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The discovery of neutrino oscillations provides the first indication of a lepton flavor violating

(LFV) process, one that isn’t predicted by the Standard Model. As such, NOvA is part of

a rich experimental program to constrain unknown parameters in the neutrino oscillation

model, described for three neutrino flavors using the PMNS unitary matrix. It is a long-

baseline experiment utilizing two detectors, a Near Detector at Fermilab and a Far Detector

in Ash River, Minnesota for a total baseline of 810 km. It receives a predominantly νµ/ν̄µ

beam peaking at 1.8 GeV from the NuMI beam facility at Fermilab. There are four oscillation

channels used in the analysis, νµ → νµ, νµ → νe, ν̄µ → ν̄µ and ν̄µ → ν̄e. With a total exposure

of 13.6×1020 and 12.5×1020 protons on target for the neutrino and anti-neutrino beam modes

respectively, 82 candidates are seen in the νµ → νe channel for a total predicted background

of 26.8 events. Similarly, 33 candidates are seen in the corresponding anti-neutrino channel

for a total predicted background of 14.0 events. In the νµ → νµ (ν̄µ → ν̄µ) channel, 211 (105)

candidates are seen with an expectation of 1156.1 (488.1) events at no oscillations.

Consequently, this dissertation reports a measurement for oscillation parameters based on a

joint fit for the spectra in these four channels, which is given by :

• ∆m2
32 = (2.41± 0.07)× 10−3 eV2

xix



• sin2 θ23 = 0.57+0.04
−0.03 (UO)

• δCP = 0.82π+0.27π
−0.87π

In addition, a leading 4.2σ confidence level of evidence is seen for ν̄e appearance. The

oscillation analysis improves upon previous updates in several areas including particle iden-

tification, event reconstruction and cosmic background rejection. A principle component

analysis (PCA)-based technique is also implemented for decorrelating important flux and

cross-section systematics. In addition, new improvements are proposed in areas of energy

estimation as well as confidence interval building.
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Chapter 1

Historical Overview of Neutrino

Physics

1.1 Neutrinos and the Weak Force

The theory of the weak nuclear force is one of the most enigmatic and puzzling aspects of

nature. The theory was given its first concrete form in 1934 by Enrico Fermi to explain the

instability of the neutron within certain nuclei [1]. A free neutron, discovered just 2 years

earlier by James Chadwick [2], would by itself decay with a half-life of roughly 15 minutes.

By incorporating Wolfgang Pauli’s idea that the decay of these radioactive nuclei ought to be

a 3 body process involving a neutrino [3], Fermi was able to write down a 4-point interaction

which is described by a Lagrangian density term :

Lfermi = −GF√
2

[p̄γµn][ēγµν] (1.1)

This interaction has a number of interesting features.
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Figure 1.1: The Fermi 4-point interaction for neutron decay

• The neutrino was needed to explain the continuous electron energy spectrum for ra-

dioactive nuclei. In particular, a radioactive process described by NA
Z → NA

Z+1 + e−

would only be able to emit electrons with discrete energies, which was inconsistent

with experimental observations.

• The Fermi constant, GF is not dimensionless like in the electromagnetic case, (α = 1
137

)

and has units of M−2. The value was determined to be ∼ 1.17× 10−5 GeV−2 [4]. This

is an extremely small number relative to ordinary electrodynamics at the atomic scale.

Just for perspective, if we write, GF ∼ α
M2
W

, where MW is the characteristic weak scale

and α is the electromagnetic coupling strength, we’d have MW ∼ 25 GeV, i.e relevant

only at distances ∼ 25 times smaller than the proton.

• The theory predicted the inverse beta-decay (IBD) reaction with a cross-section of

∼ O(10−44) cm2 : ν̄ + p → n + e+ [5]. This was exploited to prove the existence of

the neutrino in 1956 by Clyde Cowan and Frederick Reines [6]. A detector made up

of 200 liters of water, acting as a target for the antineutrino flux from the Savannah

River nuclear reactor, was surrounded by a liquid scintillator made up of a highly

transparent liquid (toluene) and doped with terphenyl. The scintillator would give

out flashes in the visible spectrum from the resulting positrons while the neutrons

were detected by dissolving Cadmium chloride (CdCl2) in the tank. Cd is a highly

effective neutron absorber, releasing a 9 MeV gamma ray in the process (n+Cd108 →

Cd109 + γ). The light flashes from both the positron and the neutron were detected

by photomultiplier tubes (PMTs) placed in the scintillation layer. By keeping this

detector 12 m underground to shield it from cosmic rays, Cowan and Reines were able
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to observe the unique and famous “delayed coincidence” signature associated with the

IBD interaction where the flashes from the positron and the neutron were observed

with a delay associated with the absorption time of the neutron in Cd (∼ 5 µs). This

neat technique to detect neutrinos (illustrated in Fig. 1.2) is still in wide use today!

Figure 1.2: The Savannah River neutrino detector (left) and the delayed coincidence signa-
ture (right)

Around the same time as Cowan and Reines, Chen-Ning Yang and Tsung-Dao Lee suggested

parity is violated in the weak interaction as a way to get rid of the τ − Θ puzzle in a class

of strange meson decays, now associated with that of the charged kaon, K+ [7]. Given that

two seemingly exactly alike particles with the same mass and overall lifetime (τ , Θ) would

decay into 3 and 2 pions (π) respectively, and since the pion has P = −1, it’d seem the two

decay modes have different parities. If τ and Θ were the same particle then parity must

be violated in the weak interaction. This parity violation was verified by Chien-Shiung Wu

in a landmark experiment looking at the polarization of β-rays in Co60 decays [8]. It was

observed that the e− were emitted in very strong preference to the opposite direction of its
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spin. The very next year, an experiment developed by Maurice Goldhaber looked at electron

captures on Eu152 resulting in the emission of a γ-ray and a neutrino moving back to back.

By measuring the polarization of the γ-ray, the helicity of the neutrino was determined to

be always left-handed [9].

This means that parity is maximally violated in the weak interaction and only left-handed

(right-handed) neutrinos (anti-neutrinos) are involved. Since neutrinos have only ever been

observed from the weak interaction, it was natural to assume that there is no right-handed

(left-handed) neutrino (anti-neutrino) and therefore, neutrinos are massless. The Fermi

theory of the weak force was also modified to include axial vector currents (V-A theory) that

violated parity, i.e

LW = −GF√
2

[p̄γµ(1− γ5)n][ēγµ(1− γ5)ν] (1.2)

In 1962, a different type of neutrino associated with the muon – νµ, was discovered by

Lederman, Schwartz and Steinberger [10]. In what was a precursor to modern accelerator

neutrino experiments, a muon-neutrino “beam” was created by striking accelerated protons

onto a fixed Be target producing pions of O(GeV) energies. These would decay into muons

and muon neutrinos (π → µ+ νµ), with a small contamination of electron neutrinos arising

from the decays of the muons themselves (µ → e + νe + ν̄µ). The neutrinos were observed

by their interaction in a spark chamber, where a νµ would produce a long minimum ionizing

µ track. A νe could be observed with its associated e shower cascade. Modern accelerator

experiments still use this technique with the addition of a long cylindrical decay pipe to

better collimate the π-decays and hence, the neutrino beam.

The completion of the τ -lepton with the ντ discovery would have to wait until 2000, by the

DONUT experiment at Fermilab [11].
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1.2 The Electroweak Force

The road to a full quantum theory of the weak force started from a symmetry associated with

a doublet structure, SU(2), the non-abelian Lie group of rotations in 2 complex dimensions,

first developed by C.N Yang and Robert Mills [12] and applied by Sheldon Glashow, Abdus

Salam and others [13][14]. The weak doublets,

 e

νe


L

,

 µ

νµ


L

, ...

would be irreducible representations of the Lie group. After the extraordinary success of

Quantum Electrodynamics (QED) as a gauge theory associated with the Lie group U(1) of

complex phase rotations, it was realized that “gauging” the SU(2) theory, i.e by preserving

the theory under local SU(2) transformations – not just global, would give rise to massless

intermediate vector bosons that could be interpreted as the carriers of the weak force, since

the weak currents were vector or axial vector-like.

Figure 1.3: Neutron Decay via Massive Intermediate Vector Bosons

However, as discussed above, the weak coupling having a characteristic mass scale meant
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that the carriers of the weak force must be massive. Any attempts to introduce masses into

the Yang-Mills theory however, resulted in bad breakdowns of the gauge theory. Specifically

one would expect a large number of massless Goldstone bosons [15] associated with the

breaking of this local symmetry, which were nowhere to be seen. In 1964, Peter Higgs,

Robert Brout and Francois Englert, along with a few others, reached the conclusion that

these Goldstone bosons could be removed by coupling the Yang-Mills fields with a scalar

field having a non-vanishing vacuum expectation value [16][17][18]. By the spontaneous

and dynamical breaking of the symmetry as the scalar field attains its vacuum expectation

energy, the vector bosons would gain a mass through its coupling with the scalar field. The

degrees of freedom from the Goldstone bosons would be incorporated into the extra degrees

of freedom in the polarization of the vector bosons as they attain a mass.

In 1967, Steven Weinberg used the Higgs mechanism to unify the theories of the weak and

electromagnetic forces [19]. In his model of leptons, the underlying gauge symmetry of

SU(2)L × U(1)Y denoting the electroweak force was spontaneously broken to U(1)Q by the

Higgs field attaining its vaccum expectation. The leftover U(1)Q was associated with the

electromagnetic force, given by the photon field, Aµ, while the broken SU(2)L piece gave

rise to massive intermediate vector bosons, W+
µ ,W

−
µ , Z

0
µ.

Under the electroweak gauge group SU(2)L×U(1)Y , the left-handed and right-handed fields

would transform in the representation given by :

ΨL

⊕
ΨR ∼ (2, -1/2)

⊕
(1, -1) (1.3)

The Lagrangian would be given by :

LEW = iΨ̄Lγ
µDµΨL + iΨ̄Rγ

µDµΨR (1.4)
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where ΨL and ΨR denote the left-handed and right-handed fermion fields :

 e

ν


L

, (eR)

respectively.

The covariant derivatives Dµ would be given by :

DµΨL = (∂µ + igτaW
a + ig′Y Bµ) ΨL (1.5)

DµΨR = (∂µ + ig′Y Bµ) ΨR (1.6)

where τa = σa/2, the Pauli matrices and Wa, B are the generators of the Lie algebra of

SU(2)× U(1) and associated with the gauge bosons of the theory.

After the symmetry is broken to a U(1)Q, the new gauge bosons can be written as :

 Zµ

Aµ

 =

 cos θW sin θW

− sin θW cos θW


 W 3

µ

Bµ

 (1.7)

W±
µ =

W 1
µ ∓ iW 2

µ√
2

(1.8)

where θW is the Weinberg angle denoting the relative strengths of the weak and electromag-

netic couplings.

tan θW =
g′

g
(1.9)

ge = g sin θW (1.10)

where g2
e

4π
= αem. The electroweak interaction for electrons would then be described by the
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Lagrangian given by :

LEW ⊃ ge [ēγµe]Aµ −
g

2 cos θW
[ēγµ (geV − geAγ5) e]Zµ (1.11)

where geV = −1
2
+2 sin2 θW and geA = −1

2
denote the vector-like and axial-vector like couplings

respectively and the left and right-handed indices are contracted.

The neutrino interactions written in a chiral form are described by :

LEW ⊃ −
g

2 cos θW
[ν̄Rγ

µνL]Zµ −
{
g√
2

[ν̄Rγ
µeL]W+

µ + h.c

}
(1.12)

These terms are repeated for each of the three lepton generations and consequently the

electroweak Feynman rules for scattering amplitudes can be written down.

The electroweak Lagrangian makes evident the chiral V-A structure of the weak force. Only

left-handed (right-handed) particles (anti-particles) are involved in the Charged Current

(CC) interactions mediated by the W-bosons. Along with the conservation of angular mo-

mentum (spin), this results in a suppression of the anti-neutrino cross-sections for large

scattering angles compared to the neutrino case. Indeed, the anti-neutrino/neutrino total

cross-section ratio for the free scattering case comes out to ∼ 0.33.

Significantly, this theory also predicts the existence of weak Neutral Current (NC) inter-

actions mediated by the Z-boson. These were observed experimentally in 1973 by the

Gargamelle bubble chamber detector at CERN for both ν−e and ν−p/n scattering processes

[20].

The development of the Standard Model was completed in the 1970s with the theory of

the strong force as a manifestation of a SU(3) gauge symmetry, by David Politzer, Frank

Wilczek and David Gross [21][22]. This was inspired by the the experimental discovery

of proton sub-structure and the parton model via e-p deep inelastic scattering (DIS) and

8



Figure 1.4: The Gargamelle discovery of Weak Neutral Currents. The NC interaction can
be seen in the lower half as an electron shower cascading towards the left. [20]

the existence of quarks from the experimental validation of Bjorken scaling in DIS regimes

[23][24]. Finally, Gerard ’t Hooft showed the renormalizability of Yang-Mills theories, and

the self-consistency of the theory was proven [25].

The W±, Z0 bosons were discovered at the SPS at CERN in 1983 [26] and their properties

measured to high precision at LEP subsequently. Specifically their masses were found to be

MW = 80.420 ± 0.003 GeV and MZ = 91.1876 ± 0.0021 GeV. These masses are related to

the Higgs vacuum expectation value and the Weinberg angle as :

M2
W =

g2ν2
EW

2

sin2 θW = 1− M2
Z

M2
W

giving νEW ∼ 246 GeV and sin2 θW = 0.2233. The final piece of the electroweak model, the

Higgs boson was discovered at the LHC in 2012 with a mass MH = 125.7± 0.4 GeV [27].
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1.3 Astrophysical Neutrino Anomalies and Resolution

As can be appreciated in the previous section, the history of neutrino physics was inti-

mately tied up with the development of the electroweak theory, both experimentally and

theoretically. By the end of the 1960s, the picture of a theory necessarily involving chiral

fermions coupled to massive vector gauge bosons became clear. Neutrinos, carrying no elec-

trical charge or mass themselves, truly represented this situation as manifestations of chiral

interactions.

1.3.1 The Solar Neutrino Anomaly

However, around the same time as Weinberg’s model of leptons, a few kinks started de-

veloping in this edifice due to experimental observations of an astrophysical nature. An

experiment carried out at the Homestake mine in South Dakota by Ray Davis Jr. [28] with

theoretical input from John Bahcall [29], set out to observe electron neutrinos from fusion

processes within the Sun, which were predicted to be substantial, as shown in Fig. 1.5. The

detector made up of ∼ 615 t of C2Cl4 was able to observe these solar neutrinos via the reac-

tion νe+Cl37 → e−+Ar37. Ar37 decays via electron capture from an inner shell of the atom,

releasing a characteristic energy which can eject an outer shell electron in the same atom.

These electrons were counted to determine the neutrino reaction rate and consequently the

solar neutrino flux. The observed capture rate was found to be ∼ 30% of the predicted value

from the Standard Solar Model (SSM). The neutrino energy threshold for this reaction was

0.814 MeV which would make it insensitive to the most abundant source of solar neutrinos,

namely the pp fusion process.

Subsequent experiments using Gallium, with an energy threshold of 233 keV confirmed this

anomaly by measuring a capture rate of ∼ 50% of the predicted value [30]. The Kamiokande
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and the Super-Kamiokande experiments in Japan, using large cylindrical Cerenkov detectors

made up of pure water and surrounded by a large array of PMTs, also observed this deficit

for B8 neutrinos via the Elastic Scattering (ES) reaction νx + e− → νx + e−. The measured

deficit was ∼ 40%.

Figure 1.5: The Predicted Solar Neutrino Flux based on the Standard Solar Model (SSM)
for different fusion processes. Taken from [31]

1.3.2 The Atmospheric Neutrino Anomaly

Another astrophysical source of neutrinos was cosmic-ray interactions in the upper atmo-

sphere, producing pions and kaons which would decay to primarily νµ (π+ → νµ + µ+)

of energy > 0.1 GeV. A small contamination of νe was expected from the channel µ+ →

e++νe+ν̄µ. Therefore, one would roughly expect the flux ratio
Φνµ+Φν̄µ
Φνe+Φν̄e

to be ∼ 2. Moreover,

since neutrinos were assumed massless, this flux ratio would be similar for both upward going

and downward going neutrinos, atleast for energies > 1 GeV, taking into account the asym-

metries in the cosmic ray interactions due to Earth’s geomagnetic field. For experiments that
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utilized both upward and downward going atmospheric neutrinos, like Kamiokande, the flux

ratio was observed to be ∼ 1.2. In 1998, the Super-Kamiokande experiment observed signifi-

cant asymmetry (> 6σ) between upward and downward going νµ events in their > 1.33 GeV

µ-like sample, as shown in Fig. 1.6. The measured asymmetry A = U−D
U+D

was found to be

−0.296 ± 0.048 ± 0.001. This meant that neutrinos exhibited significant path-dependent

effects since ∼ half of the upward going νµs travelling ∼ 10.000 km “disappeared” relative

to downward νµs travelling ∼ 10 km, which could not be explained by the Weinberg model

[32].

Figure 1.6: Observation of Up-Down Asymmetry in the Atmospheric Neutrino Flux by the
Super-Kamiokande Experiment [32]

1.3.3 Discovery of Neutrino Oscillations

By the early 2000s, the picture of neutrino flavor transitions along its propagation length

was conclusively established by several experiments, including SNO [33], Super-Kamiokande

[32] and KamLAND [34]. As a consequence, the solar and atmospheric neutrino anomalies

were explained by realizing that particular neutrino flavors were “disappearing” by mixing

into other flavors as they propagated to the detectors on Earth.
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The SNO experiment used a spherical detector made up of 1 kt heavy water (D2O) sur-

rounded by an array of PMTs that were sensitive to B8 solar neutrinos from three different

channels.

• Charged Current (CC) : νe + d→ e− + p+ p

• Neutral Current (NC) : νx + d→ νx + p+ n

• Elastic Scattering (ES) : νx + e− → νx + e−

Figure 1.7: Observed Flux Rates for different neutrino flavors from B8 solar neutrinos at
SNO [33]

. The NC and ES channels are flavor insensitive, although the cross-section for νe-ES is ∼ 6×

that of the other flavors. By 2002, the evidence for a non-νe component of solar neutrinos via

the NC channel stood at 5.3σ, as can be seen from Fig. 1.7. By adding up the contributions

from all these channels, together with the Super-Kamiokande ES measurement, the observed
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B8 neutrino flux was found to match very well with the SSM prediction. In particular, it was

found that the CC/NC ratio was ∼ 0.5 which is similar to the result from the Homestake

experiment.

In addition, the KamLAND experiment in Japan, consisting of 1 kt ultra-pure liquid scintil-

lator, was sensitive to ν̄es from nearby nuclear reactors at an average distance of ∼ 180 km.

In 2002, they reported significant evidence at the ∼ 3σ level for reactor anti-neutrino dis-

appearance, with a clear oscillatory pattern as a function of L/E where L ∼ 180 km and

E is the measured energy of the neutrino in a later update, as shown in Fig. 1.8. To-

gether with the observation of the path-dependent asymmetry of atmospheric neutrinos by

the Super-Kamiokande experiment, a consistent explanation relating the observed νµ, νe, ν̄e

disappearances to L/E-dependent neutrino flavor oscillations was established. This would

necessarily involve non-zero neutrino masses and hence require an update to the Standard

Model to take into account this phenomenon. .

Figure 1.8: The KamLAND Observation of L/E-dependent oscillations in a reactor ν̄e flux
[35]
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1.4 Neutrino Oscillation Phenomenology

To be able to understand neutrino flavor transitions, a couple of key tools are developed.

1.4.1 Two Flavor Mixing

Let us assume two neutrino flavor states : |νa〉 and |νb〉 related to its mass-eigenstates : |ν1〉

and |ν2〉 by a basis transformation :

 |νa〉
|νb〉

 =

 cos θ sin θ

− sin θ cos θ


 |ν1〉

|ν2〉

 (1.13)

Assuming ultra-relativistic neutrinos, one can write down the Schrodinger equation of motion

in the mass eigenstate basis as :

|νi(t)〉 = e−iHt |νi(0)〉 = e−iEit |νi(0)〉 (1.14)

Identifying t with L, the length of propagation and using the approximation

Ei =
√
p2
i +m2

i ≈ pi +
m2
i

2pi
≈ Eν +

m2
i

2Eν
(1.15)

where Eν is the energy of the neutrino. One then obtains :

|νi(L)〉 = e−iEνLe−i
m2
i L

2Eν |νi(0)〉 (1.16)

The disappearance probability, Pνa→νa(L) is then given by :

| 〈νa|νa(L)〉 |2 = |
∑
i=1,2

R2
aie
−im

2
i L

2Eν |2 (1.17)
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where R is the rotation matrix in Eqn. 1.13. This can be written as

Pνa→νa(L) = 1− sin2 2θ sin2

(
∆m2L

4Eν

)
(1.18)

= 1− sin2 2θ sin2

(
1.27∆m2[eV 2]L[km]

Eν [GeV ]

)
(1.19)

Here, ∆m2 = m2
2 −m2

1. Here θ would denote a constant mixing angle while the oscillations

would be L/E dependent. One can immediately apply this to the Super-Kamiokande atmo-

spheric neutrino result by realizing that for the large negative zenith angle case (cos θz = −1)

where νµ are upward going, the large baseline across the diameter of the earth would imply

that the oscillations will be averaged out and the disappearance is given by :

〈
Pνµ→νµ

〉
= 1− sin2 2θ

2
≈ 1

2
=⇒ θ ≈ π

4
(1.20)

Combined with the fact there wasn’t an observed excess for e-like events, the Super-Kamiokande

data can be therefore described very well with νµ → ντ oscillations in the 2-flavor approxi-

mation with ∆m2 ≈ 2.5× 10−3 eV2 and θ ≈ π
4
.

1.4.2 Neutrino Propagation in Matter

To be able to understand the solar neutrino results, let us first begin by describing how neu-

trinos propagate in matter using the structure of the electroweak model. We will consider

the elastic forward scattering case where neutrino states exist in the final state. The interac-

tions therefore are either NC flavor independent with static e, p, n in the matter medium or

CC involving νe and e− only. In what follows, we’ll only look at the CC case. As has been

shown elsewhere, the NC cancels out completely for e and p if the medium is neutral and

only depends on nn, the neutron number density [36]. Moreover, since the effective matter

potential is the same for all flavors in the NC case, it does not affect flavor transitions. For
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the CC case, one can write down the effective Lagrangian for the neutrino state :

Le ⊃ 2
√

2GF [ν̄Rγ
µeL][ēRγµνL] (1.21)

Since the electron field is static, the only non-zero component of the above potential is the

γ0 component. The Lagrangian then reduces to :

Le ⊃ 2
√

2GF [ν̄Rγ
0eL][ēRγ0νL] (1.22)

Averaging this operator over the electron polarization states, one obtains an effective matter

potential for νe states :

V = 2
√

2GF

〈
(eL)†eL

〉
=
√

2GFne (1.23)

where ne is the electron number density. The ν̄e state potential is given by V = −
√

2GFne.

The Schrodinger equation of motion in the mass basis, taking this matter potential into

account is given by :

i
d

dL

 |ν1〉

|ν2〉

 =


 m2

1

2E
0

0
m2

2

2E

+ Vmatter


 |ν1〉

|ν2〉

 (1.24)

Vmatter can be written as :

Vmatter = R(θ)TV R(θ) (1.25)

where R(θ) is the rotation matrix from Eqn. 1.13. When νe is identified with νa from Eqn.
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1.13, V is given by :

V =

 √2GFne 0

0 0

 (1.26)

One can then write down :

i
d

dL

 |ν1〉

|ν2〉

 =
1

2E

 m2
1 + A cos2 θ A cos θ sin θ

A cos θ sin θ m2
2 + A sin2 θ


 |ν1〉

|ν2〉

 (1.27)

where A = 2
√

2EGFne. In general, this equation is very hard to solve if A is an L-dependent

quantity, like in the case of the sun, and one is forced to resort to approximations. If A is

constant however, for eg. the case of neutrino propagation in the Earth’s crust, one can

write down an effective mixing angle and ∆m2 by diagonalizing this matrix and following

the procedure in the previous section.

∆m2
eff =

√
(∆m2 cos 2θ − A)2 + (∆m2 sin 2θ)2 (1.28)

sin 2θeff =
sin 2θ√(

cos 2θ − A
∆m2

)2
+ sin2 2θ

(1.29)

. The anti-neutrino case is described by A → −A in the above equations. Fortunately,

the solar neutrino data can be described well by an adiabatic approximation, where the

matter potential doesn’t vary too quickly. It turns out then that higher energy B8 solar

neutrinos are produced in the regime, A � ∆m2 cos 2θ, where θeff ∼ π
2
. Consequently,

the produced νe is effectively the larger mass eigenstate and the survival probability is just

| 〈νe|ν2〉 |2 = sin2 θ ≈ 0.3. For smaller energy solar neutrinos (< 1 MeV) in the pp fusion

process, the produced νe are in the regime A � ∆m2 cos 2θ and hence propagate as if they
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Figure 1.9: Solar Neutrino Survival Probability as a function of Energy conforming to the
Adiabatic approximation of Solar densities in the MSW Large Mixing Angle (LMA) solution.
[37]

were in vacuum. The survival probability is just given exactly as Eqn. 1.20 :

〈Pνe→νe〉 = 1− sin2 2θ

2
≈ 0.58 (1.30)

which agrees with the measured value. This is known as the MSW effect [38][39]. Fig. 1.9

shows the current fit to the solar neutrino data assuming the MSW-Large Mixing Angle

hypothesis. Independent confirmation for the mixing angle was found by the KamLAND

experiment. The value of ∆m2 from a combined fit to solar neutrino and KamLAND data

was found to be 7.5× 10−5 eV2 as shown in Fig. 1.10.

19



Figure 1.10: Comparing the measurements of solar neutrino oscillation parameters from
KamLAND and SNO/SK [35]

1.5 Current Paradigm and Open Questions

We’ve seen how the phenomenology of two neutrino flavor mixing works quite well in de-

scribing the solar and atmospheric anomalies. Let us now try to touch ground with the

Standard Model.

1.5.1 The ν-Standard Model

To explain the phenomenon of neutrino masses, one can append to the Standard Model

new renormalizable terms in the Lagrangian [40]. This necessarily needs new degrees of

freedom as the Standard Model has exhausted all the allowed renormalizable terms already.

For neutrino masses, one can add a new right-handed neutrino which transforms under
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SU(2)L × U(1)Y as :

νR : (1,0) (1.31)

which is a pure singlet state. We can then write down Dirac masses, which after symmetry

breaking looks like :

Lν−D = −Y l̄Lφ∗νR + h.c→ −yvew√
2
ν̄LνR + h.c (1.32)

where y denotes the neutrino Yukawa mass after the Higgs field attains its vacuum expecta-

tion value. One can also write down another renormalizable operator using the new singlet

state as :

Lν−M = −m
2
ν∗RνR (1.33)

where ν∗R = ν̄C, C being the charge-conjugate operator. This is a Majorana mass term and is

unique to neutrinos owing to the fact that they are neutral. This term violates lepton number,

which is an accidental symmetry of the Standard Model. In the following discussion, we will

not make use of this term as they don’t have any relevance for neutrino oscillation physics.

The Majorana nature of neutrinos is the focus of many ongoing experiments however, as

they have a number of appealing properties in Beyond the Standard Model (BSM) scenarios,

including the possibility of explaining light neutrino masses in a more natural way through

the see-saw mechanism.

For the Dirac masses, the Yukawa couplings before symmetry breaking, Y relates the doublet

left-handed state to the singlet right-handed state and is in general not diagonal in the 3

lepton generations, i.e there are unitary matrices, U f
L, U f

R, Uν
L, Uν

R such that Y can be
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diagonalized as :

U f
L

†
YfU

f
R = diag(ye, yµ, yτ ) (1.34)

Uν
L
†YνU

ν
R = diag(yν1 , yν2 , yν3) (1.35)

Here all the Yukawa masses, y are real and positive and f runs over (e, µ, τ) indices. But

one cannot choose U f
L and Uν

L independently as any redefinition of the left-handed lepton

doublet field to make Yf diagonal in general will not make Yν diagonal. If we go to the bases

that makes Yf and Yν diagonal separately, we find

l
′

L =
(
U f
L

)†
lL (1.36)

l
′′

L = (Uν
L)† lL (1.37)

That is

l
′

L =

((
U f
L

)†
U ν
L

)
l
′′

L (1.38)

which relates the neutrino mass eigenstates to the charged lepton mass eigenstates. We can

define a unitary matrix therefore,

UPMNS =

((
U f
L

)†
Uν
L

)
(1.39)

It is easy to see that this is the preferred basis to work with experimentally since neutrinos in

general are not observed in their mass eigenstates but rather as products of weak interactions,

whereas the charged leptons are observed in their mass eigenstates. One can then detect

neutrinos in a different flavor to what one starts out as they propagate as a mixture of their

mass eigenstates [41][42]. This is very similar to the quark sector, where one sees weak

transitions between quarks in different generations. There too, we have a mixing matrix
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denoted as VCKM [43][44]. The structure of UPMNS can be parameterized similarly by :

UPMNS =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδCP

0 1 0

−s13e
−iδCP 0 c13




c12 s12 0

−s12 c12 0

0 0 1


(1.40)

where we have cij = cos θij and sij = sin θij. The phase, δCP is a CP-violating parameter. If

δCP 6= 0, π then there doesn’t exist a basis in which all the phases in the Yukawa couplings

can be absorbed into the fermion fields. This would imply CP is violated in the lepton sector

along with the already observed violation in the quark sector.

1.5.2 Three Flavor Mixing

As before, we relate the flavor states to a set of mass-eigenstates. The basis transformation

is now described by the 3× 3 unitary matrix, UPMNS defined above.


|νe〉

|νµ〉

|ντ 〉

 = UPMNS


|ν1〉

|ν2〉

|ν3〉

 (1.41)

The unitary assumption is to ensure the oscillation probabilities add up to 1. This isn’t

satisfied if there are more neutrino states involved and testing the unitarity is part of ongoing

experimental goals [45][46]. The oscillation probability of a flavor state |να〉 transforming

into |νβ〉 over a propagation length, L is given by :

Pα→β = | 〈νβ|να(L)〉 |2 = |
3∑
i=1

U∗αiUβie
−m

2
i L

2Eν |2 (1.42)
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This reduces to

Pα→β = δαβ − 4
3∑
i<j

Re
[
UαiU

∗
βiU

∗
αjUβj

]
sin2

∆m2
ijL

4E
+ 2

3∑
i<j

Im
[
UαiU

∗
βiU

∗
αjUβj

]
sin

∆m2
ijL

2E

(1.43)

The corresponding anti-neutrino probability now is given by UPMNS → U∗PMNS, which

changes sign of the imaginary part in the above equation. This equation has two char-

acteristic oscillation frequencies related to parameters ∆m2
21 and ∆m2

32.

1.5.3 Open Questions

Figure 1.11: The Neutrino Mass Ordering Picture [47]

In looking at applying the above to the neutrino oscillation data, ∆m2
21 is chosen for the solar

sector and is measured to be positive (∼ 7.5× 10−5 eV2). This is because the matter effects

in the sun constrain the product of ∆m2
21 cos 2θ21 to be positive. There is still, however, an

ambiguity in the sign of ∆m2
32 in interpreting it as the atmospheric frequency (∼ 2.5× 10−3

eV2). This is related to the ordering of neutrino mass state |ν3〉 relative to |ν1〉 where |ν1〉
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and |ν2〉 have been identified as being |νe〉 heavy. In the “Normal Hierarchy” case, ∆m2
32 > 0,

while the negative case is the “Inverted Hierarchy”.

Figure 1.12: Observation of non-zero θ13 by the Daya-Bay experiment. [48]

The mixing angles, θ12 and θ23 are therefore identified with the solar and atmospheric sectors

respectively, where sin2 θ12 ≈ 0.3 and sin2 θ23 ≈ 0.5, although the latter case has large error

bars and is not known to exactly conform the maximal mixing scenario, θ23 = π
4
.

Since, in the atmospheric case, νµ was predominantly oscillating into ντ , one can say that

|ν3〉 is fairly light in |νe〉 and therefore θ13 ≈ 0. The success of the two-flavor approximation

can be explained by the fact that the masses are sufficiently hierarchical, i.e ∆m2
21 � |∆m2

32|.

Experiments like Daya Bay [48], RENO [49] and Double CHOOZ [50], looking at reactor

anti-neutrinos at short baselines have proven sufficiently sensitive to the oscillation spectrum

of ν̄e-disappearance that sin2 θ13 has been precisely measured to 0.022±0.0006 [36]. Fig. 1.12

shows the Daya-Bay result. Unlike the disappearance measurement in KamLAND which is

at a relatively long baseline, the shorter baselines are sensitive to the faster oscillations from

|∆m2
31|. This shows definitely that there is a νe component in ν3 which opens up the νµ → νe

oscillation channel at long baselines. While most of the νµ would oscillate to ντ , an excess
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of νe can be looked for. This could be sensitive to δCP by measuring the asymmetry in

P (νµ → νe) and P (ν̄µ → ν̄e), which by Eqn. 1.43 would be related to the imaginary part of

the PMNS matrix and hence, δCP .

Figure 1.13: Sensitivity of the DUNE experiment to resolve δCP as a function of its true
value (right) and 90% C.L for various true values in ∆m2

32− sin2 θ23 space (left) for different
years of planned running [51]

Figure 1.14: Sensitivities of the Hyper-K experiment to measure CP-Violation as a function
of true value of δCP (left) and the Neutrino Mass Hierarchy as a function of sin2 θ23 for a
range of δCP values (right) after a planned 10 years of running [52]

As we move to the precision era of neutrino oscillation physics, it is therefore imperative that
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not only do we try to measure the remaining PMNS parameters but as well, overconstrain

it as much as possible to be able to test for the unitarity assumption. Accelerator neutrino

experiments like NOvA [53] and T2K [54] that look at νµ oscillations will be able to constrain

these parameters to a large extent while future experiments like DUNE [55] and Hyper-

Kamiokande [56] will be able to definitively measure them (illustrated in Figs. 1.13 and 1.14).

A predominantly νµ beam is studied at baselines ranging from 200 to 1000 km, depending

on the experiment. The approximate νµ disappearance probability is

Pνµ→νµ ≈ 1− sin2 2θµµ sin2
∆m2

µµL

4Eν
≈ 1− cos2 θ13 sin2 2θ23 sin2 ∆m2

32L

4Eν
+O(α, s2

13)

(1.44)

where

sin2 θµµ = cos2 θ13 sin2 θ23 (1.45)

∆m2
µµ = sin2 θ12∆m2

31 + cos2 θ12∆m2
32 + cos δCP sin θ13 sin 2θ12 tan θ23∆m2

21 (1.46)

α = ∆m2
21/∆m

2
32 (1.47)

It is easy to see that this channel is agnostic towards the neutrino mass hierarchy as well as

Figure 1.15: The νµ Disappearance Spectrum
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the octant of θ23 (whether θ23 <
π
4

or > π
4
) but does give strong constraints on |∆m2

32| and

sin2 2θ23, as illustrated in Fig. 1.15. For the νe-appearance channel, one must also consider

effects from interactions in the Earth’s crust. For NOvA, which is the experiment we will

be concerned with, at energies of ≈ 2 GeV and a baseline of 810 km, the matter potential, A

(= 2
√

2GFneEν) comes out to 4.3× 10−4 eV2 which as we’ve seen from Eqn. 1.29 modifies

the θ13 angle in the Normal Hierarchy case as :

sin 2θeff ≈ 1.17 sin 2θ13 (1.48)

where we’ve used the mean density of the Earth’s crust, ρ = 2.84 g/cm3. For the anti-

neutrino case, the effect is opposite where

sin 2θeff ≈ 0.86 sin 2θ13 (1.49)

For the Inverted Hierarchy, this effect is interchanged between ν → ν̄, as is illustrated

in a bi-probability plot shown in Fig. 1.16. It is evident therefore, that NOvA’s baseline

has a large enhancement on the νe/ν̄e-appearance probability depending on the hierarchy,

which can be utilized to constrain it. The approximate νe-appearance probability can also

be written down to first order in α as :

P (νµ → νe) ≈ 4 sin2 θ13 sin2 θ23
sin2∆

(1−M)2
+ 8αJmaxCP cos(∆ + δCP )

sin ∆M

M

sin ∆(1−M)

1−M
+ ..

(1.50)

whereM = A
∆m2

31
. Here JmaxCP measures the maximum CP-violation in the Jarlskog’s invariant,

JCP given by :

JCP = cos θ12 sin θ12 cos θ23 sin θ23 cos2 θ13 sin θ13 sin δCP (1.51)

and taking sin δCP → 1. For ν̄e-appearance, the equation is modified as M → −M and

28



Figure 1.16: Phase-space of measurement of νe (ν̄e) appearance at NOvA for a baseline of
810 km and a neutrino energy of 2 GeV

δCP → −δCP . This form shows that the appearance probabilities are also sensitive to the

octant of θ23 as well as δCP and the mass hierarchy, if one looks at the asymmetries in

neutrino and anti-neutrino appearance. As a result, current and future sensitive accelerator

experiments can resolve the remaining elements of the PMNS matrix and complete the 3-

flavor paradigm.

1.5.4 Implications and the Future

As noted before, it is important to constrain the PMNS matrix as precisely as possible to

test for unitarity. The unitarity assumption can be violated by new heavy neutrino states for

eg. in some see-saw mechanisms that explain the light neutrino masses. This can therefore

act as an indirect probe for the see-saw scale in particular at the electroweak scale (∼ TeV)
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[57]. This could also show up as non-standard neutrino interactions in the Earth’s crust

which experiments like NOvA and DUNE could be sensitive to. In addition, the unitarity is

violated more severely if there are light sterile neutrinos and the resulting parameter space

can be heavily constrained using measurements of the PMNS matrix [58].

Figure 1.17: Exclusion limits for a 4th sterile neutrino flavor based on a combined measure-
ment of Daya-Bay, MINOS, MINOS+ and Bugey-3. This is compared to allowed regions as
seen in the MinoBooNE/LSND anomalies. [58]

In general, the nature of neutrino mass is also unknown. Although there are strong cosmo-

logical bounds on the sum of neutrino masses, it is important to measure them in a more

controlled setting to keep it model independent. Experiments like KATRIN [60] are involved

in directly measuring the neutrino mass by looking for a kink in the end-point β-decay spec-

trum of He3 nuclei, as illustrated in Fig. 1.18. It is therefore easy to see that measurements

of mass hierarchy, i.e whether |νe〉 is predominantly in the heavy mass eigenstates or the light

eigenstates, will have a direct impact on sensitivity for the mass measurement. Experiments

directly probing the existence of Majorana neutrinos by looking for neutrinoless double beta
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Figure 1.18: The He3 β decay Kurie plot for measuring the absolute neutrino mass at
KATRIN. Taken from [59].

decay (0νββ) are also affected by the mass hierarchy in terms of their reach [61] (as shown

in Fig. 1.19).

Figure 1.19: The current predictions for the effective Majorana neutrino mass mββ as a
function of the lightest neutrino mass and the mass hierarchy. The dark shaded regions
indicate predictions at current best-fit oscillation parameters, while the light shaded regions
indicate a 3σ uncertainty on those parameters. Also shown are the current 90% Upper Limits
from KamLAND-Zen along with limits from other experiments utilizing different β-decay
isotopes on the right. [61]

In addition, CP-violation in the lepton sector can provide an important input for models
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explaining the observed baryon asymmetry via leptogenesis, especially if the measured CP-

violation from δCP is found to be large [62].

Neutrino oscillations are also the first sign of lepton flavor violation (LFV) in the Standard

Model. While the cross-sections of LFV processes for the charged leptons are too tiny to

observe within the Standard Model, usually proceeding via two loops suppressed by the W-

boson mass [40], there are many BSM scenarios that predict a larger cross-section for these

processes, for eg. in µ→ e+ γ [63].

Figure 1.20: A neutrino from SN1987A detected in the north-east corner of the IMB detector.
Shown in the purple line is the direction of the neutrino from the Large Magellanic Cloud
along with the lit PMTs from the resulting Cerenkov cone after the neutrino interaction.
[64]

Finally, neutrino physics is important in an astrophysical context, as neutrinos are copiously

produced in some of the most violent events in the universe and can therefore act as probes

for those events. Since neutrinos rarely interact, they are able to provide an unprecedented
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window into objects such as core-collapse supernovae, active galactic nuclei and so on. Ever

since the discovery of neutrinos from the supernova SN1987A by the Kamiokande-II [65],

IMB [64] and Baksan [66] experiments, a new frontier of neutrino-based astronomy has

emerged. Major experimental efforts are therefore underway in order to detect neutrinos

from galactic supernovae (predicted within the century) to provide input about the nature

of the core-collapse process. In addition, other rapidly developing fronts include detection of

the diffuse supernova neutrino background, ultra-high energy neutrinos, relic neutrinos and

so on [67].

Figure 1.21: The probability of detection of a supernova from a star of given mass by the
SKGd and KamLAND experiments as a function of distance from Earth and neutrino mass
hierarchy. Normal (left) and Inverted (right). The bands indicate the uncertainty due to
background levels. Taken from [68].

A comprehensive understanding of flavor physics and weak interactions is therefore tied up

intimately with the nature of neutrino mass and can continue to be the focus of a large

experimental program. In addition, the field of neutrino physics has a rich and significant

interplay with fundamental questions about the evolution of the universe.
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Chapter 2

The NOvA Experiment

2.1 Introduction

NOvA (NuMI Off-Axis νe - Appearance) is a long baseline accelerator experiment dedicated

to neutrino oscillation measurements using a νµ (ν̄µ) beam. As discussed previously, the non-

zero value of θ13 measured by reactor anti-neutrino experiments has opened up the possibility

of constraining the remaining elements of the PMNS matrix as well as the neutrino mass

hierarchy via the νµ → νe (ν̄µ → ν̄e) channels. The experimental technique that NOvA

uses is similar to a range of experiments like T2K and MINOS (a precursor to NOvA which

used the same NuMI beam at Fermilab) seeking to answer the same questions but with

different sensitivities to different parameters, depending on the baseline and the range of

beam energies [69].

NOvA utilizes two detectors. The Near Detector (ND) which is about 1 km away from the

beam source, is placed underground at a depth of 100 m and weighs about 300 t. The Far

Detector (FD) is a much larger detector, weighing 14 kt but otherwise functionally identical

to the ND, and is placed at a baseline of 810 km from the beam. The ND is housed in an
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Figure 2.1: Illustration of the baselines for different experiments on the NuMI beam. Taken
from [70]

underground cavern dug up near the MINOS Near Detector hall at Fermilab while the FD

is on surface in Ash River, MN near the Canadian border, as illustrated in Fig. 2.1.

These detectors are sensitive to neutrinos, primarily made up of νµ or ν̄µ, albeit with a

slight contamination from νe and ν̄e (for two separate modes of operation). These neutrinos

come from a high intensity beam source produced at the Main Injector at Fermilab − the

NuMI beamline. In addition the Far Detector seeks to observe oscillated events both in the

disappearance channel, where it ascertains how many νµ (ν̄µ) have disappeared compared to

the unoscillated prediction, and the appearance channel, where it tries to observe how many

νe (ν̄e) have appeared above the predicted beam contamination. The Near Detector, where

neutrinos haven’t yet had a chance to oscillate, is primarily used to characterize the beam

source in terms of its neutrino flavor components as well as constrain systematic uncertainties

for the oscillation measurement.

In what follows, the experimental design and the detector technologies will be described

in detail. Aspects of the beam simulation as well as the detection principle and event
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reconstruction will also be discussed.

2.2 The NuMI beam

Figure 2.2: Schematic of the proton beam production at NuMI. Taken from [70]

The NuMI beam at Fermilab [71] is designed to produce neutrinos and anti-neutrinos at

high intensity by colliding a 120 GeV proton beam onto a fixed graphite target. The proton

beam is first accelerated to 8 GeV in a rapid cycling synchrotron called the Booster and then

delivered to the Main Injector ring in batches of 1.6µs with 4.3×1012 protons per batch. The

Main Injector is a larger synchrotron that accelerates the protons to 120 GeV. The Recycler

which sits on top of the Main Injector merges two batches at a time from the Booster in a

process called “slip-stacking” and delivers a total of 12 Booster batches or 6 double-intensity
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batches to the Main Injector. The Main Injector is then able to deliver these batches, made

up of ∼ 5×1013 protons to the graphite target in 10µs spills at an average rate of 1.33 s/spill.

The total protons on target delivered (POT) is the exposure metric for the neutrino beam.

With routine operations at > 700 kW, the Main Injector is able to deliver ∼ 6× 1020 POT

every year. Fig. 2.2 shows the schematic of the proton accelerator.

Figure 2.3: The NuMI beamline. Taken from [71]

The proton collision with the 1.2 m graphite target produces mainly π± andK±. Downstream

of the target, there are two magnetic focussing horns with a nominal current of 200 kA and a

1 mm water layer to prevent overheating. The magnetic horns serve to focus the meson beam

into a 675 m long, roughly cylindrical decay pipe, where they decay into primarily νµ and ν̄µ

depending on the sign of the parent meson, i.e π+/K+ → µ+ +νµ or π−/K− → µ−+ ν̄µ. The

µ± can very occasionally decay into νe and ν̄e and as a result, contaminate the νµ beam. This

is an irreducible background to the oscillation analysis. Fig. 2.3 illustrates the production

of the neutrino beam.

There are primarily two modes of operation we will be concerned with, depending on the sign

of the horn current. The forward horn current mode (FHC) primarily selects the positively

charged mesons of relatively low momentum by giving it a large transverse momentum

(pT ) “kick”. The reverse horn current mode (RHC) does the opposite by selecting for the

negatively charged mesons. The “wrong-sign” mesons are thus focussed away from the

beamline. However, there is a contamination of the wrong-sign mesons at large longitudinal
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momentum, pz measured by the Feynman-x variable, xF = 2pz/
√
s that do not receive

this kick and are therefore unfocussed. These decay into wrong-sign neutrinos (in RHC) or

anti-neutrinos (in FHC).

Figure 2.4: The two different neutrino beam modes, with FHC (left) and RHC (right) along
with the predicted flux for each neutrino component

As seen in Fig. 2.5, between 1 − 5 GeV neutrino energies, which is the relevant range for

the oscillation analysis, the beam is 96% pure in νµ for FHC and 83% pure in ν̄µ for RHC.

The νe and ν̄e components add up to < 1%. The rest of the beam is made up of wrong-sign

neutrinos or anti-neutrinos, where the contamination in RHC is larger due to the larger

interaction cross-section for neutrinos relative to anti-neutrinos at the NOvA detectors. The

Figure 2.5: The predicted neutrino and antineutrino event rates at the NOvA Far Detectors
for FHC (left) and RHC (right)

38



νµ and ν̄µ below 7 GeV predominantly come from π± while the K± component dominates

at higher energies. The intrinsic beam νe/ν̄e component below 4 GeV mostly come from µ

decays produced by π± although there is a significant contribution from K± decays as well.

They also have a relatively larger tail for higher energies dominated by the K± component.

Finally the remaining hadrons are absorbed at a hadron dump just beyond the decay hall.

The muons from the meson decays are used to monitor the health of the beam by a set of

ionization detectors that interleave the rock layers at the end of the beamline.

2.2.1 Off-Axis Design

Figure 2.6: Neutrino energies as a function of the parent π energy for different off-axis angles
(left) and the overall predicted flux per given POT (right)

As shown in Fig. 2.6, the NuMI beam is a relatively wide band neutrino beam in terms of

neutrino energies. In order to get a relatively narrow flux peak at the νµ → νe oscillation

peak, NOvA places its detectors slightly off-axis from the beam direction. The neutrino

energy as a function of the parent pion energy and off-axis angle is given by :

Eν =
[1−m2

µ/m
2
π]Eπ

1 + γ2θ2
(2.1)

where γ = Eπ/mπ [36]. A similar relation holds for the K parents. For θ = 0, the neutrino

energies scale linearly as a function of parent energies, while it tails off relatively quicker for
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π compared to K as θ > 0, since γπ > γK . One can therefore optimize the design based

on a non-zero off-axis angle and available baselines to ensure a narrow band flux at the

νe-appearance oscillation maximum. This is given at the first oscillation maximum in L/Eν

for θ = 14.6 mrad at a baseline of 810 km, resulting in the neutrino flux peaking at ∼ 2 GeV.

This is a similar design to the T2K experiment at a shorter baseline and in contrast to the

proposed DUNE experiment at a larger baseline but placed on axis, θ = 0. The resulting

wide band beam in DUNE will sample a large portion around the first oscillation maximum

but also cover part of the second maximum. The NOvA design allows one to constrain the

interplay between different parameters such as the mass hierarchy, the octant of θ23 and

δCP and is especially sensitive to the mass hierarchy and the octant at its baseline. The

T2K design is sensitive to large asymmetries in the νe and ν̄e oscillation probabilities and

is therefore able to look for CP-violation at the expense of the mass hierarchy. The DUNE

experiment will be sensitive to the value of δCP itself by collecting an enormous amount of

statistics in the νe and ν̄e appearance channels for a wide range of neutrino energies.

2.2.2 Flux Simulation

The simulation of the NuMI beamline [72] and the resulting neutrino flux seeks to take

into account each component described above and provide realistic physical uncertainties for

the NOvA oscillation analysis. There are two main components associated with the flux,

the physics of hadron production at the graphite target and their transport into the decay

volume and consequent neutrino production. This is done by an integrated framework built

on GEANT [73], called G4NuMI.

G4NuMI was built as part of Minerva, a neutrino experiment dedicated to measuring inter-

action cross-sections and which has since been decommissioned. Minerva shares the same

NuMI beam as NOvA but is placed on axis. The framework tries to simulate each element
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Figure 2.7: Schematic of the NuMI Magnetic Horns. Taken from [70][71]

of the beamline geometry starting from the protons delivered by the Main Injector at the

target. Several improvements from the previous NOvA flux simulation built on FLUKA have

been made, including a more accurate description of the geometry of the magnetic horns,

the water layer on top of the horns which acts as a coolant and the beam spot size.

The hadron production simulation is handled by the Package to Predict the Flux (PPFX),

also developed at Minerva but suitably modified for NOvA [74]. The description of hadronic

cross-sections for proton collisions on graphite at 120 GeV is theoretically uncertain and turns

out to be the biggest source of error in the flux model. As a result it is important to constrain

and correct the underlying GEANT model, FTFP BERT with external measurements made

on similar material, which is what PPFX does.

Internally, PPFX does an accounting of the survival probabilities for each hadron produced at

the target upto its interaction point and applies a correction based on external measurements

for the cross-sections at the interaction point. The external datasets include primarily the

thin-target measurements at NA49 experiment at CERN [75] and the MIPP experiment at
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Figure 2.8: Corrections applied to the hadron production at the beam target from NA49 for
π+. Contours represent 10%, 20%, 30%, 50% and 80% of the pion yield for carbon.

Fermilab [76]. The NA49 experiment provides pion and kaon production cross-sections for

proton interactions on Carbon at 158 GeV. The corrections are applied for relatively lower

longitudinal momentum fractions in bins of the Feynman variable, xF and pT , as shown in

Fig. 2.8, and are scaled to the appropriate energies relevant for NuMI. For pions at higher

xF , an older dataset from Barton is used and an appropriate scaling is done to the NuMI

energy range and target material. For kaons at higher xF , a ratio of K/π yields from the

MIPP experiment is used and multiplied with the NA49 pion yields. These corrections are

then applied as a weight to the survival probability and propagated to the neutrino flux

prediction. The uncertainties are evaluated from the errors in the external measurements as

a statistical ensemble of weights for the neutrino flux prediction in what is called a “multi-

universe” technique. The overall size of the uncertainties is roughly ∼ 9% at the 2 GeV peak

(as can be seen in Fig. 2.9), although they are highly correlated across neutrino energies,

which will be discussed later on.

Uncertainties from other aspects of the beamline simulation including realistic shifts in the
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Figure 2.9: The overall hadron production fractional uncertainty as a function of neutrino
energies broken down into various components

horn and beam spot positions, the beam spot sizes, the current in the horns and the presence

of Earth’s geomagnetic field in the decay pipe are also evaluated and propagated as weights

for the nominal flux prediction as a function of neutrino energy.

2.3 The NOvA Detectors

NOvA uses a two detector technique to constrain the oscillation signal and backgrounds at

the Far Detector. Fig. 2.10 shows a schematic of the NOvA detectors. As such, the design

philosophy seeks to keep it functionally identical in order to control the dominant systematic

effects that are correlated across the detectors. The primary difference is in their sizes, the

Near Detector being 300 t and the Far Detector being 14 kt.

The detectors are finely segmented tracking calorimeters made up of a liquid scintillator

(mineral oil doped with ∼ 5% pseudo-cumene). The detector unit is an extruded PVC cell

that houses the scintillator. For each cell, there is a wavelength-shifting (WLS) fiber that
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Figure 2.10: Schematic of the NOvA detector [70]

Figure 2.11: Schematic of the NOvA cell [77]

converts the UV scintillation light produced by charged particles passing through the cell

into the visible spectrum, primarily in the blue-green range (450 nm − 600 nm). The PVC

cells are coated with highly reflective TiO2 to ensure all the light is reflected back into the

cell where it can be captured by the WLS optical fiber [78]. The ends of the WLS fiber are

connected to a single channel on an Avalanche Photo Diode (APD), as illustrated in Fig.

2.11 where the emitted photons are converted into photo-electron (PE) units. Each APD

has 32 channels in total and reads in signals from 32 cells. These signals are then digitized

and readout.

The cells are the same in cross-section for both the detectors, although they differ in length.
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The cells are 3.9 cm × 6.6 cm with a small thickness of ∼ 2 − 5 mm. The Far Detector cell

is extruded to 15.8 m in length and the Near Detector to 3.8 m. Modules of 32 cells each

(with a common APD) are glued together in a plane in bunches of 12 and 3 for the FD

and ND respectively. This ensures that each plane have the dimensions of a square. These

are then stacked horizontally and vertically in alternate planes to allow for 3-dimensional

reconstruction using the two projections, the top view (XZ) and the side view (YZ) where

Z is identified with the beam direction. Groups of 64 planes are referred to as diblocks with

a total of 14 diblocks in the FD and 3 in the ND.

Figure 2.12: Snapshot of the NOvA Far Detector showing cosmic ray interactions

The Far Detector is therefore of dimensions 15.8 m× 15.8 m× 60 m. The Near Detector has

an additional component called the “muon-catcher” which acts as a muon ranger for long

muon tracks. The planes in the muon catcher are interleaved by 10 cm thick steel planes and

are only 2.6 m long compared to 3.8 m in the active region. The Near Detector is then of

dimensions 3.8 m× 3.8 m× 15.9 m, the last 3.2 m of which comprises the muon-catcher made

up of 22 planes. The Far Detector is therefore made up of 344,064 channels or cells and is

∼ 65% active, while the Near Detector is made up of 20,192 cells, being ∼ 45% active.
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Figure 2.13: Snapshot of the NOvA Near Detector showing various neutrino interactions

The primary element for interaction is carbon, which is Low-Z. As a result, this allows

for fine segmentation of shower cascades with a radiation length, X0 = 35.8 cm (6 cell-

equivalents) and a Moliere radius of the shower cone, RM = 11 cm. This is useful to identify

electromagnetic showers from hadronic showers. Muons produce minimum ionizing tracks

which deposit ∼ 1.76 MeV/cm, corresponding to roughly 2.2 GeV total energy deposit for a

muon travelling horizontally across the length of the active portion of the Near Detector.

Finally, the Far Detector is placed on surface in a detector hall with a modest overburden

of 1.2 m concrete and 15 cm barite. Here it collects an enormous number of cosmic rays at

a rate ∼ 150 kHz, which acts as a fundamental background to the oscillation analysis. Fig.

2.12 shows a snapshot of the interactions at the Far Detector. The Near Detector is placed

100 m underground, where cosmic rays are negligible. The beam divergence across the 810 m

baseline results in smaller statistics at the Far Detector compared to the Near Detector but

a tighter flux peak at 2 GeV assuming no oscillations.
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2.3.1 Data Acquisition System

As mentioned before, each channel of the APD reads in the wavelength-shifted scintillation

photons as a particle deposits energy in a cell. The job of the APD channel is to shape

the photon pulse in terms of photo-electron (PE) units and thus provide a measure of the

total PE deposited in the cell. Each APD is serviced by a custom Front-End Board (FEB)

designed by NOvA that digitizes this signal (in terms of ADC units) after discriminating

between different pulses and associates a timestamp to the pulse.

Figure 2.14: Schematic of the NOvA Data Acquisition System

The FEBs run at a clock rate of 16 MHz. In the Far Detector, the 32 channels are multiplexed

8 at a time, so it is able to read out the ADC pulses at an effective rate of 2 MHz, similar

to the programmed rise-time of the pulse. At the Near Detector, where the intensity of the

beam causes a significant amount of pile-up, the channels are multiplexed 2 at a time, which

quadruples the read-out rate and improves pulse discrimination. In addition, the FEBs

employ Dual Correlated Sampling (DCS) where the signal is discarded if the measured pulse
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height from two sample values are below a threshold (∼ 20 PE). If it is above threshold, the

pulse is read out in multi-point mode (although there is a fraction of Far Detector data in

single-point mode) where 4 consecutive samples of the rising edge of the pulse are forwarded

to the storage element, as shown in Fig. 2.15. The pulse shape is then determined by an

offline fit which further improves the timing resolution of the detector, ∼ 10 ns at FD, ∼ 6 ns

at ND [78].

Figure 2.15: Illustration of multi-point readout where intermediate values from the ADC
outputs are saved to provide precise pulse discrimination within a short time window [79]

A Data Concentrator Module (DCM) collects signals from 64 FEBs in windows of 50µs

(“microslices”). These are then continuously sent to buffer nodes via a 10 Gbps optical fiber,

from which a trigger decides to build events of a certain timespan based on the associated

timestamp of the microslices. Given the cosmic ray rate and the number of channels in the

Far Detector, the data throughput can be more than 1 GBps. The relevant triggers for the

oscillation analysis are :

• ND and FD NuMI Trigger : This builds a 550µs event centered around a 10µs beam
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Figure 2.16: Trigger rates for various NOvA Triggers at the Far Detector

spill whenever a signal is received from Fermilab. The rate at which this happens is

∼ 1 Hz. The beam is therefore always in the range of 218− 228µs relative to the start

of the trigger window. A fraction of the early NuMI data however spans a range 64µs

shifted from this range (i.e 282 − 292µs) due to faulty timing. These are the main

events studied in the oscillation analysis.

• ND DDActivity Trigger : This trigger builds events of 50µs whenever there is activity

in the detector outside the NuMI trigger window. These are primarily cosmics at a

rate of ∼ 5 kHz. These events are used to calibrate the Near Detector response.

• FD Cosmic Trigger : This builds 550µs events at a rate of 10 Hz outside the NuMI

trigger window. These serve as minimum-bias cosmic events that can be used to

calibrate the Far Detector and provide an estimate for the cosmic backgrounds in the

oscillation analysis.
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Fig. 2.14 gives a rough schematic of the NOvA data acquisition system, while Fig. 2.16

compares the trigger rates for different NOvA triggers. Finally, there exists a timing system

made up of a series of Time Distribution Units (TDUs) that synchronizes all the channels

in a detector to the same local time. It also maintains a global time synchronized with a

GPS clock given in UTC, which is used to co-ordinate events between the detectors and the

accelerator at Fermilab.

2.3.2 Detector Simulation

NOvA uses Monte-Carlo (MC) methods to simulate each step of the physics process of neu-

trino interactions in the detector environment, which for eg. at the Near Detector could

involve a substantial number of interactions in the surrounding rock. The neutrino inter-

action generator used is GENIE [80] (v3.0.6). As mentioned before the main interaction

element is Carbon, although there is in general a variety of elements that the neutrino can

interact with, including Hydrogen, Silicon (for rock interactions) etc. GENIE uses a variety of

data-driven models that predict the cross-section for interactions with each of these elements

(initial-state) as well as the transport of particles produced within the nuclei (final-state).

Figure 2.17: Feynman Diagrams for various important types of neutrino interactions at
NOvA [81]

Fig. 2.18 shows the current picture of the neutrino and anti-neutrino inclusive cross-sections

at energy ranges relevant to NOvA. The NOvA energy range makes it sensitive to many
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Figure 2.18: The cross-sections for various types of neutrino interactions along with the
inclusive cross-section as a function of energy for neutrinos (top) and anti-neutrinos (bottom).
Plotted with various measurements over the years. Taken from [82]

different interaction types, as shown by the various Feynman diagrams given in Fig. 2.17,

each with a significant cross-section. The main ones are :

• Quasi-Elastic (QE) : Here the neutrino scatters off a single nucleon within the nucleus

elastically. In the Charged Current (CC) case, the neutrino (anti-neutrino) interacts

with a neutron (proton) producing a proton (neutron) and the relevant lepton flavor

associated with the neutrino. The overall Q2(= −q2) for this interaction is relatively

low and QE events are generally characterized by clean lepton signatures travelling

relatively in line with the beam direction and a small hadronic component which usually

involves a single proton track for the neutrino case. GENIE uses the Valencia 1p1h
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model which takes into account various nuclear effects coming from a local Fermi gas

nuclear model with some long-range correlations (Random Phase Approximation -

RPA) [83]. Additional experimental constraints on the axial form factor are modelled

as a z -expansion [84], related to the axial current propagator.

• Meson Exchange Current (MEC) : These are interactions at a slightly higher Q2 where

the neutrino scatters off a correlated nucleon pair instead of a single nucleus. The

nucleon pair is predominantly a np pair which produces two protons (neutrons) in the

final state for neutrinos (anti-neutrinos). The theory on this is highly uncertain and

GENIE uses calculations made at Valencia once again [85].

• Resonant Interactions (RES) : These interactions produce baryon resonances in the

final state (∆) which decay into pions and protons. If a π0 is produced that usually

decays via π0 → γγ. Sometimes a single γ can be produced by the ∆ decay as well

(∆+ → pγ). These can exhibit a variety of signatures but usually involve either

charged pion tracks which can hard-scatter in the detector and produce kinks or a pair

of electromagnetic shower cascades coming from π0 decay. Sometimes multiple proton

tracks can be seen as well. This is modelled in GENIE using the Berger-Sehgal model

that includes effects from differences in µ and e mass [86].

• Deep Inelastic Scattering (DIS) : These are in general messy interactions at a very

high Q2 where the relevant initial state particles involved are the quark soup within

each nucleon. The event signature is a large hadronic component due to the resulting

hadronization of the final state quarks. Here the lepton signatures aren’t very clean,

being relatively small and travelling at a large angle with respect to the beam. These

events are modelled in GENIE using the Bodek-Yang calculation [87].

GENIE is also able to model important final-state interactions (FSI) where the particles

produced as above, move within the nucleus and produce pions and other nucleons on their
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own. This is done using a semi-classical framework called the hN-cascade model [88]. NOvA

applies a further tune for some of the parameters within these models as they were found to

be fairly discrepant with the Near Detector data. Conservative uncertainties are also chosen

where appropriate given the state of current knowledge.

The final state particles and their 4-momenta coming from GENIE are propagated within

the detector material and the surrounding rock, using GEANT (v4.2) and a full-scale model

of the detector environment geometry.

Figure 2.19: Light Yield in a NOvA cell as a function of the particle βγ

Finally, NOvA-specific modules (PhotonTransport and ReadoutSim) are used to simulate the

production and the collection of scintillation light within a NOvA cell and their conversion

to PE/ADC units for a given physics hit [89]. The scintillation model involves a Birks-

Chou parameterization (for quenching and recombination effects) of the number of photons

produced as well as an additional term that takes into account Cerenkov emission [90],

as illustrated in Fig. 2.19. The parameters in the model are then tuned to bring it into
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agreement with stopping muon samples developed at the Near Detector.

For cosmic ray interactions, a wealth of data is collected using the cosmic ray trigger and

overlaid directly onto the FD simulation. However, where necessary, a separate set of files

using the CRY generator are produced to simulate cosmic interactions at FD using the

expected flux [91].

2.3.3 Detector Calibration

In addition to a model for the detector response, a calibration is done for both real data

events and simulated MC events (coming from ReadoutSim) to convert the PE output of

each cell into a GeV estimate. The scintillation photons collected by different points on the

wave-length shifting fiber are attenuated along the length of the fiber. This results in an

attenuation of the measured PE as the light is collected further away from readout. This is

a particularly large effect at the Far Detector because of the length of the cell. In addition,

it was found that different fibers have different attenuation lengths and overall responses

in terms of the total collected PE. So the first step of the calibration procedure is to do a

relative (cell-by-cell) calibration to take into account these effects. This procedure uses a

through-going muon sample which are sufficiently minimum ionizing and hence uniform over

the extent of the detector. The next step is to perform an absolute calibration that converts

the corrected PE response (PECorr) to a GeV estimate. The absolute calibration uses a

stopping muon sample in order to get a clean estimate of the total energy deposited by the

muon using the well known Bethe-Bloch equation. At the Near Detector, both samples are

given by cosmic events using the DDActivity trigger. At the Far Detector, events from the

Cosmic trigger are used. CRY is used in both cases for the calibration of simulated events.

For the relative calibration to data, the effect from the non-uniformity of fiber responses

is already taken into account by performing the calibration in each cell and each plane of
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the detectors individually. For the simulation, the procedure is a bit different. This is done

so as to not have to simulate each channel of the two detectors individually. The attenu-

ation properties of each fiber were measured during the construction of the detector and a

double-exponential fit is performed to the individual fiber quality data. The distribution of

attenuation lengths are then binned in 12 quantiles of “fiber-brightness”. Cells that stride

across the boundaries of these quantiles are then simulated with a fiber of attenuation length

given by the boundary of that quantile [92]. The relative calibration is then done in each of

these 12 fiber-brightness bins by picking out the relevant cells.

Figure 2.20: The tricell selection for the attenuation calibration. The Path length of the
particle is estimated to be Ly/cy where cy is the direction cosine along the y-direction

The initial step of the relative calibration is to collect a set of suitable hits from the through

going muon sample. The suitability is determined by being able to get a reliable estimate of

the path lengths of the muon through any given cell. The cosmic events are characterized

by straight-line downward going muons. A minimal and fast reconstruction is performed

assuming a straight-line topology (CosmicTrack) in order to cluster hits of a cosmogenic

nature. Hits from the cosmic track are selected for calibration if there exists two neighbouring

hits in the same plane, below and above the given hit (“Tricell” selection), as illustrated in

Fig. 2.20. Hits are also selected if one of the neighbouring hits is a dead channel. The
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path length of the muon can then be estimated rather precisely by the ratio of the width of

the cell and the direction cosine reconstructed using CosmicTrack. The PE output is then

normalized by the path length in units of PE/cm, as shown in Fig. 2.21 and 2.22. This is

done in order to correct for biases in the reconstruction of muon tracks for different track

angles [93].

Figure 2.21: The raw PE/cm distributions as a function of longitudinal position (W) inside
a Far Detector cell for the X-view (left) and the Y-view (right). The black curves represent
the profile of the 2D distributions.

From this, a profile of the mean PE/cm as a function of W (the distance along the cell from its

center) for each cell is made. The profile is then corrected for threshold and shadowing effects.

Threshold effects arise from the fact that for a hit to be seen, the PE deposited needs to be

above a certain threshold which could bias the attenuation calibration. Shadowing effects

arise from detector self-shielding where even for a given true energy deposited within the

cell for a minimum ionizing particle, there is a certain non-uniformity in the visible energy

output across the detector. The corrections for these effects are taken from simulation as

T =
PE

λ
× Etrue
Emip

(2.2)

where T is the correction factor, PE is the simulated photo-electrons at the readout, λ is

the Poisson expectation for the PE, Etrue is the true deposited energy in the cell and Emip

is the energy deposited by a naive scaling of the path-length. The first factor simulates the

56



Figure 2.22: The raw PE/cm attenuation profile as a function of longitudinal position in a
cell (W) for the Near Detector

threshold effect and the second, the shadowing effect. The corrections are smoothed using a

polynomial fit and applied as a function of W, cell, view (X : top view, Y : side view) and

for the simulation, fiber brightness. Fig. 2.23 shows the smoothed threshold and shadowing

corrections for each cell at the Far Detector. The biggest threshold effects arise at the far end

of the cell furthest from readout, where the attenuation is large enough to drop physics hits

below threshold. The biggest shadowing effects are at the diblock boundaries or the bottom

of the detector as the downward going muons have a different energy deposition profile.

The corrected profiles are then fit to a functional form given as :

y = C + A

(
exp

(
W

X

)
+ exp

(
−L+W

X

))
(2.3)

where C and A are fitted parameters, X is the fitted attenuation length, L is the length of

the cell, y is the corrected PE/cm. The functional form is motivated by the fact that the

fibers are bent in a U-shape across the cell, so the scintillation photons have two paths to the
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Figure 2.23: Threshold and Shadowing Corrections for the Far Detector for the X-view (left)
and Y-view (right). The shadowing can be seen at various diblock boundaries as horizontal
features while the thresholding effect is seen at the edges of each cell for negative W.

Figure 2.24: The fitted attenuation profiles including the full LOWESS fit for the Far De-
tector (left) and the Near Detector (right)

readout. The fit is performed in a range of [−750, 750] cm for the Far Detector, [−150, 150]

cm in the active portion of the Near Detector and the Y view of the muon catcher, [−150, 50]

cm for the X view of the muon catcher. Near the edges of the cell there is a pronounced

roll-off observed in data. To capture this and the remaining shape in the residuals to the

exponential fit, a LOWESS fit is done to smooth out the variations, as shown in Fig. 2.24.

The curve is formed by a weighted mean of the deviations from the exponential fit, where

the weighted mean at a given point is taken from nearby points in a range [−30, 30] cm who

get a weight :

wi =

(
1−

∣∣∣∣W −Wi

σ

∣∣∣∣3
)3

(2.4)
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The weight is taken to be 0 if Wi is more than 30 cm away from W .

To take into account effects from changing detector conditions over time, the relative cal-

ibration is done separately for different epochs of data taking where the overall detector

response is expected to be constant.

Figure 2.25: Profiles of the Reconstructed/True Energy for each hit > 15 MeV before and
after the calibration

Finally, as shown in Fig. 2.26, an absolute calibration is performed on the PECorr/cm output

from the above procedure using a stopping muon sample that have muon tracks sufficiently

far away from detector edges where the attenuation calibration relies on simulation. The

absolute calibration selects a 1− 2 m track window from the end of the muon track (where

the deposited energy is expected to be MIP-like) and converts the PECorr/cm measurement

to a dE/dx estimate (in units of GeV/cm) using the Bethe-Bloch equation. This sets the

energy scale of the detector [93].

Fig. 2.25 shows the change in the reconstructed energy due to the overall calibration proce-

dure as a function of position in the cell. The overall calibration procedure is also validated

with some standard candles like the π0 mass peak [94] and the Michel e− spectrum.
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Figure 2.26: The attenuation corrected PE/cm distributions for the stopping muon sample
as a function of distance from the track end. The black curve shows the fit for the overall
energy scale.

2.4 Event Reconstruction

The reconstruction of interactions in the detector deals with clustering calibrated hits and

consequently provides relevant physics information about the interaction in terms of the

energies and momenta of the resulting particles. This is vital in order to characterize the

topology of the interaction and thus provide means to identify the neutrino flavor and the

incoming neutrino energy. There are 4 main interaction classes that are relevant for the

oscillation analysis.

• Charged Current νµ : These are readily identifiable by a long and straight muon track

made up of minimum ionizing hits. The hadronic component depends on the details

of the interaction but are in general clustered around the interaction vertex.

• Charged Current νe : These are characterized by an electron in the final state which

produces a roughly conical shower cascade driven by pair production as the electron
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interacts with the dense material. The hadronic component is similar to the CCνµ

case. The radiation length of the material is sufficient to produce a well developed

electron shower, which is on average 6 cell-depths. In general it is difficult to separate

oscillated CCνe events and events coming from the intrinsic beam contamination. As

a result, the beam νeCC component is an irreducible background to the appearance

channel. However, a small separation in their energy distributions can be exploited to

improve sensitivity.

• Neutral Current (NC) : These are flavor independent interactions where the observed

final state particles are only the hadronic component, as the neutrino just scatters off

the nuclei and can’t be observed. If the hadronic component involves a π0 then one can

observe the resulting pair of γs from their decay. The γs produce shower cascades very

similar to electron showers and can therefore mimic CCνe events at typical energies,

especially if the opening angle between the γs isn’t very large to begin with. Charged

pions can also be produced resulting in track like topologies, which can be misidentified

as short muon tracks and thus CCνµ events. As a result, these events are important

backgrounds to both oscillation channels.

• Cosmic Interactions : At the Far Detector, where a large number of cosmic rays are

seen, one can in general observe a variety of topologies. Most of them are long muon

tracks coming in from the top of the detector and can be differentiated by their di-

rections from a CCνµ event. Some of them can also emit bremsstrahlung radiation at

a variety of angles, which are sufficiently energetic to mimic CCνe events. Therefore,

these are important backgrounds as well to the two oscillation channels.

Three of these are illustrated in Fig. 2.27. The goal of the reconstruction chain is to first

isolate separate interactions in the detectors and then provide a full physics description of

the event, in terms of their locations, the types of particles produced and their directions.

All these steps exploit the fine timing and segmentation offered by the two detectors as
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Figure 2.27: Examples of interaction topologies seen at the NOvA detectors for different
types of neutrino interactions, with νµ-CC (top), νe-CC (middle) and NC (bottom)

described in the previous section.

2.4.1 Event Clustering

The original NOvA event clustering algorithm, called Slicer4D, relied on a DBSCAN method

[95] in order to group relevant physics hits correlated in space and time. This was reasonably

successful that it was used for all of NOvA’s oscillation results until the last one [96]. Updates

to this method were mainly motivated by pile-up issues related to the high-intensity NuMI

beam (> 700 kW).

The Slicer4D design was built on being able to cluster neighbouring hits across the two pro-

jections (XZ : top view, YZ : side view). The algorithm proceeded in a fairly straightforward

way where a minimal cluster of neighbouring hits is built, where neighbouring points are

defined as points that are above a certain local density threshold, such that the cluster can
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expand to include all such points and then terminate at a point that falls below the density

threshold. The density threshold is tuned according to a neighbour score that penalizes large

distances in space and time.

Figure 2.28: Examples of clustering failures seen at the Near Detector due to pile-up where
causally separated interactions are nevertheless still clustered together resulting in a loss of
reconstruction efficiency

For hits in opposing projections however, a neighbour score cannot include distances between

x or y co-ordinates because one of them is ill-defined for each hit. For such points, the metric

relies on the z and t co-ordinates only. As such, hits that are causally separated in truth

with a large ∆xy can be clustered together because of a small ∆zt. In addition, Slicer4D can

be fairly greedy in grouping up noise hits and also has some failure modes associated with

pile-up, especially in the Near Detector but also sometimes in the Far Detector, due to the

large number of cosmogenic hits in the environment of a neutrino cluster. The failure mode

arises from certain “bridge hits” that can lie sufficiently between distinct physics clusters,

that the cluster expansion includes the bridge hit and consequently the distinct physics slice.

This is especially apparent at the Near Detector where a large number of rock-muons are

seen traversing the length of the detector and a cluster for a contained neutrino interaction
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in the detector expands to include the rock-muon as well, as can be seen in Fig. 2.31. This

pile-up related failure mode results in an attenuation of slicing efficiency with respect to the

intensity of the beam, which can be ∼ 12% at 700 kW.

To address these issues, a new slicing algorithm called the Time Density Slicer (TDSlicer)

has been implemented for the latest set of oscillation results [97]. TDSlicer relies on finding

a centroid for a grouping of hits, upon which a cluster is built separately for each projection

[98]. The two 3D clusters thus do not contain causally separated hits and as a consequence,

a merging operation can be performed that associates clusters in one projection to a cluster

in another.

To estimate the centroid, a local density (ρ) and isolation score (δ) are defined for each hit

as :

ρi =
∑
j

e−d
2
ij/τ

2

(2.5)

δi = min
j:ρj>ρi

(dij) (2.6)

where dij is the causal distance between hits, i and j, defined as :

dij =
||∆t| −R/c|

τ
(2.7)

Here, τ is a constant parameter related to the timing resolutions of the detectors, 16 ns and

80 ns for ND and FD respectively. R is the spacial distance between the two hits. This is

done separately for each projection. A large density score identifies a reasonable cluster in

the environment while requiring a large isolation score provides the centroid estimate within

the cluster. Centroids are thus found by requiring ρ > 3(10) and δ > 8(6) for the ND (FD).

This is illustrated in Fig. 2.29. The cluster is then built by grouping hits with the centroid

at its base and accepting points that are within a certain distance threshold (dij = 8(5)τ for
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ND(FD)) to a point already in the cluster.

Figure 2.29: Illustration of the centroid finding algorithm for TDSlicer. Here, points labelled
10 and 1 have a high local density (ρ) and isolation score (δ) and as a result are tagged as
centroids to build clusters around.

Finally a view merging step is performed that penalizes pairs of 3D clusters based on differ-

ences in their average zt compared to length and time scales, 200(60) cm and 6(60) ns for

ND(FD). The 4D cluster is then given by the best such pairing across all possible pairs. The

remaining unmatched clusters are tagged as noise.

TDSlicer thus achieves a trade-off which is to improve upon the “greediness” of Slicer4D by

ignoring the bridge-hits at the cost of a modest loss of low-energy physics hits at the edges of

the interaction in some cases. This results in an improved attenuation profile as a function

of intensity (shown in Fig. 4.11) as well as a larger overall slicing efficiency and increased

slice purity, defined as the fraction of the energy in the cluster coming from the true particle.

The overall completeness, defined as the fraction of deposited energy in the cluster by the

true particle, is slightly reduced.

One way to validate the performance of the new slicer is to study it in an artificially intense

environment using a special “overlay” sample. In this method, a MC neutrino interaction is

overlaid into a 10µs nominal beam spill made up of real data events at the Near Detector,
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Figure 2.30: Comparison of performance of TDSlicer vs Slicer4D as a function of beam
intensity. TDSlicer shows smaller attenuation at higher intensities and as a result is less
sensitive to pile-up

as illustrated in Fig. 2.32. The slicer can then be studied using the truth information given

in the overlaid MC event. One can also compare behavioural differences between the two

slices on the same MC event [99].

This study validated expectations that TDSlicer was less sensitive to pile-up with larger

beam intensity. As a result, the efficiency of making good slices (defined as slices with

> 90% completeness and purity) that are contained in the detector increased by ∼ 5%.

The actual number will be slightly lower as the effective intensity in the overlay sample

is higher due to more having neutrinos per beam spill. The validation also showed that

TDSlicer was in general less prone to the failure mode associated with clustering rock-muons

and the neutrino event in the detector. At the Far Detector, where an overlay sample is

unncessary and instead real cosmic data events are overlaid on top of the beam MC events,

the improvement in slicing efficiency for good contained slices was found to be ∼ 9% and

the fraction of events with a neutrino slice was improved by ∼ 6%.

Using the overlay sample at ND, the mean completeness of good contained slices degraded
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Figure 2.31: Example of the same event as before showing TDSlicer is able to separate out
interactions compared to Slicer4D

TDSlicer MC-MC Data-MC
Stage Events (103) Efficiency (%) Events (103) Efficiency (%) Difference (%)
Overlaid 138.50 100 211.70 100 0.000
Sliced 137.00 98.92 ± 0.028 209.43 98.93 ± 0.022 0.010 ± 0.0360
Quality 129.54 93.53 ± 0.066 197.71 93.39 ± 0.054 -0.153 ± 0.0912
Contained 32.61 23.54 ± 0.114 50.04 23.64 ± 0.092 0.414 ± 0.6232

Table 2.1: Comparison of Selection Efficiencies at various cut stages for MC on MC spills
and MC on Data spills using the special overlay sample reconstructed with TDSlicer

by ∼ 1% as the resulting new slices made were found to be less complete in general. A loss of

∼ 2% in capture efficiency of neutron hits was found, where the largest differences were seen

for delayed neutrons which zoom around in the detector for a fair amount of time. This had

negligible effects on the neutrino energy resolution once the energy estimators were re-tuned

with the clusters from the new slicer.

One can also develop an overlay sample for MC events on MC simulated spills. By comparing

analysis selection efficiencies between the MC-on-data and MC-on-MC overlay samples, one

can get a handle on normalization effects that creep in to the simulated clusters, mainly

related to detector electronics noise. The normalization effects were in general found to be
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Figure 2.32: Illustration of the special overlay sample where a MC νµ event is overlaid onto
a real data spill at the Near Detector

Slicer4D MC-MC Data-MC
Stage Events (103) Efficiency (%) Events (103) Efficiency (%) Difference (%)
Overlaid 82.10 100 184.51 100 0.000
Sliced 81.83 99.67 ± 0.020 183.83 99.63 ± 0.014 -0.046 ± 0.0245
Quality 76.37 93.03 ± 0.090 172.32 93.39 ± 0.058 0.390 ± 0.1140
Contained 18.14 22.09 ± 0.145 41.49 22.48 ± 0.097 1.781 ± 0.7895

Table 2.2: Comparison of Selection Efficiencies at various cut stages for MC on MC spills
and MC on Data spills using the special overlay sample reconstructed with Slicer4D

smaller when looking at TDSlicer clusters vs Slicer4D clusters, indicating that the new slicer

was able to reject noise hits better. Tables 2.1 and 2.2 compares the performance between

the two slicers in this regard.

As a result, TDSlicer was chosen to be the main clustering algorithm for the latest oscillation

analysis.
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2.4.2 Vertex Finding

The next downstream step of the reconstruction chain [100] is to identify the interaction

vertex of the neutrino interaction, once the cluster associated with the neutrino has been

identified as above. In each view, lines are drawn between every pair of hits in the cluster and

mapped to Hough space [101], parameterized by the 2D polar co-ordinates (ρ, φ). This is a

projective transformation where lines are mapped to points. The Hough lines are illustrated

in Fig. 2.33. To save computation, horizontal lines are ignored if the hit pairs are more

than a certain distance threshold apart. The points in Hough space are then smeared by a

Gaussian, where the weight of the smear is given by a “vote” that penalizes a large distance

between hits and large angles from the beam direction. As a result, if many hit pairs are

collinear to each other, a gaussian peak is formed in the vote distribution in Hough space.

The peaks are larger if more hits are collinear. Dominant lines are thus found by finding

the largest peak and its associated line, removing the hits associated with that peak and

iterating the process.

These dominant lines are used as input to an Elastic-Arms algorithm that identifies a vertex

candidate. Vertex “seeds” are chosen as intersection points of the dominant lines and an

energy cost function is minimized with respect to the seeds and the lines via simulated

annealing. The energy cost function is given by :

E =
N∑
i=1

M∑
a=1

ViaMia + λ

N∑
i=1

(
M∑
a=1

Via − 1

)2

+
2

λv

M∑
a=1

Da (2.8)

Here, Mia is the distance of hit i to arm a. Via is defined as the likelihood of hit i belonging

to arm a and is given by a partition function :

Via =
e−βMia

e−βλ +
M∑
b=1

e−βMib

(2.9)
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Figure 2.33: Illustration of the Elastic Arms algorithm using Hough lines drawn between
pairs of points in the hit cluster

β measures a “temperature” (β = 1/T ), where higher temperature arms have more hits

associated with them. The first term therefore minimizes the distance of hits to the arms

weighted by the likelihood that the hit belongs to the arm. The 2nd term in the cost function

is a noise penalty term with strength parameter, λ that penalizes hits that aren’t associated

with any arm. The 3rd term is a displacement penalty term associated with the parameter

λv which is tuned to the photon conversion length in the detector. Here Da refers to the

distance of the vertex seed from the first hit in arm, a. As is evident, the term penalizes

vertex points and Hough arms that are more than λv away from each other. This takes into

account the possibility that the first hit in the interaction can be different from the vertex.

As seen in Fig. 2.34, the resulting vertex resolution from the co-ordinates in the two views

is found to be ∼ 10 cm (∼ 2 cell depths) for νeCC and νµCC events. For NC events, the

resolution is ∼ 25 cm (∼ 4 cell depths).
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Figure 2.34: The vertex resolution for νµ-CC events (left) and νe-CC events (right)

2.4.3 Particle Clustering and Tracking

Once the vertex has been identified, multiple clusters associated with each interaction prod-

uct can be built. This is done by a “Fuzzy K”-means algorithm. The clusters are referred

to as “prongs” to distinguish it from “slices” made by the slicing algorithm. The philosophy

here is to allow hits to belong to multiple clusters (“fuzzy”) or no cluster (“noise”). Since

the number of particles are unknown apriori, the clustering needs to be unsupervised and is

done by a k-means based approach [100].

First, the hits in the slice are mapped to an angular space, defined by an angle about the

vertex, θ with respect to the z axis. The hit energy distribution in this θ space determine the

number of prong centres around which the cluster can be built. This is an iterative process

where the highest peak is first chosen, thereby assuming 1 prong centre. A membership score

for each hit to the prong centre is then calculated as :

Uij = exp

(
m
√
cdij
β

)
(2.10)

71



Figure 2.35: A neutrino interaction shown with the reconstructed Fuzzy-K prongs in each
view

where dij is the angular separation of hit j from prong centre i, given by :

dij =

(
θj − θi
σj

)2

(2.11)

where σj is an angular uncertainty determined by the multiple scattering of muons (∼

5.4 mrad for a 2 GeV muon), to allow for scattering further away from the vertex, for example

with charged pions. The parameters in the membership score are taken to be the allowed

threshold membership of hits to prongs (m), the total number of clusters (c) and the allowed

width of the clusters (β). The prong centers are updated by the equation :

θ′i = θi +

n∑
j=1

Aij (θj − θi)

n∑
j=1

Aij
(2.12)

until the prong centre angles converge with a tolerance of 1× 10−7 rad. The process is then

iterated by generating a new angular distribution with low membership and so on until all

hits are clustered or a maximum number of prongs are made. This is done separately for the
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two views and the prongs are merged by a Kolmogorov-Smirnov test. This process captures

> 90% of the lepton energy in the energy range of interest for NOvA with > 80% purity,

as seen in Fig. 2.36. The performance improves significantly for Quasi-Elastic events, as

expected.

Figure 2.36: Performance of the Fuzzy-K reconstruction on electron shower cascades with
the efficiency (left) and purity (right) of the reconstructed shower

This can be applied to muons as well, but since muon tracks are relatively straight and long

with deviations from straight tracks given by a multiple Coulomb scattering process (MCS),

a traditional Kalman tracking algorithm is used to accurately measure the length of the muon

track and its angle. This is important since the muon energy resolution is mainly driven by

how well its length can be estimated, rather than the total calorimetric energy deposited.

The Kalman tracking algorithm builds tracks by adding nearby hits that satisfy the MCS

model within statistical noise and estimating the position and slope for the next hit. These

tracks are back-propagated to refine the process iteratively. Finally, tracks made in separate

views are merged based on an overlap score between the z-start and z-stop co-ordinates for

each track pair. The completeness of the muon track for QE (non-QE) is ∼ 95% (∼ 92%), as

seen in Fig. 2.37. The mean difference between the reconstructed and true muon direction

is < 0.1% in cosine units.
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Figure 2.37: Performance of the Kalman filter-based reconstruction on muon tracks. Lepton
Track Completeness is defined as the fraction of true muon hits reconstructed in the given
kalman track
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Chapter 3

The Oscillation Analysis

We can finally start to describe the components of the oscillation analysis. There are many

moving parts, so in this chapter we will be concerned mainly with the fundamental elements.

These are related to neutrino flavor identification (PID), neutrino energy estimation and the

selections developed to maximize signal content in the relevant oscillation channels at the

Far Detector. In addition, constraints on the oscillated prediction using Near Detector data

will be described.

3.1 Particle Identification

As mentioned before, the two main backgrounds for the oscillation channels are NC inter-

actions and cosmic rays. In both the νµ-disappearance and νe-appearance channels, these

backgrounds have the potential to mimic the signal events. The task of identifying νµ-CC

events however is significantly easier due to the readily identifiable muon track especially at

peak flux energies. As a result, the νµ-disappearance channel is largely background free. This

channel is agnostic towards neutrinos and anti-neutrinos, since by the CPT -theorem, they
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should oscillate at the same rate if the initial and final particles before and after oscillation

are the same. Therefore, this channel does not try to discriminate between neutrinos and

anti-neutrinos and the signal is defined as the total νµ-CC and ν̄µ-CC that have remained

unoscillated over the baseline of the experiment.

For the appearance channel, the oscillation probabilities are different for neutrinos and anti-

neutrinos and are related to the measurement of the parameters we are interested in, such

as δCP , the mass hierarchy and the octant of θ23. Therefore, the signals are νe-CC (ν̄e-CC)

events for the neutrino (anti-neutrino) mode. One therefore needs to discriminate between

neutrinos and anti-neutrinos in this case. These are especially important in the anti-neutrino

mode where the contamination of “wrong-sign” neutrinos in the beam is substantial due to

the higher interaction cross-section. It turns out however that due to the lack of a magnetised

detector, this background is sufficiently hard to reject and techniques developed to separate

wrong-sign events based on their kinematic differences do not improve sensitivity to the

oscillation parameter measurement significantly. In addition, the cross-section ratio of anti-

neutrinos to neutrinos increases as a function of energy. This means that these backgrounds

are less of a problem for NOvA at energies of ∼ 2 GeV than for example, T2K at energies of

∼ 0.9 GeV. As a result, no effort is made to identify them in the particle identification and

appropriate systematic uncertainties are taken in the simulation.

3.1.1 CVN

NOvA uses a common multi-label PID to classify the 4 types of interactions, νe-CC, νµ-CC,

NC and Cosmics. Within particle physics, NOvA has pioneered a deep learning approach to

perform this task. This has been aided by recent advances in computational power, making

these deep learning techniques more viable. In particular, NOvA utilizes a convolutional

neural network (CNN) architecture to perform deep inferences about the type of interaction
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from its topology [102][103].

CNNs are fairly estabilished techniques for 2D image classification purposes and have found

use in a variety of different contexts. For our case, it is important to realize that such

techniques are readily applicable due to the fine segmentation and pixelated nature of our

detectors. Unlike traditional machine learning techniques, CNNs are able to extract the most

important features that aid in classification by themselves, instead of relying on features

developed by hand.

Figure 3.1: Illustration of the convolutional neural network acting on a νµ-CC event. The
features highlighted in the feature map correspond to various topological features of the
event including on the track and hadronic activity.

The fundamental component of a CNN is the convolutional layer that takes an input 2D

image, represented by a m×n matrix of pixel values (“pixel-map”) and performs convolutions

on smaller pixel blocks (in our case, this will be 5 × 5) in that image. These convolutions

are performed using a kernel matrix in a sliding window fashion. The kernel is of the size of

the smaller pixel block and aggregates information within a group of pixels through a set of
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weights. The output of these convolutions can thus be interpreted as abstract 2D matrices

with each element representing various local features within a certain region of the original

image, as illustrated in Fig. 3.1. Within image processing, this can be used to extract

object edges, sharpen images and many other things. Once this abstract feature-map has

been suitably transformed into even lower dimensionality, often to reduce computational

complexity, they are then used as inputs to a traditional fully-connected neural network

architecture. The elements of the feature map are thus linearly transformed using a set of

weights for each neuron in the first layer and forwarded to the next layer and so on until it

is identified with its classification target, which in our case is the type of interaction. The

identification step is usually preceded by a non-linear activation function (for eg. a sigmoid)

that pins the output of the neural network to a specific range of values for eg. (0, 1) for

classification. This can then be identified as a probability measure of classifying the input

data to a given target label.

During the training process, a cost-function is built for mislabelling any event in the training

dataset. This cost-function is then minimized with respect to all the weights used through-

out this architecture. Viewed from far above, this is a convex non-linear transformation of

the training data into a high dimensional space where the cost-function is minimized to set

the boundary between different clusters representing different target labels. But in contrast

to traditional machine learning, this space is more abstract (represented by outputs of the

convolutions) and is of much larger dimensionality, which results in very accurate classifica-

tions. To make sure there is no overtraining happening, this process is of course tested on

an entirely separate dataset.

In practice, modern CNN architectures are large and complicated beasts that involve mul-

tiple layers of convolutions and pooling (aggregating high dimensional feature maps into

smaller dimensional feature maps), as shown in Fig. 3.2. Many different architectures have

found reliable use for NOvA. More recently, a modified MobileNet architecture has been
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used as it is considered one of the more light-weight ones (∼ 3× inference speed compared to

previous NOvA architectures), with an ability to perform fast computations without losing

accuracy. In general, the use of CNNs at NOvA have resulted in significant gain in classifica-

tion accuracies (∼ 30% improvement in equivalent exposure) compared to more traditional

machine learning techniques, including artificial neural networks (ANNs).

Figure 3.2: The modified MobileNet architecture used for the NOvA CNN PID

The input data to the NOvA CNN (dubbed the Convolutional Visual Network or CVN), is

the pixel-map of the interaction clustered using the slicer and nothing else. The pixels are

the calibrated energy deposits in each hit of the interaction, given in GeV and recast into a

8-bit integer (between 0 and 255) for faster computations. Each of the two projections in the

top view and the side view are fed separately into the CNN in a Siamese-like architecture

that combines features from the two images downstream. The pixel map is of dimensions,

100planes× 80cells in each projection starting from the first hit in z, which is able to cover
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all relevant features of the interaction. The muon track usually overshoots the image but the

missed portion of the track is not important for identification. The rest of the interactions

are covered to a large extent (> 99%). This form of the data has the advantage that the

classification does not depend on the details of the reconstruction chain apart from the slicer

and is therefore blind to any reconstruction inefficiency that crops up for various events,

downstream of the slicer. The fully connected neural network is made up of a single layer

of 1024 neurons and are connected to the target layer, made up of 4 nodes for each type

of classification label, νe-CC, νµ-CC, NC and Cosmics. The activation function is a simple

softmax function that normalizes the scores between (0, 1) [104][105].

The training dataset is made up of an equal mixture of the three types of neutrino interactions

(∼ 2.5million events). Cosmics are down-sampled to 10% of the dataset so as to let the

network concentrate more on the neutrino interactions. No significant selections are made

on the input training dataset to keep the inference general. A simple cosmic veto that

removes obvious cosmics is applied. The veto removes events that touch opposite walls of

the Far Detector as well as events that have a measured transverse momentum fraction

(pT/p) less than 0.95. pT/p measures how aligned the event is with the beam direction

and since cosmics are mostly vertical, a significant number of cosmics can be rejected this

way and the classification is done for tougher backgrounds. The pixel maps are themselves

uniformly scaled by a random number distributed as N (1, 0.1) which makes the training

more robust to energy scale uncertainties in the calibration. The training is performed using

Keras on a Tensorflow backend and is done separately for neutrino and anti-neutrino modes.

This is to ensure that specific variations in topology across the beam modes are taken into

account, which results in an overall ∼ 10% gain in accuracy compared to the case when the

FHC network is directly used on RHC events.

The results of the training can be described by classification matrices in terms of the efficiency

of getting the right answer or the purity, which is the fraction of predicted labels that are right
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in truth. These are shown in Figs. 3.3 and 3.4. In general, both FHC and RHC networks

show ∼ 90% efficiency for the relevant signal events, with most of the misclassifications

related to NC.

Figure 3.3: The performance of the CVN PID given by the efficiency of the network to
identify the true label for the neutrino mode (left) and the anti-neutrino mode (right)

Figure 3.4: The performance of the CVN PID given by the fraction of the predicted labels
from the network that are the true label for the neutrino mode (left) and the anti-neutrino
mode (right)
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3.2 Energy Estimation

Neutrino energy estimation is fundamental to the sensitivity of the oscillation analysis as

the oscillation probabilities are a function of neutrino energy. In the disappearance channel,

this is important especially in the so-called “dip-region” (between 1 − 2 GeV for NOvA)

where the shape and extent of the dip directly corresponds to the wavelength and amplitude

of the oscillation, i.e ∆m2
32 and sin2 2θ23 respectively. For the appearance channel, the

neutrino energy provides a small amount of discrimination power with the irreducible beam-

νe contamination as well as an improvement in sensitivity for the oscillation parameters. We

will therefore look at the techniques used by NOvA to estimate neutrino energies for νµ-CC

and νe-CC events separately as well as explore possible improvements.

3.2.1 νµ-CC Events

The energy estimator for νµ-CC events is built by summing contributions from the leptonic

and hadronic portions of the event [106].

Eν = Eµ + Ehad (3.1)

As discussed before, Eµ can be estimated accurately using the length of the muon track as

there is a significant correlation between these observables due to the Bethe-Bloch relation.

Ehad is then estimated calorimetrically and includes both off-track and on-track components.

True νµ-CC events are selected that pass a preselection requiring them to be well-contained

and having a reconstructed kalman track. The kalman track describing the muon is selected

by using a special Boosted Decision Tree (BDT) trained on the following characteristics

[107].

• log-likelihood that the dE/dx profile follows a MIP-like distribution
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• scattering log-likelihood for deviations from straight lines

• length of the track

• estimated hadronic fraction on track which is smaller for muons away from the vertex.

The muon energy is then estimated by a piecewise-linear spline fit to the true muon energy

using the reconstructed track length. In the Near Detector, the fit is done separately for por-

tions inside the active region and the muon catcher and summed. The fit is done separately

in three regions of track length to take into account variations due to multiple Coulomb

scattering behaviour, as shown in Fig. 3.5. The energy resolution for the muon comes out

to ∼ 2.5%

The hadronic energy is estimated calorimetrically by fitting to the true hadronic energy (true

neutrino energy - true muon energy) using an estimate of the visible hadronic energy in the

interaction. The visible hadronic energy is estimated by summing up off-track energies and

the on-track contamination. A piecewise-linear spline fit is then performed in three regions

of visible energy so as to take into account different regions in interaction phase-space, as

shown in Fig. 3.6. The energy resolution for the hadronic component comes out to ∼ 25%,

since this is a much more diffused dataset.

Figure 3.5: The fit to the track length of the identified muon for the muon energies. FHC is
given on the left, while RHC on the right
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Figure 3.6: The spline fit to the visible hadronic energy of the event for the hadronic energy
estimate in 3 different regions. FHC is given on the left, while RHC on the right

The fits are performed separately for ND and FD as well as FHC and RHC. The overall

neutrino energy resolution is ∼ 6% for both FHC and RHC, with a slight improvement for

RHC events since they are less inelastic. As can be seen in Fig. 3.7, the resolution has a

significant dependence on the type of interaction, with QE events exhibiting better estimator

performance than DIS events, due to the fact that the muon carries more of the neutrino

energy. The estimator performance is also measured by the bias in the resolution peak

(deviation from 0) and the estimator is fairly flat across neutrino energies of (0.5, 4.5) GeV

and especially so in the dip-region. This is important to ensure data events don’t move out

of the dip region as a consequence of the estimator which can significantly bias the oscillation

parameter measurement.

Figure 3.7: νµ-CC energy resolutions for various interaction types
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3.2.2 νe-CC Events

Figure 3.8: The true νe-CC energy as a function of the individual EM and hadronic compo-
nents weighted by event rates

The νe-CC energy estimation is significantly more difficult due to the nature of the electron

shower cascade process and the overlap between the leptonic and hadronic components.

Given that a significant fraction of the true energy of the particle isn’t seen in the detector

(due to dead materials), a simple calorimetric approach by summing up all reconstructed hit

energies and rescaling them to match the true energy will only work well for events at the flux

peak where most of the events exist. The resulting purely calorimetric estimator will then

exhibit a significant bias for events in the flux tails. As a result, the estimator tries to exploit

differences between the electromagnetic and hadronic components to improve performance,

where the electromagnetic component includes contributions from the electron shower as well

as γ cascades coming from π0 decays. This is motivated by the fact that these components

have a different detector response, i.e roughly 26% more energy is deposited on average

for a given true energy if the source is electromagnetic compared to hadronic. This comes

from the fact that the hadronic component includes neutrons, quasi-MIP-like charged pions
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and so on. The differences in detector response are taken into account by estimating the

electromagnetic and hadronic contributions separately and then performing a fit to the true

neutrino energy using a quadratic functional form given as :

Eν = α(p0EEM + p1Ehad + p2E
2
EM + p3E

2
had) (3.2)

Fig. 3.8 shows the relationship between the hadronic and the electromagnetic energies. The

Figure 3.9: The νe-CC energy resolutions for FHC (left) and RHC (right)

Figure 3.10: νe-CC energy resolutions as a function of True νe-CC energy for FHC (left) and
RHC (right). The colored curves represent the profile of the respective distributions

quadratic form is motivated by the shape of the dependence between the EM energy fraction

and the average detector response, measured by the fraction of true visible neutrino energy

that is deposited in the detector. The linear coefficients, p0 and p1 take into account the

different detector response between the respective components [108].
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The electromagnetic and hadronic components are identified using a CNN-based particle ID

[109] that is trained on individual reconstructed FuzzyK prong images with an additional

image input of the entire neutrino interaction slice to provide it information about the context

in which that prong is produced. The particle ID scores are summed up for electrons and

photons to generate an EM score. Prongs are tagged as EM if their EM score is > 0.5 and

the rest of the hits are included in the hadronic component. The fit to the true neutrino

energy gives an overall energy resolution of ∼ 10% (∼ 9%) for FHC (RHC), as shown in Fig.

3.9. Importantly, the quadratic functional form allows the estimator bias to be flat between

(1, 5) GeV, which was the original motivation to extend the purely calorimetric estimator,

as shown in Fig. 3.10.

3.2.3 An Alternate νe-CC Energy Estimator

A big motivation for improving upon the current estimator design is to handle different

interaction topologies equally well. We’ve seen how the current νe-CC estimator builds upon

the purely calorimetric approach which is good only for the flux peak so as to ensure a

flat bias across all neutrino energies. Similarly for νµ-CC events, the spline fits are done

in separate regions of muon track length or visible hadronic energy to keep the bias flat

especially in the dip-region. However, these approaches are not able to handle the additional

complication that arises from having different interaction types included in a sample of given

neutrino energy.

It turns out that for the νe-CC estimator, the energy for QE events is over-estimated while

for DIS events, it is underestimated. This is understandable since the estimator is tuned to

be correct for the entire sample on average and high-Q2 events have a large missing energy

component, resulting in an underestimation and consequently an overestimation for low-Q2

events. The estimator does not have enough degrees of freedom to handle all the complexities
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in the interaction phase-space.

Figure 3.11: The νe-CC true energy distributions flattened for input into the training for
FHC (left) and RHC (right)

To take this into account, we build upon the deep-learning approach for the PID (CVN)

by utilizing a CNN to handle the regression task of estimating the neutrino energy as well

[110]. We’ve seen how CNN architectures have the capability of performing deep inference

directly from image representations of the interaction and this provides us with the degrees

of freedom required to handle the different types separately. We keep a similar philosophy as

the CNN PID by utilizing a Siamese-style architecture trained on true νe-CC events at the

FD using the two projections. The training sample is made up of events passing a cosmic

veto and are required to be contained. The pixel maps are the same size as the CNN PID

(100planes×80cells in each projection). To ensure the training sample is not biased towards

the flux peak, we reweight the true energy spectrum in the training so as to ensure all events

with energies between 0.5 − 10 GeV get the same importance, as shown in Fig. 3.11. The

training is carried out separately for FHC and RHC simulated events [111].

The same architecture was used for the FHC and RHC trainings, illustrated in Fig. 3.12.

A ResNet architecture was used with a Siamese network structure. The Siamese network

structure consists of two identical sub-networks whose outputs are merged to produce the

final output. Each sub-network processes an image from one view. Weights are not shared

between the sub-networks to provide independent information aggregation in each view. The
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sub-networks are constructed from convolutional layers and pooling layers.

Figure 3.12: The architecture of the regression CNN for the νe-CC energies

As described in previous sections, convolutional layers apply a weight matrix in a sliding

window fashion to the input image. This allows computing the same feature at different

locations in the input image producing an output referred to as a feature map. Using multiple

weight matrices allows learning a variety of features from the input images. Stacking these

convolutional layers makes it possible to learn higher level features with each additional layer.

Pooling layers take a feature map and reduce its dimensionality. This is done by tiling the

feature map and reducing each tile to its maximum or average. Pooling layers are normally

used between convolution layers.

In our case, a single convolution block consisting of two 3 × 3 convolution filters was used

before each pooling layer. A total of 64 filters were used, as is typical of a ResNet architecture,

which has been shown to be highly performant. A ReLU activation function was used across

the filters. These are all summarized below.

Neural networks for supervised learning are trained by defining a differentiable loss function L

between neural network outputs fW(xi) and target values yi. Here, W represents the weights
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of the neural network and xi is the neural network input. The loss function represents the

metric by which the neural network accuracy is assessed. During training the neural network

weights W are iteratively updated to minimize L using its gradient and a step size α.

Typically these updates are computed over mini-batches of size n which make up a partition

of the total training dataset. Iteration over all mini-batches constitutes one epoch. Training

parameters such as the step size α and the batch size n are referred to as hyperparameters

which must be selected before training and possibly tuned using the loss function on the

validation dataset. We utilize the hyperparameter optimization software SHERPA which

implements a number of hyperparameter optimization strategies and visualization tools. By

automating the task, this software significantly speeds up the computationally expensive

task of finding optimal hyperparameters.

Unlike classification problems such as image recognition and particle identification, the target

value yi for the output (energy) of our regression neural network is a continuous variable

varying over events. This requires the definition of an appropriate loss function for the task

of the regression neural network.

The goal is to minimize the standard deviation of a Gaussian fit to the peak of the histogram

given by the energy resolution Ereco−Etrue
Etrue

on the test set. While this quantity cannot be

directly optimized the absolute scaled error loss provides an appropriate surrogate for the

task. The training loss function is then given by:

L(W, {xi, yi}ni=1) =
1

n

n∑
i=1

|fW(xi)− yi
yi

| (3.3)

Traditional loss functions for regression problems are the mean squared error 1
n

∑n
i=1(fW(xi)−

yi)
2 or the mean absolute error 1

n

∑n
i=1 |fW(xi) − yi|. The former is often used due to its

relationship to the log-likelihood when the data distribution is assumed to be Normal, its
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Figure 3.13: Comparison of the performance of the regression CNN based energy estimator
for FHC vs traditional approaches both for the overall resolution (left) and profiled resolution
as a function of true neutrino energy (right)

strict convexity, the fact it can be decomposed into variance and bias, and many other de-

sirable properties. In our case, however, the mean squared error is suboptimal, because its

derivative with respect to W is 1
n

∑n
i=1 2(fW(xi)− yi) δfW(xi)

δW
. This increases proportionally

with the distance of the predicted value from the truth. In other words, outliers will have

increased impacts during gradient descent. In the training for neutrino energy, the events

with large invisible energy due to dead material and hadronic interactions shouldn’t have

much larger impacts than those whose visible energy is close to the true energy, so we choose

the absolute error instead of the squared error in the loss function.

A collection of the results are described in Figs. 3.13 - 3.18. The FD selections include

standard preselections and containment cuts w/o any energy cuts. Simple oscillation weights

are also applied using an approximate appearance probability formula for δCP = 0 and

utilizing the atmospheric and solar measurements (“dumb” oscillations). Comparisons are

made to the current estimator (Nue2018) as well as the purely calorimetric approach, which

is a raw sum of the calorimetric energies scaled by a constant factor of 1.78 (as a dead

material correction).
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Figure 3.14: Comparison of the performance of the regression CNN based energy estimator
for RHC vs traditional approaches both for the overall resolution (left) and profiled resolution
as a function of true neutrino energy (right)

RMS of the resolutions both for a gaussian fit to the peak of the resolution distribution

as well as raw RMS of the histograms are provided. The overall conclusions are that the

resolutions are significantly better compared to the traditional approach with a better bias

at higher inelasticities and for different interaction modes.

In summary, the performance of the neutrino energy estimator is better in almost every

metric looked at so far. The FHC neutrino energy resolution improves from 9.8% to 7.7%

while the RHC resolution improves from 8.2% to 7.2%. The overall bias vs true energy is

equivalent to the previous estimator which shows that the reweighting does its job. In fact,

the bias is very similar across all interaction modes and is flatter vs true inelasticity as well.

This is in contrast to the old estimator, where it overcorrects for QE and MEC events while

undercorrecting for RES and DIS events.

All of these conclusions support the idea that not only we can obtain significantly superior

performance in terms of energy resolution for νe-CCs using this approach, we can reduce

the systematic dependence of the interaction model on the energy estimator. To first order

this changes the composition of the different interaction types in the simulation and this
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Figure 3.15: Comparison of the performance of the regression CNN based energy estimator
for FHC vs traditional approaches both for the overall resolution (left) and profiled resolution
as a function of true inelasticity of the event (right)

approach ensures that there are few knock-on effects on the estimator itself.

One other point is with regards to the response of the estimator w.r.t the absolute energy

scale. One way to gauge this is to shift the energy deposits of each cell in the pixel map by

±5%. This doesn’t take into account all the downstream changes in the reconstruction that

could take place, for example subtle threshold effects but is a useful exercise nonetheless.

The results from the pixel map shifts are shown below in Fig. 3.19.

This indicates that the response of the estimator is essentially linearly related to the sum

of the energies in each cell in the pixel map and is therefore much more dependent on the

underlying calorimetry rather than the topological features in the interaction. One way to

square this with the observation of similar performance across different topologies is to think

of the CNN as parameterizing different topologies separately but in a linear fashion.

To ensure that this is a workable estimator in the oscillation analysis, future studies will val-

idate this approach on more complicated systematics related to particle transport within the

detector and the dependence of the estimator on other details such as secondary interactions
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Figure 3.16: Comparison of the performance of the regression CNN based energy estimator
for RHC vs traditional approaches both for the overall resolution (left) and profiled resolution
as a function of true neutrino energy (right)
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Figure 3.17: Comparison for the performance of the regression CNN based energy estimator
for FHC vs traditional approaches for νe-CC quasi-elastic events

of the hadronic shower and so on.

For the νµ-CC estimator, a LSTM-based approach with a sequence of reconstructed inputs

rather than a pixel map is being studied. The pixel-map approach is complicated by the fact

that one needs the muon track to be contained within the pixel map for energy estimation

and this blows up the computational requirements due to the size of the pixel map needed.
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Figure 3.18: Comparison for the performance of the regression CNN based energy estimator
for FHC vs traditional approaches for νe-CC DIS events

Figure 3.19: Bias sensitivity of the regression CNN based energy estimator when the pixel
inputs are uniformly scaled by ±5% for FHC (left) and RHC (right)

A new approach involving a similar pixel-map size for νµ-CC events but targeted for the true

hadronic energy instead (which is well contained within the pixel map) is also being studied

and has been shown to be promising [112].

3.3 Far Detector Selection and Binning

With the PID and Energy Estimation in place, we can begin to describe the details of

the FD oscillation analysis. We will first describe common selections used for both the
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oscillation channels and then discuss the individual pieces specific to the disappearance and

the appearance channel.

The selection flow is designed using a consistent philosophy for both the channels. A large

part of the design involves cosmic rejection, since we collect around 150 kHz cosmic data at

the Far Detector. Cosmic backgrounds are estimated using the minimum bias 10 Hz cosmic

trigger, which ensures that the selection tuning is data-driven for this particular background.

A wide range of techniques are utilized to pare down the cosmic background to O(1) events

[113].

Events are required to pass certain spill quality cuts to ensure that the data quality is good.

These cuts require acceptable ranges in beam parameters such as the horn current, the beam

position on target and the beam width. In addition, the POT per spill is required to be larger

than 2 × 1012. Problematic spills due to DAQ issues arising from the Data Concentrator

Modules (DCMs) in sections of the Far Detector are also removed. Atleast 4 contiguous

diblocks are required to be active during these spills. This is to remove certain spills during

early data-taking periods when the full 14 diblock detector was not active [114].
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Figure 3.20: The different timing windows of the original 550µs trigger window used in the
analysis

Since the NuMI trigger captures events within a 550µs window centered around the beam
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spill (218 − 228µs, with a fraction of early runs having this beam spill shifted by 64µs),

it becomes prohibitive to reconstruct every single event within this 550µs trigger window.

Therefore, the trigger window is split into 16µs separate windows, each having a 1µs overlap,

as shown in Fig. 3.20. The splitting is done in such a way so as to ensure the beam

spill is fully contained within the smaller time window. Then, a CNN-based cosmic veto

algorithm [115] is trained on snapshots of the entire detector during these time windows

in order to reject windows having no neutrino-like events. The resulting CNN score is

then used to veto reconstruction for these windows. All events within the beam spill are

reconstructed. However, the CNN score is still saved for this special window and applied

downstream in the analysis files. Selections are tuned using simulated neutrino events within

this beam spill along with an estimate of cosmic backgrounds using separate files containing

only cosmic events. The cosmic events are derived from the minimum bias 10 Hz cosmic

trigger and rescaled to the appropriate livetime of the detector. It is important to note that

the reconstruction proceeds for simulated neutrino events within a cosmogenic environment

even in the simulation to ensure no biases crop up with respect to real data. These cosmic

events in the simulation files also come from the cosmic trigger and are overlaid on top of

the simulated neutrino interactions. However, due to computational requirements there is

not enough of a cosmic sample overlaid in the sideband of the beam spill window to be able

to use them for selection tuning. Therefore, separate cosmic trigger files are used for the

selection tuning. In actual FD data spills using the NuMI trigger, this is not so much of a

problem and there are enough cosmic events in the beam spill sideband even after veto to

provide a data-driven cosmic background prediction within the beam spill after all the tuned

selections are applied. This is done by rescaling cosmic events passing all selections in the

sideband to the length of the beam spill window.

All this is done to ensure that the analysis design is completely blind to the FD data before

everything is finalized. The cosmic veto, selection tuning using separate cosmic trigger

events, the cosmic overlay process are designed without looking at any data collected from
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the FD NuMI trigger. These are then applied appropriately to actual data spills, both as a

way to save reconstruction time and estimate the actual cosmic background in the oscillated

data within the NuMI beam spill. Data-driven estimates of the beam neutrino background

are also developed, but these require utilizing the Near Detector data which will be described

later on. The selections themselves are tuned assuming “dumb” oscillations (described in the

previous section), which basically use approximate formulae for the oscillation probability

and are designed to ensure that the tuning doesn’t hinge on a particular choice of oscillation

parameters.

3.3.1 The νµ → νµ Channel

Fig. 3.21 illustrates the selection flow for the disappearance channel. For this channel,

a series of basic quality cuts requiring less than 5 GeV reconstructed energies and having

atleast 20 hits and a reconstructed kalman track are applied. The CNN-based cosmic veto

cuts are also applied.

Events are required to be fully contained in the Far Detector. This gets rid of a large portion

of cosmogenic background that travel the full extent of the detector, mainly coming in from

the top wall. The important reconstructed variables deciding the containment criteria are :

• Projected number of cells to the detector boundary using the kalman track direction,

both forward and backward

• The number of planes to the front and back of the detector from the interaction slice

• The minimum distance of each FuzzyK prong to the end walls of the detector (6 in

total)

The containment cuts are tuned using a loose preselection involving the BDT identifying
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Figure 3.21: Schematic of the cutflow used for the selection in the disappearance channel

the kalman track (ReMID > 0.75) and the cosine of the track angle (> 0.5). Different

metrics were used for tuning and were assessed using the resulting signal/background ratio.

In addition the tuned cuts were seen to be similar for both FHC and RHC, so a common

set of cuts are applied to both beam modes. The metrics used were the fraction of escaping

energy in the detector and the energy resolution of the estimator. These were found to be

similar in effect for the signal/background ratio. The idea is that events closer to the edge

of the detector have a higher fraction of escaping energy and consequently a lower energy

resolution. The tuning was then done to find points in the detector where the spectrum of the

metric was flat and unchanged across the fiducial volume. Since a lot of cosmic background

comes from the top wall, the tuning also took this feature into account by tightening the

minimum distance required of the prongs to the top wall. As a result the fiducial volume

considered in the analysis involves regions 60 cm away from the top wall and ∼ 15 cm away

from the other walls (The actual cuts are 18 cm from the front and back and 12 cm from the
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rest of the walls). In addition, atleast 1 plane is required behind and ahead of the interaction

slice and atleast 6 cells are required projected forwards and backwards from the kalman track

direction to any detector boundary. The quality and containment criteria serve to reduce

O(106) cosmic background events to O(103) events. The signal efficiency at this stage is

∼ 40%(∼ 45%) for FHC (RHC).

Figure 3.22: The cosmic rejection BDT used in the disappearance channel

Downstream of these selections, a dedicated cosmic rejection BDT is developed to further

reduce cosmic events in conjunction with the CVN νµ score and the muon PID - ReMID.

The cosmic rejection BDT is developed on the following kalman track inputs. The kalman

track is identified as the track having the largest muon PID.

• cosine of the kalman track angle with the beam direction and the Y direction

• the length of the kalman track

• the maximum Y-coordinate of the track

• the distance of the track from each end wall of the detector

• fraction of total slice hits in the kalman track
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• the transverse momentum fraction of the kalman track

Cut Level νµ ν̄µ Total Beam Bkg NC Cosmics Effic Purity
No Cut 602 43.1 124 563 2.52×106 - -
Quality 569 41.0 121 490 4.72×105 0.95 1.2 ×10−3

Containment 249 14.1 83.9 336 6.99×103 0.41 0.03
Cosmic Rej. 239 13.8 78.2 293 1.54 ×103 0.40 0.11

Full PID 201 12.5 0.72 2.51 6.02 0.33 0.96

Table 3.1: Predicted signal and background components along with the signal selection
efficiencies and purities in the disappearance channel at various cut stages for FHC

Cut Level ν̄µ νµ Total Beam Bkg NC Cosmics Effic Purity
No Cut 193 111 45.8 225 1.63 ×106 - -
Quality 186 106 45.0 195 2.99×105 0.97 6.2 ×10−4

Containment 86.7 35.5 32.0 132 4.38 ×103 0.45 0.02
Cosmic Rej. 84.9 32.8 28.9 107 635 0.44 0.1

Full PID 79.5 25.7 0.34 0.79 1.65 0.41 0.97

Table 3.2: Predicted signal and background components along with the signal selection
efficiencies and purities in the disappearance channel at various cut stages for RHC

Each of these inputs exhibit significant separation power between signal νµ-CC events and

cosmic events. The BDT technique allows us to exploit the correlations between these

inputs to further separate them. The tunings were done in 3D PID space (BDT vs CVN

νµ vs ReMID) to further exploit correlations between the different PIDs. These are tuned

according to a figure of merit (FOM) derived as :

FOM2 =
S2

S +B
(3.4)

The FOM is calculated for both events between (0, 5) GeV and events only in the dip region

(between (1, 2) GeV). The performance was found to be similar for both metrics. As a result,

the PID cuts are Cosmic BDT > 0.45, CVN νµ score > 0.8, ReMID > 0.3. The CVN νµ

score was found to be the most performant related to cosmic rejection and as a result of these

cuts, the cosmic contamination was found to be only 6 (1.7) events for FHC (RHC) after

the application of these PID cuts. The overall signal efficiency after all selections stands at

33% (41%) and the signal purity is > 96% for FHC (RHC), as shown in Tables 3.1 and 3.2.
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The oscillation spectrum is binned in reconstructed neutrino energy and optimized to max-

imize the sensitivity of maximal mixing rejection. Since most of the power here comes from

the dip region (1, 2) GeV (more pronounced dip ∼ closer to maximal mixing), 10 bins of

0.1 GeV are chosen in this region, limited by the neutrino energy resolution. Events are

binned in progressively increasing sizes beyond 2 GeV with (2, 3) GeV in 0.25 GeV bins,

(3, 4) GeV in 0.5 GeV bins and a single bin for (4, 5) GeV. The bin boundaries before the

dip region are 0 GeV and 0.75 GeV.

Figure 3.23: The 4 quantiles of hadronic energy fraction for FHC (left) and RHC (right)
shown in terms of the chosen analysis binning scheme

A significant improvement in sensitivity to the oscillation parameters relevant in the disap-

pearance channel can be obtained by splitting the FD oscillation spectrum into 4 quantiles of

reconstructed hadronic energy fraction, Ehad/Eν [116], as shown in Fig. 3.23. The quantiles

are built by selecting 4 equally populated regions Ehad/Eν for each Eν bin described above.

The quantile boundaries are chosen using true νµ-CC events without any oscillations. As

we’ve seen, the neutrino energy resolution for νµ-CC events is largely driven by the hadronic

energy resolution, ∼ 26% as opposed to the muon energy resolution, ∼ 3%. In the full

oscillated spectrum in the dip region, there is also a significant danger for events to move

across bins or in and out of the dip region because of the estimator which can cause a large

bias in the measurement. These events between (1, 2) GeV are a mixture of many different

interaction types, QE → DIS as the Q2 of the interaction increases. The interaction Q2 is

highly correlated to the inelasticity of the event, i.e the hadronic energy fraction Ehad/Eν .
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As a result, QE event energies are easier to resolve compared to DIS events. Consequently,

the reconstructed observable Ehad/Eν is a good predictor for the interaction type as well as

the neutrino energy resolution. The energy resolutions per quantile vary from 4.2% (4.0%)

in the first quantile to 10.5% (9.3%) for the last quantile for FHC (RHC) events, as seen in

Fig. 3.24. By splitting up the spectrum into quantiles of this observable, one can therefore

ensure that

• Events within a given quantile are handled separately from events in another quantile

in the fit to the oscillation data. This means that events with better energy resolution

are handled separately and consequently reduces the amount of movement of events

in the dip region for that quantile, since they are well resolved by the estimator. The

problem of events moving into and outside the dip region in the full spectrum is turned

into a problem of events moving only in higher hadronic energy fraction quantiles. This

improves the sensitivity for say, maximal mixing rejection.

• Events are largely separated by their interaction types. QE events dominate the first

quantile, QE and MEC events populate the second quantile, MEC and RES events

populate the third and DIS events dominate the last quantile. This ensures that any

uncertainty involving the relative composition of the different interaction types has

smaller knock-on effects on the spectrum in the dip region and consequently a smaller

systematic effect on the oscillation measurement.

In addition, the small background seen in the disappearance channel are seen to pretty much

all lie in the last quantile. This has an additional improvement for sensitivity due to the

signal and background separation that is a consequence of this procedure. This is due to the

fact that most of the background events are either NC which mimic νµ-CC events only if

the lepton track is quite small and appears mixed in with the hadronic component, or they

are energetic cosmic events whose energies cause the muon track to exhibit significant non
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Figure 3.24: The νµ-CC energy resolutions for different hadronic energy fraction quantiles
shown for FHC (left) and RHC (right)

MIP-like behavior which is picked up the energy estimator as a hadronic component.

All told, the hadronic energy fraction splitting and the varying bin sizes have an effect

equivalent to an improvement of 20% in sensitivity for maximal mixing rejection. It was also

seen that splitting the spectrum into more than 4 quantiles had diminishing improvements.

3.3.2 The νµ → νe Channel

Fig. 3.25 illustrates the selection process in the appearance channel. In this channel, after

the cosmic veto, a series of quality cuts are applied to ensure a clean sample of events

and even get rid of a bunch of junk cosmic events. Events are rejected if they have more

than 8 hits in any given plane to cut out FEB flashers. They are also required to have a

reconstructed vertex and atleast one reconstructed FuzzyK prong. A basic preselection is

applied to moderate the fraction of νµ-CCs and NCs in the sample. Interaction slices are

required to have atleast 30 hits and atmost 150 hits. Events are selected with reconstructed

νe-CC energies between 1 GeV and 4 GeV. The longest prong in the slice is required to be

atleast 100 cm and atmost 500 cm. Longest prongs of more than 500 cm are dominated by

νµ-CC events.
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Figure 3.25: Schematic of the cutflow used for the selection in the appearance channel

As for the disappearance channel, the containment cuts are the primary set of criteria to

get rid of a large portion of cosmic interactions. The containment cuts are tuned using the

minimum distance of all prongs to each of the end walls of the detector, 6 in total. As before

these are tuned by looking at the escaping energy fraction and the signal energy resolution

metrics. And similar to the disappearance channel again, the distance to the top wall is

tightened relative to the other walls since this is where cosmics dominate. As a result, the

containment criteria are given by requiring events atleast 63 cm from the top wall, 18 cm

from the front and back and 12 cm from the rest.

As with the disappearance channel, a dedicated cosmic rejection BDT [117] (shown in Fig.

3.26) is trained for both FHC and RHC and is tuned in conjunction with the CVN νe PID
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Figure 3.26: The response of the cosmic rejection BDT used for the core selection

score to get rid of a lot of cosmic events that make it into the inner regions of the detector

as well as maximize the amount of signal with respect to beam backgrounds, mainly the

beam-νe-CC contamination but also NCs and νµ-CCs. It is important to note that the CVN

νe PID was trained to be agnostic towards beam νe-CC events vs oscillated νe-CC events

as they’re the same topologically. However the tuning treats them differently. The cosmic

rejection BDT was trained on the following reconstructed inputs :

• number of hits in the slice

• the asymmetry in the hits at the start and the end of the event

• the transverse momentum fraction of the entire event with respect to the beam direction

• the containment variables, (distance of prongs to each end wall) to see if one can exploit

any correlations downstream after applying the containment

• the fraction of energy in the identified electron (most energetic prong)

• the reconstructed width of the electromagnetic shower cascade
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One of the most powerful variables in the BDT is the transverse momentum fraction of the

event, which by momentum conservation should be 0 for neutrino events if all directions are

reconstructed perfectly and close to 1 for downward going cosmic events. In addition, the

distance to the top wall of the detector is also seen to be good at rejecting cosmic events by

using its separation power in conjunction with the other variables in the BDT.
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Figure 3.27: 2D distributions of signal purity (color scale) and signal content (box size) in
CoreBDT-CVN space for FHC (left) and RHC (right) used in the core selection. Overlaid
are the tuned core analysis bins at low, mid and high CVN respectively. Only the latter two
are used in the analysis

The tuning is carried out in 2D PID space (BDT vs CVN νe), as illustrated in Fig. 3.27. It

is important to note that each PID has specific strengths, the BDT is good at getting rid of

cosmic events specifically while the CVN can take up a large portion of the slack for rejecting

beam backgrounds that are not νe-CC like. In fact, the CVN score is also good at getting

rid of cosmics but it turns out that there is a correlation between the CVN and the BDT

where even at high CVN scores, one can see a significant cosmic contamination which can

be gotten rid of by the BDT. One can study this behaviour by looking at a 2D “box-plot”

in PID space, where the color palette indicates the signal purity and the box sizes indicates

the amount of signal contained in that bin. It is evident from this plot that there are three

important regions in this PID space, one at very high CVN scores where the signal purity

is great (> 80%) and where most of the signal actually lives, one at an intermediate CVN

score where the signal purity is in the range of ∼ 50% to ∼ 80% and one at lower CVN
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scores where the signal purity is < 50%. The intermediate regions are fairly large in terms

of their overall signal content to justify including them in the final sample.

Therefore, the tuning is carried out to find 3 CVN boundaries and a single BDT boundary

to maximize the figure of merit given as :

FOM2 =
3∑
i=1

S2
i

Si +Bi

(3.5)

where i runs over the different regions. One can allow the BDT cut to roam within each

region separately as well but it was found to have a tiny effect on the overall FOM. The

tuning was carried out with a loose CVN νe cut of > 0.5. Different figures of merit were

also tried by including an error component in the amount of background selected to mimic

a systematic uncertainty, but were found to have little effect on the results of the tune. The

tuning ended up pulling the lowest CVN boundary right to the edge of 0.5, suggesting that

in this region, the FOM depended much less on the signal purity, given by Si
Si+Bi

but rather

the actual signal content in this CVN bin, Si. Because the aggregate purity was terrible in

this lowest CVN bin (∼ 20%) and the actual signal content itself was also much lower than

the other regions, the FOM gain from this bin was small enough (∼ 3%) to justify dropping

this sample to ensure our measurement doesn’t rely on a CVN bin heavily swamped by

backgrounds where the systematic uncertainties would dominate. This selection flow results

in a signal efficiency of about ∼ 53%(∼ 63%) and an overall purity of ∼ 74% (∼ 64%) with

CVN boundaries defined by 0.84 (0.85) and 0.97 (0.97) for the FHC (RHC) beam mode .

Most of the remaining background is from the beam with cosmics pared down to ∼ 1.5(0.6)

events. The background is dominated by beam νe-CC events which mostly lie in the high

CVN bin. The next largest background is NC and most of the non-νe-CC background have

an electromagnetic component as a result of π0 decays where the second γ cascade is too

small to identify or buried within the first one. The two CVN samples are split into energy

bins of size 0.5 GeV from (1, 4) GeV. This spectrum shows a slight separation power between

108



the irreducible beam νe-CC background and the signal of oscillated νe-CCs which is due to

the different flux spectra for these components.

Figure 3.28: Example of a peripheral νe-CC event near the edges of the Far Detector

In addition to this sample, a neat idea to improve the sensitivity to the oscillated signal

events is by trying to reclaim some of the events that have been rejected by the above set

of selections. It turns out that there is a fair chunk of signal events that are lost primarily

due to the containment definition. One example of such an event is in Fig. 3.28. The

containment criteria described above defines a “core” fiducial volume in the Far Detector

within which one can expect our BDT input variables like the transverse momentum fraction

and the energy estimator to work well. However, in the periphery of the detector, one finds

a fair amount of easily identifiable νe-CC events that would add to the sensitivity of the

oscillation measurement. Even though this region is dominated by cosmic backgrounds, one

can train an additional BDT with inputs specialized to this region and in conjunction with

a high CVN νe score, moderate this background to an extent where an appreciably pure
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sample can be added to the original “core” sample. The estimator is not as trust-worthy in

this region however, since the signal events might not be fully contained, so this “peripheral”

sample is a single-bin sample that is added on to the “core” spectrum binned in energy. The

peripheral BDT (shown in Fig. 3.29) is therefore trained with inputs given as :

• the number of hits in the slice (to ensure there are events with enough hits in them)

• the asymmetry in the hits between the start and the end of the cluster

• the transverse momentum fraction, now split into two separate variables, px/p and

py/p, to exploit any differences in the individual momentum fractions

• the distance to the top of the detector

• the vertex co-ordinates in X, Y and Z.

Figure 3.29: The response of the cosmic rejection BDT in the peripheral selection for the
appearance analysis

The BDT is trained on events that fail the above containment criteria with a loose CVN cut

applied to ensure the signal fraction is high. The primary background here are cosmic events

as expected. As is evident, the peripheral BDT is mainly made up of variables that describe
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Figure 3.30: 2D distributions of signal purity (color scale) and signal content (box size) in
PeriBDT-CVN space for FHC (left) and RHC (right) used in the peripheral selection. The
box cut represents the tuned analysis bin

Cut Level νe ν̄e Total Beam Bkg NC Cosmics Effic Purity
No Cut 96.8 1.84 1.58 ×103 820 2.95 ×106 - -

Data Qual. 93.2 1.78 1.5 ×103 680 5.12×105 0.96 1.81×10−4

Containment 71.4 1.39 560 510 2.58×104 0.74 2.65×10−3

Cosmic Rej. 63.5 1.02 91.5 169 353 0.66 0.09
Full Core PID 52.0 0.86 11.4 4.73 1.51 0.54 0.74

Basic Peri Cuts 38.7 0.69 549 508 4.53×105 0.4 8.53×10−5

Full Peri PID 8.63 0.19 3.84 0.25 1.63 0.09 0.59

Table 3.3: Predicted signal and background components with the signal selection efficiencies
and purities in the appearance channel at various cut stages for FHC

where the slice lies in the detector and other general slice characteristics, rather than looking

for electromagnetic shower properties. This improves upon the containment chosen for the

core sample since now the BDT can exploit correlations between these variables rather than

assuming the containment variables are independent of each other. One can then tune in

2D PID space (Peripheral BDT vs CVN νe) as before to guarantee a relatively pure sample

of signal events, shown in Fig. 3.30. The tuning is carried out in a similar fashion to the

core sample PID tuning but on events that fail any of the selections downstream of the basic

quality cuts. A hard constraint is also applied on the CVN boundary, i.e an initial CVN cut

defined by the high CVN cut (0.97) in the core sample is chosen. One then finds that at

even higher CVN values compared to this, we can loosen the requirements on the BDT for

cosmic rejection, since CVN can take up a bit more of the slack here. Therefore, one arrives
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Cut Level barνe νe Total Beam Bkg NC Cosmics Effic Purity
No Cut 27.0 5.14 723 328 1.92 ×106 - -

Data Qual. 26.4 4.92 693 266 3.25×105 0.98 8.12×10−5

Containment 20.9 3.72 252 199 1.61×104 0.77 1.26×10−3

Cosmic Rej. 19.3 2.57 27.4 57.8 296 0.72 0.05
Full Core PID 17.3 1.96 5.43 1.6 0.59 0.64 0.64

Basic Peri Cuts 8.6 2.25 259 200 2.88×105 0.32 2.97×10−5

Full Peri PID 3.01 0.42 2.11 0.12 1.0 0.11 0.45

Table 3.4: Predicted signal and background components with the signal selection efficiencies
and purities in the appearance channel at various cut stages for RHC

at a “double-box” like cut that select the purest bins in this space where most of the signal

lies. At a CVN cut of 0.995, the BDT cut is looser with a value of 0.56 while at the previous

CVN boundary of 0.97, the BDT cut is tighter with a value of 0.6. This is similar for both

FHC and RHC. Looseing the CVN constraint of 0.97 would require further tightening the

BDT to very high values which doesn’t buy us a lot of signal. In summary, the peripheral

tuning exploits a further correlation between the peripheral cosmic rejection BDT and high

values of CVN to ensure a relatively pure sample. This sample improves the sensitivity to

the oscillation measurement by adding an equivalent of 20% more data.

Since this sample involves very high CVN scores and is in the periphery of the detector, the

backgrounds are dominated by beam νe-CC and cosmic events. The purity in this sample is

∼ 60% (∼ 45%) for FHC (RHC), described in Tables 3.3 and 3.4.

We’ve seen therefore that the selections are capable of selecting as much signal as possible

in a detector environment that is flooded by cosmics. They utilize BDTs that incorporate a

fuzzier definition of contained events in order to capture the signal wherever they might arise

in the detector. We’ve also seen how most of the backgrounds are neutrino events that have

electromagnetic characteristics with only a tiny fraction of them given by cosmic events.

The cosmic backgrounds that remain are mostly small clusters of hits that arise from a muon

track releasing some bremsstrahlung radiation which are clustered separately by the slicer
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Figure 3.31: Example of a delayed bremsstrahlung shower detached from the parent muon
that produced it

and the PIDs are unable to reject as not being νe-CC like. In rare cases, these bremsstrahlung

γs are sufficiently detached from the muon track and also energetic enough to look like a

well developed shower cascade, as shown in Fig. 3.31. Since this is a completely separate

slice, there are no well-defined characteristics that can be used to remove such events which

can contaminate the high purity sample as a result of having high PID scores. One can get

rid of a fraction of these events that could exist in the sample by looking for a muon track

close in time and space to the bremsstrahlung slice [118]. First, a selection is made on the

difference in mean slice times between a given slice and its closest-in-time neighbour slice,

as shown in Fig. 3.32. Beam events in general have a much wider ∆t distribution as defined

above and cosmics exhibit a larger peak. Within this peak, events are rejected from the

sample if they’re both close in space to its closest-in-time neighbour and if its closest-in-time

neighbour is near the top wall of the detector, as shown in Fig. 3.33. The cuts in these

variables are tuned separately for each of the three bins (two core and 1 peripheral) after all

the regular selections defined above are applied. These set of cuts get rid of ∼ 13% of the
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Figure 3.32: The time delay between closest-in-time slices for cosmics and beam events.
Events near the peak are considered for rejection using further cuts below
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Figure 3.33: Box cuts for events in the time gap peak shown above for cosmics (left) and
signal events (right). Events within the box are rejected from the analysis

remaining cosmic background with no loss of signal or beam events. As such, this doesn’t

add a lot of sensitivity to the measurement since there aren’t a whole lot of cosmics left at the

end but it does make doubly sure that a certain kind of cosmic event will not contaminate

the final sample. Events are required to be atleast 100 ns away from its neighbour or atleast

50 cm (400 cm) from the top wall for the high CVN bins (low CVN bin) or atleast 500 cm

away from its neighbour. Here the top wall requirement is tightened for the low CVN bin

since that’s where most of the cosmics in the final sample are expected to lie. These cuts

are also useful for separate analyses looking for NC disappearance where neutrinos oscillate
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into a sterile neutrino. These detached bremsstrahlung showers are a prominent background

for the sterile neutrino analysis and are tuned appropriately but are also carefully studied

in the 3-flavor νe-appearance channel.

3.4 Near Detector Constraints

The Near Detector data is used to develop constraints on the Far Detector prediction and

reduce the systematic burden of the experiment. This is vital since many systematics mimic

the effect of oscillations and are in some cases significantly large due to theoretical uncer-

tainties for cross-sections and flux. The Near Detector data is also used to characterize the

beam composition and the breakdown of the different beam components in order to ensure

a data-driven estimate for the beam backgrounds at the Far Detector, which are especially

important in the appearance channel.

The signal component in the two oscillation channels therefore utilize νµ-CC data at the

Near Detector, while the beam backgrounds for the appearance channel utilize a νe-CC

rich sample at the Near Detector. The backgrounds for the disappearance channel are tiny

enough so one can use the backgrounds selected in the ND νµ-CC sample to provide the

necessary constraint.

3.4.1 Selection

The selections used for the ND νµ-CC sample for the signal constraints mimic the selections

used in the Far Detector except for the cosmic rejection [113]. This is done to ensure the

Near Detector constraints are carried out using events with a similar kinematic phase space,

since the detectors are identical except in size. Important acceptance differences that arise

due to the difference in sizes will be described in later sections.
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Figure 3.34: The predicted and observed event rates for the νµ-CC sample at the Near
Detector for FHC (left) and RHC (right). The shaded regions represent the 1-σ systematic
error described in the next chapter.

The same basic quality and PID cuts are used as that in the Far Detector disappearance

channel. The PID cuts involve the CVN and the Muon ID (ReMID). No cosmic rejection

cuts are applied since the cosmic backgrounds in the Near Detector are negligible. The

containment cuts are defined by requiring all prongs to be within the regions (−180, 180) cm

in X and Y and between (40, 1525) cm in Z, which includes the muon catcher. However, only

events with the kalman track identified to be the muon are allowed to extend to the muon

catcher region. Events with any other tracks extending to the muon catcher are removed.

This is done to ensure good energy estimation since the cells are interleaved by steel rather

than PVC in the muon catcher and are much harder to calibrate. The muons extending

to this region is not an issue since their energies are estimated by range anyway. Further

containment cuts use geometric criteria to ensure a good energy resolution and utilize cuts

on projections of the kalman track onto the front and back walls of the Near Detector and

so on. In addition, the binning used is similar to the disappearance channel. The wrong sign

contribution is ∼ 10% (∼ 3%) for the RHC (FHC) beam mode and is folded in as signal

for the disappearance channel but not for the appearance channel. The sample is otherwise

relatively background-free, as shown in Fig. 3.34.

For the νe-CC rich sample, the selections try to mimic the appearance channel since this

sample is used to predict the beam backgrounds in that channel. The same quality cuts on
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Figure 3.35: The predicted and observed event rates for the νe-CC sample at the Near
Detector for FHC (left) and RHC (right)

existence of a reconstructed vertex and a FuzzyK prong as well as the maximum allowed

number of hits per plane are used. The reconstructed vertex is required to be within the

fiducial volume defined by the region (−100, 160) cm in X, (−160, 100) cm in Y and (150, 900)

cm in Z. The event is required to be atleast 10 planes away from the front wall. In a similar

fashion to the ND νµ-CC sample, the containment cuts are defined over the start and stop co-

ordinates of each reconstructed FuzzyK prong. These are required to be within (−150, 170)

cm in X, (−170, 150) cm in Y and (100, 1225) cm in Z. The pre-selections also include cuts

on the number of hits in the interaction cluster (between 20 and 200) and the length of

longest prong (between 100 and 500 cm). Events above reconstructed energies of 4.5 GeV

are discarded. The same PID cuts on the CVN νe-CC ID are applied to mimic the Far

Detector sample. They are also binned in a similar fashion, with a low purity and high

purity sample defined by low and high CVN scores. There is no analog of the peripheral

sample at the Near Detector but the FD peripheral beam backgrounds are described by the

ND high PID sample directly, since apart from cosmic rejection the PID cuts between the

high PID and the peripheral sample at FD are the same. This sample has large contributions

from νµ-CC and NC interactions even though it is relatively νe-CC rich. These are roughly

described by ∼ 25% νµ-CC and NC and ∼ 50% νe-CC events coming from the beam for

the FHC beam mode. In the RHC beam mode, there are contributions from 5 components

in this sample due to the larger wrong-sign contamination in the beam, both in νe-CC and
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νµ-CC (neutrinos are wrong-sign in the anti-neutrino beam). There are ∼ 30% wrong-sign

events here, mostly coming from νe-CC events. This is shown in Fig. 3.35

3.4.2 The Cross-Section Tune

Figure 3.36: Comparison of the RFG model used in previous NOvA analyses and the LFG
model used now in terms of the momentum of the struck nucleon

An important step in the analysis is the development of a tune for the cross-section model

using the Near Detector data. As mentioned before, the cross section model coming from

GENIE v3 has many theoretically uncertain aspects that are still being studied and are

therefore incomplete. The Near Detector data can therefore provide an important input to

the cross-section model separate from just using it to correct for the Far Detector prediction.

Indeed, the out-of-the-box GENIE model does not describe the Near Detector data very well,

especially in interaction phase-space variables sensitive to competing interaction effects, such

as the 4−momentum transfer, (q0, ~q) and other variables relevant to the hadronic sector.

As mentioned before, the out-of-the box model contains the Valencia 1p1h calculation taking

into account long-range correlations within a local Fermi gas nuclear model to describe
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Figure 3.37: Corrections to the GENIE hN FSI model based on external pion scattering
measurements used in the NOvA tune. Data shown represents the inclusive pion scattering
cross-section measurements on Carbon

quasi-elastic interactions, illustrated in Fig. 3.36. It uses a Valencia calculation again for

Meson-Exchange Current (MEC) type interactions. For RES and DIS events, GENIE uses

the Berger-Sehgal and the Bodek-Yang models respectively. The final-state interactions

(FSI) are modelled by a hN semi-classical cascade model. Of these, the ND data is used

only to tune the MEC model since this is where the theory is the most lacking [119][120].

Additionally, since GENIE does not provide reweightable knobs for the FSI model unlike

before and it has been known to disagree with external pion-scattering data, the FSI model

is also tweaked to agree with these external measurements using a BDT-based technique,

shown in Fig. 3.37.

MEC events lie right in between QE and RES events in terms of the magnitude of the 4−

momentum transfer, Q2 (= −q2). As a result, the tune is designed to model contributions

from both QE-like and RES-like MEC events. Shown in Fig. 3.38, the Valencia model is

therefore useful as a starting point since it provides enough spread in Q2 in order to develop

the tune. The MEC tune is similar in philosophy to Minerva and is done in the interaction
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Figure 3.38: The observed distributions along with the out of the box GENIE3 prediction
for the visible hadronic energy at the NOvA Near Detector for FHC (left) and RHC (right)

phase-space variables, (q0, |q|). Different from Minerva, the tune is parameterized using a

double-gaussian like model with a total of 13 free parameters as :

wgtMEC = Baseline+ a1 × gauss1(q0, |q|) + a2 × gauss2(q0, |q|) (3.6)

Baseline, a1 and a2 adjust the normalizations of the base Valencia model and the two gaus-

sians respectively. The other 10 parameters describe the two 2D gaussians in this space

with the means and standard-deviations for individual variables q0 and |q| and a correlation

parameter between the two variables. The tuned MEC model therefore shows a double-

peaked structure in these variables, as shown in Fig. 3.39, similar to observations from other

experiments like T2K and Minerva. The resulting data/MC is much improved especially

in variables like the reconstructed visible hadronic energy, hadronic energy fraction, recon-

structed hadronic invariant mass (W) and so on, as shown in Figs. 3.40 and 3.41. It is found

that the FHC tune works quite well for RHC events as well suggesting that the base Valencia

model is able to take differences between neutrinos and anti-neutrinos into account.

It is interesting to note that the overall cross-section for MEC events after the tune is

similar to other components, even though one might expect an ab-initio calculation to have

a significant drop-off vs the other components, since it requires interacting with a correlated
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Figure 3.39: The phase-space of MEC events in (q0, |~q|) space for uncorrected (left) and
corrected using the NOvA tune (right)

Figure 3.40: The distributions of visible hadronic energy at the NOvA Near Detector after
the NOvA tune for FHC (left) and RHC (right)

pair of nucleons rather than a single nucleon. This essentially comes from the fact that

there is a large discrepancy between the out-of-the box interaction model and the Near

Detector data in a phase-space between QE and RES events and the consequent assumption

that it can be described by MEC events. We will discuss the systematic uncertainties in

the interaction model in later sections but in general they aim to be fairly conservative

given this observation, essentially varying the MEC component significantly between QE-

like and RES-like phase space. It is also important to note that since the Near Detector

is a calorimetric detector, biases in the composition of the different interaction types in

the tuned model results in an overall bias in the energy estimator, since we don’t utilize
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Figure 3.41: The distributions of reconstructed transfer momentum at the NOvA Near
Detector after the NOvA tune for FHC (left) and RHC (right)

and indeed find it hard to resolve the interaction phase space in terms of the final state

particles. This is mitigated by splitting up the ND νµ-sample into 4 hadronic energy fraction

quantiles as described in the FD disappearance analysis and constraining each of the FD

quantiles separately using the ND quantiles. We will also discuss ways to mitigate other

biases later on but this confirms even more the importance of hadronic energy fraction

quantile splitting to constrain separately regions where energy resolutions are different. In

addition, the development of energy estimators while ensuring the energy estimator bias is

flat across neutrino energies and interaction types is very much a worthwile endeavour.

3.4.3 ND → FD Signal Extrapolation

To constrain the Far Detector prediction using the Near Detector data, NOvA uses a F/N-

ratio based extrapolation method on Near Detector samples [121]. For the signals to the

appearance and disappearance channels at the Far Detector, the νµ-CC Near Detector sam-

ples are used using the selections defined in previous sections. Let us first describe the

extrapolation methodology, illustrated in Figs. 3.42 and 3.43.

The first important point that the extrapolation takes into account is the fact that neutrino
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Figure 3.42: Illustration of the NOvA signal extrapolation from ND to FD for the disap-
pearance channel

Figure 3.43: Illustration of the NOvA signal extrapolation from ND to FD for the appearance
channel

oscillation probabilities are defined over true neutrino energies, while the ND samples are

binned in reconstructed energies, which are therefore smeared representations. Consequently,

the Near Detector data is unfolded into true energy space by applying a reco-true energy

matrix. Since there are some backgrounds in the ND samples, especially in the RHC beam

mode due to wrong-sign contamination, the ND signal spectrum is derived by “decomposing”

the ND data into the different components proportionally. This is done by taking the ND

data and simulated spectrum into true energy space and reweighting the various components

of the simulated spectrum proportionally to match the ND data spectrum, i.e the residual
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data/MC difference is split proportionally between the different components.

NS,T,corr
j =

∑
i

NData,R
i

NS
ij

NTot,R
i

(3.7)

where N denotes the number of events in a particular bin at ND, i and j denote the ith and

jth bin of the reconstructed energy and true energy spectra respectively. T and R denote

True and Reconstructed labels, while S and Tot denote the signal component and the total

simulated ND prediction respectively. NS
ij denotes the element of the reco-true mixing matrix

and the sum is taken over all reconstructed bins. A similar equation holds for the background

components as well. Once this is done, the true space spectrum is multiplied with the

predicted Far/Near ratio assuming a set of oscillation parameters and then re-folded and

re-smeared back into the reconstructed energy space to obtain a constrained FD prediction :

F S,R,pred
i (~θ) =

∑
j

NS,T,corr
j

F S,unosc
ij

NS,T
j

P osc
j (~θ) (3.8)

where F S,unosc
ij denotes the reco-true matrix at the Far Detector assuming no oscillations

and the prediction is derived for some set of oscillation parameters, ~θ. In the disappearance

channel, the wrong-sign contamination is treated as signal while in the appearance channel,

the contamination is treated as background, since the respective oscillation probabilities are

either identical or different for the two channels respectively. A similar equation holds for

the WS backgrounds in the appearance channel.

Systematic uncertainties in the simulation are handled by varying the simulated spectra

appropriately as defined by the systematic (both in the ND and FD) and carrying it through

this chain individually. Thus, since one is comparing the varying ND spectra to the same

data spectrum, the variation at FD is constrained. This method works especially well for

systematics that are correlated in effect in both the detectors since there’s a cancellation

effect and is helped by utilizing two functionally identical detectors where uncorrelated effects
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are in general small. We will discuss the systematics more thoroughly next chapter but it is

important to note that this set-up with two functionally identical detectors already mitigates

biases coming from “unknown” unknowns as well as “known” unknowns, since we expect

most mismodelling to be correlated across the detectors.

Figure 3.44: Selection efficiency as a function of true transverse lepton momentum at the
two detectors for FHC (left) and RHC (right)

Figure 3.45: Distributions of true transverse lepton momentum for selected events at the
two detectors for FHC (left) and RHC (right)

However, there are known biases that need to be corrected for. We already touched upon

the fact that the disappearance channel uses 4 samples split into quantiles of reconstructed

hadronic energy fraction. Separating these samples correct for differences in energy reso-

lution for given neutrino energies, especially in the dip region between (1, 2) GeV. Each of
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these samples at the FD have an analogue at the ND by just requiring the same ranges of

hadronic energy fraction at the ND. Therefore, the signal prediction in the disappearance

channel uses separate extrapolations for each of the 4 hadronic energy fraction quantiles.

Thus, we are able to constrain the FD samples by also taking into account different en-

ergy resolutions in different interaction phase-space and therefore able to explain the FD

prediction more comprehensively using ND data. This also has an additional reduction in

systematic uncertainties coming from the cross-section model since the quantiles act as a

good separator for the different interaction types. This is done only for the disappearance

channel since the splitting into hadronic energy fraction quantiles are self-consistent here.

For the appearance channel, it is harder to match the hadronic energy fraction for a νµ-CC

event at ND to a νe-CC event at FD. Therefore, for the appearance channel, the combined

νµ-CC spectra is used in the extrapolation.

Figure 3.46: Quantile boundaries for reconstructed transverse lepton momentum in the
appearance channel as a function of the reconstructed neutrino energy at the Far Detector

Another source of bias is the acceptance between the two detectors, which while being

functionally identical, are nevertheless of different sizes and therefore allow different ranges

of interaction phase-space for events that are fully contained within each detector, as can be
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seen in Figs. 3.44 and 3.45. This is evident when looking at the reconstructed transverse

momentum of the lepton (pt) in both the detectors. For a long muon track especially, the

containment criteria will select for a tighter pt spectra in the Near Detector compared to

the Far Detector, since the muon can still come off at larger angles while being contained at

the Far Detector. There is also an effect when extrapolating the ND νµ-CC sample to the

FD νe-CC sample for the appearance channel, where the electrons at FD are almost always

contained. To take this into account, the ND spectra are split into 3 quantiles of pt and

extrapolated separately to the FD, where they’re summed to give the FD prediction. This

is done for both the disappearance and the appearance channels. For the disappearance

channel, the pt splitting is done for each hadronic energy fraction quantile, resulting in the

extrapolation of 12 samples in total at the ND to predict 4 samples at the FD. For the

appearance channel, the number of samples extrapolated are 3, as shown in Fig. 3.46. As

a result, one can mitigate biases related to the acceptance by constraining FD events at a

particular region of phase-space using ND data at a similar phase-space, defined by pt [122].

3.4.4 Estimation of Beam Backgrounds

The beam backgrounds in the appearance channel consist of misidentified νµ-CC and NC

events and the νe-CC contamination in the beam. Each of these are estimated from ND data

using the νe-CC selections described above. Here the ND data is designed to correct for the

relative composition of each of these components. This is done using separate methodologies

for the FHC and RHC beam modes, since the WS contamination in the RHC beam mode

is much higher and there are a lot more components to constrain [123].

For FHC, the beam νe-CC sample is first constrained using 2 high statistics ND νµ-CC

samples, a fully contained sample and an uncontained sample, as seen in Fig. 3.47. This is

referred to as the Beam Electron Neutrino Decomposition (BEN). The contained sample is
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Figure 3.47: The νµ-CC contained (left) and uncontained (right) samples used for the beam
νe-CC constraint at the Near Detector showing relative contributions of the parent mesons

Figure 3.48: 2D phase-space distributions of the parent pion in terms of its (pt, pz) shown
for νµ-CC events in the contained sample (left) and the selected νe-CC events at the ND in
the analysis (right)

selected using similar criteria as the νµ-CC sample for signal extrapolation. The uncontained

sample is selected by reversing these containment cuts. The contained sample is dominated

by neutrinos from π± while the uncontained sample has a larger neutrino energy range and

is therefore dominated by K±. The ND data in the contained sample is used to derive

constraints on the π± contribution in pt − pz space (shown in Fig. 3.48) , denoting the

transverse and longitudinal momenta of the parent π±. These weights are then transferred

over to the π± contribution in the uncontained sample and the K± normalization is then

fixed to match the ND data in this sample, in the energy range where it is dominant. These

weights are then individually used to fix the ND beam νe-CC component in the ND selection
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depending on the individual parents that produced those νe-CC events. The ND beam νe-CC

events coming from π± are reweighted in pt − pz space, while the events coming from kaons

are modified by a normalization. The kaon weights are important here since there is quite

a significant contribution of the beam νe-CCs coming from kaons, even at analysis energy

ranges of (0.4.5) GeV. This is mostly in the low CVN score bins. BEN is therefore designed

to measure the amount of beam νe-CCs more precisely using information from their parents.

The uncertainties in the νµ-CC/νe-CC cross-section ratio are handled by propagating them

through the decomposition procedure separately.

Figure 3.49: The spectrum of the number of Michel e−s for various components in the νe-CC
selection at the Near Detector

Once the beam νe-CC component is constrained, the other components, νµ-CC and NC in the

νe-CC sample, are constrained by looking at the reconstructed number of Michel electrons

in this sample, as shown in Fig. 3.49. The idea is that νµ-CCs on average have one extra

Michel electron than the NC events, where the Michel electrons in NC come from π decay.

Therefore, this observable is a good separator for the two components. The Michel electrons

are reconstructed by a separate reconstruction algorithm, called MEFinder, which acts on

clusters tagged as noise by the original slicer. A separate PID (MID) is developed to tag

some of these clusters as Michel like based on the ∆t relative to its parent slice and the

129



energy deposits in the Michel cluster. Based on this PID, the spectra for the number of

Michel electrons per event in the ND νe-CC sample is drawn in each of the analysis bins in

energy × PID space. This is only done for bins where the νµ-CC and NC contribution is

significant, which is mostly in the Low CVN score region. A likelihood fit to the number of

Michel electrons is then done keeping the beam νe-CC contribution fixed based on the BEN

constraint and modifying the normalizations of the two other components to match the ND

data. Thus one obtains a data-driven way to decompose the ND data into the 3 components

and any residual data/MC difference is split proportionally between all the components,

including small WS contaminations.

Figure 3.50: The uncorrected and corrected distributions for the νe-CC sample at the Near
Detector for FHC (left) and RHC (right)

For RHC, since the degrees of freedom are larger and the WS contribution is ∼ 30%, these

methods don’t work. As a result, the data/MC difference is just split proportionally between

all the components, which is called proportional decomposition. Fig. 3.50 illustrates this

procedure for both FHC and RHC.

These components are then individually extrapolated to the Far Detector, except the extrap-

olation doesn’t proceed by unfolding into true energy space. This is because the extrapolation

of these backgrounds are designed to correct for their relative composition and the νe-CC

estimator is not designed to work for misidentified components such as νµ-CC and NC. More-

over, since these components are expected to oscillate very little, one can be comfortable
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about making the extrapolated prediction as :

FB,R,pred
i (~θ) =

∑
j

NB,R,corr
i

FB,unosc
ij

NB,R
i

P osc
j (~θ) (3.9)

where NB,R,corr
i denotes the decomposed result of the particular background component for

the ith analysis bin and the sum is taken over bins in true energy space using the FD reco-

true matrix. For the peripheral bin in the FD disappearance channel, the constraints from

the high CVN bin at ND are directly used since there is no other analogue of the peripheral

events at ND. This entire procedure is also done separately in the 3 pt quantiles defined before

of the lepton transverse momentum and summed up to obtain the Far Detector prediction.

The pt quantile splitting is not done for the peripheral bin at FD since the pt reconstruction

is unreliable in this region at the edges of the detector.

3.5 Far Detector Prediction

Once all the neutrino components are extrapolated to the Far Detector, the remaining as-

pect is the cosmic backgrounds. The cosmic backgrounds in the NuMI trigger within the

beam window are estimated using the NuMI timing sideband as mentioned before. These

cosmics in the sideband are rescaled to the beam window livetime of 10µs per spill. The

statistical uncertainty is taken into account as a separate systematic. The shape of the cos-

mic distribution cannot be predicted from this sideband as there aren’t enough statistics.

Therefore, the shape is predicted from the minimum-bias 10 Hz cosmic trigger data stream

by reweighting the NuMI sideband spectra shape to the cosmic trigger spectra shape. The

final predicted events and their respective components are shown in Figs. 3.51, 3.52 and

3.53. The predicted event counts are shown in Tables 3.5 and 3.6.

This prediction is fit to the NuMI data using the traditional Poisson log-likelihood for binned
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Figure 3.51: Predicted FD spectra for the appearance channel for FHC (left) and RHC
(right) using best fit oscillation parameters obtained from a previous analysis

spectra [124]. This is given as :

−2 lnL(~θ, ~η) = −2
N∑
i=1

[
vi(~θ, ~η)− oi + oi ln

oi

vi(~θ, ~η)

]
+

M∑
k=1

η2
k (3.10)

where vi denotes the predicted number of events in each analysis bin as a function of the

oscillation parameters ~θ and nuisance parameters ~η. oi is the observed number of events in

that bin. The nuisance parameters, ~η come from systematic uncertainties in the prediction,

derived as 1σ, 2σ etc deviations in the central value prediction. The last term denotes the

penalty given to favoring a non-zero systematic variation for M set of systematic uncertain-

ties. We will describe how the nuisance parameters are derived in the following chapter.

The best-fit oscillation parameters are derived by minimizing this equation with respect to

these parameters and is done using a MIGRAD based algorithm [125]. The likelihood takes

into account the Poisson deviations of the prediction from data in each analysis bin (given

by the ln term) as well as an overall Poisson fluctuation on the total number of predicted

events.
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Figure 3.52: Predicted FD spectra for the disappearance channel for FHC using best fit
oscillation parameters obtained from a previous analysis

Low PID High PID Peripheral Total

FHC

νe CC Signal 11.73 49.37 10.20 71.31
ν̄e CC WS 0.18 0.65 0.20 1.03

Beam νe + ν̄e CC 2.29 7.59 3.50 13.39
νµ + ν̄µ CC 0.57 0.16 0.12 0.85
ντ + ν̄τ CC 0.18 0.31 0.12 0.85

NC 3.66 1.01 0.22 4.88
Cosmic 1.32 0.22 1.68 3.22
Total 19.93 59.31 16.04 95.27

RHC

ν̄e CC Signal 2.10 14.20 2.90 19.20
νe CC WS 0.48 1.79 0.52 2.80

Beam νe + ν̄e CC 0.88 4.07 1.92 6.86
νµ + ν̄µ CC 0.10 0.04 0.05 0.20
ντ + ν̄τ CC 0.11 0.19 0.07 0.36

NC 1.15 0.43 0.10 1.68
Cosmic 0.42 0.14 0.97 1.53
Total 5.24 20.86 6.54 32.64

Table 3.5: Predicted event rates for various components and PID bins in the appearance
channel using best fit oscillation parameters obtained from a previous analysis
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Figure 3.53: Predicted FD spectra for the disappearance channel for RHC using best fit
oscillation parameters obtained from a previous analysis

Q1 Q2 Q3 Q4 Total

FHC

Signal: νµ → νµ 41.60 39.96 42.55 48.99 173.10
ν̄µ → ν̄µ 5.31 2.72 2.27 1.26 11.56

Total Signal 46.91 42.67 44.82 50.25 184.66
NC 0.10 0.16 0.40 1.81 2.47

Cosmic 0.36 0.36 0.89 3.50 5.09
Other 0.14 0.14 0.16 0.33 0.77
Total 47.52 43.34 46.27 55.88 193.00

RHC

Signal: ν̄µ → ν̄µ 19.98 16.78 15.60 14.11 66.47
νµ → νµ 3.50 4.74 6.09 9.76 24.08

Total Signal 23.48 21.52 21.69 23.87 90.56
NC 0.02 0.04 0.09 0.63 0.78

Cosmic 0.06 0.03 0.11 0.73 0.94
Other 0.06 0.08 0.09 0.12 0.35
Total 23.62 21.66 21.98 25.36 92.62

Table 3.6: Predicted event rates for various components and quantiles in the disappearance
channel using best fit oscillation parameters obtained from a previous analysis
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Chapter 4

Systematic Uncertainties

The systematic variations in the simulated model are designed to capture many different

types of uncertainties coming from the various components that go into making a prediction

at the FD, for example in the flux model, the cross-section model, calibration etc. These

enter the oscillation fit as penalty terms, where the penalty is calculated for the amount of

σ deviation favored in the oscillation fit, i.e if the fit favors a 1.2σ deviation from the central

value prediction then the penalty to −2 lnL is given by 1.22 = 1.44.

However, given this parameterisation it is often hard to define what constitutes a numerical

σ of deviation. Many uncertainties in the simulated model which we will discuss in more

detail are heavily non-Gaussian and can even be correlated to each other in their effect on

the binned spectra. Some of the uncertainties are even purely “turn-on” in the sense that

only a positive σ deviation is defined and it turns off at negative σ.

As a result, the parameterisation is derived by defining the variation in the prediction at

specific σ values, for example : −2,−1, 0, 1, 2 σ and interpolating the deviations in each

analysis bin using a cubic spline-based method, as illustrated in Fig. 4.1. This is sufficiently

general for all the systematics considered in the analysis, including those with non-Gaussian
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Figure 4.1: Illustration of the interpolation procedure for each analysis bin in the appearance
channel for an example light model systematic at the Near Detector. The curves represent
the fractional shift in the prediction based on given shifts at (-1, 0, 1) σ

uncertainties. For example, for a purely “turn-on” systematic, the −2,−1 σ deviations don’t

change the central value prediction at all, while the 1, 2 σ deviations change the prediction

as defined in the systematic uncertainty taken in the model. Therefore, the interpolation

parameterizes the overall deviation for any given σ by fitting a flat line at 0 across negative

σ values and an appropriate curve for positive σ values through the “bridge-points”, 1σ and

2σ. This is also done at each analysis bin separately. The variations at the specific σ values

are taken by modifying the central value prediction at ND appropriately and extrapolating

through the entire prediction chain, including for the beam backgrounds, and arriving at a

modified and constrained prediction at FD for those specific σ values. The fit then favors

a particular amount of σ deviation given by η to match the FD data spectra after taking

into account the penalty given by η2. Defining the variations in the model for given σ values

is therefore the primary function of the systematic analysis of the oscillation parameter
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measurement.

The functional form of the log-likelihood assumes a separation in ~θ-~η space which is necessary

since there are > 50 systematic uncertainties considered in the analysis and navigating such

a high-dimensional likelihood is not feasible. This procedure can be justified by noting that

the systematic uncertainties are often much smaller than oscillation effects even in regions

where they mimic the shape of the oscillation effect. This is why the ND is so important

in oscillation parameter measurements at long baselines since otherwise the measurements

would be completely drowned out by systematic uncertainties, which for example can be as

large as ∼ 9% in the case of the flux model at 2 GeV but because of the ND data constraints

and helped by having two functionally identical detectors, it is mostly cancelled out.

The log-likelihood form also requires that individual systematic uncertainties are not corre-

lated to each other. This is somewhat justifiable for uncertainties coming from completely

separate parts of the simulation for example the flux vs cross-section. However, when dealing

with uncertainties from just the flux model for example, one must take into account these

correlations that could crop up within the errors in the hadron production cross-sections for

different neutrino energies. This is done using a Principal Component Analysis (PCA) to

decompose an ensemble of systematic possibilities in the model into individual uncorrelated

pieces.

4.1 Flux Uncertainties

4.1.1 Hadron Production

As mentioned before in the flux simulation, NOvA uses a Geant-based PPFX model to

predict the flux at the Near Detector and the Far Detector. The cross-sections for the hadron
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production at the target, mainly π and K are constrained using external measurements at

NA49 and MIPP. The relevant uncertainties are derived from the errors in the external

measurements themselves and include errors for producing the individual hadrons at a given

neutrino energy. These errors are evaluated in xF − pt space of the hadron parent. Based

on these errors, the PPFX model provides 100 separate ensembles of flux predictions at the

two detectors for each flux component in two beam modes, (νµ, νe, ν̄µ, ν̄e) × (FHC, RHC).

These ensembles are derived by reweighting the central value flux prediction coming from

PPFX for each event at a given neutrino energy. The 68% envelope of this ensemble results

in ∼ 9% deviation from the central value flux prediction at 2 GeV. It is evident however from

Fig. 4.2, that these ensembles are highly correlated across neutrino energies. In particular

the correlation matrix is highly non-diagonal with two major pieces, one coming from the π

at lower neutrino energies and one from the K at higher neutrino energies [74].

Figure 4.2: The correlation matrix based on the hadron production error for the predicted
PPFX flux from (0, 10) GeV in bins of 0.25 GeV
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4.1.2 Beam Transport

The other major component of the flux uncertainties come from variations in the parameters

involved in the transport of the meson beam using the focussing horns, the beam spot size

and so on [126]. The uncertainties considered in the analysis are given by :

• Horn positions in X and Y, transverse to the beam : A ±3 mm deviation is considered

in each of these directions.

• Position of the graphite target : A ±7 mm deviation along the direction of the beam.

• Horn current (nominal 200 kA) : A ±1% deviation from the normal horn current for

each beam mode.

• Size of the beam spot on the target : A ±0.2 mm deviation from nominal.

• Beam position on target in X and Y : A ±1 mm deviation from nominal. This uncer-

tainty is asymmetric in Y since the NOvA detectors are off-axis.

• Thickness of the water cooling layer in the magnetic horns : A ±0.5 mm deviation from

nominal.

• Earth’s Magnetic Field in the Decay Pipe : A “turn-on” systematic from the nominal

case assuming no magnetic field. The magnetic field was measured to be (0.1,−0.3, 0.07)

Gauss in X, Y, Z respectively.

These uncertainties are derived as ±1σ deviations in the nominal prediction for each of the

beam modes and flux components, (νµ, νe, ν̄µ, ν̄e) × (FHC, RHC).
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4.1.3 Principal Component Analysis

The uncertainties on the flux model for the oscillation analysis utilize a PCA-based approach

to de-correlate the individual pieces of the flux systematics. In rough terms, this means

deriving a covariance matrix in true neutrino energy space by varying all the components of

the flux uncertainties, and then diagonalizing it to obtain the de-correlated and orthogonal

eigenvectors [127][128].

The covariance matrix is derived from many ensembles of flux predictions in each of the 16

components, (νµ, νe, ν̄µ, ν̄e) × (FHC, RHC) × (ND, FD). This is done in 40 bins of size

0.25 GeV from (0, 10) GeV of neutrino energies. This range is the relevant neutrino energy

range for the oscillation analysis and is larger than the reconstructed neutrino energy range

because of NC events whose true energies are in general much higher than their reconstructed

energies. There are 2000 ensembles taken in total, where for each of the 100 hadron produc-

tion ensembles, 20 different ensembles are derived by varying the beam transport parameters

randomly using a Gaussian distribution with width defined by the ±1σ variation in those

parameters.

Before deriving the covariance matrix, the hadron production ensembles are smoothed, as

shown in Fig. 4.3, since the 100 ensembles don’t sample the xF − pt variation of the hadron

parent sufficiently smoothly. This is a prominent effect especially at FD where the overall flux

is small and therefore the smoothening removes any statistical fluctuations in the ensembles.

Due to the fact that many of the beam transport uncertainties are asymmetric around the

central value flux prediction, the covariance matrix is derived by taking the variation around

the central value rather than the mean of the ensemble. The covariance matrix is also defined

in the (ND, FD/ND)-basis rather than the (ND, FD)-basis since this is the relevant basis
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Figure 4.3: Different statistical ensembles of the PPFX weights for the predicted νµ-CC flux
at the Far Detector based on the Hadron production error. Shown are smoothed (left) and
unsmoothed (right) versions

for the extrapolated uncertainty. This is given as :

C =

(
1

Nu − 1

) Nu∑
u=1

( ~Xu − ~Xcv)( ~Xu − ~Xcv)
T (4.1)

where ~Xu and ~Xcv represent the binned histograms for a particular ensemble, u and the

central value respectively. ~X is therefore of size 40× 16 given by 40 bins of neutrino energy

× 4 flux components, (νµ, νe, ν̄µ, ν̄e), × 2 beam modes, (FHC, RHC) × the basis, (ND,

FD/ND). In addition, the ensembles are normalized such that the central value spectra is of

area 1 for each component, beam mode and detector combination. Note that the ensembles

are not of area 1 themselves, the ratio of areas of the ensemble vs the central value are

preserved. The normalization to area 1 is done so each component gets equal importance

in the covariance matrix. However, the ND spectra are further downweighted by a factor

of 10−6 to reduce their importance in the covariance matrix. This is done to ensure the

diagonalisation concentrates on the block matrix defined over FD/ND space rather than

the entire (ND, FD/ND) space. The ND part is still carried through the diagonalisation to

ensure a complete basis.
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Figure 4.4: The covariance matrix representing the full systematic error in the flux model
including hadron production and beam transport. Shown in the F/N basis for different
neutrino components in FHC and RHC

The PCA method involves diagonalizing the covariance matrix, shown in Fig. 4.4 into its

orthogonal eigenvector pieces. These individual pieces then parameterize the individual flux

uncertainties in the fit. Since the covariance matrix is real and symmetric, they are always

diagonalizable and moreover, their eigenvectors are orthonormal with positive eigenvalues,

i.e they can be put into the form :

C = PΛP T (4.2)

where P denotes the matrix of eigenvectors [v1, v2, v3, ..] and Λ = diag(λ1, λ2, ..) denotes the

diagonal matrix of eigenvalues. The pull terms for the covariance matrix in the log-likelihood
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Figure 4.5: The eigenvalue profile of the flux covariance matrix in the F/N basis

fit would be given by :

χ2 = ( ~Nsyst − ~Ncv)
TC−1( ~Nsyst − ~Ncv) = (P−1δ ~N)TΛ−1(P−1δ ~N) (4.3)

By taking δ ~N =
√
λivi one gets a total pull, χ2 = 1 for any index i, since the eigenvectors

are orthonormal, i.e

vTi vj = δij (4.4)

Therefore, the individual uncorrelated ±1σ systematic uncertainties in the flux model are

given as ±
√
λivi, which are called the Principal Components. The systematic variation is

then derived by adding to this the central value prediction and removing the rescaling done

to the area of the spectra. As can be seen from Fig. 4.5, the strength of the PCA lies in the
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fact that not all indices i have to be used in the analysis since only a few eigenvectors have

a significant strength given by their eigenvalues, λi. This is akin to fitting a N-dimensional

hyper-ellipse to the variate data and ignoring the eigenvectors (defined by the axes directions)

which are tiny in magnitude.

The number of Principal Components (PCs) are then chosen by first ordering them in terms

of their eigenvalue and discarding all but a few of them by a variety of coverage checks. The

first metric involves comparing a set of N PCs added in quadrature to the 68% envelope

of the 2000 ensembles. One can then derive a metric based on the fraction of bins that go

> 99% of the way towards the envelope as a function of the number of PCs considered,

N. The coverage is seen to be pretty good with just 5 PCs, with ∼ 85% of the bins having

> 99% coverage, as shown in Fig. 4.6. The remaining bins are concentrated in the low energy
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Figure 4.7: Coverage of the overall flux error for the first 5 Principle Components in terms
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data

region, especially for beam νe and ν̄e, which are expected to have a small overall effect on

the oscillation measurement. If one only looks at the hadron production error, more than

95% of the bins are captured with > 99% coverage. To cover the remaining portion, the 5

PCs are increased by a factor of 25%.

The choice of 5 PCs is confirmed by evaluating the sensitivities to the important oscilla-

tion measurement observables, such as the significance of CP-Violation and Mass Hierarchy

Rejection, shown in Fig. 4.7. This is done using a fit to Asimov data which is just the

central value prediction and comparing it to systematically varied predictions. The first step

involves carrying the 2000 flux ensembles all the way through the analysis chain, including

selection, extrapolation and so on and measuring how much these ensembles differ in their

measurements with respect to the central value prediction taken at no CP-violation and the

Normal Hierarchy at some chosen oscillation parameters. The next is to carry an ensemble

derived from the 5 PCs themselves through the analysis chain and doing the same procedure

as before. A joint fit to both beam modes and the disappearance and appearance channels

is done as in the oscillation analysis. It is evident that the range of sensitivities to the two

measurements is captured by the range coming from 5 PCs.

In this way, a first principles based approach can be used to capture the entire error in the flux
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model while ensuring that the individual pieces of the systematic uncertainty is uncorrelated.

The PCA method does hurt interpretability of the individulal PCs however, since they’re

represented in a more abstract form. But intuitively, one can think of them as being a set

of Fourier modes of the original uncertainty, with one of the largest components being the

normalization uncertainty in the flux and other components having nodes at different points

in neutrino energy, i.e the uncertainties go to 0.

4.2 Cross-Section Uncertainties

The uncertainties for the neutrino interaction cross-sections are derived from both the un-

derlying GENIE model and the custom NOvA tune done on top of it. These take the form

:

• QE Axial Form Factor : These are derived from the underlying Z-expansion formalism.

The knobs provided by GENIE vary the shape and normalization of the axial form

factor. The normalization is changed from the nominal by a factor of −20%/+15%.

This is similar to varying mA, the axial mass in the CCQE Lagrangian derived from the

Llewelyn-Smith calculation [129]. The other uncertainties on the Z-expansion include

the coefficients of the next 4 terms. These are derived as a function of Q2 and a

PCA technique as described above is done to take into account the correlations in the

uncertainties in each of the 4 terms.

• QE RPA : Long range correlations in the nucleus using a local Fermi gas model result in

an overall suppression of the CCQE cross-section at low-Q2 and a slight enhancement

at high Q2. This is taken into account by the GENIE prediction, but the uncertainties

are derived from a study done at MINERvA.

• RES Q2 Suppression : This is motivated by previous NOvA analyses that saw a low-Q2
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Suppression for RES events too, similar to the RPA effect for QE events [130]. The

origin of a possible suppression is unclear and the amount of suppression seen in this

version of the analysis is much smaller. There are indications that this could arise

from lepton mass effects taken into account in the RES model but it is still being

studied. Instead, an uncertainty is derived from a similar suppression seen at MINOS

and applied to the previous GENIE model v2.12 used in the previous NOvA analysis.

This uncertainty is only applied to non-Hydrogen targets in the NOvA detector since

this is expected to come from deviations in the nuclear model with multiple nucleons.

• FSI : These are derived by constructing knobs on FSI parameters such as the mean

free path of the outgoing particle in the interaction (±30%), the fate of the outgoing

particles in terms of its absorption (±40%), possible pion charge exchange (±20%)

and quasi-elastic scattering (±30%). The knobs are based on measurements done at

T2K/DUET on top of the hN semi-classical cascade model and use the same BDT-

based technique for reweighting the nominal model as was done for the central value

tune [131].

• DIS Non-Resonant Nπ : These involve 50% normalization uncertainties based on the π

multiplicity coming from DIS interactions upto a hadronic mass, W of 3 GeV. Beyond

that, the uncertainty decreases linearly upto 5% at W of 5 GeV.

• DIS Formation Zone : These involve uncertainties on the hadronization length of the

outgoing partons in the nuclear medium upto ±50%.

• MEC (q0, |q|) dependence : The MEC tune derived using ND data is redone under

different assumptions of the base non-MEC model. The non-MEC model is tuned

to make it more QE-like or RES-like using uncertainties on the CCQE normalization

and shape, the RPA effect, the RES uncertainties on the low-Q2 suppression and the

axial and vector masses, mA and mV on the CC RES model. The MEC component is
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refit after varying these components and the uncertainties for the central value MEC

component are taken in this (q0, |q|) space based on the new fits.

• MEC Nucleon Pair Fraction : The Valencia model assumes the fraction of the struck

pair of nucleons, i.e np/(np + nn) (np/(np + pp))for the MEC component to be 0.69

(0.68) for neutrinos (antineutrinos). An uncertainty of −5/15% is taken on this num-

ber. This is asymmetric since other MEC models have higher fractions of struck nu-

cleons and the uncertainty is designed to cover that range.

• MEC Absolute Cross-Section : This is done by taking an envelope over different pre-

dictions for the MEC cross-section (SuSA and Martini models) using the base model

from Valencia. This is parameterized as a function of true neutrino energies.

• νµ/νe Cross-Section Ratio : These are derived from the base cross-section ratio by

taking into account corrections from radiative processes (2%) and possible second-class

currents (2% anticorrelated for ν-ν̄).

• Others : These are mainly knobs provided by GENIE itself on various processes such as

on the NC/CC cross-sections in the Coherent interaction channel, the NC Elastic scat-

tering parameters, the NC/CC RES axial and vector mass parameters and underlying

knobs on the Bodek-Yang and Berger-Sehgal models.

The largest 20 of the above systematics are used directly in the fit, while the rest of the

“small” uncertainties are handled using a similar PCA approach as defined above [132]. The

PCA is done using the analysis selections and binning and uses the samples, νµ-CCQE, νµ-

CC Non QE, NC in the disappearance selection and νe-CCQE, νe-CC NonQE, νµ-CC and

NC in the appearance selection. Similar samples are chosen for anti-neutrinos. The largest

12 PCs are chosen and rescaled by 35% to cover the effect of these small uncertainties. Fig.

4.8 shows the total systematic error taken on the cross-section model.
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Figure 4.8: The total systematic error in the NOvA cross-section model as a function of
visible hadronic energy for FHC (left) and RHC (right)

4.3 Calibration and Detector Response

The uncertainties correspond to the calibration of the energy response and the parameters

in the scintillation light model [133]. These are :

• Energy Scale : These come from the absolute calibration done on the stopping muon

sample at ND and FD separately. This is motivated by a discrepancy seen in the

data/MC dE/dx for protons at ND at the level of ∼ 5%. The origin of this discrepancy

is not yet known since other standard candle samples such as beam muons, Michel

electrons, π0 reconstructed mass exhibit smaller discrepancies. The uncertainties are

taken as both fully correlated for ND and FD and anti-correlated for ND and FD.

• Calibration Shape : A correlated uncertainty across the two detectors is constructed

based on the imperfection of the calibration to take into account differences in energy

response at the ends of the cells compared to the middle. The calibration is changed

to cover the discrepancy between reconstructed and true energies at the edges of the
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detector and the difference is folded into the uncertainty. This defines a +1σ shift in

the calibration, but the shape of the reco/true energies at the edges is reflected around

0 to give the −1σ shift. Overall these are not very well-motivated systematics as their

origin is not known but is still used to be conservative.

• Detector Drift : There is an observed attenuation in the reconstructed number of hits as

a function of time, presumably due to detector aging effects either from the scintillator

or the electronics. This is covered by varying the scintillation model with an overall

light output decreasing at a rate of 4.5% per year, offset by the relative calibration done

for each different period of data taking. This is a one-sided fully correlated systematic

where negative shifts are not allowed.

• Light Level : The light model is modified using an improved tune taking into account

problems in the fit from the original light model tune. This is taken as an uncertainty

since it was too late to change the original tune. Here the uncertainty is constructed by

generating a new sample after varying the light model using the new tune and inverting

the calibration built on the previous light tune. The uncertainties come out to ±10%

for both X and Y views at ND and ±16% in the X view and ∓6% in the Y view for

FD. This is therefore uncorrelated across the two detectors.

• Cerenkov Emission : This is an additional uncertainty taken on the observed proton

dE/dx data/MC discrepancy where the cause is assumed to be due to the parameters

in the scintillation model that describe the amount of Cerenkov photons emitted in a

given cell. The light model tune is varied by adjusting these parameters to cover the

discrepancy without changing the muon response.

In addition, NOvA is utilizing a dedicated test beam program with a beam of π, p, e,

µ towards a small-scale version of the NOvA detectors to study the cause and constrain

further some of the above uncertainties. The test beam data is not used in this analysis but
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will be important in future iterations.

4.4 Neutron Response

Figure 4.9: Distribution of prong energies for a selected neutron sample at the Near Detector
broken down into neutron daughters for FHC (left) and RHC (right)

This uncertainty is motivated by another discrepancy seen at ND for fast neutrons of >

1 MeV energies, as shown in Fig. 4.9. These neutrons either capture producing photons

observed in the detector or scatter protons from detector nuclei which then produce light

in the detector. The origin of the discrepancy in the simulation, i.e whether it’s coming

from the generator or the particle transport is not yet known, although indications are that

most of it is related to the neutron transport models used in GEANT. Studies are underway

to utilize a different neutron model like MCNP, however, in this analysis, an uncertainty is

constructed to correct for this discrepancy. This is done by subtracting out a certain amount

(47%) of reconstructed visible energy for all FuzzyK prongs coming from a neutron of true

energies < 20 MeV. The estimator is then recalculated for such events and the change in the

analysis spectra is taken as the 1σ uncertainty [134].
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Figure 4.10: Total systematic error on the reconstructed muon length based on various effects
coming from GEANT or detector mass accounting at the Far Detector (left) and the Near
Detector (right)

4.5 Lepton Reconstruction

This uncertainty is motivated by assumptions used in the reconstruction of the muon track,

its length and angle. There are primarily two pieces to the uncertainty. The first piece is

an absolute fully-correlated part that comes from uncertainties in the Fermi density effect

and GEANT calculation of the muon range compared to a different calculation from Groom

et al. These are of the size 0.74% for ND and FD while the error at the muon-catcher is

derived to be 0.13%. The second piece is a relative uncorrelated part that mainly comes

from calculations of muon range due to mass accounting differences in the two detectors.

They come out to 0.15% for FD, 0.13% for ND, 0.48% for the muon catcher. An additional

piece coming from neutron pile-up at the ND and its consequent effect on the reconstructed

length of the muon track is derived and taken to be 0.46 cm in the active portion of the ND

and 1.3 cm in the muon catcher [135]. This is illustrated in Fig. 4.10.
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4.6 ND-FD Acceptance Differences

Even though acceptance differences between ND and FD is mitigated by the pt-based ex-

trapolation, this uncertainty is constructed to bracket the size of “unknown” unknowns and

is done only for the signal in the appearance channel. This is motivated by the fact that

not only are the kinematic regions for the events different compared to ND vs FD, the cor-

responding PIDs are also different in the appearance channel and therefore has potential to

sculpt the FD distribution differently compared to ND [136].

This uncertainty is derived by reweighting the ND νµ-CC data and MC samples used for

signal extrapolation to match the phase space of the FD νe-CC signal in observables, Q2,

cos θbeam, psumt where psumt is the sum of the reconstructed transverse momenta of all prongs

in the event (∼ 0 for neutrino events reconstructed perfectly). The reweighted samples

are then propagated to the FD using the extrapolation procedure and the largest variation

between the three observables is chosen to be the uncertainty. This has a marginal effect on

the overall signal contribution at FD with a size given by 0.4% for both FHC and RHC.

4.7 ND Pile-up

This uncertainty is motivated by the fact that a significant portion of the data at ND

is collecting using a high intensity neutrino beam which can cause an attenuation in the

number of selected interaction clusters as a function of intensity, i.e pile-up. To bracket

the effect of pile-up, special “overlay” samples are developed where a single MC neutrino

is overlaid onto nominal data and MC spills separately and the selection efficiencies are

compared. This is similar to the studies done for validating the slicer and the differences

turn out to be small when using TDSlicer compared to the older Slicer4D algorithm. The

differences in the selection efficiency for MC-on-data vs MC-on-MC samples is taken as an
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Figure 4.11: Selection efficiencies for the special overlay sample at ND for νµ-CC (left) and
νe-CC (right) as a function of beam intensity. Small differences in the efficiency profile
between MC on MC and MC on Data spills is taken as the pile-up systematic

overall normalization uncertainty, to the tune of 0.21% (0.48%) for FHC (RHC) νµ (ν̄µ)

events and 0.41% (0.53%) for FHC (RHC) νe (ν̄e) events. These numbers are calculated

after reweighting the MC spills to match the intensity of the data spills, as described in Fig.

4.11 [137].

4.8 Other Systematics

4.8.1 Detector Mass and POT Accounting

A small uncertainty is used on the amount of POT used in the MC when comparing to

the observed data. This comes from the fact that fractions of the data at FD are taken

in different diblock configurations, especially early on when the full detector wasn’t active.

Correspondingly, the MC samples the POT for different diblock configurations based on the

data POT but could get the overall POT wrong due to statistical uncertainties. Therefore,

first an effective mass for each diblock configuration is derived by fitting to the selection
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efficiencies as a function of number of active contiguous diblocks. Then a weighted sum of

POTs is calculated over the different diblock configurations where the weights come from

the effective mass. This is done for both data and MC and the residual difference in this

weighted sum comes out to ∼ 0.23%. To be conservative, a 0.5% normalization uncertainty

is chosen taking into account this effect. In addition, it turns out that a small fraction of

the early data when the beam spill window was shifted by +64µsec needed to be cut from

the analysis due to the way the CNN-based cosmic veto was defined. This comes out to a

loss of 0.2% of the total FHC POT. This was added in quadrature to the 0.5% and taken as

an overall POT uncertainty of 0.5%.

In addition, differences in mass calculations between the ND and FD by doing a full account-

ing of the detectors is taken as another source of normalization uncertainty, which comes

out to 0.19%.

Further, a bug in GEANT was discovered that caused it to drop particles from the list of

primary particles coming from GENIE. This happened predominantly at FD and had no

dependence on the interaction phase-space, such as in the inelasticity, y or the invariant

hadronic mass, W . The effect comes out to ∼ 0.8% which is taken as a systematic rather

than an overall correction since the origin of this is mysterious.

Combined with the pile-up systematics defined above, these are split up into FD-ND corre-

lated and uncorrelated pieces as appropriate and the individual pieces are added in quadra-

ture to derive an overall normalization uncertainty on the analysis [138].

4.8.2 ντ Scale

This is derived from uncertainties coming from the cross-section of ντ -CC events which make

up a tiny background component of the oscillation analysis, especially in the appearance
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channel [138]. An overall scale uncertainty of 60% is taken motivated by measurements at

OPERA.

4.8.3 Michel Electron Tagging Efficiency

A conservative 5% uncertainty on the tagging efficiency of Michel electrons is used and

applied to the FHC decomposition procedure for the appearance channel [138].

4.8.4 FD Rock Rate

A small amount of FD events in the appearance channel can come from rock and other

materials in the detector hall surrounding the FD detector. A special sample is generated for

such events and is added to the central value prediction. An overall 100% scale uncertainty is

taken for such events to be conservative. The contribution of such events in the disappearance

channel is negligible to completely ignore, therefore no uncertainty is taken here [138].

4.8.5 Cosmic Scale

The statistical error in the unscaled cosmic trigger spectra used for the prediction of the

shape of the cosmic background seen in the two oscillation channels is taken as an overall

uncertainty on the cosmic spectrum shape itself [138].

4.9 Evaluation of Systematic Uncertainties

As mentioned before, the nuisance parameters in the likelihood fit are derived by interpolat-

ing between shifts at given numerical σ values for the above uncertainties for each analysis
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Figure 4.12: Comparison of the extrapolated and unextrapolated systematic error on the
number of predicted events in the appearance channel for different uncertainties

bin. One can then evaluate the size of the uncertainties in many ways. For the appearance

channel, one can compare different systematics based on the effect it has on the total number

of predicted signal and background events when varied by ±1σ, as shown in Fig. 4.12. One

can also estimate its effect by fitting to Asimov data using the central value prediction and

varying the MC expectation based on the systematic variation. This takes the form of the

effect of the systematic on the individual oscillation parameters [79], as shown in Figs. 4.13

and 4.14. All of these metrics show that the analysis is statistically limited, i.e the systematic

error is smaller than the statistical error in the prediction.

Figure 4.13: Overall systematic error on the measurement of δCP (left) and sin2 θ23 (right)

The largest uncertainties are those in the Calibration, mainly coming from the energy scale

uncertainty of 5%. The flux errors are mostly cancelled out, while neutron response, the

cross-section and the lepton reconstruction systematics have relatively significant effects on
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Figure 4.14: Overall systematic error on the measurement of ∆m2
32

the oscillation parameter measurement.

The effect of the extrapolation can be seen as well and shows that it is designed to correct

for mainly correlated effects between the ND and FD. Uncorrelated effects increase slightly

after extrapolation, but overall the method works quite well in reducing the total systematic

error by more than half.
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Chapter 5

Results

The results here are derived with a total exposure of 13.6×1020 POT in FHC and 12.5×1020

POT in RHC, as shown in Fig. 5.1. This was first presented in July 2020 [139].

Figure 5.1: Exposure in terms of POT for the current analysis
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5.1 Sidebands

The oscillation analysis in the two channels is carried out in a blind procedure where all

the analysis components including the FD prediction with the ND constraint, the budgeting

of systematic uncertainties and selection procedures are decided before “opening the box”

on FD oscillated data. Before this step, a set of 3 selection sidebands are developed in

the appearance channel and a high energy sideband in the disappearance channel. The

sidebands are designed to be insensitive to any oscillations in the appearance channel, while

in the disappearance channel it accesses only a high energy region beyond the oscillation dip,

in order to ensure that the FD data matches the predictions well and there are no egregious

discrepancies.

5.1.1 The νµ → νµ Channel

For the disappearance channel, a sample of νµ candidates at FD is developed by looking at

regions > 3 GeV of total calorimetric energy in the interaction. The oscillation parameters

chosen for this sideband are based mostly on global fits and involve the parameters :

• ∆m2
32 = 2.67× 10−3 eV2

• ∆m2
31 = 7.53× 10−5 eV2

• sin2 2θ12 = 0.851

• sin2 2θ13 = 0.082

• sin2 θ23 = 0.404

• δCP = 1.48π
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The predictions all agree within statistical errors for both FHC and RHC [140], as illustrated

in Fig. 5.2.

Figure 5.2: Sideband for the disappearance channel

5.1.2 The νµ → νe Channel

Figure 5.3: Sidebands for the appearance channel. Shown are the Core high energy sideband
(left) and the Core low PID sideband (right)

For the appearance channel, since there are primarily three main backgrounds, the irre-

ducible νe-CC contamination in the beam, the cosmic background and misidentified beam

backgrounds such as νµ-CC events and NC events, 3 separate sidebands are designed domi-

nated by each of these backgrounds. The sidebands utilize the selections :
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Figure 5.4: Peripheral low PID sideband for the appearance channel

• Core Selection with a Low PID cut (CoreLP) : The same core selections in the analysis

are applied but with the CVN PID scores ranging from (0.5, 0.65). This sideband is

dominated by NC backgrounds.

• Core Selection at High Energy (CoreHE) : The same core selections in the analysis are

applied including the PID score but only events > 4.5 GeV are chosen. This sideband

is dominated by beam νe-CC events due to the fact that the flux of this component

has a fatter tail compared to the oscillated νe-CC events.

• Peripheral Selection at Low PID : The same peripheral selections in the analysis are

applied but with the CVN-BDT scores ranging from > 0.5 and > 0.56 (> 0.57) for

FHC (RHC) and excluding the region in the analysis. This sideband is dominated by

cosmics which are estimated from the NuMI trigger timing sideband anyway and are

hence much less interesting but nevertheless, allow us to verify if there’s something

egregiously wrong in the predictions for the other beam background components.

A number of distributions in many observables including the various PIDs, the interaction

locations and energies are looked at and verified to be within statistical errors, both for FHC

and RHC [141], as can be seen from Figs. 5.3 and 5.4.
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5.2 Opening the Box

Figure 5.5: Oscillated spectra in the appearance channel plotted with the best-fit parameter
expectation and the 1− σ systematic error

Figure 5.6: Oscillated spectra in the disappearance channel plotted with the best-fit param-
eter expectation and the 1− σ systematic error

The results in the analysis region for FHC and RHC for both oscillation channels are shown

in Figs. 5.5 - 5.8, along with a breakdown of the respective background components, shown

in Tables 5.1 and 5.2. In total, 82 (33) νe (ν̄e) candidates are seen for FHC (RHC), with an

expected background of 26.83 (13.98) events. In the disappearance channel, a total of 211

(105) νµ (ν̄µ) candidates are seen summed over the 4 quantiles. The background expectation

is 8.2 (2.1) events for FHC (RHC). The no oscillation expectation in the disappearance
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Figure 5.7: Oscillated spectra for each quantile in FHC for the disappearance channel plotted
with the best-fit parameter expectation and the 1− σ systematic error

channel is 1156.1 (488.1) events for FHC (RHC). Both channels show a clear sign of νµ →

νµ disappearance and νµ → νe appearance. The expected numbers are derived from a best

fit set of oscillation parameters, done using a full joint fit of all samples in both FHC and

RHC and are given by :

• ∆m2
32 = 2.41× 10−3 eV2

• sin2 θ23 = 0.57

• δCP = 0.82π

The value of θ13 is allowed to float in the fit but is constrained by precise measurements

coming from reactor experiments such as Daya Bay, Double CHOOZ and RENO. The solar

parameters are fixed in the fit. These values come from PDG and are given by :
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Figure 5.8: Oscillated spectra for each quantile in RHC for the disappearance channel plotted
with the best-fit parameter expectation and the 1− σ systematic error

• sin2 2θ13 = 0.085± 0.003

• ∆m2
21 = 7.53× 10−5 eV2

• sin2 2θ12 = 0.851

The best fit favors the Normal Hierarchy and the Upper Octant of θ23 but not significantly.

We will describe the constraints on the combinations of oscillation parameters more quan-

titatively in the following chapter but one can already start to make judgements about the

measurement if one looks at the νe appearance data for FHC and RHC in a “bi-event” space

or using a “S-curve” plot.

In a S-curve plot shown in Fig. 5.10, the number of expected events in the appearance channel

are plotted as a function of δCP in the range (0, 2π) for a range of sin2 θ23 values (0.45, 0.6)
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Figure 5.9: Total event counts in FHC and RHC in the appearance channel plotted with the
best-fit expectations in the 4 quadrants of Hierarchy-Octant space

and ∆m2
32 values in the Normal (2.4 × 10−3 eV2) and Inverted Hierarchies (−2.44 × 10−3

eV2) which shows that the data is close to the Inverted Hierarchy expectation for many θ23

values.

For the “bi-event” plot shown in Fig. 5.9, the observed number of data events for FHC and

RHC are plotted for different best-fit oscillation parameters assuming different combinations

of parameter space, (NH, IH) × (UO, LO). The variation of δCP traces out 4 ellipses for

4 such combinations. The range of expectations vary from 52 to 110 events for (IH, LO,

δCP = π/2) and (NH, UO, δCP = 3π/2) respectively in FHC. For RHC the expectations vary

from 25 to 45 for (NH, LO, δCP = 3π/2) and (IH, UO, δCP = π/2). The observed data is
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Figure 5.10: Total event counts in FHC (left) and RHC (right) in the appearance channel
plotted with expectations at a range of oscillation parameters and as a function of δCP

Figure 5.11: Systematic pulls in the best-fit expectation to the FD data

seen to lie in the middle of this range, thus being close to IH and LO as well as NH and UO

and not showing a powerful preference for any δCP . The data, however, does seem to disfavor

the regions of maximum asymmetry given by (IH, δCP = π/2) and (NH, δCP = 3π/2).

In the maximum likelihood fit, one can assess how hard the systematics are pulled to make

the expectation compatible with data. As shown in Fig. 5.11, no systematics are seen to

get pulled significantly however with the maximum pull coming from the ND light level

systematic at 1.5σ. Everything else is < 1σ with the next dominant pulls from the MEC

(q0, |q|) shape uncertainty (0.6σ) and the energy scale uncertainty (−0.5σ).
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5.2.1 Compatibility with 3-Flavor Mixing

The goodness of fit is assessed by a mock experiment procedure at the above best fit pa-

rameters in NH and UO for both FHC and RHC, combined and separately. A set of 1000

experiments are done by throwing Poisson fluctuations on top of the best-fit expectation

and fit as before to get a distribution of the minimum negative log-likelihoods. The fit to

the real data spectrum is very compatible with this distribution and the p-value measure of

the goodness of fit, given by the number of mock experiments with a negative log-likelihood

score worse (greater) than the real data score is 0.705 [142], as shown in Fig. 5.12.

Figure 5.12: Goodness of fit ∆χ2 for FD data (in red) shown along with the ∆χ2 distribution
for many pseudo-experiments

If one looks at only the FHC data or the RHC data, the p-values come out to 0.864 and 0.278

respectively, showing that the data in each of the beam modes are individually compatible

with the best-fit expectation. This also suggests that the NOvA FHC and RHC data are

very well explained by the 3-flavor mixing model. In addition, there is little indication that

neutrinos and anti-neutrinos oscillate based on different mixing parameters which is allowed

in various BSM scenarios that violate the CPT theorem. A quantitative discussion of this is

however beyond the scope of this result.
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5.2.2 Evidence of ν̄e Appearance

A key highlight of the observed FD oscillated spectra is a significant evidence for ν̄e appear-

ance in the RHC beam. At the best fit, NOvA sees 33 candidate ν̄e events with a background

expectation ∼ 14 events. The wrong-sign background expectation at the best fit, which is

included in the above number is 2.25 events.

To establish the significance of ν̄e appearance quantitatively, a similar mock experiment

procedure is used. However, given clear indications of appearance, throwing a large number

of mock experiments to get a measure is not feasible. The procedure therefore utilizes

a “fast”-MC methodology which generates a number of mock experiments for the RHC

backgrounds quickly.

First, a probability distribution (pdf) is constructed for the oscillation parameters looking

at only FHC data. This is done by varying the oscillation parameters from the FHC-only

best fit measurement and evaluating the test statistic given by the log-likelihood ratio (or

∆χ2) :

∆χ2(~θ) = LL(~θ)− LL(~θbest) (5.1)

where LL denotes the negative log-likelihood at a given set of oscillation parameters, ~θ.

The test statistic, ∆χ2 is constructed in a 2D space δCP − sin2 θ23 by doing two fits, first

by fixing the two oscillation parameters at each point in this grid and floating (“profiling”)

the rest, (LL(~θ)) and then allowing all parameters to float in the fit, (LL(~θbest)). This is

done under different assumptions of Normal and Inverted Hierarchy separately. Similarly,

the test statistic distribution is constructed in 1D for ∆m2
32. The pdf is then constructed

by transforming the test statistic distribution to exp(−∆χ2/2). The pdf for individual

hierarchies are also accounted for by using the ∆χ2 separating the two hierarchies. The pdf

of sin2 2θ13 is generated from the reactor constraint assuming a gaussian distribution. The
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pdf for each systematic parameter is constructed assuming a normal distribution. A set of

10, 000 predictions are generated for the RHC wrong-sign and other backgrounds using the

above pdfs for the oscillation parameters.

Then a distribution of mock RHC backgrounds is constructed by reweighting the nominal

RHC background prediction (including wrong-sign) at the FHC best fit to the above predic-

tions and adding Poisson fluctuations to each of them. In this way, one can generate millions

of mock experiments with a background-only expectation quickly, as shown in Fig. 5.13. The

p-value measure of compatibility of the observed 33 events with the RHC background-only

expectation is calculated and translated to a significance measure (based on a Z-score) and

is given by 4.2σ.

Figure 5.13: Significance of ν̄e-appearance measured via many pseudo-experiments assuming
no ν̄e-appearance

While it falls below the conventional threshold of observation (5σ), this is nevertheless firm

evidence of ν̄e appearance. This has not been seen by any other neutrino oscillation experi-

ment at long baselines and serves to highlight the powerful NuMI beam utilized by NOvA,

even in the traditionally weaker antineutrino mode of operation.
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FHC RHC
Wrong-Sign 1.04 2.25

Beam νe + ν̄e CC 14.08 7.29
NC 6.21 2.21

νµ + ν̄µ CC 1.73 0.36
ντ + ν̄τ CC 0.52 0.32

Cosmics 3.13 1.55
Total Bkg. 26.83+1.46

−1.62 13.98+0.76
−0.84

Total Signal 58.96+2.50
−2.54 19.20+0.64

−0.66

Total Expected 85.79+2.96
−3.05 33.18+1.08

−1.23

Total Observed 82 33

Table 5.1: Breakdown of individual components in the appearance spectrum at the best fit
oscillation parameters. Errors shown are systematic uncertainties on the expectation

FHC RHC
Beam Bkg. 3.25 1.12

Cosmics 4.96 0.95
Total Bkg. 8.21 2.07
Wrong-Sign 12.64 26.10
Total Signal 214.1 103.4

Total Expected 222.3+23.5
−22.4 105.4+10.6

−10.1

Total Observed 211 105

Table 5.2: Breakdown of individual components in the disappearance spectrum at the best
fit oscillation parameters. Errors shown are systematic uncertainties on the expectation
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Chapter 6

Confidence Intervals

6.1 Feldman-Cousins

Beyond the best-fit oscillation parameter measurement, the statistical errors are determined

using a frequentist approach. The confidence interval at a certain level denotes the range of

parameters that are “compatible” with the observed data at the given level. To construct

these intervals, the unified approach of Feldman and Cousins (FC) [143] is used which builds

upon the equivalence of the principle of hypothesis testing to the Neyman confidence interval

definition. An inverted likelihood ratio test at a particular point in oscillation parameter

space, ~θ0 with the null hypothesis defined by ~θ = ~θ0 is used to assess compatibility with

observed data. This is illustrated in Fig. 6.1. The test statistic used is given by the log-

likelihood ratio as defined before :

∆χ2(~θ0) = LL(~θ0)− LL(~θbest) (6.1)

where ~θbest denotes the minimum log-likelihood (negative) across the parameter space. ~θ0

is then included in the 1 − α confidence interval if we fail to reject the null hypothesis at
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Figure 6.1: Illustration of the Neyman confidence interval construction. The confidence belts
are created by a Likelihood ratio test for each θ0 and then inverted for observed data to get
the confidence interval. Taken from [144]

a level α, chosen apriori and based on the test statistic, ∆χ2(~θ0). The confidence level,

α is a measure of the probability that one would observe a ∆χ2 larger than or equal to

the one actually observed if one would repeat the experiment many times and ~θ0 was at

the boundary of the confidence interval. This confidence level is therefore comparable to

a p-value and is often translated to a signifcance measure in terms of an n-σ deviation on

a normal distribution. For example, a 68% confidence interval is given at α = 0.32 and is

labelled the “1-σ” interval. Each point in parameter space can be assessed individually if

it satisfies the inverted likelihood ratio test, i.e if the p-value of the test is > 0.32 and the

construction of the confidence interval proceeds by including all such points. This results

in an parameter interval that has the right “coverage” properties, i.e the probability that

the true parameter lies within the (1 − α)% confidence interval is not less than 1 − α, as

required by the Neyman definition. Finally, the reason for the particular choice of the test

statistic comes from the Neyman-Pearson Lemma which guarantees that the likelihood ratio

maximises the statistical power of the hypothesis test. This ensures that the “over-coverage”

is minimized, i.e the probability of the true parameter falling within the (1−α)% confidence

interval is not much larger than 1− α.

Here we’ve described the Feldman-Cousins approach as would be applied for the purpose
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of oscillation parameter intervals. In general, the advantage of this approach is that the

likelihood-ratio test statistic works equally well for null and non-null observations of a given

Poisson process with an assumed background and can be therefore used for constructing both

one-sided (upper and lower) and two-sided (central) confidence intervals. This is relevant for

physicists since physical processes are often characterized by a Poisson distribution. This is

the sense in which it is “unified” by the Feldman-Cousins procedure.

Figure 6.2: Illustration of the Feldman-Cousins method using a likelihood ratio (∆χ2) dis-
tribution generated using pseudo-experiments to find the p-value with respect to data. Also
shown in red is the Wilks approximation

In many cases, the p-value of the likelihood ratio test at ~θ0 is analytically related to the

value of the test statistic itself, ∆χ2(~θ0). This is the case for example when the likelihood

is given by a Gaussian distribution, as would happen if there are large enough statistics in

the data [145]. Consequently, the ∆χ2(~θ0) p.d.f follows a χ2
k distribution for some k degrees

of freedom and every ~θ0. In this case, one can readily construct the confidence interval by

including parameter values that have a test-statistic itself below a certain threshold rather

than relying on a threshold on the p-value. For example, ~θ0 will belong to the 68% confidence

interval if its ∆χ2 < 1 (2.30) for the 1D (2D) case.
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For our scenario, the statistics in the data aren’t large enough to be able to use a Gaussian

approximation for the likelihood and consequently a full Poisson form must be used. More-

over, particular features of the oscillation parameter space such as the physical boundary at

sin2 θ23 = 0.5 where the amount of disappearance in the dip-region is ∼ maximal or the cyclic

nature of δCP introduce further corrections from the Gaussian likelihood. This is easy to see

for example close to sin2 θ23 = 0.5, seen in Fig. 6.2. Here the space of possibilities that the

model can fluctuate to in order to make it compatible with the data is constrained along one

direction since one can’t have more disappearance than at sin2 θ23 = 0.5 (actually ∼ 0.514

for NOvA, due to extra terms in the disappearance oscillation probability). Consequently,

the likelihood distribution is skewed which induces a deviation from a χ2
k approximation of

the test-statistic p.d.f.

As a result, NOvA uses the FC procedure outlined above to produce all its results for the

confidence intervals. Both in 1D and 2D, at each point in oscillation parameter space, many

pseudo-experiments are thrown as Poisson fluctuations on top of the predicted spectrum at

those parameters to generate the ∆χ2 test-statistic distribution. The p-values are calculated

at those points based on the distribution and the observed ∆χ2 test-statistic for real data.

These are then either mapped to intervals of 1σ, 2σ, 3σ in the 2D contour case or directly,

the exact significance of rejection for that point in the 1D case. For the 2D contours,

this is done for sin2 θ23 − δCP and ∆m2
32 − sin2 θ23, each under two different hypotheses of

Normal Hierarchy (NH) and Inverted Hierarchy (IH). In the 1D case, curves denoting the

significance of rejection of a particular parameter value are drawn for sin2 θ23, δCP , ∆m2
32

separately. These are done under 4 different hypotheses of (NH, IH) × (UO, LO) except

for sin2 θ23 where its drawn under separate hypotheses of NH and IH. Individual hypotheses

(NH-LO, IH-LO, IH-UO, IH) are themselves evaluated via pseudo-experiments in terms of

their overall significance of rejection compared to the best-fit expectation of NH and UO, as

shown in Figs. 6.2 and 6.3.
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Figure 6.3: Significance of inverted hierarchy rejection using the FC method

Nuisance parameters are handled by “profiling” them out. This means that at each individual

point in parameter space, either 1D or 2D, a fit to real data is first performed where the

parameters in question are kept fixed and the nuisance parameters are allowed to float.

The resulting best-fit nuisance parameters at that individual point is then used as an input

for throwing pseudo-experiments at that point. Then similar to the real data fit, for each

pseudo-experiment, two fits are performed, the first which keeps the parameters in question

fixed and allows the nuisance parameters to float and the second which allows all parameters

to float. The difference of the log-likelihoods is used to fill up the ∆χ2 distribution. For

example, at a given point (θ0, δ0) in sin2 θ23 − δCP − NH space, the pseudo-experiments

are thrown at sin2 θ23 = θ0, δCP = δ0 and nuisance parameters (∆m2
32, sin2 θ13, systematic

parameters and so on), given by :

~̂ν | χ2
data(~̂ν | θ0, δ0) = min(χ2

data(~ν | NH, θ0, δ0)) (6.2)
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Then ∆χ2
expt is calculated as :

∆χ2
expt = χ2

true − χ2
best (6.3)

χ2
true = min(χ2(~ν | NH, θ0, δ0)) (6.4)

χ2
best = min(χ2(θ, δ, ~ν)) (6.5)

This choice of profiling nuisance parameters in the absence of a well defined prescription is

done since it can be intuitively seen that if a point is accepted within a given confidence

interval for the profiled values, then it ought to be accepted for other values too where the

∆χ2 distribution would be larger [146].

6.2 Results

Figure 6.4: Confidence intervals in sin2 θ23 − δCP space for the Normal Hierarchy (left) and
the Inverted Hierarchy (right)

The outcome of the FC procedure for the 1D “slices” and 2D contours of the oscillation pa-

rameters are shown in Figs. 6.4 - 6.7. As a consequence, the measured oscillation parameters

are given by :

• ∆m2
32 = (2.41± 0.07)× 10−3 eV2
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Figure 6.5: Confidence intervals in sin2 θ23−∆m2
32 space for the Normal Hierarchy (left) and

the Inverted Hierarchy (right)

Figure 6.6: Significances of rejection for each value of the given oscillation parameter for
various hypotheses of the profiled parameters.

• sin2 θ23 = 0.57+0.04
−0.03 (UO)

• δCP = 0.82π+0.27π
−0.87π

which is a ∼ 3% precision on ∆m2
32 and ∼ 6% precision on sin2 θ23. The overall significance

of rejection of the Normal Hierarchy is 1.0σ and the Lower Octant (LO) is 1.2σ. Regions

of large asymmetry in νe − ν̄e appearance are disfavored as mentioned before. (IH, π/2) is

rejected at > 3σ and (NH, 3π/2) is rejected at ∼ 2σ. There is only a weak constraint on

δCP using this NOvA dataset. Table 6.1 shows the full confidence intervals for the measured

oscillation parameters.
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Figure 6.7: Significances of rejection for each value of δCP for various hypotheses of the
profiled parameters.

1-σ C.I
sin2 θ23-NH [0.431, 0.487] ∪ [0.53, 0.602]
sin2 θ23-IH [0.433, 0.492] ∪ [0.526, 0.595]
∆m2

32-NH [2.336, 2.482] (×10−3 eV2)
∆m2

32-IH [-2.513, -2.386] (×10−3 eV2)
δCP -NH [0, 1.06] ∪ [1.82, 2] (π)
δCP -IH [1.26, 1.73] (π)

Table 6.1: Confidence intervals for the individual oscillation parameters in the measurement
for each mass hierarchy

6.2.1 Compatibility with Other Experiments

The NOvA measurement in the “atmospheric” space of ∆m2
32 − δCP along with other ex-

periments is shown in Fig. 6.8 and shows fairly good agreement. With this dataset, NOvA

is able to provide a precise measurement of ∆m2
32 which is competitive with measurements

provided by Daya Bay [147] and T2K [148].

The sin2 θ23 − δCP contours in the Normal Hierarchy are shown along with the result from

T2K in Fig. 6.8 . Notably, there is a tension at the level of ∼ 2σ in this space, owing to the

fact that T2K heavily favors large νe appearance asymmetry over ν̄e appearance, which due

to the shorter baseline results in a sensitivity for CP-violation. In contrast, NOvA is much

more sensitive to the hierarchy than CP-violation. This complementarity in the experiment
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Figure 6.8: Compatibility of the NOvA measurement with various experiments in the atmo-
spheric sector (left) and with T2K in sin2 θ23 − δCP space (right)

design has been noted and an agreement is in place to pursue a joint fit with T2K in the

future. It is notable however that even based on this result, it might throw up a best fit in

the Inverted Hierarchy even if the individual experiments favor the Normal Hierarchy [149].

One can also interpret this as a signal for Non-Standard Interactions (NSI) [150][151] and

it will be interesting to see how this picture unfolds as both the experiments collect more

data. However more discussion about this is beyond the scope of this document.

6.3 Accelerating Feldman-Cousins

It is easy to see that the Feldman-Cousins procedure is extremely computationally intensive

since it relies on many pseudo-experiments to generate the ∆χ2(~θ) distribution for each point,

~θ in parameter space. For NOvA, since all the confidence intervals are constructed using

this procedure, it exploits the NERSC supercomputer system to make the task manageable.

With an overall computational budget of more than ∼ 50 million CPU-hours, it is able to

accomplish this within a week or two [152].

The FC procedure done for NOvA in practice tries to use as many pseudo-experiments

as necessary to achieve a ∼ 5% precision on the confidence intervals themselves. This
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takes the form of a varying number of pseudo-experiments thrown across the parameter

space and even with the HPC capabilities at NERSC, the resource usage is demanding.

For contours especially, where the resource usage is the most, one can try to mitigate this

burden with well motivated Bayesian techniques. Intuitively, one can see that one needn’t

expend computational resources at points in parameter space far from confidence interval

boundaries and can demand a smaller precision in these regions, while trying to concentrate

more on regions near the boundary. Since these boundaries are not known apriori, the

Feldman-Cousins procedure is carried out in practice as essentially a grid search.

A variety of Bayesian optimization techniques, however, exist to solve just these class of

problems [153]. Here, the model over the parameter space is itself assumed to come from

a probability distribution. In our confidence interval construction, the model is the p-value

profile/surface over the oscillation parameter space in question, 1D or 2D.

p = f(~θ;~νprof ) (6.6)

We are then interested in

C1−α = {~θ | f(~θ;~νprof ) > α} (6.7)

for the (1 − α)% confidence interval. The Bayesian optimization techniques then assume

f(· , ·) as being generated from a probability distribution itself. Using observed data points,

which in our case would refer to the p-values calculated at some point in oscillation parameter

space, one can then refine that distribution iteratively to arrive at an accurate approximation

of f(· , ·). This is non-parametric to the extent that it depends only on general features of

f(· , ·) rather than relying on an analytic form of f(· , ·) which isn’t available. In usual

problems, the objective is to find extremal points of f(· , ·) from this approximation and

iteratively get closer, but in our case, it can be suitably modified to find C1−α. This has
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the advantage then of not needing to go through the entire parameter space in order to find

C1−α and can therefore result in substantial computational savings. We will describe the

application of just such a method to NOvA’s Feldman-Cousins confidence intervals.

6.3.1 Gaussian Process

Figure 6.9: Illustration of the Bayesian interpolation procedure using Gaussian Processes
for some example data. Blue curve represents the mean posterior prediction while the grey
curves represent random draws from the GP

A Gaussian Process (GP) is an infinte extension of a multivariate Gaussian [154]. It is

defined as a stochastic process over function space where any finite collection of points are

jointly Gaussian distributed. Intuitively, one can interpret a GP as a random process that

generates functions, f(x) for each draw from it, as illustrated in Figs. 6.9 and 6.10. We say

f ∼ GP(µ, κ(·, ·)) if :

 f(x)

f(x′)

 ∼ N (

 µ(x)

µ(x′)

 ,

 κ(x, x) κ(x, x′)

κ(x, x′) κ(x′, x′)

). (6.8)

where µ(x) is the GP mean, defined as a prior function over x and κ(·, ·) parameterizes the
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covariance over any finite collection of x. In our case, the stochasticity comes from the finite

grid resolution in the FC procedure as well as the p-value calculation of the ∆χ2 distribution

using a finite number of pseudo-experiments. In many problems, the prior function, µ is

taken to be zero everywhere. One can then obtain a posterior predictive distribution given

some observed data points, ~xobs and their corresponding p-values, f(~xobs) by :

f(x∗)|f(~xobs) ∼ N(κ(x∗, ~xobs)(κ(~xobs, ~xobs))
−1f(~xobs), (6.9)

κ(x∗, x∗)− κ(x∗, ~xobs)(κ(~xobs, ~xobs))
−1κ(~xobs, x

∗)) (6.10)

Here x∗ are new data points in parameter space and f(x∗) denotes the distribution of pre-

dictions of the function values (p-values) at those points. As a result, the GP mean p-value

prediction at x∗ is given from above by :

p(x∗) = κ(x∗, ~xobs)(κ(~xobs, ~xobs))
−1f(~xobs) (6.11)

and the standard deviation in the GP prediction at x∗ by :

σp(x
∗) = κ(x∗, x∗)− κ(x∗, ~xobs)(κ(~xobs, ~xobs))

−1κ(~xobs, x
∗) (6.12)

It is evident that the prediction and its errors depend only on the observed p-values at some

points ~xobs and the kernel function κ(·, ·). The kernel function is chosen apriori based on

general features one expects from f(x). For example, a widely used kernel function is the

so-called Radial Basis Function (RBF) where

κ(x, x′) = exp

(
−(x− x′)2

2l2

)
(6.13)

The RBF form is infinitely smooth and is therefore chosen to model f(x) where f is in-

finitely smooth itself. Moreover, it has one kernel parameter (“hyper-parameter”), l which
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Figure 6.10: Illustration of the Bayesian interpolation procedure using Gaussian Processes
for the percentile (1-pvalue) as a function of δCP obtained using FC. Blue dots represent
points where the FC pseudo-experiments were thrown

is interpreted as a length scale over x, i.e for |x − x′| � l, one gets a large correlation be-

tween function values, f(x) and f(x′) while for |x − x′| � l, one gets a small correlation.

This means that the length-scale, l denotes the region of parameter space over which one is

expected to see function values at one point influence the function values at other points.

For distances much larger than l, we can then expect that the function values are mostly

uncorrelated. This is similar to our scenario, where one expects the variation of p-values

across oscillation parameter space to be smooth with the results of far-away regions being

independent of nearby regions, as illustrated in Fig. 6.10.

Another example of an infinitely smooth kernel function is the Rational Quadratic Function

(RQF) which bakes in a mixture of RBF kernels. This is useful when one doesn’t have just

a single characteristic length-scale to model the function over parameter space. The RQF

function is given by :

κ(x, x′) =

(
1 +

(x− x′)2

2αl2

)−α
(6.14)
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There are two hyper-parameters associated with this kernel, α and l. α can be interpreted

as a scale mixture over a given length-scale, l. It is easy to see that as α→∞, we get back

the RBF form.

Since the GP is uniquely characterized by κ(·, ·), one needs to choose the hyper-parameters

embedded in the kernel. This is done by maximizing a marginal likelihood of the function

values at observed data-points over the set of hyper-parameters. This is generally given by

the form :

−2 logL(~w) = f(~xobs)
Tκ(~xobs, ~xobs; ~w)−1f(~xobs) + log ||κ(~xobs, ~xobs; ~w)||+ n log 2π

(6.15)

The first term has the interpretation of a χ2 over the observed function values and ||κ||

denotes the determinant of the kernel matrix. The second term models the “complexity” of

given ~w for describing the observed function values. For example, with the RBF kernel with

a length-scale, l, the marginal likelihood penalizes smaller length scales than necessary to

describe the observations. By minimizing the above equation, one has an appropriate choice

for the hyper-parameters, ~w that can be used to obtain the prediction and its uncertainty.

6.3.2 Optimizing the FC Interval Construction

The idea of the Bayesian optmization procedure proceeds by calculating the p-values at

some points in either 1D or 2D oscillation parameter space using a fraction of the pseudo-

experiment budget at those points. One can then obtain a GP prediction for the p-values

at all other points in this space, as outlined in the previous section. One then proceeds to

use this prediction, via an “acquisition” function that prioritizes the allocation of pseudo-

experiments at specific points [155]. We can thus refine the approximation based on the new

pseudo-experiments at new or the original points iteratively and consequently, construct the
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confidence intervals, C1−α. Iteratively, this will come closer and closer to the actual intervals

constructed from a grid search application of the FC procedure, as can be seen from Fig.

6.11.

Figure 6.11: The percentile (1-p) surface for some toy oscillation data as a function of
sin2 θ23 − δCP . Also shown on the right is the points where the GP-based algorithm chooses
to throw pseudo-experiments to approximate the target surface

The acquisition function, a(~θ) at points ~θ aims to balance between “exploration”, where

new points are sought, and “exploitation”, where the GP approximation error is reduced. A

particular choice of the function can be given by :

a(~θ) =
∑
αi

|f(~θ)− αi
σf(~θ)

|−1 (6.16)

where f(~θ) is the GP mean prediction and σf(~θ) is GP standard deviation as given above.

αi in our case will denote the 1σ, 2σ, 3σ intervals that we want to construct in oscillation

parameter space. This form makes it evident that for points, ~θ to have a large priority for

pseudo-experiment allocation (large a(~θ)), one must need either a large error in the prediction

or it must be close to the confidence interval boundary, as seen in Fig. 6.12. Therefore,

iteratively this algorithm will seek out the necessary confidence interval boundaries and

refine them by allocating pseudo-experiments in that region. In summary, the algorithm can

be described by the pseudo-code :
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Figure 6.12: The approximate percentile surfaces in the Inverted Hierarchy (left) along with
the acquistion function priority (right) for the toy study described below

Algorithm 1 GP iterative confidence interval construction

for each iteration t = 1, 2, ... do

Propose points in parameter space arg maxθ a(θ)

for each point θ′ do

Simulate likelihood ratio statistic distribution

for k = 1, 2, ... do

Perform a pseudo experiment

Maximize the likelihood with respect to (θ, δ)

Maximize the likelihood with constraint θ = θ′

Calculate likelihood ratio statistic

end for

Calculate p-value based on the simulated distribution

end for

Train GP approximation f(θ) for the p-values

Update confidence intervals

end for
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6.3.3 Toy Studies
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Figure 6.13: Lineshapes for the flux and cross-section used in the toy oscillation study to
mimic NOvA shown along with its systematic error band
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Figure 6.14: Mock datasets generated based on Poisson fluctuations of the expectation at a
given set of oscillation parameters in the toy study. Shown for the appearance channel (left)
and the disappearance channel (right)

To show that this algorithm works, we first implement this procedure on a toy NOvA-like

long baseline oscillation experiment [155]. Here toy shapes approximating the NOvA flux

and neutrino interaction cross-sections (shown in Fig. 6.13) are used to generate predictions

for both oscillation channels at some given oscillation parameters and a baseline of 810 km.

Matter effects are taken into account in the oscillation probability by assuming the Earth’s

crust density of 2.84 g/cm3 as is the case for NOvA. A systematic uncertainty of 10% is taken

on the flux and the cross-section as a normalization error on the prediction. This is then fit

to a mock dataset generated by a Poisson fluctuation on top of the prediction (shown in Fig.

6.14) at the parameters :
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• ∆m2
32 = 2.44× 10−3 eV2

• sin2 θ23 = 0.56

• δCP = 1.5π

Figure 6.15: Illustration of the binomial proportion confidence interval for a given p-value
calculated based on a certain number of pseudo-experiments. The right plot shows the
p-value error as a function of the number of pseudo-experiments

The confidence intervals for these parameters are constructed, both in 1D and 2D, by a

regular application of the FC procedure with 2000 pseudo-experiments at each point in

parameter space. Only 68% and 90% intervals are constructed. More pseudo-experiments

would have been needed to go further than this, which is avoided in the toy study for the

sake of computational feasibility. The GP kernel chosen is a modification of the RBF kernel

with :

κ(x, x′) = exp

(
−(x− x′)2

2l2

)
+ σ2

pδxx′ (6.17)

The second term is just an extra error added to the diagonal of the kernel matrix in order to

take into account the stochastic error from the p-value calculation using a fraction of pseudo-

experiments. This error is therefore given by a binomial proportion confidence interval, as

described in Fig. 6.15. For now, nuisance parameters aren’t profiled but rather marginalised,

i.e integrated over some prior distribution for those nuisance parameters. The priors chosen
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are flat across (2, 3) ×10−3 eV2 for |∆m2
32| and (0.3, 0.7) for sin2 θ23. The prior on the

nuisance parameters for the systematic uncertainties in the toy model is assumed to be a

standard normal distribution. This is done for computational feasibility and will not alter

the conclusions. For 2D contours, a 20 × 20 grid is assumed for both the FC and the GP

calculations.

Figure 6.16: Results from the GP algorithm for approximate contours in sin2 θ23− δCP space
for the Normal Hierarchy. On the left are the points where the pseudo-experiments were
thrown with the color scale denoting the fraction with respect to a traditional FC application.
On the right are comparisons between the GP-approximated contours and the FC contours

Figure 6.17: Results from the GP algorithm for approximate contours in sin2 θ23− δCP space
for the Inverted Hierarchy. On the left are the points where the pseudo-experiments were
thrown with the color scale denoting the fraction with respect to a traditional FC application.
On the right are comparisons between the GP-approximated contours and the FC contours

In each iteration of the GP calculation, 40 points with the highest acquisition function score

are chosen to throw 200 new pseudo-experiments. A point is exhausted after a few iterations
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Figure 6.18: Comparison of the GP-based significance curves as a function of δCP vs the FC
result in the toy study. On the left is the comparison in terms of the p-value and on the right
is the significance score. The shaded regions represent the error in the GP-approximation
and the blue points with the color scale represent where the pseudo-experiments were thrown
and its fraction

if 2000 pseudo-experiments are thrown. For the 1D case, since there are only 20 points on

the grid, 10 points are prioritized each iteration, again with 200 new pseudo-experiments per

iteration per point chosen. In the first iteration, points are chosen at random.

As a result, the GP and regular grid-search FC results are compared and show great agree-

ment for both 1D and 2D cases, as can be seen from Figs. 6.16 - 6.18. In the 2D case, it is

notable that the GP algorithm is also able to capture disconnected regions in the confidence

intervals. In the 1D case, the exact significance of rejection for each point of δCP are com-

pared and also shows good agreement. The 68% confidence intervals for those parameters

can then be constructed by collecting all points of the parameter which have a significance

below 1σ, which matches the result from regular FC.

If the FC procedure is repeated for 200 different mock datasets and compared to the GP

approximation, one can study the distribution of a metric that is essentially a “classification”

accuracy, i.e the proportion of points in parameter space that are correctly identified by the

GP algorithm to fall into its true confidence interval. One sees from Fig. 6.19 that within

5 iterations for the 2D contours, we get a median accuracy of > 99.5% for both NH and IH
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Figure 6.19: Distribution of accuracies of the GP-based approximated confidence intervals
for 200 different mock datasets as a function of fractional number of pseudo-experiments
thrown. On the left is for the 2D contours and on the right is for the 1D δCP slice. The
black bars represent medians of the accuracy distributions

in the sin2 θ23 − δCP contours after 5 iterations. For 1D, it essentially reaches 100% since

all points on the 1D grid are correctly identified. Five iterations imply a speed-up of 10×

for the 2D case and 5× for the 1D case, based on the fraction of pseudo-experiment budget

used up by the GP algorithm. One sees therefore, that without sacrificing any accuracy

in the confidence interval construction, one can have an order of magnitude gain in speed!

Most of this speed comes from skipping a large number of points on the 2D grid where the

approximate p-value is already known to be small and can be thus rejected at high confidence

levels. Therefore, with this promising proof-of-concept, one can then study its application

on the actual confidence intervals constructed using real NOvA data and simulation.

6.3.4 Application on NOvA Data

Some modifications are made from the previous section to study the GP algorithm on the

actual NOvA 1D and 2D contours. The biggest one is the kernel choice, where now, the RQF

kernel is chosen in order to capture variations in the contours across different length scales.

The 2D NOvA contours are also produced using a 30 × 30 grid, while the 1D is produced

using a 30-point grid. As a result, the GP algorithm proceeds by choosing 90 points having
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Figure 6.20: Comparison of the GP approximate contours after 4 iterations vs the actual
NOvA contours in sin2 θ23− δCP space. On the left is for Normal Hierarchy and on the right
is Inverted Hierarchy
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Figure 6.21: Comparison of GP approximated significance curves for δCP vs the actual NOvA
result. Also shown in blue is the GP prediction error. Left is for NHUO and right is for
NHLO

the maximum acquisition score in the 2D case. In the 1D case, 10 points are chosen. In the

2D case for each iteration per point, 25% of the actual FC pseudo-experiment budget is used

in order to ensure atleast some pseudo-experiments with a ∆χ2 larger than the one observed

with real data. In the 1D case as well, a fraction of pseudo-experiments are chosen for each

iteration and point in the grid, so the above condition is satisfied.

As can be seen from Figs. 6.20, for the sin2 θ23−δCP contours assuming NH and IH separately,

we have good agreement for the 1σ, 2σ and 3σ contours with enough freedom to capture all

regions of interest, including those near δCP = 3π/2 for NH. One can also draw the upper

and lower bounds for the GP approximated contours based on the GP error (shown in Figs.
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Figure 6.22: The approximate p-value surface in the GP procedure for NH after 4 iterations
(left) and the points where the pseudo-experiments were thrown (right)
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Figure 6.23: The GP approximate contours shown along with the error in the p-value pre-
diction (left). On the right is the approximate contour bounds from the GP prediction for
NH

6.23 and 6.25), which shows these bounds close iteratively to < 5% precision near the actual

FC contour boundaries. As a result, the GP approximated contours fully enclose the original

contours and are within a couple of linewidth of the original for most regions. This is seen

within 4 iterations with ∼ 4− 5× the speed-up.

For the 1D case as well (shown in Fig. 6.21), one can see the significances of rejection for

δCP for all 4 hypotheses of (NH, IH) × (LO, UO) within a similar number of iterations and

fractional speed-up. This shows that the method is very well suited to actual confidence

intervals as well.
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Figure 6.24: The approximate p-value surface in the GP procedure for IH after 4 iterations
(left) and the points where the pseudo-experiments were thrown (right)
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Figure 6.25: The GP approximate contours shown along with the error in the p-value pre-
diction (left). On the right is the approximate contour bounds from the GP prediction for
IH

6.3.5 Future Prospects for the GP Algorithm

We’ve seen that we we are able to derive real confidence intervals for the oscillation pa-

rameters at a fraction of the computational cost associated with a traditional application

of the Feldman-Cousins procedure. A number of things can still be optimized further. For

example, the fraction of pseudo-experiments chosen per iteration, the form of the acquistion

function itself for 1D curves. In addition, one can conceivably incorporate prior information

on the confidence interval boundaries based on the χ2
k approximation itself. A large focus,

however, will need to be on the implementation of this algorithm at NERSC. The algorithm

is structurally serial in nature and optimization procedures will need to be suitably adapted
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for paralllelizing the algorithm on a distributed system like NERSC.

In terms of physics, this approach has a lot of potential in solving one of the key problems

with the FC procedure which is widely used in a variety of contexts, especially in neutrino

oscillation experiments. It provides a nice synthesis of Bayesian and frequentist ideas, albeit

to construct confidence intervals that still have a frequentist interpretation. With a more

intelligent and statistically well-motivated approach to confidence intervals compared to the

normal brute force grid search and without sacrificing accuracy, one hopes that this technique

will become common in the future.

6.4 Future Prospects at NOvA

NOvA is one of the flagship long-baseline neutrino oscillation experiments that will be able

to make strong statements about atleast the neutrino mass hierarchy and the octant of

θ23. Along with T2K, the results would define the state of the field until next generation

experiments like DUNE and HyperK come online.

NOvA is scheduled to run until 2026, with around two-thirds of the planned data still to be

collected. NuMI beam upgrades are planned to boost the intensity of the neutrino beam upto

900 kW. It is expected that NOvA will run in 50% neutrino mode and 50% anti-neutrino

mode, with a total planned exposure of 31.5 × 1020 for each mode. If the true oscillation

parameters are favorable, NOvA expects to constrain the mass hierarchy at more than 3σ

(shown in Fig. 6.26), possibly even 4− 5σ if we are lucky.

The analysis technique described here is powerful enough to show that the dominant errors

in the oscillation parameter measurement is statistical rather than systematic. However,

more improvements are planned in order to reduce the systematic burden, especially in the

detector response, which are some of the largest. A test-beam detector has been built and
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Figure 6.26: Sensitivities for the measurement of CP-violation (left) and Mass Hierarchy
(right) at the end of the NOvA lifespan shown for different choices of true parameters

Figure 6.27: Potential for rejecting maximal mixing (left) and determination of the θ23

Octant (right) based on current analysis techniques at NOvA

has already started collecting data from a beam of hadrons and leptons. This will be vital in

order to constrain the detector response uncertainties [156]. Further improvements related

to the application of advanced machine learning techniques like for CVN will further improve

the statistical error on the measurement [157]. We’ve discussed some of these improvements

including a deep learning approach for a νe-CC energy estimator. Similar techniques are also

being studied for νµ-CC as well.

Finally, the joint fit with T2K should also clarify the interesting tension that seems to be

developing between the two experiments and their respective measurements. This will need a

comprehensive study on the correlations between the various systematic models used by the

individual experiments. However, the prospects for the joint NOvA-T2K measurements are
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big, with a potential for evidence of many interesting questions related to 3-flavor neutrino

oscillations, including CP-violation, neutrino mass hierarchy and whether θ23 is maximal.

All of these will be further refined by DUNE and HyperK, which should definitely rule out

some of the different hypotheses. One can therefore be optimistic that the 3-flavor PMNS

model for neutrino oscillations will be completed within the next decade. This is a huge

achievement, being a culmination of decades of experimental work.
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Chapter 7

Conclusions

This dissertation describes the analysis of NOvA data with an exposure of 13.60 × 1020

POT and 12.50 × 1020 POT in the neutrino beam mode and anti-neutrino beam mode of

operation respectively, using the NuMI beam at Fermilab. This is done using a 14 kt Far

Detector placed 810 km from the NuMI beam source along with a 300 t Near Detector placed

1 km from the beam source. The analysis is a measurement of the remaining unknowns in

the 3-flavor PMNS model of neutrino oscillations, i.e for the parameters ∆m2
32, sin2 θ23 and

δCP . The measurement is done using a joint fit of νµ → νµ (ν̄µ → ν̄µ) disappearance and

νµ → νe (ν̄µ → ν̄e) appearance.

As a result, the measurements are given by :

• ∆m2
32 = (2.41± 0.07)× 10−3 eV2

• sin2 θ23 = 0.57+0.04
−0.03 (UO)

• δCP = 0.82π+0.27π
−0.87π

A 4.2σ evidence is found for ν̄µ → ν̄e oscillations which hasn’t been seen yet by any other
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experiment. The data weakly favors the normal neutrino mass hierarchy and the upper

octant of θ23 by 1.0σ and 1.2σ respectively. The inverted mass hierarchy and δCP = π/2 is

rejected at > 3σ. The normal mass hierarchy for δCP = 3π/2 is rejected at ∼ 2σ which is in

tension with measurements done by the T2K experiment for those same parameters.

This author has contributed to various aspects of the analysis, including the detector at-

tenuation calibration, the event reconstruction, the development of particle identification,

cosmic rejection and the selection tuning for the Far Detector oscillation analysis samples,

systematic studies, in particular for the flux model and sideband studies. Future improve-

ments to the analysis also discussed here include a deep-learning based energy estimator for

νe-CC events as well as algorithmic modifications to reduce the computational burden in

producing confidence intervals.
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