi(0)⟩ can be deduced by solving the

6
UU

†
= U

†
U = 1
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Figure 2.2: Elementary particles predicted by the Standard Model of particle physics.

Schrodinger equation. The solution for a plane wave is

|νi(t)⟩ = e−iEit |νi(0)⟩ (2.4)

where Ei is the energy. This describes how a neutrino propagates as a mass eigenstate, but when it is
produced or when it interacts, it does so as a flavor eigenstate. It is therefore useful to express the above
in flavor space as

|νf (t)⟩ =
∑
f
′

(∑
i

U∗
fie

−iEitUf
′
i

)
|νf ′(t)⟩ . (2.5)

This form allows one to compute the probability that a neutrino born as flavor f will later interact as
flavor f ′.

P (νf → νf ′) =
∣∣∣⟨νf (0)|νf ′(t)⟩

∣∣∣2 = ∣∣∣∣∣∑
i

U∗
fiUf

′
ie

−i
m

2
i

2p
t

∣∣∣∣∣
2

. (2.6)

Neutrinos are nearly always ultra-relativistic, so the substitutions E ≈ p and t ≈ L (in natural units
where c = 1) can be made where L is baseline, the distance traveled by the neutrino between produc-
tion and interaction:

P (νf → νf ′) =

∣∣∣∣∣∑
i

U∗
fiUf

′
ie

−i
m

2
i

2E
L

∣∣∣∣∣
2

. (2.7)

This can be expanded into more convenient forms such as the the survival probability

P (νf → νf ) = 1− 4
∑
i>j

∣∣Ufi

∣∣2 ∣∣Ufj

∣∣2 sin2(∆m2
ij

4E
L

)
(2.8)
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Figure 2.3: Normal (left) and inverted (right) neutrino mass orderings. The vertical axis represents mass. This
cartoon is not to scale, and is meant only to illustrate the differences between the mass ordering scenarios: that
there are either two light neutrinos and one heavy neutrino, or there are two heavy neutrinos and one light
neutrino.

and the appearance probability

P (νf → νf ′) = δff ′ − 4
∑
i>j

Re[U∗
fiUfjUf

′
iU

∗
f
′
j
] sin2

(
∆m2

ij

4E
L

)
(2.9)

+ 2
∑
i>j

Im[U∗
fiUfjUf

′
iU

∗
f
′
j
] sin2

(
∆m2

ij

2E
L

)
. (2.10)

where the quantities ∆m2
ij represent the mass-squared differences for the three neutrinos: ∆m2

ij ≡
m2

i − m2
j . Oscillation experiments measure these probabilities directly, which gives them access to

the mass-squared differences. Solar neutrino experiments have measured∆m2
21 and its sign [35], but

vacuum oscillations are agnostic to the sign of∆m2
32 to leading order. This leaves in ambiguity in the

mass ordering of the neutrinomass states that the experimental neutrino community has yet to resolve.
Either ν1 < ν2 < ν3 (normal ordering) or ν3 < ν1 < ν2 (inverted ordering) (Fig. 2.3).

For three active flavors, the matrix U can be parameterized in terms of the various mixing angles
(θ13, θ23, θ12) and a CP-violating phase (δCP):

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 (2.11)

=

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13 e
−iδ

0 1 0

−s13 e
iδ 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

 (2.12)

with the notation cij = cos θij and sij = sin θij and δ is the charge parity (CP) violating phase δCP.

Neutrino propagation in matter
The oscillation framework described above is specific to propagation in a vacuum. When neutri-
nos travel through matter, the presence of atomic electrons introduces an effective potential term
±
√
2GFNe to the Hamiltonian, where GF is the Fermi constant, Ne is the electron density, and
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the sign depends on whether the mass ordering is normal (+) or inverted (−). This is known as the
Mikheyev–Smirnov–Wolfenstein (MSW) effect [36,37], and it preferentially increases or decreases the
effective mass of neutrino mass states with an appreciable electron flavor component and thus changes
the effective mass splittings. Neutrino oscillations in matter therefore differ from those in a vacuum
in a way that depends on the mass ordering. In situations where the matter density changes as the
neutrino propagates, resonant flavor transformation can occur at certain critical electron densities.
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CHAPTER 3

Neutrinos from Core-Collapse Supernovae

A star begins its life when gravitationally-bound gas and dust reaches a central density large enough to
ignite nuclear fusion of hydrogen. A star’s mass depends on howmuch gas is available in the immediate
area and can range from less than that of the Sun to hundreds of solar masses. The mass determines
much about how the star will evolve during the rest of its life. A larger stellar mass means hotter
temperatures in the core, faster burning of its nuclear fuel, and a shorter lifetime. About 99% of the
stars in the MilkyWay have a mass of 2M⊙ or less [38], and will live on a timescale of billions of years
while those with a very large mass (M/M⊙ ≳ 20) may only live for several million. In any case, a
majority of a star’s lifetime will be spent fusing hydrogen as its primary fuel source.

Once a star exhausts its usable fuel stores, the end is near. For a low-mass star like the sun (M/M⊙ ≲
8), a period of helium burning produces a higher outward pressure which inflates the outer envelope
of the star and it enters the red giant phase. Much of the outer layers of the star will be expelled dur-
ing this process, leaving a planetary nebula in its wake. After helium burning ceases, the remnant is a
carbon-oxygen core called a white dwarf which will slowly cool and contract over time. This will be
the fate of our sun.

High-mass starsmeet their demise in amore spectacularmanner: a core-collapse supernova. In this
scenario, a star with a massM/M⊙ ≳ 8–10 will burn through successively heavier elements (Tab. 3.1)
from helium up to iron when nuclear binding energy is no longer released by fusion. The formation
of iron in its nuclear furnace is the death knell of a large star. A rapid gravitational collapse of the core
leads to a catastrophic explosion of the outer layers of the star, leaving behind a cooling neutron star as
a remnant or a black hole if the star was massive enough.

Walter Baade and Fritz Zwicky coined the term “super-nova” in 1934. In two back-to-back pro-
ceedings, they postulated the existence of neutron stars, that supernovae would produce them, and that
supernovae may be the origin of energetic cosmic rays [39,40]. Nuclear physics and energy generation
in stars were still nascent fields of study, so it’s no surprise that their initial calculations of the energy
released by supernovae were not accurate, and the neutrino did not appear in these first works. Nev-
ertheless, Baade and Zwicky’s postulation was an impressive insight for the time, and it kicked off a
decades-long campaign to observe and understand supernovae which continues to this day.

The connection between neutrinos and supernovae was first made in 1941 by Gamow and Schoen-
berg [3] who recognized that the stellar interior would be hot enough to emit neutrinos, but another 25
years passed before Stirling Colgate and RichardWhite proposed in 1966 that the primary mechanism
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Table 3.1: Shell burning stages for a 15M⊙ star. Neutrino loss refers to the luminosity of neutrino emission in
units of solar luminosity. Table adapted from Ref. [42].

Stage Time Fuel Main Temp. Density Neutrino Loss
Scale Products (109 K) (g cm−3) (L⊙)

hydrogen 11 My H He 0.035 5.8 1,800
helium 2 My He C, O 0.18 1,390 1,900
carbon 2,000 y C Ne, Mg 0.81 2.8× 105 3.7× 105

neon 0.7 y Ne O, Mg 1.6 1.2× 106 1.4× 108

oxygen 2.6 y O, Mg Si, S 1.9 8.8× 106 9.1× 108

silicon 18 d Si, S Fe, Ni 3.3 4.8× 107 1.3× 1011

core collapse ∼1 s Fe Neutron > 7.1 > 7.3× 109 > 3.6× 1015

Star

through which energy is transferred from the collapsing core to the stellar mantle is the emission and
subsequent absorption of neutrinos [4].

We know now that core-collapse supernovae are luminous neutrino emitters. The gravitational
binding energy released by core collapse is approximately

Eb ∼ Eg ≈ 3

5

GM2
ns

Rns
≈ 3.6× 1053

(
Mns

1.5M⊙

)2( Rns
10 km

)−1

erg. (3.1)

whereRns andMns are the radius andmass of the remnant neutron star [41]. Of the∼10
53 erg liberated

by the collapse, only 1% takes the form of light (which can briefly outshine an entire galaxy) and kinetic
energy of ejecta. The remaining 99% of that energy is carried away by 1058 neutrinos which have
energies of several MeV to several tens-of-MeV. The production of these neutrinos is the subject of
the rest of this chapter, and the following chapter will focus on the properties and detection of the
supernova neutrino signal at Earth.

Supernova taxonomy
Supernovae are broadly classified into two types, type I and type II. These two types are distinguished by
their observed spectral properties: Type II supernovae present hydrogen lines in their emission spectra
while type I supernovae do not. Each type is then further subdivided based again on spectral properties,
or in some cases the time-evolution of their light curves.

Type Ia supernovae are thought to originate from white dwarfs that accrete matter onto their sur-
faces fromanearby companion starwhich drives theirmasses over theChandrasekhar limit (∼1.44M⊙)
and raises the temperature in the carbon core enough to ignite a runaway nuclear fusion process which
blows the white dwarf apart. While the exact mechanism that drives these explosions is still uncertain
(see Ref. [43] for a review), the emission properties of these explosions are known to be very uniform
and are often used as standard candles for measuring the distances to galaxies. While these supernovae
do release neutrinos, the vast majority of the emitted energy is in the kinetic energy of ejecta.

Types Ib, Ic, and II are core-collapse supernovae produced by massive progenitors. Type II su-
pernovae are further divided into types II-P and II-L depending on whether their luminosity profiles
plateau or decrease linearly over a period of time following the explosion. The collapse of an iron core
is an effective engine for converting gravitational binding energy into neutrinos, so in contrast to the

18



type Ia supernovae, these core-collapse varieties release the majority of their energy in the form of
neutrinos and present the greatest opportunity for supernovae neutrino detection at Earth.

Core-collapse supernovae in the Milky Way

Two questions come to mind when planning to observe the next galactic core-collapse supernova: (1)
when will it happen?, and (2) how far away from Earth will it be? Unfortunately, there is no way to an-
swer these directly. We can, however, construct a probabilistic model that is informed by observations
both within and outside of our galaxy.

One way to compute the supernova probability as a function of distance from Earth is to use
the volume distribution of neutron stars in the galaxy as a proxy for the distribution of future core-
collapse events. Using this method, Ref. [44] computes an average supernova distance of ⟨dSN ⟩ =

10.7± 4.9 kpc. Another method is to simply count the number of known red supergiants, which are
in their final stage of stellar evolution. Figure 3.1 shows probable future supernova distances as well as
a map of the most likely nearby supernova progenitors.

Determining the average rate of core-collapse supernovae in our galaxy is not trivial. The last such
supernova that was unquestionably visible to the naked eye from Earth was observed by Johannes Ke-
pler in 1604, several years before the invention of the telescope. Modern telescopes have observed
remnants of likely supernova explosions within our galaxy that can be used to infer the rate, but deter-
mining the age of the remnants can be difficult. While the remnants of past galactic supernovae can
be observed by their emissions across many wavelengths, spotting one during the explosion is difficult
when there is a large amount of dust to obscure our view. The emergence of neutrino telescopes dur-
ing the past several decades will prove to be an invaluable tool for detecting supernovae even when the
optical signal is diminished by dust.

The most recent attempt to compute the galactic core-collapse supernova rate combines a variety
of independent calculations from recent literature along with a census of core-collapse supernovae in
the Local Group. This approach yields a predicted rate of 1.63± 0.46 century−1 [46].

3.1 Physics of a collapsing core
The collapse of stellar core is a complex and dynamical interplay between all four fundamental forces.
In this environment, general relativity, neutrino interactions, magnetohydrodynamics, and nuclear
physics are significant contributors to the dynamics of the collapse. This sectionwill explain our current
understanding of how a stellar core collapses.

Pre-supernova

Neutrinos are a byproduct of nuclear fusion and are therefore produced by all stars for the duration of
their lives. But neutrinos begin to play a more prominent role as massive stars exhaust their nuclear
fuel stores. By the time a star begins burning silicon, it is only days away from core collapse. During this
phase, the temperature in the core continuously increases as does the production of thermal neutrinos.
Neutrino emission during this phase is largely dominated by νe and ν̄e flavors. The average energy of
emitted neutrinos also grows over time, beginning at the sub-MeV level before eventually peaking at
1MeV–3MeV [47].
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Collapse
The silicon in the center of the core is replaced by its byproduct, iron, which is inert in this situation
because nuclear binding energy can not be released by fusion. The internal source of outward pressure
which has kept the star in a state of hydrodynamic equilibrium for millions of years disappears, and the
star begins to collapse under its own enormous weight.

As the collapse proceeds, the mass of the iron core grows due to the presence of in-falling material
and also because a thin shell of silicon surrounding the core continues to produce iron nuclei. Despite
the rapidly dissipating outward pressure from nuclear fusion, the core is initially supported by electron
degeneracy pressure and briefly resembles a white dwarf. However, the core soon reaches its effective
Chandrasekhar mass as in-falling matter continues to accrete.

The rate of collapse is largely governed by the evolution of entropy inside the core and the electron
fraction Ye [48]. As the temperature rises, electrons begin to capture on heavy nuclei and free protons:

e− + p −→ νe + n , (3.2)

e− + (A,Z) −→ νe + (A,Z − 1). (3.3)

This “neutronization”, produces a large flux of νe which initially stream out of the core unimpeded. The
lowering of Ye consequently reduces the electron degeneracy pressure and accelerates the collapse. As
the collapse continues, temperatures rise to the point that photons are energetic enough to dissociate
iron nuclei into alpha particles and neutrons, effectively undoing what the star took millions of years
to achieve. This photo-dissociation process

γ + 56Fe −→ 13 4He+ 4n (3.4)

is endothermic, and robs the core of energy that would otherwise be used to slow the collapse.
Roughly 100ms after the start of collapse, densities in the core reach 1012 g cm−3 and neutrinos

begin to diffuse rather than stream freely out of the core. The diffusion time exceeds the collapse time,
so that the neutrinos are effectively trapped. The boundary between where neutrinos are trapped and
where they are free is known as the “neutrinosphere” and is inmanyways analogous to the photosphere
of a star. Within the neutrinosphere, neutrinos are no longer able to carry energy away from the core,
and the collapse in this region proceeds adiabatically until the inner core density reaches that of nuclear
matter [49].

Bounce and shock propagation
110ms after the start of the collapse, the inner core achieves nuclear densities of ρ = 2.7× 1014 g cm−3

and the equation of state stiffens abruptly [48]. The inner core is now supported by the internal pressure
of a nucleon gas and is stable against further collapse. The momentum of collapsing material momen-
tarily compresses the inner core beyond this equilibrium causing it to bounce back, sending a pressure
wave outward which quickly develops into a shock front.

The temperature of the shock front increases as it absorbs kinetic energy from in-falling material
from the outer regions of the core, allowing the photo-dissociation process described by Eq. 3.4 to take
place in addition to further dissociation of the helium nuclei; as the shock propagates through the core,
it encounters iron nuclei and leaves behind free neutrons and protons in its wake.
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The capture of electrons on free protons produce copious numbers of νe. Once the shock has passed
the neutrinosphere boundary and its density has decreased sufficiently, the once-trapped neutrinos are
free to escape. This event happens about 120ms after the collapse begins, and produces a sudden burst
of electron neutrinos: the “shock breakout” [50]. This results in a sudden decrease in electron-lepton
number and allows for pair-production processes, which had been previously suppressed, to take place,
leading to the thermal production of neutrinos of all flavors through processes like pair annihilation
(e−+e+ → ν+ ν̄) and the photo-neutrino process (γ+e− → e−+ν+ ν̄). The presence of positrons
also enables the production of ν̄e via e

+ captures on neutrons [51].
The dense inner core forms the proto-neutron star (PNS), which will continue to grow as more

post-shockmaterial rains down onto it. Neutronization and thermal processes will continue to produce
neutrinos of all flavors which carry energy and lepton number out of the core. The PNS will either
become the remnant neutron star or a black hole for progenitor massesM/M⊙ ≳ 25.

Accretion and explosion
The shock front is the leading edge of the supernova explosion, pushing through the iron core before
eventually blowing away the outer envelope of the stellar atmosphere. But there is a problem with this
picture. The shock front loses energy as it traverses the dense core, primarily due to the ram pressure of
in-falling matter as well as the endothermic photo-dissociation of iron group nuclei [49]. The energy
of the shock front is not sufficient to overcome these barriers, and roughly 200ms after the collapse
began, the shock will stall well inside of the iron core and become a standing accretion shock [49].

Without some way to revive the shock, it is destined to fall back onto PNS and the explosion will
have failed. At present, the most widely-supported mechanism for shock revival relies on neutrino
heating [49]. When electron neutrinos and antineutrinos radiating out from the PNS encounter the
dense stalled shock, a fraction of them deposit their energy behind the shock through the following
reactions:

νe + n −→ p+ e−, (3.5)

ν̄e + p −→ n+ e+. (3.6)

The region where these interactions occur is known as the “gain region”.
Turbulent motions in region of the stalled shock may also contribute to its revival. One example

is the standing accretion shock instability (SASI) [52], a global instability of the shock itself due to an
unstable coupling of acoustic waves in the post-shock region and entropy and vorticity perturbations
near the shock. These turbulent effects lead to a large-scale sloshing of the material between the shock
and the PNS. This can help expand the radius of the stalled shock and increase the size of the gain
region, allowing the neutrinos to deposit even more energy behind the shock [49]. If the combined
pressure of turbulence and neutrino heating exceeds the ram pressure of in-falling matter, the shock
will be revived and resume its march outward.

Cooling
After the shock has been revived and mass accretion is largely complete, the PNS is left to contract and
undergoes Kelvin-Helmholtz cooling via neutrino emission [51]. Any remaining proton and electron
pairs will be converted into neutrons and electron neutrinos and thermal production of neutrinos of
all flavors will continue over the course of tens of seconds [51].
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Figure 3.2: Stages of a core-collapse supernova. The center of the core is at the origin. Vertical axes represent
the distance from the center of the core and horizontal axes represent the amount of mass enclosed by a sphere
of that radius. The upper wedges depict the velocity of matter flows within the core, while the lower wedges
show the composition. RFe is the radius of the iron core, Rν is the approximate radius of the neutrinosphere,
Rs is the radial location of the shock,Rg is the gain radius, andRns is the radius of the proto-neutron star. MCh
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is the nuclear saturation density (2.7× 1014 g cm−3) and ρc is the density at the center of the core. Figure from
Ref. [50].
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Figure 3.3: Neutrino emission rates during each stage of a simulated 27M⊙ core-collapse supernova. The su-
pernova model used to produce this plot is LS220-s27.0co from the Garching group [55].

3.2 Neutrino emission
Neutrino emissions from a core-collapse supernova occur in three main stages: burst, accretion, and
cooling. Each successive stage spans a longer timescale than the one before and present distinctive
signatures of the underlying physics involved. Figure 3.3 shows the instantaneous neutrino emission
rate by flavor during each stage for a simulated 27M⊙ supernova.

1. Burst: 5 ms before bounce – 20 ms after bounce
Aprompt burst of νe from electron capture (neutronization) lasts 20ms. This is a distinct feature
that is largely model-independent [53].

2. Accretion: 20 ms – 500 ms after bounce
Neutrino emission is driven by matter accreting onto the stalled shock front. Emission rates are
dependent on the radius of the shock, which can oscillate due to SASI effects. SASI can cause the
neutrino flux to modulate at a frequency of several hundred Hz [54]. νe and ν̄e luminosities are
roughly equal, but higher than that of muon and tau flavors.

3. Cooling: 500 ms – 60 s after bounce
The nascent neutron star cools via the emission of thermal neutrino-antineutrino pairs. This
stage lasts for a relatively long period of time, tens of seconds.

If the progenitor’s mass is sufficiently large, the proto-neutron starmay accrete enoughmass so that
the repulsion by the strong nuclear force is no longer strong enough to prevent a complete collapse. In
this scenario, the PNS will collapse into a black hole, and the neutrino emission will be abruptly cut off.
This provides a distinct signature of black hole formation, provided that the collapse does not happen
too far into the cooling phase when the flux has already fallen below our ability to detect it on Earth.
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3.3 Simulations

Simulating the dynamics of core-collapse supernova is a challenge. The extreme environment in which
the explosion evolves is subject to all four fundamental forces and spans many sub-fields of modern
physics: general relativity is needed to properly handle gravitational forces due to the dense proto-
neutron star; the strong and weak nuclear forces play critical roles in the neutronization and shock
revival phases; the nuclear equation of state in the core can have a large impact on the dynamics of the
collapse and bounce; rotational magnetohydrodynamics impacts the motion of hot plasma in the outer
core and mantle; neutrino transport dictates how energy leaves the core and how it is deposited behind
the accretion shock; turbulence at the stalled shock front is vital to its revival. Any one of these effects
can be challenging to simulate on their own, never mind simulating all of them and their interplay at
once. Add to that the scale of the simulation: from dynamics that play out on time scales of milliseconds
to the long-term cooling phase which can last for tens of seconds.

Current supernova models [56, 57] include treatment of some physics processes while excluding
certain others and approximations are often employed to reduce computational complexity. But how
do these choices affect the accuracy of these simulations? Oneway to answer that is to runmany simula-
tions under different scenarios and looking at which features are common between most permutations
and which are sensitive to these differences. The presence of the νe neutronization peak, for example,
is present in the vast majority of model scenarios. Whether the supernova successfully explodes or not
is a different story. The limiting factor here is how fast new simulations can be produced to compare
with one another, and that depends in large part on the dimensionality of the simulation. Today, in one
year the community can produce many 1D simulations, a couple dozen 2D simulations, and a few 3D
simulations. I won’t go into detail about existing simulation codes here, but see Ref. [55] for a review.
In a later chapter, I will describe the specific models that I used for this thesis in greater detail.

The problem of non-exploding simulations has haunted the supernova simulation community for
years. The revival of the stalled shock front appears to be quite sensitive to the physics, especially
the nuclear equation of state, the neutrino luminosity, and turbulence that occurs at the shock front
itself. Models that do not explode on their own are still useful, but they require an artificial “kick”
to keep the accretion shock from falling back onto the proto-neutron star. Although most simulated
explosions fail in 1D, 2D, and 3D (The first successful 3D explosion was reported as recently as 2015
[58]), dimensionality still plays an important role. Figure 3.4 shows two comparisons of explosion
profiles. One is a comparison between a 1D and 2D simulation and the other is between a 2D and 3D
simulation. Each comparison includes the same physics and neutrino luminosity. In both cases, the
lower-dimension simulation fails to explode and the other succeeds. While simulating a 3D supernova
is not alone sufficient to guarantee a successful explosion, dimensionality is clearly important. After all,
real core-collapse supernovae happen in three dimensions.

Despite these challenges, computational infrastructure continues to improve, our theoretical treat-
ment of core collapse matures, and supernova simulations grow faster and more sophisticated; it is an
active area of research, and there is reason to be optimistic about its future.
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Figure 3.4: Comparisons of 1D to 2D and 2D to 3D supernova simulations under similar initial conditions. Color
represents entropy. The top panels are driven by a νe luminosity of 2.1× 1052 erg s−1. The 1D simulation on
the left has failed to explode while the 2D simulation has not. In the bottom panels, the νe luminosity is reduced
slightly to 1.9× 1052 erg s−1. In this case, the 2D simulation on the left fails to explode while the 3D model on
the right does not. Figure from Ref. [59].

26



3.4 Looking ahead
Our knowledge of supernovae and the pivotal role that neutrinos play in driving these explosions has
come a long way since the 1930s and 1940s when the ideas were first introduced, but there is still much
to learn. Nothing would more rapidly enhance our understanding of core collapse dynamics than a
high-statistics multi-messenger observation of a galactic supernova.

A combined observation of electromagnetic and neutrino luminosity time profiles, neutrino en-
ergy spectra, and perhaps gravitational waves would constrain the list of feasible model scenarios and
provide invaluable insight into which physical processes are most important in driving explosion dy-
namics, and which can be approximated.

We anxiously await the arrival of neutrinos from the next galactic core-collapse supernova here on
Earth, but what can we do in the meantime? In the next chapter, I will describe what we know about
how this signal will look and the global effort that is underway to ensure we don’t miss it when the time
finally comes.
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CHAPTER 4

Supernova Neutrinos at Earth

We are fortunate enough to be located a safe distance from the majority of likely supernova progeni-
tors. In the previous chapter, we explored what happens inside the core and surrounding region while
it collapses, but when we observe the next core-collapse supernovae, we will do so from the vantage
point of Earth, hundreds or thousands of light-years away. Humans have a long history of watching
these cosmic cataclysms, but for themost part they had no ideawhat theywere looking at. We presently
stand on the precipice of being able to peer into the core of an exploding star and understand its in-
ner workings. What will we see? How will the physical processes described in the previous chapter
manifest themselves in the neutrinos we detect? What are we doing to prepare for such an historic
observation? These questions are the focus of this chapter.

Historical observations
The first known documented observation of a supernova occurred in the year 185 CE. Chinese as-
tronomers identified a guest star1 which stayed visible in the night sky for eight months. Its appearance
intrigued these astronomers, who documented it for posterity in the Book of the Later Han2:

“In the 2nd year of the epoch Zhongping, the 10th month, on the day Kwei Hae [December 7, Year
185], a ‘guest star’ appeared in the middle of Nan Mun [asterism containing Alpha Centauri], The
size was half a bamboo mat. It displayed various colors, and gradually lessened. In the 6th month of
the succeeding year it disappeared.”

Mod-

ern observations point to the remnant RCW 86 as the likely culprit. The supernova occurred 2.8 kpc
away and was likely a type Ia [60].

SN 1006 is another notable supernova event which became visible on Earth in the year 1006 CE.
This supernova was observed all around the world, including in Europe, Asia, Africa, and possibly
North America. It is notable for possibly being the brightest astronomical event in recorded history.
Ali ibn Ridwan, an Egyptian astrologer wrote that

“[the] spectacle was a large circular body, 2 1⁄2 to 3 times as large as Venus. The sky was shining
because of its light. The intensity of its light was a little more than a quarter that of Moon light.”

1a “guest star” is terminology used in ancient Chinese astronomical records to describe a bright star-like object that ap-
peared in the sky where no star was previously present.

2The Book of the Later Han is a written history of the Han Dynasty covering the period of 6–189 CE.
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The supernova may have left behind a signature on Earth. An analysis of Antarctic ice cores revealed a
spike in the levels of nitrogen oxide in the atmosphere that year [61], which can be produced by a flux
of gamma rays interacting with atoms in the atmosphere.

InOctober of 1604, JohannesKepler recorded his observation of a supernova. SN1604was brighter
than any star in the sky and remained visible during the day for three weeks. This is the most recent
supernova in the Milky Way galaxy to be seen by the naked eye.

Since then there have been more notable supernova events. SN 2008D was the first supernova to
be observed while it exploded [62], and SN 2015L is the most luminous supernova ever observed [63],
but perhaps the most notable supernova of the modern age was SN 1987A, the first supernova with an
observed neutrino counterpart.

4.1 Supernova 1987A
On February 23, 1987 at 07:35:35 UTC, a tsunami of neutrinos washed over the the Kamiokande-II so-
lar neutrino detector in Japan, the Baksan detector in Russia, and IMB in the United States. They went
unnoticed in the moment, but those neutrinos would turn out to be a discovery of historic proportions,
and they carried a message that more was to come.

Hours later, Ian Shelton at the Las Campanas observatory in Chile and Albert Jones of NewZealand
independently discovered a bright object in the southern sky, the first supernova visible from Earth in
383 years. The International Astronomical Union Circular (IAUC) #4316, titled ”Supernova 1987A in
the Large Magellanic Cloud” was soon published announcing the observation3. In another first, the
progenitor star was discovered to be Sanduleak -69 202, a blue supergiant located 50 kpc away with
past measurements.

It was only well after news of a nearby supernova was disseminated that anyone thought to go back
and look at data from the neutrino-sensitive detectors of the time; they found them. Of the ∼ 1057

neutrinos produced in the explosion, only two dozen are known to have left any trace (Fig. 4.1).

4.2 Supernova signal characteristics
Neutrinos are fermions, so one might expect their spectrum to be that of a thermal Fermi-Dirac distri-
bution

f(ϵ) ∝ ϵ2

1 + exp(ϵ/T − η)
. (4.1)

where ϵ is the neutrino energy, T is the average neutrino temperature, and η is a degeneracy parameter.
However, neutrino interactions inside the collapsing core are strongly energy dependent, causing them
to decouple from the surroundingmedium at different radii depending on the neutrino energy. A better
formulation [64] of the energy spectrum for supernova neutrinos is

fα(ϵ) =
(α+ 1)(α+1)

⟨ϵ⟩ Γ(α+ 1)

(
ϵ

⟨ϵ⟩

)α

e−(α+1) ϵ/⟨ϵ⟩ (4.2)

where ⟨ϵ⟩ is defined as

⟨ϵ⟩ ≡
∫∞
0 dϵ ϵ fα(ϵ)∫∞
0 dϵ fα(ϵ)

(4.3)

3http://www.cbat.eps.harvard.edu/iauc/04300/04316.html
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Figure 4.1: Neutrinos from Supernova 1987A recorded by the Kamiokande-II [5], IMB [6], and Baksan [7]
detectors. The gray regions represent where the trigger efficiency is less than 30%. The time is relative to each
detector, with the first event in each case occurring at t = 0.

Figure 4.2: Left: the triple-ring system of SN 1987A. Right: the inner ring. Credits: ALMA, Hubble Space
Telescope, Chandra X-Ray Observatory
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The values of these quantities at any one time parameterize the neutrino energy spectrum and flux.

and
⟨ϵ2⟩
⟨ϵ⟩2

=
2 + α

1 + α
. (4.4)

The shape of Eq. 4.2 is similar to that of a standard Fermi-Dirac, but with some amount of pinching
(narrowing) or anti-pinching (widening), depending on the value ofα. One difference between these is
that we express Eq. 4.2 in terms of the average neutrino energy ⟨ϵ⟩ instead of the effective temperature
Tν , although these quantities are related by Tν = 3 ⟨ϵ⟩. It is important to note that—while not always
explicitly stated—the quantities fα(ϵ), α, and ⟨ϵ⟩ are time-varying (see Figs. 4.3 and 4.4 as examples).

4.3 Flavor transitions
A neutrino produced in the collapsing core of a dying star propagates outward through a dense and
turbulent environment before eventually freely streaming out of the stellar mantle, traveling through
interstellar space for thousands of years, and passing through Earth’s atmosphere and possibly the inte-
rior of the planet itself before finally interacting in a supernova neutrino detector. During each of these
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stages, neutrino oscillation phenomena imprint themselves on the detectable signal. Here, I will briefly
touch on each major source of oscillation that may affect supernova neutrinos during their lifetime
assuming a three-neutrino oscillation framework.

Self-induced transitions
The neutrino density in the core is so high that the neutrino-neutrino interactions are no longer neg-
ligible. Supernovae are perhaps the only places where these interactions are possible, making them
a unique laboratory for better understanding this phenomenon. The theoretical study of neutrino-
neutrino interactions is still nascent, and the predictions about how they will imprint themselves on
the detectable neutrino signal is not robust.

One possibly observable signature comes from neutrino pair conversions like νeν̄e → νxν̄x [65].
These “collective effects” depend on the angles of the incoming neutrinos, and in cases where neutrino
emission is anisotropic, the flux could be significantly affected [66]. A “spectral split” can occur when
one flavor transforms into another above a certain energy threshold or a full spectral swap where one
flavor entirely transforms into another. These would manifest themselves as discontinuities on the
spectral shape [67].

MSW in supernovae
The dense stellar environment allows for theMSWeffect introduced in Sec. 2.2 to play a role in shaping
the flavor distribution of neutrinos emitted from a supernova. In the region behind the shock front,
the density is smoothly varying and neutrinos propagate adiabatically. At specific electron densities,
neutrinos can experience resonant flavor transitions. There are two such resonances, the L resonance
and theH resonance. TheH resonance is the dominant of the two, and affects neutrinos for the normal
mass ordering and antineutrinos for the invertedmass ordering. The less dominantL resonance affects
neutrinos in both scenarios. Figure 4.5 depicts the neutrino energy eigenstates for both mass ordering
scenarios as a function of electron density. The locations where two eigenstates approach each other
corresponds to the resonances.
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Figure 4.5: Neutrino level crossing diagrams in a supernova as a function of electron density ne for the normal
(left) and inverted (right) mass orderings. The solid vertical line labeled “vacuum” represents ne = 0. Neutrinos
propagate along the solid lines from regions of high density to zero density (right to left for neutrinos and left to
right for antineutrinos). The dashed lines represent flavor eigenstate energies. From [54].

The neutrino fluxes transform in the following way after undergoing adiabatic MSW oscillations:

Normal Mass Ordering

Fνe
= F 0

νx

Fν̄e
= cos2 θ12 F

0
ν̄e

+ sin2 θ12 F
0
ν̄x

(4.5)

and

Inverted Mass Ordering

Fνe
= sin2 θ12 F

0
νe

+ cos2 θ12 F
0
νx

Fν̄e
= F 0

ν̄x
,

(4.6)

where the flux F 0
f and Ff are the initial neutrino fluxes of flavor f before and after oscillations. θ12 is

the neutrino mixing angle [54].
Non-adiabaticMSWtransitions are also possible in regionswhere thematter density is not smoothly-

varying, like the shock front [54].

Decoherence
As supernova neutrinos begin their long interstellar journey to Earth, their mass eigenstate wave pack-
ets of width σx gradually begin to spread out and separate. The difference in group velocities of the
packets causes a relative shift∆xshift between the mass eigenstates. The coherence of these eigenstates
is determined by a coherence length Lcoh, the distance at which ∆xshift ∼ σx. Beyond this distance,
the neutrino mass states have separated enough so that they no longer interfere with each other, and
the oscillation probability no longer depends on the baseline [68].

MSW in Earth
If supernova neutrinos pass through the interior of the Earth, flavor transformations via the MSW
effect can occur depending on the density profile traversed by the neutrinos. The detectable signature
of these oscillations will appear as small modulations of the energy spectrum of a few percent at a
frequency of a ∼3–10 MeV [54]. These modulations would be present in the antineutrino spectrum
for the normal mass ordering case and in the neutrino spectrum for inverted mass ordering. Good
energy resolution and statistics would be required to be able measure these wiggles.
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Table 4.1: Expected interaction rates for a 10 kpc supernova as calculated by the SNOwGLoBES software package
[69] using the s27.0c model from [55]. Event counts are summed over all channels (excluding elastic proton
scattering in liquid scintillator) and assumes adiabatic MSW oscillations for both mass orderings. The effective
mass for string detectors is derived from the event count for a 27.0M⊙ supernova and the normal mass ordering.
Table adapted from Ref. [8].

Experiment Type Mass Location 27.0M⊙
(kt) NMO IMO

cu
rr
en
t

Super-K H2O ν̄e 32 Japan 7,800 7,600
IceCube H2O/String ν̄e 2500* South Pole 660,000 660,000
KM3NeT H2O/String ν̄e 150* Italy/France 37,000 38,000
LVD Liquid Scint. ν̄e 1 Italy 360 350

KamLAND Liquid Scint. ν̄e 1 Japan 360 350
Borexino Liquid Scint. ν̄e 0.278 Italy 100 97
SNO+ Liquid Scint. ν̄e 0.78 Canada 280 270
NOvA Liquid Scint. ν̄e 14 USA 3,700 3,600
Baksan Liquid Scint. ν̄e 0.24 Russia 86 84
HALO Lead νe 0.079 Canada 9 8

MicroBooNE Argon νe 0.09 USA 12 11
SBND Argon νe 0.12 USA 16 15

fu
tu
re

Hyper-K H2O ν̄e 220 Japan 53,000 52,000
JUNO Liquid Scint. ν̄e 20 China 7,200 7,000

HALO-1kT Lead νe 1 Italy 120 100
DUNE Argon νe 40 USA 5,500 5,200

DarkSide-20k Argon any ν 0.0386 Italy 250 250
XENONnT Xenon any ν 0.006 Italy 106 106

LZ Xenon any ν 0.007 USA 123 123
PandaX-4T Xenon any ν 0.004 China 70 70

Totals 776,092 775,234

4.4 Supernova neutrino detection technologies
Today’s neutrino detectors exhibit a variety of neutrino interactionmedia, geometries, materials, masses,
and signal readouts. Every detector is unique, but each tends to fall into one of a few classes based on
the interaction medium and therefore the neutrino flavor that is primarily sensitive to. I describe these
detector classes below and Tab. 4.1 contains a list of current and future supernova-capable neutrino
detectors, their detector type, and expected event rates for a canonical 10 kpc supernova.

Water Cherenkov
WaterCherenkov detectors instrument a volumeofwaterwith photo-multiplier tubes (PMTs). Charged
particles produced from neutrino interactions travel faster than the speed of light in the medium, pro-
ducing a Cherenkov cone that is then detected by the PMTs.

Because water is hydrogen-rich, these detectors are primarily sensitive to inverse beta decay inter-
actions. Elastic scattering on electrons is another common interaction channel, which can be partic-
ularly useful for reconstructing the direction of neutrinos because the Cherenkov light cone indicates
the direction of the scattered electron. Charged and neutral current interactions on Oxygen nuclei are
present, but less common than the aforementioned channels.

Water Cherenkov detectors come in two varieties. The first involves storingwater in a spherical or
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cylindrical vessel and instrumenting the vessel walls with the PMTs. Examples of this type of detector
include Super-K [70] and Hyper-K [71]. The second variety of Water Cherenkov detectors involves
using a natural body of water as the interaction medium and instrumenting it with an array of long
strings with optical modules attached. Examples include IceCube at the South Pole [72], KM3NeT in
the Mediterranean Sea [73], and the Baikal Deep Underwater Neutrino Telescope in a lake in Russia
[74].

Scintillator

Scintillator detectors use organic hydrocarbons as an interaction medium, most commonly in liquid
form. The passage of charged particles through a scintillating material excites its molecules which
then isotropically emit photons. Liquid scintillator is known for producing higher light yields than
Cherenkov radiation. This allows liquid scintillator detectors to have lower energy thresholds, but also
leaves them vulnerable to backgrounds from radioactive decays below the MeV regime.

Liquid scintillator is rich in hydrocarbons, so much like Cherenkov detectors, inverse beta decay
is the dominant interaction mode for supernova neutrinos. Examples of this type of detector include
Baksan in Russia [75], LVD [76] and Borexino at the Gran Sasso laboratory in Italy [77], KamLAND
in Japan, SNO+ in Canada [78], and eventually JUNO in China [79]. Both NOvA detectors, on which
this thesis focuses, are liquid scintillator detectors. These detectors will be described in much greater
detail in the next chapter.

Noble element

Liquid argon time projection chambers (LArTPCs) are a relatively new detector technology that use
strong electric fields to drift ionization charge generated by the passage of charged particles through the
liquid argon to a collection plane. Combining the two-dimensional readout with drift time information
and possibly photon detection from argon scintillation allows for precision reconstruction of particle
tracks.

The water Cherenkov and liquid scintillator detectors were primarily sensitive to the ν̄e compo-
nent of the supernova signal through the dominant inverse beta decay channels, but for LArTPCs, the
interaction νe +

40Ar → e− + 40K∗ provides sensitivity to the νe channel. Current LArTPC detec-
tors include MicroBooNE [80] and the Short Baseline Neutrino Detector (SBND) [81], both at Fermi
National Accelerator Laboratory.

The Deep Underground Neutrino Experiment (DUNE) [82] is the next major international neu-
trino project. DUNE’s 40 kt far detector in South Dakota has yet to be constructed, but once it begins
taking data sometime after 2027, it will be a formidable supernova observatory. In fact, the ability to
detect neutrinos from a galactic core-collapse supernova is one of DUNE’s primary scientific goals.

Current and future dark matter TPC detectors searching for weakly-interacting massive particles
(WIMPs) use liquid and sometimes gaseous noble elements as their detection medium, enabling their
dual use as supernova observatories. These detectors are designed to be as radio-pure as possible to
enable searches for extremely rare phenomena, like neutrinoless double beta decay. Future detectors
such as LZ and XENONnT should be capable of detecting a supernova anywhere in the Milky Way
galaxy at 5σ significance [83].
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Lead-based
Currently, the only lead-based neutrino detector is the Helium and Lead Obseratory (HALO) located
at SNOLAB in Ontario, Canada [84,85]. HALO’s neutrino interaction medium is 79 t of lead with 128
3Heneutron detectors embeddedwithin. The primary channel is a charged-current interaction of νe on
protons in the lead nuclei. The ν̄e interaction with neutrons is largely suppressed due to Pauli blocking.
The 3He counters have relatively low backgrounds, which makes them useful supernova detectors. In
fact, HALO is the world’s first dedicated supernova neutrino detector. However, the low mass of the
detector limits its sensitivity to supernovae to the nearest∼5 kpc. An upgrade to HALO, HALO-1kT,
has been proposed [86] which would consist of 1000 t of Pb from the OPERA experiment.

4.5 Physics opportunities
The dynamics of a supernova explosion and the properties of neutrinos are inextricably linked, and
so those properties will be reflected in the characteristics of the detected neutrinos. In this section, I
explore several of those properties and how they may or may not manifest in the signal.

CP violation
The strength of CP violation in the neutrino sector, if there is any at all, is represented by the parameter
δCP. It is unlikely that a core-collapse supernova will reveal anything about this parameter because CP
violation largely affects the νµ and ντ species. Current and future supernova neutrino detectors are
primarily sensitive to νe, ν̄e, or all neutrino flavors at once, and therefore have goodway to discriminate
between νµ and ντ events. However, it has been shown that CP violation can affect both electron
neutrino species if the νµ and ντ fluxes are not equal at the neutrinosphere boundary [87].

Absolute neutrino mass
Neutrinos travel at nearly the speed of light, but not quite. The time of arrival of a neutrino at a detector
therefore depends on its energy Eν and mass mν . After traveling a distance d, the time difference
between a neutrino and a massless particle is

∆t ∼ 5.14ms
(mν

eV

)2(10MeV
Eν

)2 d

10 kpc
. (4.7)

Currently, other methods of constraining the absolute neutrino mass, such as by measuring tritium
beta decay endpoint energies or cosmological observations, provide better constraints than the 20 eV
limit set by the neutrino data from SN 1987A [88], but it’s possible that the next supernova observation
could push these limits. Detectors with low thresholds and good energy resolution could stand a chance
at maximizing ∆t and thus constraining mν . Using the current best limit on the neutrino mass of
mν = 1.1 eV from the KATRIN experiment [89], a 10MeV neutrino from a 10 kpc supernova would
have a∆t of about 6ms. If the absolute neutrino mass were much lower, saymν = 50meV,∆twould
drop to about 13 µs. A sharp feature in the time profile, such as black hole formation, could enhance
sensitivity [90].

Mass Ordering
There are a variety of ways to probe the neutrino mass ordering with supernova neutrinos. Flavor
transition effects all depend on this property, so observations of any of the phenomena discussed in
Sec. 4.3 could provide sensitivity.
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The neutronization burst is perhaps the lowest hanging fruit in this area for a couple reasons. For
one, the presence of such a burst is largely model-independent. Second, the neutrinos emitted during
this period are thought to be emitted from regions where neutrino self-interactions play little to no
role in shaping the flux [65]. In this case, it is the νe-sensitive detectors that will be able to make the
most meaningful measurement: for the normal mass ordering case, the neutronization peak should be
entirely suppressed or nearly so. For the inverted mass ordering, the neutronization peak will still be
suppressed relative to the case of no oscillations, but it should be clearly present [54].

After neutronization, the early time profile is also sensitive to themass ordering. Oscillation effects
in the first few hundred milliseconds are thought to be largely dominated by MSW transitions and
uncomplicated by other phenomena. The shape of the time profile during the accretion period could
therefore be used to discriminate between mass ordering scenarios.

Mass ordering signatures are not only imprinted on the neutrino time profile. The energy spectrum
may also contain information about this sought after neutrino property. Neutrino-neutrino interaction
spectral splits and swaps would produce non-thermal spectra that would depend on the mass ordering.
However, the current understanding of these collective effects are not robust enough to provide a con-
sistent picture of what to expect.

4.6 Supernova Early Warning System and global readiness
The Supernova Early Warning System (SNEWS)4 is an open, public alert system designed to issue an
advance warning of an imminent core-collapse supernova based on the observations of a community of
neutrino observatories [91]. This is possible because neutrinos are able to escape the center of the star
minutes or hours before the explosion itselfmakes it to the star’s outer surface. SNEWSbegan operating
in 2005, and has beenwatching for supernovae ever since. As a coincidence network, member detectors
report to SNEWS when their data-driven triggers spot activity consistent with a supernova neutrino
burst. If multiple detectors report a potential supernova within a 10 s window, then SNEWS issues an
alert to subscribers and the public.

When a SNEWS alert is issued, the idea is that observatories around the world will stop what they
are doing and search for the imminent supernova to appear in the sky. Issuing false-positive alerts was
therefore a serious concern, and the system was designed to limit the probability of such a false alarm
to one per century. This set the false-positive limit for reporting detectors to one per week.

Today, the experimental landscape has changed. LIGO and other multi-messenger networks now
commonly issue their own alerts about various types of astronomical phenomena across the visible uni-
verse, and observatories aremore accustomed to receiving alerts of various levels of urgency. Computer
processing power and expanded network bandwidth have also increased since SNEWSwas developed,
so receiving and processing more data from contributing detectors is more feasible today than it once
was.

Over the past few years, SNEWS has begun to undergo a major upgrade. SNEWS 2.0 aims to
evolve beyond a simple coincidence alert system to something that is capable of taking in more detailed
information from contributing detectors, performing on-the-fly combined analyses, and distributing
multiple types of alerts that are updated when new information arrives. This section briefly describes

4https://snews.bnl.gov/
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SNEWS 2.0 in the context of these new capabilities. A more thorough explanation can be found in the
SNEWS 2.0 whitepaper [8].

Pre-supernova neutrinos
In the final stage of nuclear fusion before the catastrophic collapse, the temperature in the core increases
as does the thermal emission of neutrinos [47]. Their energies don’t make it much higher than a few
MeV, but once they exceed the 1.8MeV threshold for inverse beta day, it becomes possible to detect
by existing neutrino experiments. However, the flux during this silicon-burning stage is still relatively
low when compared to that of the collapse itself, which limits the sensitivity to these pre-supernova
neutrinos to a distance of about 1 kpc. The KamLAND experiment, for example, is capable of detecting
these neutrinos, and can provide a 3σ detection 48 hours before core collapse for a 25 M⊙ star at
a distance of 690 pc [92]. Super-Kamiokande in Japan recently doped their water with gadolinium,
which will enhance their ability to tag neutrons from inverse beta decays and give them sensitivity to
these pre-supernova neutrinos. They estimate that they could detect a supernova up to ten hours before
core collapse with a false-alarm rate of one per century up to 600 pc away [93]. Future large darkmatter
experiments may also be able to detect these neutrinos [94] through the recently-discovered coherent
elastic neutrino-nucleus scattering (CEνNS) interactions [95], which unlike inverse beta decays do not
have a minimum energy threshold.

Pointing & triangulation
SNEWS hopes to not only be able to alert the public about an imminent supernova but also to provide
some information about where it might appear in the sky. Considering that the most likely scenario
is one wherein the electromagnetic component of the supernova is attenuated by dust in the galactic
plane, it may be difficult to spot an optical signature even after the explosion has disrupted the outer
layers of the star.

One method for localizing the origin of the neutrino burst is by pointing with a large number of
individual neutrino observations. Forward elastic scatterings of neutrinos on electrons allow water
Cherenkov experiments to reconstruct the neutrino direction based on the direction of the Cherenkov
light cone (Fig. 4.6). However, these interactions are sub-dominant compared with those of inverse
beta decay, and water detectors have difficulty in differentiating these two interaction types. The in-
troduction of a dopant such as gadolinium enhances the neutron capture cross section and makes it
easier to tag inverse beta decay events. Super-K has already begun to do this; they are currently the
world leader in terms of supernova pointing capability with an 1σ angular accuracy of 4.3–5.9◦, and
the addition of gadolinium is expected to improve this to 3.3–4.1◦ [8].

Anothermethod is that of triangulation, where timing information frommultiple detectors around
the world are combined to constrain a region on the sky where the neutrino burst originated. This is
the same technique that LIGO/Virgo uses to localize gravitational wave events. To do this, the time
difference between pairwise detector observations (i and j) is defined as

∆tij = d⃗ij · n⃗/c (4.8)

where d⃗ij is the distance vector between the two observatories and n⃗ is the unit vector that points to-
wards the supernova in the geographic horizontal coordinate system characterized by a right ascension
α and declination δ.
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Figure 4.6: Left: Reconstructed event vectors for a simulated supernova in the Super-K detector. Blue points
represent IBD events while red indicate elastic scatters on electrons. The star denotes the true location of the
supernova. Plot from [96]. Right: 1σ confidence regions for two-detector triangulation of a supernova that
collapses into a neutron star. The black dot represents the true location of the supernova. Plot from [8] and
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Given a recorded time difference between twodetectors∆tdataij and its associated uncertainty δ(∆tij),
which is taken to be the larger timing uncertainty of the two detectors, a χ2 distribution is constructed
as

χ2
ij(α, δ) =

(
∆tij(α, δ)−∆tdataij

δ(∆tij)

)
. (4.9)

Additional detector pairs can be incorporated simply by summing theirχ2 contributions, which is then
converted into a p-value to determine confidence regions on the sky (Fig. 4.6).

SNEWS alerts

SNEWS 1.0 is a simple coincidence network; if two or more detectors report a supernova candidate
within 10 s, SNEWS 1.0 issues an alert. SNEWS 2.0 aims to go beyond that by receiving a richer
data payload from reporting detectors with which SNEWS can perform various “virtual experiments,”
real-time analyses using certified data from a large number of experiments. Examples include those
described above such as pointing and triangulation, a pre-supernova trigger, and the main supernova
burst trigger. The purpose of these analyses is to generate more sophisticated and detailed alerts. Con-
tributing experiments retain full ownership of the data they report.

These enhanced capabilities of SNEWS 2.0 requiresmore sophisticated cyberinfrastructure than its
predecessor did. SNEWSmust be able to aggregate incoming neutrino data frommultiple experiments,
including pointing information, neutrino light curves, and significance time-series. Once aggregated,
these data need to be analyzed to determine the presence and properties of a supernova burst. Once
an alert is issued, it must be tracked and updated as additional information comes in. Finally, these
alerts must be combined and summarized in a way that is fit for consumption by the astronomy com-
munity. This should all happen with little-to-no human intervention. Figure 4.7 depicts a high-level
architecture for the system.
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Figure 4.7: Example architecture of the SNEWS 2.0 network.

Amateur astronomer engagement
After getting the word out through a SNEWS alert, the next most important task following a super-
nova neutrino burst will be to visually identify the explosion itself. Pointing information from indi-
vidual neutrino observatories, SNEWS, and LIGO may or may not be available. The visible explosion
could lag the neutrino burst by ten minutes, ten hours, or more. The explosion may or may not be
visible from Earth, depending on howmuch dust is in between. There will be ample uncertainty in the
moments after the neutrino burst washes over our detectors, but one thing is clear: we cannot miss the
opportunity to witness a nearby supernova as the explosion bursts through the stellar surface.

We will need eyes on the skies. A lot of them. The amateur astronomer community will play a
pivotal role in this search. I have always thought of the term “amateur astronomy” as something of a
misnomer. This global community is home tomemberswith awide range of expertise, fromenthusiasts
to experts. Some are new observers starting out with nothing more than a pair of binoculars while
others use sophisticated equipment and have decades of experience. Many are somewhere in between.
Some of them will likely be the first humans to lay eyes on the next galactic core-collapse supernova,
assuming it can be seen with eyes.

Until then, it is important that the SNEWS community engages with the amateur astronomy com-
munity. Duringmy time as amember of the SNEWS collaboration, I stood up the Education and Public
Outreach Working Group, whose mission is to facilitate this engagement. I developed a three-tiered
strategy to guide our efforts:

1. Awareness — Put simply, the community cannot react to SNEWS alerts if they are not aware
that they exist. This line of effort seeks to expand outside awareness of SNEWS by reaching
out to organized clubs, attending conferences, and engaging with individuals on social media.
Continuously cultivating community relationships in this way will help develop and maintain
observational readiness.

2. Preparedness—This line of effort is largely an educational one. Wemust ensure that the public
has the training and guidance they need to receive and interpret SNEWS alerts. Another com-
ponent of this involves expanding the distribution of public alerts to additional media beyond
email to maximize reach.

3. Follow-up — When the day finally arrives, execution will be key. There will be little time to
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coordinate a global observing campaign. SNEWS will develop and distribute training materials
containing information about existing reportingmechanisms and best practices so that observers
can familiarize themselves ahead of and during a galactic supernova event.

One way to test the effectiveness of our engagement efforts is to conduct what SNEWS call a “fire
drill”. This exercise would involve sending a test alert to SNEWS subscribers which is meant to mimic
a true alert and directs them to begin a search for a transient object in the sky. The alert would be
clearly labeled as a test, and subscribers would be notified ahead of time that a test would occur, but the
exact time of the alert and the nature of the transient would be kept secret. This would allow SNEWS
to test its technical infrastructure, benchmark the speed and accuracy with which the global commu-
nity can identify a transient object with limited information, and evaluate which areas of community
engagement could use more attention.

Summary
Humanity’s understanding of supernovae has come a long way since the first-documented guest stars
nearly two thousand years ago, but mysteries remain. It’s not entirely clear how they even explode.
We now believe that Pauli’s “desperate remedy”, the neutrino, plays a central role. But we won’t know
the details until we have the opportunity to observe a core-collapse supernova in or near our galaxy.
We caught a glimpse in the late 1980s, as three neutrino-capable detectors identified a couple dozen
neutrinos. Today’s neutrino detectors will collectively observe tens of thousands of neutrinos, and
every last one of themwill be precious. That is why the Supernova EarlyWarning System stands ready
to coordinate the response of neutrino detectors around the world.

The remainder of this thesiswill focus on twoof these detectors, a pair of liquid scintillator calorime-
ters in the midwestern United States: the NOvA detectors.
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CHAPTER 5

The NOvA Experiment

NOvA [98] is a long-baseline neutrino oscillation experiment which makes precision measurements
of the (—)

νµ → (—)

νe and
(—)

νµ → (—)

νµ oscillation probabilities. The 290 t near detectoris located at Fermi
National Accelerator Laboratory (Fermilab) in Batavia, IL. It samples the NuMI neutrino beam at a
baseline of 1 km from the beam target and sits 100m underground. The 14 kt far detector is situated
near the Canadian border in northern Minnesota (Fig. 5.1). The far detector is 810 km downstream
from the beam target and sits near the Earth’s surface with an overburden of 1.25m of concrete and
16 cm of barite gravel for cosmic ray shielding. By comparing event rates and energy spectra measured
at the near and far detectors,NOvA is making precise measurements of the mass splitting ∆m2

32 and
angle θ23 and its data are sensitive to the neutrinomass ordering, the octant of θ23, and the CP violating
phase δCP [99–103]. In 2019, NOvA reported the first measurement of neutrino oscillation parameters
using both neutrinos and antineutrinos [103].

In its efforts to measure these neutrino properties, NOvA has made significant contributions to
neutrino event reconstruction through the development of deep learning algorithms. In 2016, NOvA
developed convolutional neural network called CVN to identify neutrino interactions by their topolo-
gies without the need for detailed reconstruction [104]. This algorithm was the first of its kind to be
applied to identifying interactions in sampling calorimeters and outperformed the traditional particle
identification techniques that were in use before [105]. In 2019, this method was improved upon by
incorporating contextual information [106] and expanded to include energy reconstruction in addition
to particle identification [107].

The study of three-flavor neutrino oscillations is the primary physics objective of the NOvA exper-
iment, but the full physics program extends well beyond that, including searches for sterile neutrino
oscillations [108] and neutrino-nucleus cross sectionmeasurements [109,110]. NOvA also searches for
exotic and astrophysical phenomena, such as seasonal variations in the rate of cosmic ray muons [111],
slow monopoles [112], multi-messenger signals coincident with LIGO/Virgo detections [113], and
galactic core-collapse supernovae. Despite the fact that the NOvA detectors are designed to reconstruct
neutrino interactions with energies one or two orders of magnitude larger than those expected from a
supernova, NOvA is capable of detecting supernova neutrinos and already has a data-driven trigger in
place to do exactly that [114]. In this chapter, I will describe the design of the NOvA detectors and the
process of data acquisition.
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Near Detector
FERMILAB, BATAVIA, IL

Far Detector
ASH RIVER, MN

809 km

Figure 5.1: Locations of the NOvA near and far detectors, separated by a distance of 809 km.

5.1 Detector technology and design
Although the NOvA experiment primarily uses a two-detector design, there are a total of four NOvA
detectors. In addition to the near and far detectors, NDOS (Near Detector On the Surface) was a 210 t
prototype detector at Fermilab which has since been decommissioned. More recently, NOvA has con-
structed a 30 t detector in the Fermilab test beam. The purpose of the NOvA Test Beam program is
to study the detectors’ response to electrons, muons, pions, kaons, and protons [115]. This will help
reduce some of the largest systematic uncertainties facing NOvA analyses, such as detector response,
calibration, and energy resolution. The work presented in this thesis relies only the near and far detec-
tors, so I will focus solely on those from this point on.

Detector construction
The NOvA near and far detectors are segmented tracking calorimeters with liquid scintillator as an
interactionmedium. The detector structure itself is made of extruded hollow cells of PVC that are glued
together to form planes. Each cell is 5.59 cm × 3.56 cm in cross-sectional area and spans a length of
roughly 1600 cm at the far detector and 400 cm at the near detector. Planes of detector cells are placed
together, altering their orientations by ∼90°. This provides two 2D projections of detector activity,
which can be used to reconstruct particle tracks in three dimensions (Fig. 5.2). The far detector consists
of 896 planes while the near detector has 214. In total, the far detector has 344,064 cells and the near
detector has 20,192.

The detectors are constructed similarly, but differ in size; the 290 t near detector is about 1/60 the
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Figure 5.2: Comparison of the NOvA near and far detectors (left) and a depiction of how individual planes of
cells are alternated and staggered to allow for three-dimensional reconstruction (right).

volume of the 14 kt far detector (Fig. 5.3). The only other notable difference is that the last 22 planes in
the near detector are part of a muon range stack. In this region of the detector, 10 cm thick steel plates
are inserted between readout planes to provide extra stopping power for muons that might otherwise
exit the back of the detector and complicate their energy reconstruction. Apart from the size and the
presence of the muon range stack at the near detector, the detectors are designed identically in terms
of physical construction, electronics, and data acquisition. Both detectors have an active mass fraction
of 63%.

Liquid scintillator and fiber
Each hollow cell in theNOvAdetectors is filledwith liquid scintillator that produces lightwhen charged
particles pass through it. The composition of the liquid scintillator is predominantly mineral oil, with
pseudocumene (1,2,4-Trimethybenzene) as the scintillant. Small amounts of PPO (2,5-diphenyloxazole)
and bis-MSB (1,4-di(methylstyryl)benzene) are added to shift the light spectrum produced by the scin-
tillant from 360 nm–390 nm to 400 nm–450 nm, which is more readily absorbed by the wavelength-
shifting fiber. An anti-static agent was added to prevent the build-up of charge while filling the de-
tector cells. Reference [116] describes the composition and production of NOvA’s liquid scintillator in
greater detail.

A single wavelength-shifting fiber is inserted into each cell. The two ends of the fiber are attached
to a single pixel on an avalanche photodiode (APD) at one end of the cell (Fig. 5.4) This allows the
fiber to form a loop along the length of the cell. Light produced by the scintillator reflects off of the
surface of the PVC cell walls until it is eventually captured by the fiber, which shifts the wavelength of
the scintillation light from blue to green (490 nm–550 nm). Shifting the wavelength in this way is done
to take advantage of the high quantum efficiency of the APDs in this wavelength range. One NOvA
cell corresponds to one pixel on an APD, and each APD contains 32 pixels.

Charge collection and readout
NOvA’s APDs are manufactured by Hamamatsu and have a quantum efficiency near 85% for wave-
lengths between 520 nm–550 nm (Fig. 5.5). They operate at a gain of 100 at the near detector and
140 at the far detector. APDs are subject to thermally-generated currents that can mimic signals, so
keeping them at a low temperature is important for reducing the level of thermal noise in our data. To

47



Figure 5.3: Photographs of the NOvA near (left) and far (right) detectors. Credit: Fermilab/Reidar Hahn.
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Figure 5.4: ANOvA FD cell filled with liquid scintillator is traversed by a charged particle (dashed line). The light
produced by the scintillator (blue) reflects several times within the cell before being absorbed by the wavelength-
shifting fiber (green). The light is internally reflected in the fiber to its ends which both terminate on the same
APD pixel.
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Figure 5.5: Liquid scintillator and fiber emission spectra and quantumefficiencies (QE) for avalanche photodiodes
(APDs, pink) and photomultiplier tubes (PMTs, navy blue) as a function ofwavelength in nanometers. TheAPDs
outperform PMTs in quantum efficiency at the wavelengths emitted by the fiber.

address this, APDs are cooled using a thermoelectric cooler (TEC) which can bring them from room
temperature to their nominal operating procedure of −15 °C within several minutes without signifi-
cant mechanic stress. A chilled water system circulates 2mL/s of 15 °C water over the TECs to remove
heat. A dry gas distribution system is used to prevent humidity in the ambient air from condensing on
detector electronics.

Each APD is connected to a front-end board (FEB) (Fig. 5.6) for signal processing. An APD pulse
is fed into a custom application specific integrated circuit (ASIC), which contains a preamp and shaper
circuit which produce a pulse with a fast rise time and a comparatively slow fall time. An analog-to-
digital converter (ADC) is used for digitization. The FEBs run with a clock speed of 16MHz and data
from the 32 channels are read out by the ASIC through a 8:1 multiplexer at the far detector, for a per-
channel readout rate of 2MHz. The near detector uses 2:1 multiplexing (8MHz) to allow for better
separation between hits due to the higher intensity of neutrino activity which creates a pileup effect.

Zero-suppression is achieved by applying a dual-correlated sampling (DCS) algorithm to the digi-
tized signal stream. The algorithm samples a series of ADC values separated by 500 ns for every APD
pulse. The ADC value at a point si is compared to ADC values in the recent past to determine whether
the pulse exceeds a predetermined threshold value. Pulses that exceed the threshold are read out as a
“hit”. Until October 2014, the far detectorDCS algorithmoperated in single-pointmode, which uses the
ADC values at points si and si−3 to compute the difference. Since then, both detectors have been oper-
ating inmulti-point mode, which uses a larger series of sample points {si−3, si−2, si−1, si} to better fit
the pulse shape andmore accurately determine the pulse time T0. Figure 5.7 depicts these two DCS op-
erating modes. Aside from thresholding, NOvA’s front-end electronics do not employ any hardware or
software-based triggering; signals are continuously digitized, time-stamped, pedestal-subtracted, and
zero-suppressed.
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Figure 5.6: NOvA readout electronics schematic (left, viewed from side) and photo (right, viewed front-on).

51



−500 0 500 1000 1500 2000 2500 3000

Time (ns)

300

400

500

600

700

S
ig

na
l

(A
D

C
)

sisi−1si−2si−3

Figure 5.7: Illustration of the advantage of multi-point over single-point readout. The red and black lines repre-
sent two similar pulse shapes which are sampled very 500 ns. In single-point mode, the ADC and TDC values at
point si are taken to be the ADC and TDC values of the hit. These two pulses might be read out with the same
values, even though the red pulse is delayed relative to the black one by about 500 ns. In multi-point mode, si
still represents the hit ADC value, but all points in the set {si−3, si−2, si−1, si} are used to fit the pulse shape
and more accurately determine the TDC value of the pulse.

APD baseline sag
Although the channels operate independently, they can sometimes affect one another. Each channel on
a given APD shares the same voltage source which supplies the baseline and when a pulse is produced
on one APD channel, the baseline for all channels on that APDmomentarily decreases slightly. This sag
in the baseline depends on the amount of energy deposited on the APD, and when energy depositions
are very large, the sag can be large enough that it causes the DCS values to exceed threshold as the
voltage returns to baseline, mimicking a real pulse. This can create a ringing effect, which we call an
“FEB flasher”, where some or all of the channels connected to a given FEB are repeatedly re-triggered
at low ADC values for an extended period of time as the instigator pulse decays (Fig. 5.8).

NOvA test bench studies have revealed the conditions underwhich this FEB flasher phenomenon is

Figure 5.8: A far detector event display of an FEB flasher in the YZ-view. Pixel color and size represent hit ADC
(darker and larger correspond to higher ADC). A high-energy shower deposited large amounts of energy into
the cells along the track, causing APD baselines to sag and false hits (flashers) to occur in the affected FEBs.
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Figure 5.9: A test bench digital scanning oscilloscope (DSO) scan showing a large charge deposition in channel 1
(gray) which induces an APD baseline sag in channel 2 (red) on the same FEB. The left panel shows the raw ADC
values associated with the deposition and the right panel shows the DCS view which is used to read out the data
if the value exceeds a threshold. In this example, the induced baseline sag causes channel 2 to take on a positive
DCS value which exceeds threshold as the voltage is returning to baseline.

likely to occur. At the far detector, an FEB flash is expected if an instigator signal is 10,000–20,000 ADC
counts (∼250 times threshold). The near detector uses a different set of constants for signal shaping and
thus these values are slightly different; about 30,000 ADC counts are needed to produce FEB flashing
at the near detector, which represents a signal about 700 times threshold. Figure 5.9 depicts how one
channel with a large charge deposition can influence a neighboring channel to produce this effect.

Hits from FEB flashers do not represent real detector activity and are therefore a background to
analyses, especially a supernova analysis in which the ADC spectra of the signal and the flashers would
overlap. Luckily, the fact that FEB flashers can be identified by high-energy events, are constrained
to a limited set of FEBs, and have a predicable duration means that they can easily be identified and
removed by software. I will revisit this topic in Sec. 7.2 when I discuss background rejection methods
for this analysis.

5.2 Data acquisition
The NOvA data acquisition (DAQ) system is responsible for aggregating data streams from thousands
of FEBs, making them available to software-based triggering algorithms, and writing them to disk for
long-term storage. Data within the DAQ are organized in a hierarchical way. The most atomic data
structure is called a nanoblock, which represents a single hit in the detector and contains information
about the ADC pulse height, timestamp (more on timing in next section), and FEB and APD pixel
addresses.

Data Concentrator Modules (DCMs) aggregate the data read out from up to 64 FEBs and services a
geographical region of the detector. The near detector has 14DCMs and the far detector has 168. DCMs
concatenate streaming data from the FEBs into 5 µs chunks called microslices. The Event Builder then
groups multiple microslices together to form a microblock, which is 50 µs in duration and represents a
contiguous time period of data that has been read out by a single DCM. These microblocks are the basic

53



Table 5.1: Data aggregation layers from APD readout to disk storage for near and far detectors.

Layer Input Streams
(FD top, ND bottom)

Output Streams
(FD top, ND bottom)

Channels
Per Stream

APD Readout→ FEB 344,064 10,752 32
20,192 631 32

FEB→ DCM 10,752 168 2,048
631 14 ∼1,442

DCM→ Buffer Node 168 200 (max) 344,064
14 200 (max) 20,192

Buffer Node→ Data Logger 200 (max) 1 344,064
200 (max) 1 20,192

Data Logger→ Disk Storage 1 21 344,064
1 11 20,291

atom of data in the circular buffer system and are used as input to trigger algorithms that will decide
which data are associated with physics events of interest to be stored and those which are not and to be
discarded.

The circular buffer system that NOvA employs is made of a farm of computers (known as buffer
nodes) which are connected by a shared memory segment. The depth of the buffer depends on the
number of buffer nodes in the system; in the current configuration, the near detector buffer depth is
approximately 30min and that of the far detector is about 20min. Triggering algorithms—which will
be described in greater detail in Sec. 5.4—examine these buffered data in detail. When a trigger is
issued for some time period, those data must be read from the circular buffer and written to disk. This
buffering architecture is also useful because it takes longer to write data to disk than it does to stream
it out of the detector. The data must also be packaged with important metadata, like run and subrun
numbers. Table 5.1 summarizes theway inwhich data is aggregated intomanyAPD channels to several
files on disk.

5.3 Timing system
NOvA’s performance as a neutrino detector relies on meeting certain timing requirements. One re-
quirement is intra-detector synchronization. This is particularly important at the near detector where
the neutrino flux is large and the spatial spread of the beam is small. A single NuMI beam trigger often
has multiple neutrino events present which overlap each other. To mitigate this pile-up, the detector
components must be synchronized to one another to within 10 ns.

We also require synchronization of both detectors with an external reference clock. Both detectors
rely on spill signals sent from Fermilab to decide when to record neutrino event data. If the detectors
are not in-sync with each other, then one or both may fail to read out data at the right time and miss
neutrino interactions. From a supernova perspective, detector synchronization is also very important.
We need both detectors to read out a massive amount of data in the event of a supernova, and if they
are not properly synced to an external reference, we may lose some or all of the data associated with
the neutrino shock breakout.
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Figure 5.10: The NOvA DAQ and its subsystems.

NOvA time base & clocks
The NOvA DAQ uses a custom time base for all clocks and timestamp counters. This time base is a
56-bit wide counter which represents the number of 64MHz clock ticks since January 1, 2010 06:00:00
UTC. This NOvA epoch has a duration of 35.7 years before rolling over, and will end in 2045, well
after the NOvA experiment has finished operating.

A 32MHz clock is distributed across all components of each detector and serves as the base clock
that drives data acquisition. This clock is derived from a phase lock loop (PLL) circuit which is driven by
a 10MHz Conor Winfield disciplined oscillator module. DCMs also contain undisciplined oscillators
which can be used to derive 32MHz and 16MHz frequencies during diagnostic work when the full
detector is decoupled from the central timing system.

Timing chain and hardware
The timing system is made up of timing distribution units (TDUs) and DCMs. There are two types of
TDUs: a main TDU (MTDU) which is responsible for originating timing commands and a secondary
TDU (STDU)which is a repeater used to propagate signals coming from theMTDU to the DCMs. The
timing system has a daisy chain design for distributing signals throughout the detector. The MTDU
and several STDUs for a given detector are connected in series, forming a timing chain “backbone”.
Each STDU also connects to two separate chains of DCMs. The final STDUs and DCMs in each chain
have loopback connections which allows propagating signals to reflect back up the chain once they
reach the end. Each DCM fans out to up to 64 FEBs. Redundancy is built into the system to mitigate
any component failures along the timing chain. Each DCM on both detectors is physically connected
to two physically distinct timing chains, only one of which is active at any one time. If one timing chain
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Figure 5.11: A NOvA timing chain. Themain TDU (MTDU) and secondary TDUs (STDUs) form the backbone,
and each STDU connects to two branches of DCMs. The end of the backbone and each DCM branch contains
a loopback connection so that delay-learn signals can be echoed back through the chain. The far detector has 14
STDUs and 168 DCMs while the near detector has 2 STDUs and 14 DCMs.

fails, the second can be deployed by remote intervention by experts. In addition to this redundancy, a
third MTDU exists at each detector to be used as a cold spare, but is not physically connected to the
detectors’ timing chains. A diagram of the timing chain topology is shown in Fig. 5.11.

Delays and system synchronization
The TDUs and DCMs are connected by copper cables, and cable delays prevent the timing signals from
reaching all parts of the detector simultaneously (Fig. 5.12). That’s a problem if we’re trying to keep
everything in sync. We address this by calculating these delays before sending timing signals. For this
procedure, the MTDU sends a signal through the system that is then reflected back in the opposite
direction at the loopbacks. The time between a TDU or DCM seeing the signal initially and seeing
it on its return tells that component how far away in cable-delay time it is from the end of the chain.
Once that delay is learned, the component will not act on any future signals that it receives until the
signal has reached the farthest component in the chain. This delay-learn procedure does not need to
be repeated often; it is only necessary when components or cables are swapped out.

MTDUs are equipped with a GPS antenna and receiver for external synchronization. To synchro-
nize all detector components, the system uses a “at the tone, the time will be” approach. The MTDU
first sends a signal with a future timestamp for all components to set their clocks to. The MTDU will
then send a signal that tells the components to start their preset clocks. Upon receiving the signal, a
component will wait to start their clock according to their pre-learned delay. The result is that every
component in the system starts their clocks at exactly the same moment, and the clocks are preset to be
synchronized with a highly accurate GPS time.

Timing Calibration
The MTDUs use their GPS receivers to periodically synchronize their clock. In the event that satellite
lock is ever lost, the disciplined oscillator in the MTDUs takes over and may drift at a rate of about 2
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Figure 5.12: Typical timing signal delays along the length and sides of the far detector. Each small square on the
side and top of the detector represents one DCM.

parts in a billion per day. Tomonitor for such a drift, we use a timing calibration reference (TCR) with
each TDU to check that the TDU times are accurate and not drifting too much. The TCR is a modified
TDUwith its ownGPS receiver that is connected to a separate GPS antenna than theMTDU. The TCR
is physically connected to the TDU that it is associated with and generates a 1Hz timestamped signal
that the TDU also timestamps. By comparing the offset between these timestamps, we can determine
whether the MTDU has drifted from the current GPS time too much and thus warrants a resync with
the GPS and of all other timing system components. These time offsets between the MTDUs and their
TCRs are displayed on a website that is monitored by NOvA scientists. If a sufficiently large drift is
detected, high-visibility alerts are displayed on the screen so that an expert can be notified.

Each TDU stores the computed timing delays between itself and the end of the chain, but that is not
the case for the DCMs. DCMs therefore do not remember how far away from the end of the chain they
are and so they don’t have an appropriate delay value to use when syncing with the rest of the timing
system elements. Although the DCMs are not synced in this way at a hardware level, we can derive
their delay values offline. Part of the standard offline calibration process at NOvA involves computing
and applying these delays. Cosmic-ray muon tracks provide many straight tracks in the detectors that
often cross one or more DCM boundaries. By using the timing information at the borders between
adjacent DCMs we can adjust the timing to make them match [117]. Because the DCMs and their
cables are rarely changed or moved, we only occasionally have to apply this procedure.

Spill signal distribution

A “spill” occurs when the NuMI accelerator extracts a bunch of protons and they strike a graphite target.
When the accelerator extraction kicker fires, a signal is sent from the accelerator complex to a near
detectorMTDUwhich is specifically designated to decode and interpret these spill signals. This special
TDU is referred to as the “NOvA spill server” (NSS), and differs from the other MTDUs in that it is not
responsible for managing a timing chain. Each signal from the accelerator is decoded, timestamped,
and placed into a queue on the spill server TDU.
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A piece of software called the NssTDUApp, which runs on the spill server MTDU at the near
detector, consumes spill messages from the queue, creates a XML-RPC packet, and distributes that
packet to other spill server elements over the internet. The packets are initially sent to an application
called a Spill Forwarder (NssSpillForwarder). Its purpose is to serve as a repeater; it receives packets
from the spill server TDU and forwards them on to any number of remote hosts. Those remote hosts
run an application called a Spill Receiver (NssSpillReceiver). The Spill Receiver listens for and reads
the XML-RPC messages that it receives from a Spill Forwarder and converts it into a DDS1 message
that can be passed to the Global Trigger process. The Global Trigger uses information about the timing
of the spill to decide which chunks of data should be pulled from the detector’s data buffer and written
to disk. These various components—The NssTDUApp and one instance of both NssSpillForwarder
and NssSpillReceiver for each detector—must all work in concert for each detector to trigger at the
right time. What begins as an electrical signal from the Fermilab accelerator complex is interpreted
and timestamped by a GPS-synchronized TDU, repacked as an XML-RPC packet, and sent to each
detector over the internet, and ultimately delivered to each detector’s triggering system to save the
relevant data.

This architecture takes advantage of the way the detectors buffer data. As long as the latency of
spill packet delivery is much smaller than the depth of the data buffer—and it nearly always is—the spill
signal can arrive well after the beam spill has been delivered to both detectors without the risk of losing
the data. The architecture of the spill server system for each detector is detailed in Figs. 5.13 and 5.14.

Monitoring and maintenance
There are several points of failure for this system. One is that packets are sent to the detectors’ global
trigger systems through local and wide area networks. If a critical router or switch goes down, spill
information may not make it to one or either of the detectors. Another potential failure point is at the
software level. Between both detectors, there are five pieces of software that need to be running and
communicating with each other to allow accelerator signals to propagate to their intended destinations.
Failures are fairly rare, but they do happen on occasion. Network problems are largely out of our
control, but we have several monitoring tools and shifting protocols in place to identify problems as
they arise.

One monitoring method involves watching for the presence or lack of heartbeat triggers. Along
with signals from the beam extraction kicker, Fermilab also provides a 1Hz heartbeat signal that we
trigger on at NOvA. This heartbeat occurs even when the beam is not operating. If neither detector is
registering a 1Hz trigger from Fermilab, there may be a problem with the NssTDUApp, and shifters
are trained to recognize this and contact an expert. If the heartbeat is seen at one detector and not the
other, then perhaps one of theNssSpillReceiver orNssSpillForwarder applications is the problem.

We also have software that continuously monitors the machines that these applications run on. If
one of these processes dies, the spill server monitor will notice and change the color of an indicator
on the shift screen from green to red. This makes it easy for our shifters to quickly detect problems
and contact the relevant expert. Even if the NssTDUApp stops running, the spill server TDU will
continue to accumulate spill signals in its queue. Once the software is running again, it will consume
the backlog of spill signals like normal. As long as the relevant data associated with those spills is still

1DDS, or Data Distribution Service, is a real-time messaging system that is used by many components of the NOvADAQ.
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Figure 5.13: Spill server architecture at the near detector.

Figure 5.14: Spill server architecture at the far detector.
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in a detectors’ data buffers, it will be saved. Because of this design, a spill server downtime that lasts for
several minutes will result in no lost beam data.

5.4 Triggering system
TheNOvA detectors are continuously reading out any signals that exceed the FEB readout threshold. A
large portion of these data have no significant scientific value and are discarded as they reach the end of
the circular data buffer. This is particularly true for the far detectorwhich sits on the Earth’s surfacewith
only a modest barite overburden for shielding, and is subjected to a cosmic-ray muon rate of∼150 kHz.
This amounts to approximately 1.2 GB/s of raw hit data being streamed from the detector’s 10,752
front-end boards, only a fraction of which represents activity associated with the physics processes that
we are interested in.

The NOvA triggering system exists to determine which data in the buffer are worth storing and
which are not. Triggering decisions can be data-driven or externally-driven. Data-driven triggers
(DDTs) are made by examining the data in the buffer and checking whether they meet any number of
predetermined criteria. Externally-driven triggers occur when some outside entity reports the occur-
rence of an interesting physics event. This most commonly occurs when Fermilab sends us a beam-spill
signal. Another example is that ofmulti-messenger astronomy networks that report gravitational wave
or supernova events. There is also a pulsed trigger, which we use to take regular triggers of minimum-
bias cosmic data at an approximate rate of 10Hz.

Global Trigger and Data Logger
Every trigger, regardless of its source, is issued by a multi-threaded process called Global Trigger (GT).
DDTs examining the buffered data or external events can send trigger requests to the GT. Trigger
request consists of a start time, trigger duration, and the trigger type. GT sends the request to all the
data buffer nodes. Upon receiving a trigger request, the buffer nodes package up the data requested and
send it to a process called Data Logger, which is responsible for receiving data from the buffer nodes,
collating the data with trigger information, and writing those data to disk. The data are written as
binary files, with each file corresponding to a given run, subrun, and trigger stream. This keeps data
that were tagged by different DDT algorithms or external events separate from one another, andmakes
it future analyses easier.
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CHAPTER 6

Simulation and Supernova Triggering

The NOvA detectors are designed to reconstruct events from a 2GeV neutrino beam. Supernova neu-
trinos have energies several orders of magnitude below this which presents several problems. For
example, the spatial extents of supernova hit clusters are small and difficult to reconstruct, supernova
neutrino energies are near—and sometimes below— the FEB triggering threshold, and most of NOvA’s
instrumented mass sits near the Earth’s surface and is subject to a significantly larger cosmic flux than
most other supernova neutrino detectors (Fig. 6.1).

NOvA’s design does have some inherent advantages though. The timing resolution of the detectors
means that cosmic activity at the far detector is relatively quiet for small time windows. The data buffer
is minutes deep, allowing us to read out a supernova event evenwhen the trigger is delayed. TheNOvA
DAQ is capable of streaming continuous data from the detectors onto diskwithout incurring downtime.

In the face of these advantages and disadvantages, the NOvA detectors are capable supernova neu-
trino detectors. But the stakes are high; NOvA needs to be ready to trigger on the next galactic core-
collapse supernova and save the precious data to disk without corrupting it. In this chapter, I will de-
scribe the NOvA supernova triggering infrastructure and data quality checks that ensure we are capable
of writing the data to disk.

6.1 Supernova neutrino interactions in NOvA
Core-collapse supernovae emit neutrinos of all flavors, but the NOvA detectors are more sensitive to
some than others. The detector materials are largely hydrocarbon-based, meaning the most promi-
nent interactions are those of inverse beta decay, elastic scattering on electrons, and neutral current
interactions on carbon (Fig. 6.2).

Inverse beta decay (IBD) is a charged current interaction between a proton and an electron antineu-
trino which produces a positron and a neutron. This is the dominant supernova neutrino interaction
type for NOvA due to the abundance of hydrogen atoms. The final-state neutron scatters through-
out the detector, traversing up to a couple dozen cells before thermalizing and capturing on a nucleus,
usually that of chlorine. The nuclear de-excitation often proceeds by gamma emission, which can pair-
produce detectable electrons. The positron is charged and therefore directly observable in the NOvA
detectors. They are much lower in mass than the neutrons and as a result rarely make it farther than a
few cells away from the point of production. The energy of the positron and that of the parent neutrino
are related by a simple approximate kinematic relation: E

e
+ ≃ Eν̄e

− 1.29MeV [118].
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Figure 6.1: Depth of various current and future supernova-capable detectors. For string detectors that span a
range of depth, a gray bar is used to indicate the distance between the minimum and maximum depths. The red
bars are the NOvA detectors.
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Table 6.1: Predicted event rates by channel for both detectors given a 10 kpc supernova under the LS220-s27.0co
and SFHo-z9.6co models.

Far Detector Near Detector
Channel Interaction 9.6 M⊙ 27 M⊙ 9.6 M⊙ 27 M⊙
Inverse beta decay ν̄e + p → e+ + n 1,593 3,439 24 51
Elastic scattering on e− ν + e− → ν + e− 143 259 3 5
Neutral current on 12C ν + 12C → ν + 12C∗ 67 166 1 3

Elastic scattering on electrons occurs when an incoming neutrino of any flavor scatters elastically
with either a free or an atomic electron. The incident electron is at rest, but the outgoing one is not, pro-
ducing a detectable signature in the detectors. While this process can occur for neutrinos of all species,
it is most pronounced for the electron flavor. This process, unlike IBD, preserves the momentum of
the incident neutrino and therefore contains directionality information which could be exploited to
point back to the location on the sky where the neutrino originated. This preservation of direction-
ality is advantageous for water Cherenkov detectors where a light cone is projected along the axis of
the electron’s momentum, but liquid scintillator detectors require good spatial resolution to be able to
reconstruct the path of the electron. In the NOvA detectors, these path lengths only span a couple of
cells, which makes directionality reconstruction extremely difficult.

The third-most-dominant interaction class in the NOvA detectors is the neutral current interac-
tions on carbon atoms. Here all neutrino flavors are represented, and the result is a nuclear excitation
of the carbon atom which eventually de-excites by emitting a 15.1MeV gamma [119].

6.2 Flux models
The supernova simulations described in Sec. 3.3 produce many outputs, but the one we’re most inter-
ested in for our own simulation purposes is the predicted neutrino flux over time by flavor. There are
many models to chose from, I will primarily focus on two 1-D models from the Garching group [55].
The LS220-s27.0comodel is for a 27M⊙ progenitor star with the LS220 nuclear equation of state [120].
The SFHo-z9.6co model is for a 9.6 M⊙ progenitor with the SFHo equation of state [121].

Themodel fluxes are organized as tab-delimited text fileswith four columns: time since core bounce
in s, luminosity in 1051 erg s−1, average neutrino energy in MeV, and average square neutrino energy
in MeV2. From this information we reconstruct the flux at each time step t using the pinched-thermal
spectral shape fα,t(ϵ) (Eq. 4.2) introduced in Sec. 4.2:

Φt(ϵ) =
1

4πd2

(
Lt

⟨ϵ⟩ t

)
fα,t(ϵ). (6.1)

where d is the distance to the supernova. The neutrino luminosity profiles and energy fluences for the
two models are shown in Fig. 6.3. Table 6.1 lists calculated event rates for the three most dominant
interaction channels for both detectors and neutrino flux models.

6.3 Simulating a supernova in the NOvA detectors
Simulating a supernova in the NOvA detectors happens in several stages. The first stage is event gener-
ationwhere the expected supernova neutrino flux is convolvedwith the detectormaterial cross sections
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Figure 6.3: Simulated neutrino luminosity evolution over time (left) and energy fluence (right) for the SFHo-
z9.6co model (top) and LS220-s27.0co model (bottom) from the Garching group [55]. Taken from [122].

and geometry information to produce neutrino interaction vertices complete with final-state particle
kinematic information. The next stage simulates the passage of those final-state particles through the
detector geometry. Those energy depositions are then simulated to account for the expected response
of the fiber and detector electronics. Finally, the expected background activity is overlaid with this sig-
nal simulation to produce a final result that is formatted the same way as any real data file. In the rest
of this section, I will describe each of these steps in greater detail.

Event Generation
The purpose of event generation is to determine which neutrinos from a given flux profile will interact
inside of the detector volume, and where and when those interactions occur. The output is a list of
outgoing particles and their kinematic properties. To do this, we use the GENIE event generation
software [123] with some custommodifications, which we call GenieSNova [122]. For one, we supply
our own flux driver to handle the time-varying flux profile that is typical for supernovae. This is not a
commonworkflow for the averageGENIE userwho is typically interested in accelerator or atmospheric
neutrino experiments. One of our inputs to this stage of the simulation therefore is the flux models
described in the previous section.

We also provide cross sections as inputs. In particular, a subset of those described in Fig. 6.2.
The IBD and elastic scattering cross sections are included, but the neutral current on carbon is not.
These cross sections as well as the nuclear de-excitations that accompany this channel are not included
out-of-the-box in the version of GENIE that we use. Future versions of GenieSNova will include this
interaction channel, as well as other sub-dominant channels.

One limitation to the version of GENIE that we use—and thus to the GenieSNova software—is that
neutrinos with energies less than 10MeV are not supported. While we would prefer to simulate the
full range of supernova neutrino energies, neutrinos in this regime often produce final state particles
that are below the detection threshold of the detectors, and therefore do not appreciably contribute to
the overall signal anyway.
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Detector Simulation
The output from GenieSNova is a list of outgoing particles from the neutrino interaction vertices with
their associated positions and kinematics. The next stage is to take these outgoing particles and prop-
agate them through the geometry of the detectors, simulated the interactions and energy depositions
these particles have as the traverse the detector materials. We use GEANT v4.10 [124] to do this,
without any additional modifications.

The output from GEANT is a list of energy depositions that are then fed to our in-house detec-
tor response simulation. At this stage, the response of the scintillation light is modeled, as well as its
propagation as it bounces around the cell and gets absorbed by the wavelength-shifting fiber. The at-
tenuation properties of the fiber is also simulated as the light signal travels through it towards the APD.
The APD response is simulated as is the FEB shaping of the signal. The final result of this stage is a file
that includes raw hit information that is identical to that in a real data file. At this point, we can treat
the output of the simulation as if it had actually streamed out of the detector.

Minimum-bias overlays
The event generation and detector simulation stages produce files that are formatted identically to real
data files from the detectors, but they only contain activity related to the supernova neutrino signal.
Background activity is not simulated. Instead, we rely on combining the simulated signal activity with
that of real backgrounds from data.

The background data come from a daily readout that also serves as a test of the long-readout su-
pernova triggering infrastructure that will be described in greater detail in the next section. The event
that triggers the readout is a heartbeat signal from SNEWS. The data generated from these tests provide
a large library of minimum-bias data that we overlay on top of simulated supernova data to produce
realistic predictions of what we would expect to see in a real supernova event.

The full simulation chain, from event generation to minimum-bias overlays, is depicted in Fig. 6.4.

6.4 Data-driven supernova trigger
NOvA is subscribed to direct alerts from SNEWS and LIGO, and when an alert is received, the NOvA
DAQ is configured to immediately read out 45 s of continuous data to disk starting 5 s before the time
of alert issuance. These are important triggering mechanisms, but they have an external locus. We
have also developed an internal trigger, which relies on NOvA detector data alone to make supernova
triggering decisions. This allows NOvA to stay sensitive to a potential supernova when the connection
to external sources is unavailable, and it also enables NOvA to become a contributing member of the
SNEWS network. This section describes the operation of our data-driven supernova trigger and its
sensitivity to galactic supernovae. Amore detailed description of this system can be found in Ref. [122].

Background Rejection
Cosmic-ray particles are the most obvious source of background activity, particularly at the far detec-
tor which has an overburden of only 3.6 meters water equivalent and observes an average cosmic ray
rate of 148 kHz. The near detector, on the other hand, is located 100m underground (225meters water
equivalent) and only experiences a cosmic ray rate of 37Hz. These particles can produce a variety of sec-
ondary particles, such as neutrons, deltas, spallation products, and Michel electrons. Michel electrons
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are particularly troublesome because their energies are similar to those of supernova neutrinos.

To reject Michel electrons, muon tracks are identified using a Hough transform-based algorithm
[125]. Any trajectory end-point that occurswithin the detector volume is treated as a potential stopping
location of the muon, and hits that occur within 32 cm and 10 µs of the point are rejected. All hits that
are associated with the muon track itself are also removed.

High-energy air showers are produced by interactions of cosmic rays with the materials surround-
ing the detectors and produce high hit multiplicities. These bursts of activity can overwhelm recon-
struction algorithms and drown out any signal we may hope to recover. For this reason, a simple time
window veto is applied to all activity that occurs during one of these events. A rolling window of 1.1 µs
is applied to the data, and a high-energy shower is identified whenever the summed ADC of hits in a
window exceeds 1,000,000 at the far detectoror 300,000 at the near detector. When this condition is
identified, all detector activity in the following 350 µs is vetoed.

Dark current and leakage current in the detectors’ circuitry can generate false hits that resemble
those from supernova neutrinos. This effect can become more pronounced when FEBs or APDs are
in need of maintenance or replacement. In these cases, hit rates can be suppressed or enhanced, and
in either case we do not want to trust the hits coming from that component. We compute an hourly
hit rate map to gauge which channels should be considered too hot or too cold to be included in the
analysis. A cold channel is one that has an inactivity fraction exceeding 90% and a hot channel is one
that has an average hit rate exceeding 1 kHz. A channel that is masked off by this map can become
unmasked if it returns to nominal operation for a period of twenty-four hours.

Clustering

Any hits that survive the background rejection process are passed through to a clustering algorithm.
First, hits are grouped into 1 µs clusters. Each temporal cluster is then decomposed into additional clus-
ters based on their spatial proximity. The clusters formed this way have a large variation in topologies
because no constraints have been applied to their formation based on the expected properties of the
supernova signal. The only criteria that clusters are required to satisfy are that (1) hits from the same
cluster must not be separated by more than one cell in the same plane, and (2) clusters must contain
hits from both planes. These criteria make it less likely that we will cluster correlated noise activity
between several cells that share the same front-end board electronics. Criterion (2) also ensures that
we can deduce the cluster position in three dimensions, which is required for computing the time of
the cluster.

Before the time of the cluster can be computed, the times associated with each cluster hit must be
corrected. The timing systemdescribed in the previous chaptermeasures the time delay between timing
units along the detector and applies those delay corrections at the hardware level. However, there are
similar delays associatedwith signal travel time between the timing units and data concentratormodules
(DCMs) that run along the sides of the detectors. These delays are not accounted for at the hardware
level, so corrections need to be applied in the software. With the 3-D position information of the
cluster, each hit’s location within a cell can be deduced. A correction is applied based on the distance to
the end of the cell, the distance from the end of the cell to the APD, and the distance from the DCM to
the backbone of the timing chain. These distances are shown in Fig. 6.5.
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Figure 6.5: Timing corrections applied to a hit based on its location in the cell, the distance between the cell
readout and the APD, and the distance of the DCM from the rest of the timing chain. Taken from Ref. [122].
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Figure 6.6: Time profile of supernova candidate clusters at the far detector before and after selection. Taken
from Ref. [122].

Selection

We apply a series of selection cuts to the clusters to exclude those which are not consistent with super-
nova activity. First, we apply a fiducial volume cut. At the far detector, any clusters that are positioned
within 1.5 radiation lengths (16 cell widths) of a detector wall is excluded, with the exception of the top
face of the detector where the veto region extends to 2.4 radiation lengths (24 cell widths) to further
reject cosmic activity from above. At the near detector, all activity within 8 cell widths of any detector
wall is excluded.

Next, we apply a cut on the total ADC of all hits in the cluster. The upper and lower cut boundaries
are those that maximize the figure of meritNsig /

√
Nbkg.

We reject any clusters which occur within 250 ns of another cluster. Supernova-related activity
should not be correlated on this timescale, but cosmic-induced electromagnetic showers certainly can
be. This cut helps to filter out the last of the clusters that are easily associated with cosmic activity.
Finally, we exclude any clusters that have more than four hits.

After applying these selection cuts, most activity correlated with cosmic-ray interactions have been
removed and the rate of supernova candidate clusters over time roughly follows a Poisson distribution
(Fig. 6.6). The signal-to-noise ratios for a simulated 9.6 M⊙ supernova at 10 kpc are reduced to 1:29 at
the far detector and 2.5:1 at the near detector.
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Triggering infrastructure
The NOvA data-driven triggering system examines data in 5ms chunks (called milliblocks) stored in
the circular buffer. For most data-driven trigger (DDT) algorithms, trigger decisions are made for
each individual milliblock. A DDT for identifying a supernova must operate beyond the standard DDT
paradigm since the characteristic timescale of a supernova (several seconds) far exceeds the duration of
a single milliblock. A large number of milliblocks must be considered simultaneously in order to “see”
the supernova signal and issue the appropriate triggers.

Multiple instances of the supernova DDT process run on all buffer nodes and process milliblocks
in parallel. Each one counts the number of candidate supernova clusters in its time window and reports
back to the central process on the global trigger node of the DAQ. This central process is responsible for
aggregating the candidate counts from each of the many supernova DDT processes and constructing a
time series of the counts n⃗ = {ti, ni}.

This time series is used to compare a background-only hypothesis (H0 = B) with a signal-plus-
background hypothesis (H1 = B + S) given the data n⃗. The background level B is assumed to be
constant across all time bins and is estimated by the triggering system every 10min. The signal S is
expected to vary according to a template that mimics the shape of a supernova neutrino burst. A log-
likelihood ratio

l(n⃗) ≡ log
∏
i

P (ni|H1)

P (ni|H0)
=
∑
i

ni · log(1 + Si/B) (6.2)

is used as a test statistic. The p-value is p(n⃗) = P (l > l(n⃗)|H0)which can be converted into a z-score
by z(n⃗) = erf−1(1− 2 p(n⃗)).

A supernova trigger is issued when the significance exceeds a predetermined threshold, which we
chose to be z0 = 5.645 σ. This choice of threshold will produce on average one false trigger per
week, which is the target false-positive rate for contributing to SNEWS. Figure 6.7 shows a time series
of supernova cluster candidates with a simulated 5 kpc supernova and the associated significance time
series for three signal template choices. Each choice produces a similar significance time profile, so the
trigger efficiency is not very sensitive to the choice of template, as long as the template mimics the very
broad characteristics of a supernova event.

Sensitivity
With the trigger significance threshold set to the value stated above, the sensitivity of the supernova
DDT as a function of distance can be determined. We convolve the efficiency of the trigger with the
supernova candidate density shown in Fig. 3.1 and find that for a supernova of a 9.6 M⊙ progenitor,
we are sensitive to 22.6% of supernova candidates. For the supernova of a 27 M⊙, we are sensitive to
49.2% (Fig. 6.8).

6.5 Long readout monitoring and data quality
Streaming 45 s of continuous data from the DAQ buffers to disk puts enormous strain on the DAQ
system. To prevent the system from crashing, we limit the speed at which those data are written to
disk. The only clock we are up against is the depth of the buffer. If we read out the data too slowly, it
may reach the end of the buffer and disappear before we can record it. If we read out too quickly, the
DAQ may crash.
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There are two common failure modes that we see when something goes wrong during this process:

1. the readout takes too long and data begins to fall off of the buffer. When this happens, the
triggers still appear in the raw data file on disk, but there is no data associated with it. It looks as
if the detector registered absolutely no activity during that time; and

2. the readout speed overwhelms the global trigger process and individual triggers never get issued.
In this case, those individual triggers are entirely missing, as if they were never meant to be
readout at all.

It is important to identify these failure modes when they happen. Detector noise and operating
conditions can change over time, meaning that a supernova trigger that performed well in the past
may behave unstably in the future. Continuous monitoring is important for maintaining a functional
trigger and ensuring that the NOvA DAQ is prepared to record the full detectable signal when the next
galactic core-collapse supernova occurs.

I designed a monitoring tool for this purpose which I call the Long Readout Monitoring System
(LRMS).A long readout is any readout forwhichmultiple triggers are associatedwith a single triggering
event. In this case, we are considering the internal and external supernova triggers, but this system can
be extended to handle any number of long readout triggers.

The LRMSwatches for new files associated with long readout trigger streams to appear on the raw
data disk, and when a new file is detected, it is processed by the trigger analyzer (described below).
Once all files associated with a given long readout have been processed, a final determination about the
overall quality of the readout is made.

This system is composed of five components:

1. an analyzer to examine individual raw data files,

2. a scheduler to monitor the data disk and coordinate the execution of the processing script,

3. a summarizer script to compute the final data quality metrics once all files from a long readout
have been processed, and

4. a web dashboard to help experts review the data quality of many recent long readouts at once.

5. A SQLite3 database for each component to store and share information.

These components are described in detail below, but first letme explain how a long readout is structured
and what we are looking for to asses their integrity. Data readouts occur when triggering decision is
made either by an external event (such as an accelerator signal or a SNEWS alert) or by a data-driven
trigger process. When a trigger decision is issued, the global trigger requests a single contiguous chunk
of data spanning a time less than or equal to 5ms be written to disk from the data buffer. This chunk
of data is called a “trigger”, not to be confused with a trigger process or a trigger decision. Each trigger
in a run is given a unique trigger number for accounting purposes.

In the case of a long readout, a single 5ms trigger is not enough to cover the full duration of the
event in question (in our case, a supernova), so multiple contiguous triggers must be requested. In ad-
dition to the trigger number, each trigger is also assigned a parent trigger number. For simple readouts,
the trigger number and the parent trigger number are identical. For long readouts, the parent trigger
number for every trigger is equal to the first trigger number in the readout. This numbering scheme
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enables the bookkeeping necessary to assess not only the data quality of a single trigger, but that of a
group of triggers that are associated with one another. We can also look for instances where individual
triggers are missing.

To assess the integrity of a long readout, the LRMS must do the following:

• identify errors or abnormalities for each individual trigger,

• count the number and types of all trigger-level errors or abnormalities associated with a long
readout, and

• identify instances where individual triggers are missing from a long readout

LRMS components
Database
The database uses SQLite3, a serverless SQL database that is stored as a single file on disk. The data
involved with this system are structured and are connected by simple relationships, making a relational
database a natural choice.

The database is composed of several tables:

• triggers— all relevant information about an individual trigger, including the trigger number,
parent trigger number, run number, subrun number, trigger start time, trigger duration, and
any error modes present.

• parent_triggers — primarily derived information about long readouts, including the parent
trigger number, number of triggers in the readout, number of missing triggers, start time of the
first trigger, run number, number of subruns spanned by triggers, and processing status.

• files — information about files on the raw data disk that have already been analyzed by the
system, including filename, trigger type, detector, run number, and subrun number.

• configuration — LRMS configuration values updated each time the system initializes.

• log — timestamped log messages of LRMS activity for troubleshooting.

Trigger analyzer
The trigger analyzer is a module written for the art event-processing framework1 [126]. Its purpose is
to examine the individual triggers present in each data file (i.e. each subrun for particular detector and
trigger stream) and store relevant information about them in the triggers table of the database.

This is where trigger-level data quality checks are performed. There are two potential error modes
that the analyzer checks for. The first is whether the isEventIncomplete flag is set in the raw event
header. When this flag is set to True, it indicates that at least one buffer node did not report to the
Global Trigger when the trigger was requested. Only one buffer node contains the requested data, and
it’s unlikely that the one which did not report is the same one holding that data. Therefore, this rarely
leads to data loss, but it is still worth tracking; a sudden uptick in these could indicate a more serious
problem.

The trigger analyzer also counts the number of microslices. A microslice is a 50 µs block of data
from a single DCM. A 5ms trigger should contain at least 16,800 microslices at the far detector and

1art is the framework that the NOvA collaboration uses to process its data files.
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Table 6.2: Long readout individual trigger error register. Bits 2–7 are reserved for future error modes.

Bit Name Description
0 kNHitsOutOfRange The number of microslices in the trigger is out of range.
1 kIncompleteEvent The isEventIncomplete flag is set in the raw event header.
2 RESERVED –
3 RESERVED –
4 RESERVED –
5 RESERVED –
6 RESERVED –
7 RESERVED –

1,400 at the near detector. If there are fewer microslices than this present in the trigger, then it is likely
that some of those data fell off the circular buffer before we managed to read it out to disk. Identifying
and addressing this failure mode is critically important for ensuring that we do not lose any data during
a real supernova event.

The presence or absence of these two failure modes are stored in an 8-bit error register (Tab. 6.2)
which is stored in the database with the rest of the trigger metadata. Only two of the bits are currently
used, the remaining six are free to be assigned to new data quality checks if needed.

Long readout summarizer
The purpose of the summarizer script is to collate information about triggers processed by the trigger
analyzer from across multiple files to characterize each long readout. Before this can happen, the sum-
marizer checks any new long readouts for completeness. A long readout is considered complete once
all files that contain triggers from the readout have been processed by the trigger analyzer program. To
verify completeness, the summarizer checks for the two boundaries where a long readout begins and
ends. If those boundaries occur in the same file, then the long readout is considered complete. If the
boundaries occur in separate files, then the summarizer must verify that all intermediate files have also
been processed. Figure 6.9 depicts several examples of this.

Once a new long readout is considered complete, the summarizer assesses its integrity. First, it
looks for missing triggers. A trigger i has associated with it a start time ti and a duration δti. From
these two pieces of information, the end time of each trigger can be computed and compared against
the start time of the following trigger. There should be no gap. The summerizer orders the triggers
by time and computes the quantity∆ = ti+1 − (ti + δti). If this quantity is greater than zero, there
are triggers missing. The number of missing triggers can be deduced because all triggers in the long
readout have the same δt: Nmissing = ∆/δti.

Finally, the summarizer indicates in the parent_triggers table that the long readout is “final-
ized”. This simply means that the summarizer has finished analyzing the long readout and has suc-
cessfully stored its information in the database. This flag prevents the summarizer from attempting to
summarize this long readout again in the future. Once a long readout is finalized, all error-free triggers
associated with it are dropped from the database to save space and to reduce performance issues. They
are no longer needed once the summary information has been computed. Triggers with errors are kept
in the database as diagnostic information for experts.

Table 6.3 shows an example list of triggers for a long readout at the far detector with some instances
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Figure 6.9: Examples of complete and incomplete long readouts. Each square represents an individual file and
the shaded areas represent a series of triggers associated with a long readout. In scenario (a), the terminating
boundary the long readout has been identified, but the initiating boundary is in a file that has yet to be processed.
Scenario (b) is the same as (a), only reversed. Scenario (c) depicts a case where both boundaries of the long
readout have been found, but an intermediate file in between has not yet been processed, and therefore the long
readout is considered incomplete. Scenarios (d) and (e) show long readouts that are considered complete. In (d)
the long readout is spread out across multiple files whereas in (e) it is entirely contained within a single file.

of the failure modes that the trigger analyzer and long readout summarizer look for.

Scheduler
The scheduler coordinates the execution of the trigger analyzer on new files on the raw data disk. A
separate instance for each detector is started every 15 minutes if it is not already running. First, the
scheduler compiles a list of files on the data disk whose filenames match a pattern as specified in the
configuration. This pattern forces the system to only consider files that are associatedwith long readout
trigger streams. It also allows the user to extend this to any arbitrary trigger stream types that may be
added in the future. The list of files on the disk is compared against the list of files that have already
been processed by the system, and the difference is taken to generate a list of new files that have not yet
been analyzed. Of these new, unprocessed files, only those that have a file modification time greater
than 120 s from the current time are queued for analysis. This protects against attempting to analyze a
new file that is currently being written to by the DAQ.

The scheduler then executes the trigger analyzer program on each new file one-by-one, starting
with the most recent files and working backwards in time. After all new files have been processed by
the trigger analyzer, the summarizer script is run to summarize any new and complete long readouts.
Finally, the updated database is copied to a location that is accessible by the web interface.

Web dashboard
Aweb dashboard which has access to the shared database presents information about recent long read-
outs in a way that is intended to provide supernova trigger experts with a bird’s-eye view of stability
over time, and also allows experts to drill down into specific long readouts.

75



Table 6.3: Example list of triggers for a run at the far detector with a long readout contained within it. This
mock readout presents the pathologies that indicate the DAQ is struggling to continuously stream supernova
data from the detector to storage. SNEWS HB triggers are minutely heartbeats from SNEWS and DDSN is the
NOvA data-driven supernova trigger.

Run / subrun Parent Trigger Type Length Number of
trigger (µs) microslices

...
...

...
...

...
...

13405 / 02 178 178 SNEWS HB 50 168
First long 13405 / 02 224 224 SNEWS HB 50 168

readout trigger→ 13405 / 02 236 236 DDSN 5,000 16,800
13405 / 02 236 237 DDSN 5,000 16,800

Missing microslices→ 13405 / 02 236 238 DDSN 5,000 1,530
13405 / 02 236 239 DDSN 5,000 16,800

Missing trigger→ × × × × × ×
Missing trigger→ × × × × × ×

13405 / 02 236 242 DDSN 5,000 16,800
13405 / 02 236 243 DDSN 5,000 16,800

Subrun rollover→ 13405 / 03 236 244 DDSN 5,000 16,800
(new file) 13405 / 03 236 245 DDSN 5,000 16,800

...
...

...
...

...
...

Final long
...

...
...

...
...

...
readout trigger→ 13405 / 19 236 9035 DDSN 5,000 16,800

13405 / 19 9062 9062 SNEWS HB 50 168
...

...
...

...
...

...
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Figure 6.10: Web dashboard home page for the far detector. Each row in the table represents a long readout.

Figure 6.11: Web dashboard page for a long readout at far detectorthat had some trigger-level errors.

The home page displays a list of the most recent readouts in a paginated table (Fig. 6.10). Basic
information about the long readout is presented along with details about any errors that were encoun-
tered. The parent trigger ID is color-coded based on whether it had any errors or not. Clicking on the
parent trigger ID takes the user to a page with more detailed information about that particular long
readout. The search box in the upper right corner of the table allows the user to filter the results in the
table in real-time. This is useful for when an expert wishes to examine the readouts from a particular
trigger stream or is searching for a readout from a particular run or on a specific date.

The detailed long readout page (Fig. 6.11) provides more information about any one readout and
can be useful for identifying specific triggers that experienced an error. Experts can use this information
to find the exact file that contained problematic triggers and investigated further.
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Summary
The NOvA DAQ is capable of reading out 45 s of continuous data to disk to capture the full detectable
period of activity from a galactic supernova event. These long readouts are initiated either from an
external source, like SNEWS or LIGO, or from our data-driven supernova trigger process. The super-
nova DDT performs basic hit rejection, clustering, timing correction, and likelihood tests in real time
to determine whether a triggering decision should be issued. When one detector’s supernova DDT
process issues a trigger decision, a cross-trigger is issued at the other detector so that both detectors
will read out simultaneously.

These long readouts put considerable strain on the DAQ. The Long Readout Monitoring System I
developed is designed to continuously monitor that data for signs that the DAQ is experiencing insta-
bility and dropping data from the readout. Thismonitoring is an important for ensuring that theNOvA
detectors are ready to capture every moment of activity if and when the burst of supernova neutrinos
wash over them.

One useful by-product of the daily SNEWS trigger tests is the collection of minimum-bias data that
can be used to characterize expected backgrounds for both the development of the supernova DDT and
that of an offline analysis. This chapter focused on these triggers. Next, I will turn my attention to the
question of what we can do with supernova data once it has safely made it to disk.
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CHAPTER 7

Background Rejection and Hit Clustering

Identifying hits from supernova neutrino interactions in the NOvA detectors is a challenge. The typical
supernova neutrinowill produce only a few hits due to its relatively low energy and thresholding effects
of the detectors. Meanwhile, each cosmic-ray muon or beam neutrino will typically produce tens or
hundreds of hits. TheNOvAdetectorswere simply not designed for reconstructing events at supernova
energies, and as a result, their topological signatures more closely resemble those of detector noise than
those of neutrino activity.

For a supernova neutrino analysis at NOvA, nearly everything is a background. To stand a chance
at teasing out the supernova signal, I must first remove as much non-supernova activity from the data
as possible and then attempt to select the activity that most closely resembles the expected signal. In
this chapter, I will describe the background rejection procedure I developed for this analysis and how
the hits that remain after the procedure are grouped into clusters of candidate supernova neutrino
interactions.

7.1 Calibration and initial reconstruction
The traditional reconstruction tools that the NOvA Collaboration has developed to identify activity of
interest to other analyses are largely useless for identifying supernova neutrino activity. However, that
makes them particularly useful for identifying detector activity that must be rejected before a search
for the supernova neutrino signal can proceed. This section describes those pre-existing tools and
algorithms that I use to reject activity clearly not associated with supernova neutrinos.

Hit calibration
A “raw” hit is characterized by its ADC and TDC values, but these quantities lack a clear physical mean-
ing. The ADC can be rescaled to estimate the number of photoelectrons (PE) produced by the APD, but
this too is an uncalibrated unit. To express the energy that is deposited into a cell in more meaningful
units, these hits must be calibrated. There are several corrections that must be applied to compensate
for phenomena such as detector thresholding, detector self-shielding, light attenuation in the fiber, and
an overall energy scale.

Thresholding plays a role for lower-energy depositions that occur far away from the readout and
whose light signal falls below detection threshold before arriving at the APD. Additionally, the top of
the detector can act as shielding for hits deposited at the bottom of the detector. A scaling factor is
applied based on the distance of a hit to the readout end of a cell to correct for these effects.
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Another effect thatmust be corrected for is the attenuation of scintillation light as it travels through
the wavelength-shifting fiber. Because of this, a hit that occurs closer to the readout end of a cell will
have a higher ADC than an identical hit on the opposite end. This part of the calibration involves
selecting through-going cosmic-ray muons which produce hits in three contiguous cells in a single
plane, called “tricells”. For each tricell, the path-length traversed by the muon through the center cell is
computed based on the direction of the track. The result is a collection of uncalibrated photoelectons
per path-length as a function of distance from the readout (W ). The attenuation length of each cell is
determined by fitting the function

y = C +A

(
exp
(
W

X

)
+ exp

(
−L+W

X

))
(7.1)

to the PE/cm profile, where y is the response, L is the cell length, X is the attenuation length of the
cell, and A and C are additional free parameters [127]. These cell-by-cell attenuation fits allow us to
correct a PE value for a given hit on a given cell. This ensures that a particular hit will have the same
calibrated PE value regardless of where it was deposited in the detector.

An additional step is necessary to convert these calibrated PE values into energy. This step of the
calibration relies on looking at the calibrated PE values for stopping muons, whose energy depositions
are well-described by the Bethe-Bloch equation [35]. The calorimetric energy scale is set by performing
this measurement for both real data and simulation, and taking the ratio:

calorimetric energy scale =
(MeV / cm)sim
(PEcalib / cm)data

. (7.2)

This allows for the conversion of calibrated PE values into units of energy.
Throughout the rest of this thesis, the term “hit” will refer to a calibrated hit, unless otherwise

specified.

Clustering
After the raw hits are calibrated, the next step in the chain of nearly every NOvA reconstruction work-
flow is clustering hits that occur close together in time and space. The goal is for each cluster to contain
the hits that were produced by a single charged particle in the detector volume.

NOvA has a clustering procedure called Slicer4D [128] that is based on the popular DBSCAN al-
gorithm [129] developed in the 1990s. An advantage that DBSCAN has over other common clustering
algorithms is that it does not require apriori knowledge of the shape, size, or distribution of clusters.
DBSCAN is a density-based algorithm, which identifies clusters based on the proximity of points in a
parameter space. It can also recognize that some points in the space may not be associated with any
clusters and are instead treated as noise. These advantages are useful for NOvA data because we look
for localized clusters of correlated activity on top of a background of noise hits. We do not need to
specify the shape of these clusters nor how many we expect to have ahead of time.

The Slicer4D algorithm examines hits as points in a four-dimensional time-position parameter
space. The density for each point is determined by counting the number of nearby neighboring hits in
the space. Pairwise combinations of hits are each given a neighbor score ϵ defined as

ϵ =

(
∆T −∆r⃗/c

Tres

)2

+

(
∆Z

Dpen

)2

+

(
∆XY

Dpen

)2

(7.3)
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whereTres is the combined timing resolution of the hits,PE is the number of photoelectrons fromboth
hits added in quadrature,∆Z is the plane distance between the hits,∆XY is the cell distance between
the hits if they are in the same view and zero otherwise,Dpen is a distance penalty, and∆r⃗ is the spatial
distance between the two points, and is either two-dimensional or one-dimensional, depending on
whether the hits are in the same or different views. Pairs of hits that satisfy causality and are close
together in terms of cell and plane positions have a lower neighbor score than those that are not. Two
points are considered neighbors if ϵ ≤ 5 at the near detector and ϵ ≤ 2 at the far detector. The specific
values of these parameters were chosen for each detector by maximizing a figure of merit in a grid
search, and can be found in Ref. [128].

Each point is classified as either a core point or a border point. A core point is any point which
has 4 or more neighboring points, while border points have fewer. Each cluster is initially seeded by
a single core point and continues to grow as more core points are identified and added to the cluster.
Border points are also added to the clusters so long as those border points are neighbors with a core
point. Once the cluster growth has terminated on a number of border points, the cluster is complete.
This iterative process continues until all points have been designated as a core or border point in some
cluster, or as a noise point with too few neighboring points to be considered for membership in any
cluster. The noise points are typically ignored by the DBSCAN algorithm, but Slicer4D places them all
into a single cluster that we call the “noise cluster”. In this way, every hit is either a member of one of
the many “physics clusters” or a member of the single noise cluster.

In most cases, all supernova neutrino hits will end up in the noise cluster. This algorithm is there-
fore not effective at building clusters of individual supernova neutrino events, but it is useful in other
ways. For one, the track-finding algorithm that I will describe next requires a vector of clusters as input,
so this clustering is prerequisite. Also, clustering the many hits that are certainly not associated with
supernova neutrinos (i.e. any hits in a physics cluster) is an effective way to directly reject activity that
is not relevant to this analysis.

Track-finding
The NOvA far detector sits on the Earth’s surface with only six inches of barite overburden, and is
subject to a comsic-ray hit-rate of about 150 kHz. These particles tend to produce long and straight
tracks as they traverse the detector volume. NOvA needs to be able to identify these tracks for both
the reconstruction of νµ events in the oscillation analyses and to identify cosmic ray activity. For this
supernova analysis, identifying cosmic-ray muons and the path they take as they traverse the detectors
is essential for being able to veto the hits they and their byproducts produce.

NOvA has developed a track-finding algorithm for cosmic-raymuons calledWindowTrack. Given
a list of non-noise clusters, WindowTrack attempts to fit a series of straight lines to the hits in that
cluster. Cosmic-ray muons are relativistic and they traverse the detector quickly and with trajectories
that resemble straight lines. Of course, Coulomb interactions between the muons and atoms in the
detector can affect their trajectory, so a single straight line is not always sufficient to describe themuon’s
path through the detector. Splitting the trajectory into segments and fitting a straight line to each
segment allows for a more accurate reconstruction in situations where the muon undergoes multiple
scatterings.

A cluster which spans n planes is split up into n− 1windows, and a straight line is fit to the points
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in each window. For a track to be formed, a cluster must have hits that span at least four planes and at
least half of the planes in that cluster must contain hits. In each window, the algorithm uses a signal-
weighted average of hits in a given plane for the fit. Any hits which are considered to be outliers in a
given plane are neglected during the fit. These fits are performed separately for each 2D view of the
detector. Once the tracks for each view are fit, the algorithm attempts to match the two views together
into full 3D tracks. Cosmic rays are expected to enter the detector from above, so an additional criterion
requiring a downward direction is enforced by the algorithm. The output of this algorithm is a vector
of tracks, each of which is composed of a vector of trajectory points which form the piece-wise linear
trajectory of the track.

7.2 Background rejection
These clustering and track-finding algorithms are critically useful for identifying neutrino and cosmic-
raymuon activity of interest inmost NOvA analyses, but they are used in this analysis simply as ameans
of rejecting activity that is likely not supernova-related; one’s signal is another’s background.

While cosmic-ray muons are perhaps the most obvious source of background activity, they’re not
the only source. Detector electronics phenomena such as FEB flasher events produce correlated low-
ADC activity, for example. High-energy interactions between cosmic-ray muons and the surrounding
rock can produce massive shower events that saturate a large proportion of the detector for a period
of time. Some detector channels may be in need of replacement or repair, and can produce abnormally
high or low hit rates.

Radiological backgrounds are a nuisance for many particle physics experiments, but not for NOvA.
Nuclear decays of trace radioactive materials inside and surrounding the detectors typically produce
particles in the keV or single MeV range of energies. Due to thresholding, the detection lower limit at
NOvA is near 8MeV, depending on where along the cell the deposition occurs, and most radiological
background activity is therefore not energetic enough to produce hits. For this reason, I make no
attempt to identify and reject hits of radiological origin for this analysis.

All of these sources of relevant background activity must be enumerated and addressed before the
supernova neutrino signal can shine through. In this section, I will describe the hit-level background
rejection procedures that I developed for this analysis.

Duplicated hits
The NOvA DAQ buffer stores data in 50 µs blocks called microslices. When a trigger is issued, it spec-
ifies a start time and a duration. All microslices that span the time period requested by the trigger are
written to disk. Because the data are discretized in time in this way, when a trigger specifies a start time
that falls within a given microslice, the entire microslice is read out. For long triggers, a series of indi-
vidual triggers are read out continuously with no gaps in between. This means that the first microslice
of triggerN and the last microslice of triggerN − 1 will be the same microslice. That is, there will be
50 µs of overlapping data among those two adjacent triggers since both of them had a claim to a portion
of that microslice (Fig. 7.1).

These duplicated data must be removed so that they are not double-counted. The procedure is
straight-forward: I simply remove all hits that occur in the first 50 µs of each 5ms trigger. While
this is the first step in a series of algorithms meant to reject hits that would be a background to the
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Figure 7.1: 2D locations of hits in the final microslice of a trigger (left) and the first microslice in the following
trigger (right) for the far detector. The same hits appear in both triggers when the trigger boundary does not fall
exactly on a microslice boundary.

supernova analysis, this algorithm differs from the others in that it does not filter out hits because
they are suspected to be background; they are removed because they are duplicated. The removal of
these hits therefore does not truly remove any hits at all1, it simply corrects for a feature of the DAQ
architecture that would otherwise lead to an over-counting of some hits.

Hot and cold channels
Sometimes channels malfunction and are in need of replacement or maintenance. In some cases, these
channels will register hits at a particularly high rate; these are considered to be “hot” channels. “Cold”
channels, on the other hand, are those that produce hits at an abnormally low rate. In either case, we
ought not to trust the activity registered by those channels, and any hits that they produce should be
rejected.

I calculate the average channel rates by accumulating per-channel hit statistics for each subrun and
divide by the total trigger duration of that subrun. Any hits that come from a channel whose average
rate is too high or too low will be rejected.

But what hit rates should be considered acceptable? To determine this, I adjusted cut values on
the high and low side independently and computed a figure of merit for each possibility in the case of
a simulated supernova overlaid with real background data. While varying either the cold or hot cut
variable, I fixed the non-varying parameter. I used S/

√
S +B as the figure of merit where S and B

are the numbers of signal and background hits which survive the cut.
Figure 7.2 depicts the percentages of signal and background hits rejected under these scenarios as

well as the figures ofmerit for both detectors. An appropriate choice of cut value is onewhich exactly or
nearlymaximizes the figure ofmerit without being too close to a regionwhere the figure ofmerit varies
rapidly. The location of any fast fluctuations of the figure of merit may shift under different detector
conditions; choosing a cut value too close to any such shoulder may perform well today but cut far
too harshly under tomorrow’s detector conditions. For this reason, I chose cut values by eye from the
figure of merit plots in Fig. 7.2. The acceptable channel hit rates at the near detector are 3Hz–40Hz
and those at the far detector are 85Hz–400Hz (Fig. 7.3). Any hits originating from channels with
subrun-averaged hit rates outside of this range are rejected.

1Except in the case of the very first trigger of the readout, in which case hits that occur in the first 50 µs of the trigger truly
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Figure 7.2: Percentage of hits rejected for different choices of cold (top) and hot (bottom) channel cut values for
each detector. Figures of merit (FOM) are plotted and defined as S/

√
S +B where S is the number of signal

hits surviving the cut and B is the number of background hits surviving the cut. The red dotted line indicates
where the figure of merit is maximized.
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Figure 7.3: Typical channel rates for the near detector (left) and far detector (right)with cut values for background
rejection indicated by the dashed red lines.

High- and low-ADC hits
Supernova neutrinos are lower in energy thanmuch of the activity in theNOvA detectors and therefore
tend to have lower ADC values. Rejecting hits whose ADC values are lower or higher than expected
for supernova neutrino hits is an effective way to reduce backgrounds.

To chose the optimal ADC cut values, I followed the same procedure as the hot and cold channels
rejection, where one variable is fixed while the other is adjusted and the cut value is chosen based on
where the figure of merit is maximized. Like before, this procedure is performed independently for
both detectors because the ADC spectra of the two detectors differ from one another. The fact that the
near detector is underground is one reason for the difference, but the size of the detectors also plays a
role in shaping the ADC spectra of both signal and background hits. This is because ADC values are
proportional to the amount of charge collected by the APD and do not incorporate any corrections for
attenuation of the scintillation light as it traverses the cell and fiber. Two hits at opposite ends of a
cell produced by otherwise identical energy depositions will register different ADC values. The cells
in the near detector are about one-quarter the length of those in the far detector, so attenuation of the
scintillation is less pronounced.

Figure 7.4 shows the percentages of signal and background hits rejected under these scenarios as
well as the figures of merit for both detectors. In these cases, the cut values that maximized the figure of
merit did not sit too close to any steep shoulders, so I simply chose those values. The acceptable ADC
ranges for hits at the near detector are 65–1900 and those at the far detector are 70–600 (Fig. 7.5). Any
hit whose ADC is outside of these ranges is rejected.

FEB flashers
In Sec. 5.1, I described how large charge depositions on an APD can cause the baseline voltage for all
channels on a given FEB to sag, causing false hits to be triggered as the voltage returns to baseline. These
false hits, known as “FEB flashers”, are a source of low-ADC hits that could resemble those produced
by supernova neutrino interactions, but luckily they are easily identified by the conditions that produce
them.

are rejected.
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Figure 7.4: Percentage of hits rejected for different choices of low (top) and high (bottom) ADC cut values for
each detector. Figures of merit (FOM) are plotted and defined as S/

√
S +B where S is the number of signal

hits surviving the cut and B is the number of background hits surviving the cut. The red dotted line indicates
where the figure of merit is maximized.
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Figure 7.5: Typical ADC spectra for background and a supernova signal simulated at 1 kpc in the near detector
(left) and far detector (right) with cut values for background rejection indicated by the dashed red lines.

The key to identifying FEB flasher events is spotting the high-ADC instigator hits that trigger the
phenomenon. Large ADC depositions in a single FEB within a short period of time are marked as in-
stigator hits. In both detectors, this timescale is 4 µs. When this condition occurs, the FEB in question
is considered to be “flashing”. Figure 7.6 depicts a typical FEB flasher event and its characteristic fea-
tures. The hits to reject are those that occur on a flashing FEB within 30 µs of when the instigator hits
occurred and with an ADC value less than 50.

The FEB flasher rejection algorithm relies on these four parameters to decide which hits to reject:
the total ADC contributed on one FEB from instigator hits, the period of time over which those hits
occurred, the upper limit on the ADC of suspected flasher hits, and the time period over which flasher
hits should be rejected. Out of these parameters, the total instigator ADC is the one which will have the
greatest impact on background rejection, since it determines the threshold at which point combined
activity on a given FEB is considered to be a flasher event.

Flashers like the one in Fig. 7.6 are the more obvious cases of this phenomenon, and setting a
relatively large instigator ADC cut like 3,500 is enough to identify and reject most of the flasher hits.
However, there are more subtle cases where only one or two FEBs are affected, and often those cases
are only identified if the cut on instigator ADC is set lower.

To optimize this instigator ADC cut, I again turned to the method of testing different possibilities
and comparing the figures of merit for each scenario. The result is shown in Fig. 7.7, and it shows that
setting the instigator ADC cut to a very low value like 750 is more effective at rejecting background
hits, while leaving the signal hits largely unaffected.

Though it may seem to perform well according to the figure of merit, choosing a low value for
this parameter is a bad idea for several reasons. For one, setting the cut value too low ensures that this
procedurewill reject a lot of activity that is not flasher-related. Inmany cases, hitswill be rejected simply
because the FEB recently saw moderate ADC depositions. There is already a rejection procedure in
place for both over-active channels and for hits whose ADC is too large or small to have been produced
by a supernova neutrino interaction. Another issue is that as the instigator cut value decreases, the
computation time required by the algorithm increases sharply.

For these reasons, I chose an instigator ADC cut value of 1,500 in both detectors. This keeps the cut
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Figure 7.6: An annotated far detector event display of a typical FEB flasher event. Color represents hit ADC.
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Figure 7.7: Percentage of hits rejected for different choices of instigator ADC cut values for the far detector. The
figures of merit (FOM) is plotted and defined as S/

√
S +B where S is the number of signal hits surviving the

cut and B is the number of background hits surviving the cut. The red dotted line indicates where the figure of
merit is maximized.
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Figure 7.8: The same event displays as shown in Fig. 7.6 after FEB flasher hits have been removed. Color
represents hit ADC.

aggressive in terms of flasher hit rejectionwhile not straying too far into non-flasher rejection territory.
This choice alsomaintains a reasonable algorithm computation time. Figure 7.8 shows an event display
of an FEB flasher event after this removal procedure is applied.

Cosmic-ray muons
Both NOvA detectors are exposed to a continuous flux of cosmic-ray muons. The rate is relatively low
at the near detector where the detector sits 100m underground, but most of the far detector is above
ground with only 16 cm of barite as shielding. The rate of cosmic-ray muons traversing the far detec-
tor has been observed to be about 150 kHz. The hits produced by these tracks must be removed, but
cosmic-raymuons can induce secondary activity such as bremsstrahlung and spallationwhichmust also
be removed. Finally, muons which stop within the detector are likely to decay into a pair of neutrinos
and an electron (or positron). TheseMichel electrons have an end-point energy ofmµ/2 = 52.8MeV,
which is the same energy regime as supernova neutrinos, making them a potentially significant back-
ground for this analysis. They too must be removed.

I apply theWindow Track algorithm described earlier in this chapter to identify track-like features
and the hits that make them up. These hits are rejected. For each 2D view, I reject all hits that occur
within 20 cm and 5 µs of the track body. Finally, I reject any hits that occur within 40 cm and 30 µs of
the end of any stopping tracks.

Burst events
Large energetic showers can occur when cosmic-ray muons interact with the rock just above the de-
tector. In these cases, the detector is flooded with particles and the channels in large regions of the
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detector can become saturated. During such an event, the entire detector—or a significant portion of
it—is rendered useless. Figure 7.9 shows an event display of a high-energy shower inside the NOvA far
detector. The rejection algorithmsmentioned so far will reject many of the hits produced in these situa-
tions because their ADC values are too high, or because the exhibit FEB flasher instigator behavior, but
some artifacts will often remain (Fig. 7.10). To handle this, the best course of action is to simply veto
all hits that occur within the period of time during which the detector is reeling from the high-energy
burst event.

To identify these events, I look for peaks in the time-distribution of hits for each trigger after all
aforementioned rejection algorithms have been applied. I bin the distribution in units of 1 µs, and
use ROOT’s [130] one-dimensional peak-finding algorithm (TSpectrum::Search) to identify any
instances where a guassian can be fit with a width greater than or equal to two bins and a height that
rises at least 50% above the local background level.

I also fit a constant to the entire distribution, save for the first two and final two bins, to estimate the
background levelB. Out of all the identified peaks, I only keep those that exceed 5×

√
B in height. Each

of these selected peaks represent awindowof time duringwhich all hits should be vetoed. To determine
the duration, I start at the time of the peak and walk bin-by-bin to either side and identify the times
at which the distribution crosses below B. These times represent the beginning and end of the burst
activity, but to be sure that most activity is rejected, a buffer equal to 25% of the veto window is added
to either end of the veto window. In other words, for a peak which falls below the background level at
times t1 and t2, the width will be δt = t2− t1 and the veto windowwill be [t1−0.25 δt , t2+0.25 δt].
All hits that occur during this time will be rejected. Figure 7.11 shows where the algorithm identifies
the peak, background level, and veto window for the time distribution of a real burst event in the far
detector and Fig. 7.12 shows the event display after all background rejection algorithms, including this
burst rejection, have been applied. This algorithm is only applied to far detector data, because the near
detector rarely sees such high-energy activity.

Because an entire block of time is beingmasked off, the effective live-time of the readout is reduced.
This reduction in effective live-time is on average 0.5% of the total readout time, and is written into
the data files by algorithm, so that it can be taken into account by any analyses that might be dependent
on the live-time.

Traditional physics clusters
The Slicer4D algorithm described earlier in this chapter clusters hits that occur close together in time
and space which then are used as inputs to the track-finding algorithm. The vast majority of hits pro-
duced from supernova neutrino interactions end up in the noise cluster, so the final step in the chain of
background rejection algorithms is to reject all hits that appear in any physics cluster. This step is used
to reject any hits that survived all of the other rejection steps.

The tuned parameters for each of the background rejection algorithms described in this section are
in Tab. 7.1.

Background rejection performance
The background rejection algorithms are applied in the order presented in this section. Most algorithms
are passed the full, unfiltered vector of hits, so their performance is independent of the order in which
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Figure 7.9: Far detector event display of a high-energy shower event. Color represents hit ADC.

Figure 7.10: Far detector event display of a high-energy shower event after background rejection, but without
specifically rejecting burst activity. Color represents hit ADC.
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Figure 7.11: Peak-finding for burst event rejection. The black curve represents the number of hits per 1 µs for a
high-energy event at the far detector after applying other rejection algorithms. The triangular markers indicate
where the algorithm identified prominent peaks. The horizontal teal line is a constant fit to the data. The two
vertical red lines represent the the boundaries of the veto region, including the 25% buffer on either side.

Figure 7.12: Far detector event display of a high-energy shower event after all background rejection has been
applied, including burst event rejection. Color represents hit ADC.
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Table 7.1: Tuned background rejection algorithm parameters for both detectors. The algorithms for removing
hits from the first microslice of each event and for removing hits associated with physics clusters are not listed
here, because they do not take any parameters.

Algorithm
Parameter Units Near Detector Far Detector

Cold and hot channels
Cold rate threshold Hz 3 85
Hot rate threshold Hz 40 400

Low and high ADC
Low threshold ADC 65 70
High threshold ADC 1,900 600

FEB flashers
Instigator charge ADC 1,500 1,500
Instigator time window TDC 256 256
Veto charge ADC 500 500
Veto time window TDC 1920 1920

Track activity
Muon body veto radius cm 20 20
Muon body veto time ns 5,000 5,000
Muon end veto radius cm 40 40
Muon end veto time ns 30,000 30,000

High-energy bursts
Peak threshold — 5σ
Veto window padding — 25%
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they occur. If this weren’t the case, they would be less effective. For example, one can imagine a
situation where an FEB flasher event is not correctly identified because a previously-applied rejection
procedure had already removed a critical number of instigator hits. The one exception to this is the
high-energy burst rejection algorithm, which relies on identifying peaks in an otherwise stable hit-
time distribution. That algorithm therefore only considers hits which have not otherwise beenmarked
for removal by the other algorithms.

When any background rejection algorithm identifies a hit for removal, that hit is added to a list of
hits to be masked. In this way, multiple algorithms may flag the same hit for removal; a hit may be a
flasher hit and a low-ADC hit and a physics slice hit all at once. After all algorithms have run, the list
of hits that survive is the difference between the unfiltered list of hits and the list of hits to veto.

Figure 7.13 shows the percentage of surviving signal and background hits after each stage of back-
ground rejection for both detectors. At the near detector, 90% of the background hits and 15% of the
signal hits are removed. The peak signal-to-noise ratio (SNR) for a 27 M⊙ supernova at 1 kpc before
and after rejection is 1:29.1 and 1:3.3 respectively. At the far detector, 98% of the background hits and
50% of the signal hits are removed. The SNR for a 27 M⊙ supernova at 1 kpc before and after rejec-
tion is 1:453 and 1:21.3 respectively. Figure 7.14 shows example event displays before and after all
background rejection procedures have been applied for both detectors.

For many supernova distances, the background hit rate exceeds that of the signal even after the
background rejection has been applied, sometimes by several orders of magnitude at the far detector.
This may hardly seem ideal, but even when the signal-to-noise ratio is significantly smaller than unity,
two important things have been achieved by applying these background rejection algorithms: (1) the
time distribution of surviving hits more closely follows Poisson statistics and remains relatively stable
for the duration of the long-readout, and (2) the small percentage of remaining hits form a clean sam-
ple to be used as input for an algorithm that will attempt to form supernova-like clusters out of the
surviving hits.

7.3 Clustering supernova neutrino interactions

Supernova neutrino interactions produce very few hits in the NOvA detectors. Despite the fact that
their ADC spectrum resembles that of electronics noise and low-energy cosmic ray byproducts, the few
hits that they do produce tend to be clustered close together in time and space, and this correlation is
useful for identifying these interactions. Before attempting to design a clustering algorithm, I created
the distributions in Fig. 7.15 by clustering Monte Carlo signal hits that survive background rejection
together based on their parent neutrino. These clusters represent the ideal case: they each consist of
all hits from the simulated particle that produced them and contain no background hit contamination.
The properties of these ideal clusters reveal several things: (1) most interactions produce one or two
hits and rarely more than 6–8; (2) the total ADC of the hits is generally less than 1,000 at the far detector
and less than 1,500 at the near detector; and (3) the hits from a given interaction span a time period of
less than 50 ns at the near detector and less than about 100 ns at the far detector, and for both detectors
the hits can span several tens of planes or cells, although the majority are confined to the first few.
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Figure 7.13: Percentage of surviving signal and background hits after each stage of the background rejection for
each detector.
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Figure 7.14: Event displays of the near (left) and far (right) detectors before (top) and after (bottom) background
rejection algorithms have been applied to a 5ms trigger. Color represents hit ADC.

Algorithm
The algorithm I developed to identify supernova-like clusters of hits is called “SNSlicer.” I begin by
sorting all calibrated hits which survived the background rejection process by time, from earliest in the
trigger to latest. The earliest-occurring non-clustered hit is used as the seed hit for a new cluster. Hits
that occur later than the seed hit are considered for inclusion into the cluster.

To be included, a hit must:

1. occur within (ND: 40 ns, FD: 100 ns) of the seed hit;

2. occur within (ND: 40 planes, FD: 15 planes) of the seed hit;

3. occur within (ND: 40 cells, FD: 15 cells) of the seed hit if in the same view;

4. not cause the total ADC of the cluster to exceed (ND: 2,400, FD: 1,000); and

5. not cause the cluster to exceed 8 hits.

Once a candidate hit is encountered which occurs too late after the current cluster seed hit as defined by
criterion 1 above, no more hits will be considered for inclusion. At that point, the next cluster will be
constructed using the earliest-occurring unclustered hit as the seed. This process continues until there
are no remaining hits to be clustered. All clusters then undergo an initial selection. For a cluster to be
selected, it must contain two or more hits. In the case of the far detector, the cluster must also have
at least one hit in each view (XZ or YZ). Clusters which fail these criteria are discarded; those which
satisfy them are passed to the next stage of this analysis.
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Figure 7.15: Cluster properties if the hits from each simulated supernova neutrino daughter particle were per-
fectly clustered for the near (top two rows) and far (bottom two rows) detectors: (a) the total number of hits, (b)
the summed ADC of all hits, (c) the largest time difference between hits, (d) the largest plane difference between
hits, (e) the largest cell difference between hits in either view, and (f) the number of views which contain hits.
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Figure 7.16: SNSlicer cluster purity for both detectors.

SNSlicer Performance
A key performance metric for many particle physics clustering algorithms is efficiency, defined as the
fraction of available signal hits that get clustered. Thismetric is not as useful for the purposes of cluster-
ing supernova neutrino hits in the NOvA detectors. For one, 47% of interactions at the near detector
and 86% at the far detector produce only one hit. These hits are indistinguishable from background
hits in the detector and are therefore not clustered. Aside from one-hit interactions, signal clustering
efficiency can be increased by loosening the criteria for cluster formation as described above. However,
this also increases background cluster efficiency. For the clustering criteria described above, SNSlicer
clustered 26.5% of the available signal hits at the far detector and 73.5% at the near detector.

Another commonmetric for quantifying the performance of a clustering algorithm is cluster purity.
It is expected that any attempt to cluster supernova neutrino hits in the NOvA detectors will produce
many clusters that contain background hits. It is difficult to cluster only signal-like activitywhile leaving
background-like activity behind. However, if one hopes at a later time to distinguish signal-dominant
clusters from those dominated by background hits—and I do—it is important that the clusters are as
pure as they can be. Cluster purity is defined as the fraction of signal hits in a cluster, so a purity of zero
means that all hits in the cluster are background. A purity of one means all hits are signal. Any value
between zero and one describes a cluster that contains both signal and background hits. Figure 7.16
shows the purity of SNSlicer clusters for each detector. The near detector is dominated by signal-pure
clusters while the far detector is dominated by those that are background-pure, and for both detectors
the total fraction of clusters that are neither pure signal nor background is less than 1%.

The final performance metric I consider is that of interaction purity. That is, the number of neu-
trinos which contributed hits to a single cluster. Ideally there should be a one-to-one correspondence
between neutrinos and clusters; each hit-producing neutrino interaction should produce one cluster,
and each cluster should contain hits from only one parent neutrino. If multiple neutrinos are repre-
sented in a single cluster, it could adversely affect the ability to reconstruct an energy spectrum, for
example. This becomes more of an issue for supernovae that are closer to Earth as the flux increases
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Table 7.2: Clusters produced by the SNSlicer algorithm grouped by the number of neutrinos contributing hits to
the cluster.

Neutrinos contributing hits near detector far detector
0 2,960 (08.60%) 447,904 (91.58%)
1 31,446 (91.34%) 41,112 (08.41%)
2 19 (00.06%) 58 (00.01%)

according to the inverse square law and neutrino-induced hits become more tightly packed in time and
space throughout the detectors. Using Monte Carlo truth information from the simulation, I match
each hit to the particle that produced it and the parent neutrino of that particle. Table 7.2 shows a
breakdown of howmany neutrinos are present in SNSlicer clusters for both detectors. These numbers
are based on a supernova distance of 350 pc for the near detector and 500 pc for the far detector. Despite
these nearby supernovae exposing the detectors to a large flux, SNSlicer produced highly interaction-
pure clusters with more than 99.9% containing hits from either zero (background hits only) or one
parent neutrino.

Despite the relative simplicity of the algorithm and its seemingly low efficiencies, SNSlicer per-
forms well for clustering supernova neutrino activity in the NOvA detectors; the clusters it produces
are largely pure signal or pure background and are not prone to pile-up effects for nearby supernovae.
The SNSlicer signal clusters—clusters that contain one or more signal hits—resemble those from MC
truth information. This can be seen in Fig. 7.17 which compares the cluster properties shown in
Fig. 7.15 for both SNSlicer and MC truth. The SNSlicer clusters are separated into signal and back-
ground distributions to show that the signal portion is in good agreement with the truth clusters.

This chapter began with a problem to be solved: the background hits overwhelm the signal hits.
It now ends on a similar note as the background clusters overwhelm the signal clusters, particularly at
the far detector. But much has been achieved here; the proverbial haystack is significantly reduced and
it has been partitioned into manageable hay bales that will enable a systematic search for needles. That
search is the topic of the next chapter, and is motivated by a single question: what distinguishes the
typical background cluster from the typical signal cluster?
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Figure 7.17: Cluster properties for clustering based onMCTruth information versus clusteringwith the SNSlicer
algorithm for the near (top two rows) and far (bottom two rows) detectors: (a) the total number of hits, (b) the
summed ADC of all hits, (c) the largest time difference between hits, (d) the largest plane difference between hits,
(e) the largest cell difference between hits in either view, and (f) the number of views which contain hits. The
MC Truth clusters have been filtered to match the same criteria required by the SNSlicer algorithm.
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CHAPTER 8

Cluster Selection and Reweighting

After applying the background rejection algorithms described in the previous chapter and clustering the
surviving hits, mostly signal-dominant clusters at the near detector and background-dominant clusters
at the far detector are left behind. They are well sorted; clusters are composed entirely of signal hits or
of background hits, with very few containing a mixture of both. The goal now is to discern one class
from the other and produce a refined sub-sample of clusters which will serve as supernova candidate
clusters for an analysis.

In addition to that candidate selection, I wish to replicate any analysis under different supernova
model scenarios. But running the neutrino simulation, detector simulation, background rejection, and
SNSlicer for a large variety of supernova distances and models is computationally expensive, especially
for the far detector. This was not feasible with the computational resources I had available to me;
another method was needed.

In this chapter, I will present a solution to the computing problem, which involves assigning a
weight to every signal cluster and adjusting those weights to produce distributions for different pro-
genitor distances or models. I will also describe the process by which clusters produced by the SNSlicer
algorithm are selected as supernova candidate clusters for further analysis.

8.1 Cluster reweighting
To avoid the computing problem, I chose an approach that uses knowledge of the various model fluxes
to convert signal cluster distributions from one model to another. This method scales the simulated
time-energy cluster distribution by a target-to-simulated model flux ratio:

ntarget model(Eν , tν) =

(
Ftarget model(Eν , tν)

Fsimulated(Eν , tν)

)
× nsimulated(Eν , tν), (8.1)

where each flux F in the ratio is a weighted sum of the partial fluxes for each flavor:

F (Eν , tν) =
∑

α∈{flavors}

wα × Fα(Eνα
, tνα). (8.2)

The weights {wα} are determined by the relative rates of interaction for that flavor. Since inverse beta
decay is the dominant interaction channel in the NOvA detectors, the ν̄e flavor is the most heavily-
weighted. The energy-time distributions n(Eν , tν) correspond to the signal clusters. The energy and
time here is not the calorimetric energy and the mean time of the cluster, but rather the true energy of
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the neutrino that produced the cluster hits and the time at which that neutrino interacted. This works
because the vast majority of signal clusters contains hits from exactly one neutrino.

The one simulation that I have run for each detector is the same one that has been used so far in
this thesis: the LS220-s27.0co model from the Garching group [55]. The near detector was simulated
at a distance of 350 pc and the far detector at 500 pc. These distances were chosen to be as close to Earth
as computationally feasible to maximize the statistics of each simulation. Scaling the distributions to a
different distance is simpler than scaling to a different model: instead of computing a separate weight
for each energy-time bin, a constant weight of

w =

(
dsimulated

d

)2

(8.3)

is applied to every signal cluster.
To demonstrate this procedure, I generated two supernova neutrino simulations in the near de-

tector at a distance of 2 kpc. One simulation used the LS220-s27.0co model flux while the other used
SFHo-z9.6co. The neutrino fluxes for the νe and ν̄e flavors in both models is shown in Fig. 8.1, as well
as the partial flux ratios as described in Eqs. 8.1 and 8.2.

Figure 8.2 shows this method applied to data from the two simulations. The LS220-s27.0co is in
black and the SFHo-z9.6co in gray. The red curves are the LS220-s27.0co data after being reweighted
to match the SFHo-z9.6co model. The plots in the top row show this procedure applied to the model
fluxes themselves, and the true SFHo-z9.6co curve and reweighted curve match each other perfectly,
as expected. In the bottom row, this procedure is applied to the data which shows good agreement
between the true SFHo-z9.6co data and the reweighted LS220-s27.0co data.

There are advantages and disadvantages to this reweighting method. The obvious advantage is
what inspired thismethod in the first place: computational ease. The full simulation-to-clusters pipeline
described in previous chapters takes several days to run for a nearby supernova at the far detector, and
that would need to be repeated for every desired model scenario. In comparison, the reweighting pro-
cedure described here takes under two seconds to convert the distribution of signal clusters from one
model and distance to another, and only requires a one-time investment of computational resources.
Another advantage of producing one nearby supernova and scaling it to farther distances is that of in-
creased statistics, especially when a supernova is so far away that bins might otherwise end up with no
counts due to statistical fluctuations.

One disadvantage of this technique is that it assumes that background rejection and supernova clus-
tering would have done the exact same thing; the background clusters are not altered in any way. If
instead I re-ran the full simulation, signal hits would appear in different locations and times through-
out the detector. The clustering algorithm might end up grouping a signal hit into what used to be a
background cluster, for example. However, this effect is thought to be negligible.

8.2 Cluster selection
The first selection step is a pre-selection stage. To a certain degree, SNSlicer has already applied some
pre-selection in that it discards any clusters that only contain one hit and for the far detector it discards
any clusters that contain hits from only one detector view. Additionally, I apply a fiducial volume cut
to ensure containment and also to discard clusters that are more prone to background contamination

102



0.0 0.2 0.4 0.6 0.8 1.0
Time, s

0

10

20

30

40

50

En
er

gy
, M

eV

0.00

0.25

0.50

0.75

1.00

1.25

1e57

0.0 0.2 0.4 0.6 0.8 1.0
Time, s

0

10

20

30

40

50

En
er

gy
, M

eV

0.00

0.25

0.50

0.75

1.00

1.25

1e56

0.0 0.2 0.4 0.6 0.8 1.0
Time, s

0

10

20

30

40

50

En
er

gy
, M

eV

0.00

0.25

0.50

0.75

1.00

1.25

1e57

0.0 0.2 0.4 0.6 0.8 1.0
Time, s

0

10

20

30

40

50

En
er

gy
, M

eV

0.0

0.5

1.0

1.5

2.0

1e56

0.0 0.2 0.4 0.6 0.8 1.0
Time, s

0

10

20

30

40

50

En
er

gy
, M

eV

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

0.0 0.2 0.4 0.6 0.8 1.0
Time, s

0

10

20

30

40

50

En
er

gy
, M

eV

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Figure 8.1: Energy-time fluxes for νe (left) and ν̄e (right) flavors. Top: SFHo-z9.6co model neutrino flux. Center:
LS220-s27.0co model neutrino flux. Bottom: Ratio of model neutrino fluxes (SFHo-z9.6co/LS220-s27.0co).
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as input to the simulation as a cross-check that this process works as expected. Bottom: the neutrinos generated
by the simulation.
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due to interactions in the surrounding rock and overburden. For the near detector, I discard all clus-
ters whose mean position is within 30 cm of any detector wall. The same selection applies to the far
detector except for the top face of the detector, where the distance-to-wall cut is 45 cm due to increased
cosmogenic activity in this region of the detector.

After pre-selection, the aim is to distinguish signal clusters from background clusters based on
their macroscopic properties. Descriptions of these properties are listed in Tab. 8.1 and are plotted in
Figs. 8.3 and 8.4. A visual inspection of these distributions for signal and background clusters reveals
that there is a lot of overlap between the two classes. A common tactic in particle physics for signal
selection involves performing a series of rectangular cuts on the variables. This can be a simple and
effective method when the signal and background distributions have good separation, but that is not
the case here. It is difficult to tell by eye which variables provide the best discriminating power or in
what order cuts should be applied. Rectangular cuts are therefore not an attractive choice for supernova
cluster selection.

But another visualization technique suggests that there is hope. t-SNE1 [131] is amethod of project-
ing high-dimensional data onto two or three dimensions for visualization. It preserves the separation
between points in the higher-dimensional space and can be useful for identifying the presence of clus-
ters in the data. Figure 8.5 shows a 2D t-SNE plot for each detector and reveals that there are indeed
some groupings. The near detector consists of mostly signal, but the few background clusters that do
exist are largely located together near the top of the plot. Likewise the far detector exhibits a grouping
of signal clusters in the upper-right portion of the plot, although they are not tightly packed and many
are scattered throughout the plot among the background clusters. This suggests that it will be more
difficult to separate the signal and background clusters at the far detector than at the near detector, but
not nearly as difficult as the feature distributions indicated. To address this challenge, I turn tomachine
learning.

There are many details to consider when choosing a machine learning strategy. First, there is the
question about how the data need to be cleaned and processed to make them suitable for training.
Then there is the choice of the algorithm itself and optimal choices for its hyperparameters. Finally,
one must decide how to evaluate the output. How do we quantify performance? How do we verify that
the machine learning model has not been under-trained or over-trained and that it will generalize well
to new data? There is rarely a “one size fits all” approach to most of these considerations because the
details often depend on the nature of the problem one is trying to solve, the quality and quantity of data
available for training, and the desired outcomes. In the following sections, I will lay out the machine
learning strategy that I employ to classify clusters as either “signal” or “background.”

Machine learning classifiers
Training data are partitioned into two components: a set of featuresX , which in this case correspond
to the cluster properties, and a vector of class labels Y :

X =


x11 x12 · · · x1m

x21 x22 · · · x2m
...

... . . . ...
xn1 xn2 · · · xnm

 ; Y =


y1
y2
...
yn

 . (8.4)

1t-SNE is short for “t-distributed Stochastic Neighbor Embedding.”
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Table 8.1: Cluster properties.

Feature Variable name Description
Number of hits NHits Number of hits contained in the cluster

Number of views Views Number of detector views that contributed hits
to the cluster (1 or 2)

Largest time difference TimeGapLarge Largest time difference (ns) between any two
hits in the cluster

Smallest time difference TimeGapSmall Smallest time difference (ns) between any two
hits in the cluster

Largest plane difference PlaneGapLarge Largest plane difference between any two hits
in the cluster

Smallest plane difference PlaneGapSmall Smallest plane difference between any two hits
in the cluster

Largest cell difference CellGapLarge Largest cell difference between any two same-
view hits in the cluster

Smallest cell difference CellGapSmall Smallest cell difference between any two same-
view hits in the cluster

Mean X-position XMean Mean detector position (cm) of the cluster in
the detector X-coordinate

Mean Y-position YMean Mean detector position (cm) of the cluster in
the detector Y-coordinate

Mean Z-position ZMean Mean detector position (cm) of the cluster in
the detector Z-coordinate

Total ADC AdcTotal Total ADC of all hits in the cluster

Mean ADC AdcMean Mean hit ADC in the cluster

Smallest ADC difference AdcGapSmall Smallest ADC difference between any two hits
in the cluster

Largest ADC difference AdcGapLarge Largest ADC difference between any two hits
in the cluster

Photoelectrons PE Total photoelectrons of all hits in the cluster

Total energy TotalEnergy Total calorimetric energy (MeV) of the cluster

Time to track TimeToTrack Time difference (ns) between cluster and most
recent track
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Figure 8.3: Near detector cluster properties.
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Figure 8.4: Far detector cluster properties.
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Figure 8.5: t-SNE plots for the near (left) and far (right) detectors. Blue or red points indicate signal clusters and
gray points indicate background clusters. The axes represent a projection of a high-dimensional space onto two
dimensions and therefore lack a physical meaning, so axis and tick labels are not shown.

The class labels for binary classification are 0 and 1, indicating whether the true class of that cluster is
the “positive” class (signal) or the “negative” class (background). This differs from regression problems,
where the goal is to estimate the value of a continuous variable. Focusing solely on binary classification
limits the options of suitable algorithms, but not by much; there are still many options and no way to
choose the best one without trying each one and comparing their performance for this particular data
set. I decided to test four classifiers from different families:

Random forest [132]. An ensemble method that consists of a number of individual decision tree
(DT) classifiers. Each DT classifier is trained on a random subset of the full data set and with
a random subset of the full list of features to reduce the correlation between individual DTs.
The random forest classifier makes its predictions based on the collective predictions made by
its component DTs.

AdaBoost [133]. A sequence of “weak learners”—simple models which only slightly outperform
randomly guessing. The weak learners in this case are decision stumps, which are just very small
decision trees. The final prediction is made by taking a weighted average of predictions from the
component decision stumps, where theweights are optimized during themodel training process.

Logistic regression [134]. A sigmoid function is used to model the probability distribution of
being in the positive class and a threshold somewhere in that distribution enables binary classifi-
cation. This requires theN-dimensional feature-space to be reduced down to a single dimension
on the domain [0, 1], and it is this reduction in dimensionality that is optimized during training.

Gaussian naive Bayes [135]. A probabilistic model based on Bayes’ theorem [136]. This method
is described as naive because the features are assumed to be independent of one another (correla-
tions are not considered) and each feature is considered to have an equal effect on the outcome.
Given these assumptions, a guassian posterior probability distribution is used to make classifica-
tion decisions.
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Figure 8.6: Class populations for both detectors.

Imbalanced classes
When training anymachine learningmodel, caremust be takenwhen dealingwith data sets that exhibit
large imbalances between classes. This is typical in searches for rare events. For example, spam filtering,
credit card fraud detection, and cancer screening are all situations in which positive cases are largely
outnumbered by the negative ones, but identifying positive cases is critically important. Such is the
case for this supernova search.

Both detectors exhibit imbalanced classes, but in opposite ways. Background clusters for the far
detector outnumber signal clusters by about 9-to-1. At the near detector, the signal outweighs the
background clusters 16-to-1 (Fig. 8.6). If this imbalance is not addressed, the models trained for both
detectors are likely to be over-trained on the data in the majority class and under-trained on the data
in the minority class.

There are a variety of ways to approach the problem, which tend to fall broadly into the following
categories:

Under-sampling. Under-sampling balances the training data set by selecting a subset of the
majority class so that the majority and minority classes are equal in size. This can be done by
simply removing majority class records randomly or through a more sophisticated method, such
as removing majority class points which occur close to minority class points in the feature space
(known as “tomek links”) and thus improving the separation between the classes. Regardless of
the method, under-sampling has the disadvantage of throwing out good data that could be used
to improve model performance. This may prove to be untenable for smaller data sets.

Simple over-sampling. Over-sampling adds more instances of the minority class by duplicating
existing instances at random until the two classes are balanced. This can be useful when the
available data set is fairly small and under-sampling is not an option. However, the duplication
of data can lead to over-fitting the model, and it may not generalize well to new data.

Synthetic over-sampling. The synthetic minority over-sampling technique (SMOTE) [137]
increases the size of the minority class by generating synthetic samples of the class. This process
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Figure 8.7: Confusion matrix for binary classification.

involves selecting a minority class sample, choosing one of its k nearest neighbors, drawing a
straight line in the feature space between these two minority class samples, and generating a
new sample at a random point along that line. This produces a set of newminority class samples
that are not simply duplicates of existing samples, and can reduce the effects of over-fitting that
can plague duplicative over-sampling methods.

Performance metrics
It is not possible to compare combinations of the aforementioned classifiers and class imbalance tech-
niques without specifying how performance will be quantified. One commonly-used metric is the ac-
curacy, the fraction of correct classifications. However, this becomes less insightful as the data set
becomes more imbalanced. For example, if the minority class made up 1% of all the data, an algorithm
that naively classifies everything as the majority class will have an accuracy of 99%.

More meaningful metrics can be derived by looking at the confusion matrix, which compares the
number of class predictions from a given model with the true classes (Fig. 8.7). All predictions are
decomposed into true positives Tp, false positives Fp, true negatives Tn, and false negatives Fn.

Two important metrics derived from the confusion matrix are “recall” (Tp/(Tp + Fn)) and “preci-
sion” (Tp/(Tp+Fp)). Recall is the percentage of positive class samples predicted correctly and precision
is the percentage of the predicted positive classes that are actually positive. These are useful when iden-
tifying the positive cases is the most important aspect of classification. A third metric, the f1-score, is
a harmonic average of precision and recall, and is often used to gauge the performance for situations
with class imbalances.

Out of the four metrics described so far—accuracy, recall, precision, and f1-score—the best choice
depends on the nature of the data and what outcomes are most important for the problem, but that
can make it difficult to compare the performance of various class balancing scenarios. For this, we can
derive a new metric from the receiver operator characteristic (ROC) curve.

A binary classifier generally assigns a numerical probability to each prediction that it makes, and if
the probability is above some threshold then it is predicted to be the positive class. The ROC curve is
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a plot of the true positive rate versus the false positive rate for various possible thresholds (Fig. 8.8).
If the threshold is set to zero, then everything is labeled positive, meaning the true positive rate is 1
and false positive rate is 1. If the threshold is set to one, then everything is labeled negative, making
the true positive rate 0 and the false positive rate 0. So (0, 0) and (1, 1) are two points that every ROC
curve will pass through. What happens in between depends on the performance of the classifier. A
perfect classifier would have a point at (0, 1) and the ROC curve would look like a step function. A
classifier that was no better than random guessing would not have any preferred threshold, and would
be represented by the line y = x.

By plotting the ROC curves for multiple binary classifiers together, we can compare the perfor-
mance by noticing which one gets pulled closer to the point (0, 1). Or, we can distill that information
into a single numerical score by computing the area under the ROC curve, known as the ROCAUC. For
this metric, 1 represents a perfect classifier while 0.5 is equivalent to a model that guesses at random.

Table 8.2 shows theROCAUC scores for each combination of classifier and class-balancingmethod
described above. I applied the class-balancing techniques using the Imbalanced-learn Python pack-
age [138] and trained the classifiers using the scikit-learn Python package [139]. I used the default
hyperparameters for each algorithm. That is, I made no attempt to optimize the performance of any of
the techniques and therefore these trials do not demonstrate the best achievable ROC AUC score for
any one scenario, but it does allow for something of an apples-to-apples comparison.

For this comparison, I also used a method called “k-fold cross validation” (Fig. 8.9). In this method,
the training sample is split evenly into k sub-samples, or “folds”. During each training iteration, k − 1

sub-samples are used as the training data and the remaining one sub-sample is used as a validation set
to test the performance. A different sub-sample is used as the test sample during each iteration. The
results of each iteration are averaged together to produce the final result, which reduces the dependence
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Figure 8.9: k-fold cross-validation example. Instead of training a model once and evaluating on a single test set,
this procedure breaks the training data up into k folds to allow training the model k separate times. For each
training iteration 1/k of the data is used as a test data set, and (k − 1)/k is used as the training set. With this
method, one can evaluate the average performance of a model on a single training data set. Diagram from the
scikit-learn user guide: https://scikit-learn.org/stable/modules/cross_validation.html.

of the final result on the particular of how the training and test samples were split. For the comparisons
shown in Tab. 8.2, I used k = 10 folds for cross-validation.

The results show that the ROC AUC score for both detectors is maximized when using a random
forest classifier in combination with the SMOTE technique to synthetically up-sample the minority
class (signal at the far detector, background at the near detector).

Decision trees and random forests
A decision tree is essentially a collection of yes/no questions called nodes. When a trained decision tree
classifier is asked to predict the class of new data, it begins by passing the features to the root node. The
root node checks if the value of a particular feature is less or greater in value than some pre-determined
threshold, and passes the data to one of two sub-nodes depending on the outcome. Whichever node
receives the data then repeats the process using a different feature and a different threshold, and this
continues until the data reach a leaf node corresponding to a specific class, rendering the classification
prediction.

Training a decision tree classifier is an iterative process that begins at the root node. The feature and
the split threshold value for the node is chosen based on a cost function, a measure of misclassification.
A popular choice for the cost function is the Gini impurity

G =

NC−1∑
i=0

p(i) · (1− p(i)), (8.5)

whereNC is the number of classes (C = 2 for binary classification) and p(i) is the purity of class i in
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Table 8.2: ROC AUC scores for different classifier models and class-balancing methods. The best score for each
detector is shown in bold.

Classifier types
Resampling method Random AdaBoost Logistic Gaussian

Forest Regression Naive Bayes

N
ea
r
de
te
cto

r

None 0.9831 0.9840 0.9655 0.9504
Under-sampling 0.9829 0.9791 0.9605 0.9498
Tomek links 0.9848 0.9834 0.9651 0.9503
Over-sampling 0.9837 0.9827 0.9616 0.9503
Over/under-sampling 0.9852 0.9803 0.9640 0.9508
SMOTE 0.9857 0.9811 0.9619 0.9549

Fa
r
de
te
cto

r

None 0.8706 0.8603 0.8382 0.7931
Under-sampling 0.8681 0.8412 0.8031 0.7933
Tomek links 0.8731 0.8569 0.8405 0.7924
Over-sampling 0.8791 0.8563 0.8080 0.7958
Over/under-sampling 0.8724 0.8492 0.8224 0.7896
SMOTE 0.8804 0.8548 0.8078 0.7689

the sample. The Gini impurity is calculated for each branch of the split and a weighted sum of the two
is taken as the total cost function for the node. The lower the value, the better the separation power.
This process continues until a stopping criterion—such as reaching the maximum depth of the tree or
failure to further improve the separation of the sample—has been satisfied. The final nodes of the tree
are the leaf nodes which determine the prediction based on the majority class present in the node.

A random forest (RFC) classifier is an ensemble of individual decision tree classifiers. The random
aspect of a RFC comes from two sources: (1) random sampling of the training data with replacement
and (2) random selection of a subset of features used to train each tree. In this way, each decision tree
sees different data and a different feature set during training, which reduces correlations between the
decision trees in the forest. The final classification from aRFC is amajority vote from the classifications
of all the component decision trees.

Feature engineering
The performance of anymachine learning algorithm strongly depends on both the quality and the quan-
tity of the data that it is trained on. But more data is not necessarily better. For one, the computational
cost of training a model generally increases with the number of features, so including highly-correlated
features can increase the training time without producing any appreciable boost in performance. It is
also often the case that some features are far more important to a trained model than others, so re-
moving useless features can further decrease the time it takes to train a model on a full data set with
little-to-no impact on the performance of the model. In some cases, the presence of non-important
features can actually decrease the performance of a model, so even if training time is not significant,
selecting the right set of features is still worthwhile.

My approach to this is straightforward. First, I look for highly-correlated features and remove
all but one of them (Fig. 8.10). Next, I train an out-of-the-box random forest model with SMOTE
oversampling on a subset of the full training data set and examine the importance of each feature.
The importance of a feature is quantified by assessing the average relative amount that the feature
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Table 8.3: Random forest hyperparameters and optimized values for each detector. Nfeat is the total number of
features.

Variable Description ND FD
n_estimators Number of trees in the forest 875 575

criterion Function used to measure the
quality of a split

Gini Gini

min_samples_split Minimum samples required to
split an internal node

2 2

min_samples_leaf Minimum samples required at
any leaf node

1 1

max_features Number of features to consider
when looking for the best split

√
Nfeat

√
Nfeat

max_depth Maximum depth of any one tree ∞ 90

contributes to impurity decrease. I discard any feature with an importance score less than or equal to
0.1 (Fig. 8.11).

Hyperparameter tuning
With a model in hand and a reduced feature set, it’s almost time to train the model and test its predic-
tive power. But first, the hyperparameters that constrain the structure of the model during training
must be chosen. Up to this point, I have been training the random forest model using the default hy-
perparameters provided by scikit-learn [139]. The defaults are fine for making comparisons, but not
for maximizing performance. So what are the optimal hyperparameters for identifying supernova neu-
trino clusters at NOvA with a random forest binary classifier? There is no way to deduce that. Like
most machine learning tasks, the best approach is to simply try various combinations and choose the
one that performs best.

This approach occurs in two stages. The first stage is a random search of 50 combinations of hy-
perparameters with each hyperparameter chosen at random based on user-defined bounds. Each com-
bination is k-fold cross-validated with k = 3. The optimal combination is the one that maximizes the
ROCAUC score. This random search identifies roughly optimized values for the hyperparameters, and
the second stage is a grid search designed to systematically search a reduced space to produce a more
finely-tuned optimization. Table 8.3 lists the hyperparameters included in the search and the optimized
values for both detectors.

Training and performance
For each detector, I trained a random forest classifier using the SMOTE technique to balance the class
frequencies on features that are neither highly correlated nor unimportant to the classifier’s perfor-
mance.

The training data set is 80% of the full data set with the other 20% set aside for testing the perfor-
mance of the classifier after training. These data were split randomly while preserving the relative class
distribution of the full data set.

115



NH
its

Vi
ew

s
Ti

m
eG

ap
Sm

al
l

Ti
m

eG
ap

La
rg

e
Ad

cT
ot

al
Ad

cM
ea

n
Ad

cG
ap

Sm
al

l
Ad

cG
ap

La
rg

e PE
To

ta
lE

ne
rg

y
Pl

an
eG

ap
Sm

al
l

Pl
an

eG
ap

La
rg

e
Ce

llG
ap

Sm
al

l
Ce

llG
ap

La
rg

e
XM

ea
n

YM
ea

n
ZM

ea
n

Ti
m

eT
oT

ra
ck

NHits
Views

TimeGapSmall
TimeGapLarge

AdcTotal
AdcMean

AdcGapSmall
AdcGapLarge

PE
TotalEnergy

PlaneGapSmall
PlaneGapLarge

CellGapSmall
CellGapLarge

XMean
YMean
ZMean

TimeToTrack

0.2

0.4

0.6

0.8

1.0

NH
its

Vi
ew

s
Ti

m
eG

ap
Sm

al
l

Ti
m

eG
ap

La
rg

e
Ad

cT
ot

al
Ad

cM
ea

n
Ad

cG
ap

Sm
al

l
Ad

cG
ap

La
rg

e PE
To

ta
lE

ne
rg

y
Pl

an
eG

ap
Sm

al
l

Pl
an

eG
ap

La
rg

e
Ce

llG
ap

Sm
al

l
Ce

llG
ap

La
rg

e
XM

ea
n

YM
ea

n
ZM

ea
n

Ti
m

eT
oT

ra
ck

NHits
Views

TimeGapSmall
TimeGapLarge

AdcTotal
AdcMean

AdcGapSmall
AdcGapLarge

PE
TotalEnergy

PlaneGapSmall
PlaneGapLarge

CellGapSmall
CellGapLarge

XMean
YMean
ZMean

TimeToTrack

0.2

0.4

0.6

0.8

1.0

Figure 8.10: Feature correlations for the near detector (top) and far detector (bottom).
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Figure 8.11: Importances for full (top) and reduced (bottom) feature sets for the near detector (left) and far
detector (right).

The confusion matricies for each classifier are shown in Fig. 8.12, and the results are promising.
Both the near and far detectors correctly classify nearly 95% of the true background clusters. The clas-
sifiers are able to correctly identify signal clusters 96% of the time for the near detector and 85% of the
time for the far detector. As far as mistakes go, the near detector model misclassifies clusters 4% of the
time. The far detector model misclassifies background clusters 6% of the time, but it misclassifies signal
clusters at the higher rate of 15%. The performance comparison between these two classifiers is shown
in the ROC curves in Fig. 8.13.

The values in the confusion matrix are based on classification decisions being a majority vote from
all decision trees in the forest. If more than 50% of the trees predict a cluster as signal, then the RFCwill
predict signal, and vice-versa for background predictions. But this 50% threshold is somewhat arbitrary;
why should a simple majority be the criterion that determines the classification? Different thresholds
may be more suitable in specific situations. For that reason, instead of considering the classification
decision for each cluster, I instead look at the fraction of trees that classified it as signal. Figure 8.14
shows the distribution of these scores and the selection efficiencies for true signal and background
clusters. Additionally, I have plotted the figure of merit S/

√
S +B to demonstrate that a threshold of

0.5 is not the ideal choice in this case.
I do not use this figure of merit to choose the thresholds, however. Instead, I want to choose

thresholds based on how they affect the sensitivity of the analyses in this thesis. For now, I have two
optimized and trained random forest classifiers that are able to quantify how signal-like any cluster is
with acceptable error rates. I also have in hand the capability to transform cluster time and energy
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distributions produced from the LS220-s27.0co supernova neutrino flux model into any other model
on-the-fly and without the need for running additional expensive and time consuming simulations. In
the next chapter, I will lay out several analyses that could be performed in the event of a real supernova
detection with the NOvA detectors and compute the sensitivities of those measurements for a variety
of model and progenitor distance scenarios.
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CHAPTER 9

Analyses and Results

After ensuring the quality of the data, rejecting obvious background activity, clustering hits together
based on topology, and determining how supernova-like those clusters are with a tuned random forest
classifier, the next step is to analyze the data. There is only one problem: the most recent supernova
with a detectable neutrino burst occurred twenty-six years before NOvA began taking data. But, this
is okay. Nearly1 every other current and planned neutrino detector is in the same proverbial boat.

For now, we are all limited to exploring capabilities and estimating sensitivities, but even this is a
challenge. As I have discussed in previous chapters, we still lack much information about the mechan-
ics of a supernova and how they influence neutrino emission. There are a wide range of supernova
neutrino models available, each consisting of a distinct selection of relevant physics, nuclear equations-
of-state, progenitor masses, and dimensionality, which begs the question: what is the “cannonical”
supernova? How can we benchmark the sensitivity of the NOvA detectors—or any neutrino detector—
when there are so many viable models to choose from?

There is no clear answer to that question. We will not be able to seriously constrain neutrino
emissionmodels until the next galactic core-collapse supernova occurs. And even then, no one neutrino
detector will be enough. Each detector is primarily sensitive to one or two interaction channels and
therefore will have only a piece of the puzzle. Liquid scintillator and water Cherekov detectors will
mainly see the ν̄e piece while noble element detectors will see νe. High-Z detectors like HALO and
future dark matter detectors will have sensitivity to all flavors through neutral current interactions
and coherent elastic neutrino-nucleus scattering (CEνNS). The world’s neutrino detectors will need
to combine their observations as well as those produced by optical telescopes and gravitational wave
observatories before a complete picture will emerge.

Give the absence of real neutrino data and the lack of any single canonical supernova neutrino
model, the analysis I will present in this chapter will be that of a case study. I have chosen two models
(LS220-s27.0co and SFHo-z9.6co) for which I will examine NOvA’s sensitivity to two things: (1) the
ability to constrain the initial arrival time of the neutrino burst t0 and the distance to the supernova
dSN, and (2) the neutrino mass ordering under a specific set of assumptions.

1The Baksan Underground Scintillation Telescope (BUST) in the North Caucasus region of Russia reported an observa-
tion of neutrinos from SN 1987A and still operates today.
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Figure 9.1: Far detector template cluster data shifted and scaled to various values of dSN and t0. Note that the
background level is not affected by these transformations, as demonstrated by the overlap of every curve prior
to core-bounce time of the earliest distribution at 1 s.

9.1 Modeling and fitting the time profile
For this analysis, I produced one simulation for each detector (dSN of 350 pc for the near detector and
500 pc for the far detector) from the LS220-s27.0co model. Instead of fitting a function to the data, I
use a time profile for a very close supernova overlaid with minimum-bias data as a template that can
be adjusted for various values of progenitor distance and core-bounce time. The model F (dSN, t0, b)

that describes this template for either detector depends on the supernova distance dSN, the core-bounce
time t0, and the average background level b. This model can be decomposed into a signal portion and
background portion:

F (dSN, t0, b) = S(dSN, t0)⊕B(b). (9.1)

The model can be produced for any core-bounce time t0 by shifting the template core-bounce time
tsim0 for each signal template cluster by some amount δt0 such that δt0 = t0− tsim0 . Similarly, models of
any supernova distance dSN can be produced by scaling the signal component of the model by a fraction
w relative to the simulated distance d sim

SN : w = (d sim
SN /dSN)

2. In both of these cases, the background
component of the model is not affected. With this model, I can replicate the expected time profile
for a LS220-s27.0co model for any distance, core-bounce time, and average detector background level
(Fig. 9.1).

In addition to these basic transformations, I can use the reweighting infrastructure described in
Sec. 8.1 to transform the time profile from one supernova neutrino flux model to another. This same
procedure can also be used to apply neutrino flavor transformations. The LS220-s27.0co model does
not already account for any oscillations, though several effects would likely imprint themselves on the
signal. Among them are MSW oscillations in the stellar material, collective oscillations in regions of
high density, decoherence effects as the mass state propagate through space, and Earth-matter effects
if the neutrinos traverse the interior of the planet before detection.

For simplicity, I only consider the case of adiabatic MSW oscillations in the stellar interior. In re-
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Figure 9.2: Selected clusters over time under different mass ordering scenarios. Only adiabatic MSW effects
within the collapsing core are considered.

gions of high electron density, neutrino mass eigenstates propagate adiabatically so long as the matter
density profile is slowly-varying. The fluxes are transformed according to the Eqs. 4.5 and 4.6 intro-
duced in Sec. 4.3. To reweight the selected clusters to either of these mass ordering scenarios, I take a
ratio of the oscillated and unoscillated model fluxes in bins of time and energy and scale the weight of
each cluster by that ratio based on its parent neutrino true time and energy (Fig. 9.2).

Time Binning
The time evolution of neutrino emission from a core-collapse supernova does not play out on any one
time scale. The intricacies of the neutronization burst are contained within the first few milliseconds,
the turbulent instabilities that modulate the neutrino flux during accretion last for tenths of a second,
the remaining neutrino emission spills slowly out of the core during the cooling phase which lasts for
tens of seconds. Sowhen it comes to fitting the time profile of a template to data, what is the appropriate
binning? Should it be fine or coarse or something in between? Perhaps there is no correct answer, but
for this thesis I chose a coarse binning of 0.5 s for several reasons.

For one, it is simply the natural choice. I am not considering only the very early supernova activity
in my analysis; I am looking out as far as possible before the signal becomes buried in background. That
timescale is on the order of seconds, and binning at neutronization timescales would require thousands
of bins. This choice would have logistical consequences for supernova progenitors at larger distances
where low statistics could drive the expected or measured counts in some bins to zero, complicating
the computation of key statistical metrics such as χ2.

Another benefit of using coarse time binning is that model-dependent details on smaller timescales
get washed out. The templates that I fit to the data—whether the data are those simulated for this
thesis or those from a future real supernova—were produced from a simulation and therefore assume
a particular supernova model. For the purposes of model discrimination in the presence of real data,
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a fine binning might be desirable, but for the purposes of this thesis, I only seek to fit the general
properties of a supernova event: a sharp peak early on followed by a brief shoulder during accretion
and terminated by a period of decay during cooling. Coarse binning achieves this.

Fitting algorithm
I chose to use Powell’s method [140] as the minimization algorithm to perform the fit. This algorithm
is a good choice because it does not rely on estimating derivatives (the χ2 surfaces in parameter space
in this case have sharp boundaries that are not well described with functions) and it was more robust to
time and distance shifts than many other popular algorithms. Powell’s method requires an initial guess
X0 and two non-parallel direction vectors h⃗1 and h⃗2 as input. The pointX1 is the minimum point on
the line in the direction of h⃗1 that passes throughX0. The pointX2 is the minimum point on the line
in the direction of h⃗2 that passes throughX1. A conjugate direction is then chosen by drawing a line
through the pointsX0 andX2, and this process repeats until it converges near the optimal valueXopt.

For the initial guessX0, I compute a coarse estimate for three of the four parameters in the follow-
ing way:

• Detector background levels (bND and bFD)— I fit a background-only model (a constant) to each
detector separately using Powell’s method. The initial guess in each case is 1. I take the result of
this fit bguess to be the guess for the signal-and-backgroundmodel with bounds of [0, 1.5×bguess].

• Neutrino burst time (t0)— I use the scipy.signal library to identify any peaks with a promi-
nence greater than zero in the near detector time profile. I take the largest peak to be the assumed
neutrino burst, and use its time tguess as the initial guess. I also constrain the possible range of
this parameter to be [tguess−0.5 s, tguess+0.5 s]. I only use the near detector time profile for this
because it is more likely to have a prominent peak for distant supernovae.

The initial guess for the remaining parameter dSN is 1 kpc and is allowed to take on any values between
0 and 100 kpc during the joint-detector fit.

Asimov data sets
I was only able to produce a single simulation per detector for analysis due to computational limitations,
and therefore any sensitivity computation will depend on the particular minimum-bias background
data that I overlaid on the simulated signal. With unlimited resources, I would produce many simula-
tions and overlay them with different minimum-bias data and combine them to calculate the detection
sensitivity to a “typical” supernova. But this is not possible.

To get around this, I make use of the so-called Asimov data set. In his 1955 sci-fi short story
Franchise [141], Isaac Asimov envisions a future where the President of the United States is no longer
elected by the people as a whole, but rather by a single individual2 who is meticulously selected by a
supercomputer before each election by virtue of being the most representative American.

This idea can be applied to characterizing the sensitivity of an experiment to an observed signal by
replacing an ensemble of simulated scenarios with a single representative instance [142].

2The story covers the 2008 U.S. election, in which the “Voter of the Year” is Norman Muller of Bloomington, Indiana. I
have to believe that somehow the coincidence that I am writing and defending this thesis in the same city is further evidence
that the use of Asimov data sets for this thesis is the right choice, but only so much so that this thought is relegated to a
tongue-in-cheek footnote.

124



Joint-detector fits
Two fits are performed on both detectors simultaneously using the lmfit Python package [143]: (1)
a joint-detector fit of the signal-plus-background model and (2) a joint-detector fit of the background-
onlymodel. The signal-plus-backgroundmodel contains four parameters, two ofwhich (t0 anddSN) are
constrained to be equal for both detectors, and the background-only model contains two parameters,
bND and bFD. After performing the fit, lmfit computes the 1σ uncertainties on the parameters by
inverting a matrix of the second derivatives of fit quality for each parameter.

The fit minimizes the sum of bin-by-bin residuals across both detectors, with each residual being
weighted by the total number of clusters in that bin. Minimizing the relative residuals instead of the
absolute residuals in this way is necessary so that the detector with the higher background rate (far
detector) does not dominate the calculation.

To evaluate the goodness-of-fit, I compute theχ2which is proportional to the log-likelihood under
the assumption that the variables are Poisson distributed:

χ2 = −2 lnλ(θ) = 2

N∑
i=1

[
µi(θ)− ni + ni ln

ni

µi(θ)

]
, (9.2)

where the last term is zero when ni is zero and the logarithm is undefined. Theχ2is calculated for both
the background-only and the signal-plus-background models, and the difference is taken as a measure
of the significance:

∆χ2 = χ2
B − χ2

S+B. (9.3)

The signal-plus-background model has four parameters and the background-only has two, so∆χ2 has
two degrees of freedom, and this can be used to translate∆χ2 into a significancemeasured inσ. It is this
sensitivity that I use to optimize the classifier score cut by choosing the combination of near detector
and far detector scores that maximize ∆χ2. Figure 9.3 shows the ∆χ2 values for different choices of
score threshold for a 1 kpc simulated supernova using the LS220-s27.0co model. The maximum∆χ2

corresponds to a near detector score of 0.625 and a far detector score of 0.650.
With the classifier score thresholds chosen, cluster selection is complete. Figure 9.4 shows the

selection efficiency of neutrinos that interacted in the fiducial volumes of each detector for a simulated
supernova using the LS220-s27.0comodel. The efficiency increaseswith energy out to 70MeV, beyond
which the uncertainty on the efficiency grows rapidly due to diminished statistics. The near detector
has an overall neutrino selection efficiency of (47.7± 0.5)%. At the far detector, the overall efficiency
of (0.748±0.008)% is substantially lower, but it reaches amaximum value of (10.7±2.5)% at 68MeV.

Figure 9.5 shows both detector time profiles and joint-detector fit result for that same 1 kpc super-
nova using the optimized classifier score cuts for simulated clusters and a synthetic Asimov dataset.

9.2 Sensitivity to supernovae
By constructing an Asimov dataset for both detectors and conducting joint fits with a parameterized
template for a given supernova flux model at a variety of distances, I determined NOvA’s detection
sensitivity at the 3σ level to be 14 kpc for the SFHo-z9.6co model and 16.6 kpc for the LS220-s27.0co
(Fig. 9.6).
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S+B for a joint-detector fit of a 1 kpc supernova at different classifier score thresholds.
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Figure 9.4: All neutrino interactions and selected signal clusters for the near (left) and far (center) detectors and
selection efficiency for both detectors (right) as a function of true neutrino energy. Only neutrino interactions
within the fiducial used for cluster pre-selection. Neutrinos were simulated using the LS220-s27.0co model flux
at a distance of 350 pc for the near detector and 500 pc at the far detector.
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Figure 9.5: Joint-detector time profile fit for Asimov data sets (top) and simulated clusters (bottom) for the near
detector (left) and far detector (right).
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Figure 9.6: Joint-detector time profile fit sensitivity as a function of supernova distance.
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Figure 9.7: Joint detector time profile fit to mass ordering sensitivity for LS220-s27.0co (left) and SFHo-z9.6co
(right).

9.3 Mass ordering
As described in Sec. 4.3, there are a variety of flavor transformations that may affect the observable
supernova signal, including MSW effects in the star and Earth, neutrino self-interactions, and deco-
herence. For this analysis, I consider only the MSW effects in the interior of the star on the neutrino
time profile according to Eqs. 4.5 and 4.6. This assumes that self-interactions do not appreciably affect
observed signal and that the neutrinos do not travel a significant distance in the Earth prior to detection.

I examine this effect by reweighting the full unoscillated time distribution according to Eqs. 4.5 and
4.6. I approach this using two separate methods, which are described in the following sub-sections.

Method 1: Joint-detector fit
Thismethod is very similar to that of determining supernova sensitivity; I transform the time profile for
a particular distance and a mass ordering scenario. Instead of comparing the signal-plus-background
and background-only hypotheses, for each of the two model scenarios I considered, I compared the
hypothesis of one mass ordering when fit to data for the other ordering.

Figure 9.7 shows the results. For both models, this method was better at disfavoring the normal
ordering hypothesis when fitting to the inverted ordering. For all cases, a 3σ sensitivity to the mass
ordering extends beyond 1 kpc.

Method 2: Time asymmetry
The other method I use to determine the mass ordering is comparing the time profile at early times to
later times. The MSW effect is largely considered to be robust during the neutronization burst period
because the situation is uncomplicated by collective oscillations other complicated physics (Fig. 9.8).

One way to quantify this is by computing an asymmetry between the neutronization and accretion
phases. However, the event counts during the burst phase are suppressed at NOvA due too the lower
energies involved and thresholding effects. To get around this, I expanded the searchwindow to instead
compare the burst and accretion periods to the initial cooling period. The assumption that the MSW
effect plays a dominant role during this period isn’t as robust as it would be for an earlier time window
given our current understanding. But if it does play such a role, NOvA will have some sensitivity to it
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Figure 9.8: Simulated event rates for a 10 kpc electron-capture supernova in a 20 kt liquid scintillator detector
given different mass ordering scenarios. The event rates are only affected by MSW effects in the star. Figure
from [54].

and thus the mass ordering.
Calculating the asymmetry requires counting the number of signal clusters in each time region and

comparing those counts. The time profile consists of number of clusters from both detectors added
together in each time bin. The number of clusters in the i-th time bin is Ni. The number of clusters
NR in any time windowR is then

NR =

iR,f∑
i=iR,0

Ni (9.4)

where iR,0 and iR,f indicate the first and final indices that defineR.
Ni can be split up into its component signal and background,Ni = Si + Bi = Si + b where b is

the average number of background clusters per time bin. This background rate and its uncertainty is
estimated by fitting the signal-plus-background time profile hypothesis to the data. The asymmetry in
the signal between two time windowsR1 andR2 is

A(R1, R2) ≡ SR2 − SR1

SR2 + SR1

=
(NR2 − b nR2)− (NR1 − b nR1)

(NR2 − b nR2) + (NR1 − b nR1)
(9.5)

=
NR2 −NR1 − b (nR2 − nR1)

NR2 +NR1 − b ( nR2 + nR1)
(9.6)

where nR1 and nR2 represent the number of bins in regions R1 and R2. The uncertainty on the
asymmetry is then

σ2
A =

(
∂A

∂NR1

)2

σ2
NR1

+

(
∂A

∂NR2

)2

σ2
NR2

+

(
∂A

∂b

)2

σ2
b (9.7)

where the quantities NR1 and NR2 are assumed to obey gaussian statistics, and therefore σ
2
Nx

= Nx.
Computing the partial derivatives and simplifying yields

σ2
A =

4

α2

[
(b nR2 −NR2)

2NR1 + (b nR1 −NR1)
2NR2 + (NR2nR1 −NR1nR2)

2σ2
b

]
(9.8)
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Figure 9.9: MSW oscillations applied to Asimov data sets for both detectors for a supernova at 1 kpc under
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its associated significance σ.

where α ≡ (NR1 +NR2 − b (nR1 + nR2))
2.

Figure 9.9 illustrates this how this calculation is performed for a 1 kpc supernova under both flux
models. Replicating this procedure for many distances results (Fig. 9.10) shows that the asymmetries
remain constant in each mass ordering scenario, as one would expect, but the uncertainties grow as
described in Eq. 9.8, and so the separation power between these two scenarios decreases with distance
(Fig. 9.11).

9.4 Discussion and summary
The sensitivity of the NOvA detectors to the mass ordering shown in this thesis are promising. In each
of two methods, a 3σ measurement is possible for progenitors within 1 kpc depending on the model.
However, this result depends the key assumptions that the adiabatic MSW effects in the stellar interior
remain robust out to times of 700ms after core bounce and that no other flavor transformation effects
play an appreciable role.

That latter assumption is almost certainly wrong, but in what way we do not yet know. It’s likely
that neutrino self-interactionswill have an effect on the observed signal and it’s entirely possible that the
neutrinos do not come from above, but from below after traveling a considerable distance through the
Earth. There is also the question of what effect the expanding shock front has on the observed signal.
At such a region of discontinuous density, the MSW flavor transformations are no longer adiabatic.

So what does this result really tell us about NOvA’s sensitivity to the mass ordering from the next
galactic core-collapse supernova? NOvA has sensitivity under a specific set of conditions, but more
generally that will depend on the dynamics of the explosion. We simply do not have enough knowledge
of what to expect of the signal properties to make robust predictions. Every detector today has to
grapple with those same uncertainties. I have made no attempt in this work to combine the expected
observations of other detectors with that of NOvA, but when the supernova finally comes, information
from other observatories will allows us to make more informed assumptions that will improve the
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Figure 9.10: Calculated asymmetries for the normal and invertedmass orderings (left) and their difference (right)
as a function of supernova distance.
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robustness of analysis like the one presented here.
Until then, the development of this and other supernova sensitivity studies at NOvA can add levels

of sophistication to our assumptions and develop entirely new analysis pathways. For example, while it
was a wish-list item for this thesis, I have not attempted to reconstruct the supernova neutrino energy
spectrum, upon which mass ordering signatures and other interesting phenomena will be imprinted.
Candidates clusters with hit multiplicities greater than three of four should allow for a decent estimate
of the calibrated visible energy, and studying the many Michel electrons in NOvA’s cosmic data can
provide a good handle on the energy resolution and overall energy scaling in the MeV regime.

For now, the results presented here demonstrate that, despite NOvA’s relatively large exposure to
cosmic rays, it is a capable supernova observatory. This work also creates a foundation upon which
additional sensitivity studies can be built and that a future analysis can draw from in the event of a real
galactic core-collapse supernova.
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CHAPTER 10

Summary

The next galactic core-collapse supernova will be an incredible opportunity to advance humanity’s un-
derstanding of supernovae, neutrinos, and nuclear physics. Every capable neutrino detector must be
ready for this once-in-a-career event which could come at any time. The Supernova Early Warning
system is connects a global network of supernova-sensitive detectors together with the goal of maxi-
mizing that readiness.

The NOvA detectors are standing by and will read out 45 s of continuous data from its buffers
at both detectors in the event of a supernova. There are multiple avenues to triggering this readout,
including our internal data-driven trigger, a SNEWS alert, or even a LIGO alert. The last several years
have seen major developments in these capabilities, and soon NOvA will not only be a consumer of
these alerts, but a contributor.

Both of NOvA’s detectors sit closer to the surface than any other current or planned supernova-
capable neutrino detectors, especially the far detectorwhich is only partially underground and subjected
to an onslaught of cosmic particles. NOvA’s coarse spatial resolution is fine for reconstructing GeV
neutrinos from an accelerator beam, but it presents an interesting challenge for identifying the MeV-
scale suprenova neutrino depositions.

Despite these challenges, I have shown in this thesis that with the right collection of background
rejection techniques and machine-learning-assisted event selection, NOvA is capable of identifying a
supernova event by performing a joint-detector fit of a flux model to a simulated supernova. For one
particular model, a 27M⊙ progenitor using the LS220 nuclear equation of state, this method was ca-
pable of identifying the supernova at the 3σ significance level out to 16.6 kpc.

Additionally, I showed that NOvAmay have sensitivity to the mass ordering under the assumption
that MSW effects in the star are appreciable during the first second of the explosion and that no other
flavor transformations take place. In this simple scenario, a joint-detector fit of the time profile under
both ordering hypotheses reveals a 3σ sensitivity out to 1.51 kpc under the normal hypothesis and
1.06 kpc for the inverted case. A second method which considered the asymmetry in signal counts
between two adjacent time windows yielded a 3σ sensitivity at 2.8 kpc.
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