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Abstract

Liquid Argon Time Projection Chambers (LArTPCs) are a rising technology in the field of

experimental neutrino physics. LArTPCs use ionization electrons and scintillation light to

reconstruct neutrino interactions with exceptional calorimetric and position resolution capa-

bilities. Here, I present two analyses conducted in the MicroBooNE LArTPC at Fermilab:

a measurement of the longitudinal electron diffusion coefficient, DL, in the MicroBooNE

detector and a constraint of the systematic uncertainty on MicroBooNE’s single-photon

analysis due to the dominant neutral current (NC) π0 background. Longitudinal electron

diffusion modifies the spatial and timing resolution of the detector, and measuring it will

help correct for these effects. Furthermore, current measurements of DL in liquid argon are

sparse and in tension with one another, making the MicroBooNE measurement especially

valuable. We report a measurement of 3.74+0.28
−0.29 cm2/s. MicroBooNE is searching for single-

photon events as a potential explanation for the MiniBooNE low-energy excess (LEE) of

electron neutrino-like events, which has been interpreted as evidence for low-mass sterile

neutrinos. However, this search is overwhelmed by a large NC π0 background. By performing

a sideband selection of NC π0 events, we apply a data-driven rate constraint to the single-

photon analysis to reduce the systematic uncertainties. At present, this constraint improves

the single-photon analysis’ median sensitivity to the LEE-like signal from 0.9σ to 1.5σ.

This sensitivity is expected to improve significantly as more data become available. Both

of these measurements will not only benefit MicroBooNE, but also inform future LArTPC

experiments.
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Chapter 1

Introduction

The measurement and characterization of neutrinos have proved challenging to physicists

since their prediction in 1936. These electrically neutral, nearly-massless particles interact

only via the weak and gravitational forces, and so are exceptionally difficult to detect.

Originally proposed as a hypothetical particle to explain the then-anomalous β decay energy

spectrum, neutrinos have raised a multitude of questions over the past century: what are

their absolute masses? is the neutrino its own antiparticle? how many neutrino flavors

are there? can neutrinos open the way to new, exotic particle physics? Indeed, since the

experimental discovery of neutrinos in the 1950s, they appear to have raised more questions

than answers. We know that neutrinos come in (at least) three flavors: electron, muon,

and tau. We also know that neutrinos propagate as mass eigenstates, which are themselves

superpositions of the flavor states. We know the mass squared differences, Δm2, between

the three known states, but not the mass ordering. Beyond this, neutrinos remain largely

mysterious.

These elusive particles have motivated the need for increasingly large, sensitive neutrino

detectors. While there are a multitude of such detectors, the focus of this thesis will be

the liquid argon time projection chamber (LArTPC), a novel detector technology with

excellent position resolution and calorimetric capabilities. The past several decades have

seen this technology rapidly develop, and LArTPCs are now the preferred technology

for current and next-generation neutrino detectors. The Short Baseline Neutrino (SBN)

program at Fermi National Accelerator Laboratory (Fermilab)—containing the MicroBooNE,
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SBND, and ICARUS detectors—and the upcoming Deep Underground Neutrino Experiment

(DUNE) all utilize LArTPC technology. With LArTPC detectors being the clear favorite of

next-generation neutrino experiments, a proper understanding of this technology is vital to

the future of the field.

The MicroBooNE experiment is a LArTPC situated along Fermilab’s Booster Neutrino

Beamline (BNB) as part of the SBN program. MicroBooNE’s primary physics goal

is to investigate the MiniBooNE low-energy excess (LEE) anomaly, but it will also

provide valuable neutrino-nucleus cross section measurements and LArTPC detector physics

measurements. It is the first hundred-tonne-scale LArTPC and the longest-running LArTPC

experiment in the world as of this writing. In addition to solving the puzzle of the MiniBooNE

LEE, MicroBooNE will also pave the way for future LArTPC experiments.

This thesis presents two MicroBooNE analyses: a measurement of the longitudinal

electron diffusion coefficient, DL, and a selection of neutral current (NC) π0s for a data-

driven rate constraint on MicroBooNE’s search for single-photon events. LArTPC detection

(shown schematically in Figure 4.5) depends on a proper understanding of electron transport

properties as they travel through the liquid argon. The diffusion of these electrons along

the drift coordinate smears the collected signal as the electrons drift, and the rate of

longitudinal electron diffusion can be measured by examining this smearing as a function

of drift time. Only two measurements of DL exist in liquid argon as of this writing, and

those measurements are in tension with one another. Furthermore, the leading theoretical

calculation is ill-defined at electric field strengths of O(100) V/cm, the regime in which all of

the aforementioned experiments live. This motivates the MicroBooNE measurement of DL,

which will be discussed in Chapter 6. In addition to the DL measurement, this thesis also

presents a selection of NC resonant π0s. This selection is primarily motivated by the large

NC π0 background in MicroBooNE’s single-photon event search, an analysis which seeks

to investigate whether the MiniBooNE LEE is photon-like in nature. We apply the NC π0

selection as a data-driven rate constraint to reduce the systematic errors in the single-photon

selection. However, even outside the context of the single-photon analysis, NC π0s are still

of broad interest to the field of neutrino physics. NC π0s form a large background in νμ → νe
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oscillation searches, making a measurement of the NC π0 production rate beneficial to the

field as a whole.

The remainder of this thesis is organized as follows: Chapter 2 presents a brief overview of

neutrino physics, including historical context and the basic mathematical formalism. Chapter

3 gives an overview of neutrino experiments. Chapter 4 then focuses on the MicroBooNE

experiment, while Chapter 5 describes the simulation and reconstruction tools used in

MicroBooNE. Chapter 6 presents the DL measurement. Chapter 7 gives an overview of

the MicroBooNE single-photon analysis, which contextualizes the NC π0 selection presented

in Chapter 8. Finally, the conclusions are given in Chapter 9.
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Chapter 2

Overview of Neutrino Physics

This chapter provides a brief overview of neutrino physics, including historical context and

the basic mathematical formalism of neutrino oscillations. Section 2.1 gives a brief historical

overview of the discovery of the neutrino, which leads into the discussion of the Standard

Model in Section 2.2. Section 2.3 discusses neutrino oscillations, while Section 2.4 discusses

the most common neutrino-nucleus interaction modes. Finally, Section 2.5 discusses some

of the major open questions in the field of neutrino physics.

2.1 Detecting the Undetectable

Neutrinos were originally proposed by Wolfgang Pauli as a seemingly desperate attempt to

rescue conservation of energy. Experiments measuring the energy spectrum observed in β

decay found a curious result: the supposed two-body decay—which should have resulted

in a single characteristic energy of the two outgoing decay products—was found to have

a broad energy spectrum, as shown in Figure 2.1. So puzzling was this anomaly that

Niels Bohr was reportedly prepared to abandon the conservation of energy. Pauli himself

famously lamented that he had “done a terrible thing” by proposing a “particle that cannot

be detected.” Thankfully, Pauli’s proposed “neutron” (which, of course, later became known

as the neutrino after James Chadwick discovered what is now known as the neutron) was

detected in 1956 by Reines and Cowan [1]. This experiment utilized the β capture method

proposed by Wang in 1942 [2]. In this method, antineutrinos interact with protons as
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ν̄e + p → n+ e+ (2.1)

where ν̄e is an antielectron neutrino, p is a proton, n is a neutron, and e+ a positron.

The positron quickly annihilates with an electron, producing photons (γ), while the neutron

capture on a nucleus also produces a photon. The coincident observation of these two photon

emission processes confirmed the existence of neutrinos, and resulted in a Nobel Prize award

in 1995.

Although neutrinos are now an accepted part of the standard model of particle physics,

they have provided physicists with no shortage of anomalies over the past century. Further

discussion of experimental anomalies and their current status can be found in Chapter 3.

2.2 The Standard Model

The Standard Model (SM) of particle physics [3, 4, 5] describes the known fundamental forces

and elementary particles that govern the physical laws of our universe. Each fundamental

force—gravitation, electromagnetic, strong nuclear, and weak nuclear—is mediated by a force

carrier. Photons mediate the electromagnetic force, gluons carry the strong nuclear force,

the massive W± and Z bosons carry the weak nuclear force, and gravitation is believed to be

mediated by the graviton. While not a force carrier itself, the Higgs boson is responsible for

particle masses via the Higgs mechanism. The SM also contains two classes of elementary

particles: quarks and leptons. Each of these classes is further split into three generations.

For quarks, the up (u) and down (d) form the first generation, the charm (c) and strange

(s) the second, and the top (t) and bottom (b) the third. The lepton generations consist of

a charged lepton and its corresponding neutrino flavor state: the electron (e) and electron

neutrino (νe), the muon (μ) and muon neutrino (νμ), and finally the tau (τ) and tau neutrino

(ντ ). Figure 2.3 shows the current state of the standard model.

All SM particles have a corresponding antiparticle which has the same mass but opposite

electric charge and spin. Particles and antiparticles were once believed to be symmetric under

charge-parity (CP) exchange, but the discovery of CP violation [6] in neutral kaon decays

showed that this was only an approximate symmetry. When a particle meets its antiparticle,
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Figure 2.1: Experimentally observed β decay spectrum (black line) compared to expectation
(vertical red line).

Figure 2.2: First observation of a neutrino interaction in a bubble chamber at Argonne
National Lab.

6



they annihilate and release energy in the form of photons. All matter in the known universe

is comprised of matter instead of antimatter, a phenomenon known as the matter-antimatter

asymmetry. Explaining this asymmetry remains an open question in physics.

All SM particles can be classified as either fermions or bosons. Fermions have half-integer

spin and obey Fermi-Dirac statistics. Quarks and leptons are fermions, as are baryons

(heavier particles composed of three quarks, such as protons). Bosons, on the other hand,

have integer spin and obey Bose-Einstein statistics. All four force carriers and the Higgs are

bosons, as are mesons (heavier particles composed of a quark-antiquark pair).

While the SM is widely accepted in the particle physics community, it remains incomplete.

For one, the graviton has yet to be experimentally confirmed. The SM also offers no

explanation of dark matter or dark energy, the combination of which is believed to be

responsible for 95% of the matter in the universe. Of particular interest to this thesis is

the phenomenon of neutrino oscillations, in which neutrinos oscillate between the different

flavor eigenstates as a function of time. This necessarily implies that neutrinos have non-zero

mass, but the SM assumes massless neutrinos. Neutrino oscillations have been confirmed

by numerous experiments [7, 8], making them the first clear indication of beyond-standard-

model (BSM) physics.

2.3 Neutrino Oscillations

Neutrinos propagate as mass eigenstates (denoted νk, with k = 1, 2, 3), but are detected as

flavor eigenstates (denoted να, with α = e, μ, τ). Each flavor state is a superposition of the

three mass states, as described by

|να〉 =
∑
k

U∗
αk |νk〉 (2.2)

where the unitary matrix U is known as the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrix [9, 10], given by
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⎡
⎢⎢⎢⎣
νe

νμ

ντ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3

Uτ1 Uτ2 Uτ3

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
ν1

ν2

ν3

⎤
⎥⎥⎥⎦ , (2.3)

in the case of three-flavor oscillations. The PMNS matrix can also be written in terms of

three flavor-space mixing angles θ12, θ23, and θ13, and a charge-parity (CP)-violating phase,

δCP :

U =

⎡
⎢⎢⎢⎣

c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

−s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

⎤
⎥⎥⎥⎦ . (2.4)

In this notation, cij = cos(θij) and sij = sin(θij). A full description of neutrino

oscillations therefore requires accurate measurements of each of the oscillation parameters.

(Experimental measurements of these parameters will be discussed in Chapter 3.) The mass

states, |νk〉, evolve in time as plane waves:

|νk(t)〉 = e−iEkt |νk〉 . (2.5)

Combining Equations 2.2 and 2.5 then yields

|να(t)〉 =
∑
k

U∗
αke

−iEkt |νk〉 . (2.6)

Similar to Equation 2.2, the mass state |νk〉 can be expressed as a superposition of flavor

states as

|νk〉 =
∑
α

Uαk |να〉 (2.7)

where we’ve used the fact that UU † = 1. We can then substitute 2.7 into 2.6 to obtain
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|να(t)〉 =
∑

β=e,μ,τ

(∑
k

U∗
αke

−iEktUβk

)
|νβ〉 . (2.8)

Finally, the transition probability as a function of time is given by

Pα→β(t) = | 〈νβ|να〉 |2 =
∑
k,j

U∗
αkUβkUαjU

∗
βje

−i(Ek−Ej)t. (2.9)

Most neutrino experiments use an ultrarelativistic neutrino beam, meaning that t ∼ L.

Moreover, neutrinos are (approximately) massless with energy given by Ek =
√

pk +m2
k.

This can be expanded to first order as Ek � pk +
m2

k

2pk
≈ E +

m2
k

2E
. Then

Ek − Ej �
Δm2

kj

2E
. (2.10)

Substituting this into 2.9 and noting that t ∼ L gives

P (να→β) =
∑
j,k

U∗
αkUβkUαjU

∗
βje

−i
Δm2

jkL

2E . (2.11)

Equation 2.11 describes the neutrino oscillation probability as a function of time in terms of

the measurable matrix elements of U , the mass splitting (Δm2), the distance of flight (L),

and the neutrino energy (E). We see that Δm2 controls the frequency of oscillation, while the

magnitudes of the mixing angles contained within U control the oscillation amplitude. This

expression of the oscillation probability is especially useful for oscillation experiments, which

can tune the ratio L/E to suit their purposes. Equation 2.11 also shows that experiments are

not sensitive to the absolute neutrino mass (which would significantly complicate things) but

instead only to the mass splitting between two mass states. For most practical applications,

the transition probability equation can be further simplified by considering the two-flavor

oscillation approximation

P (να→β) = sin2(2θkj) sin
2

(
Δm2

kjL

2E

)
. (2.12)

This approximation is valid because experimental measurements have shown that 1)

Δm2
12 << Δm2

13 and 2) θ13 is small (relative to the other mixing angles). Most experiments
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only consider two-flavor oscillations such as νμ → νe, making this approximation especially

useful.

2.4 Neutrino Interactions

Neutrinos interact only via the weak and gravitational forces, but the gravitational effect is

difficult to measure. To study neutrinos, then, we must focus on their weak force interactions.

As discussed in Section 2.2, the weak force is mediated by the W and Z bosons. Neutrino

interactions involving the W± are known as charged current (CC) interactions, while those

involving the Z are known as neutral current (NC). CC neutrino interactions are identified

by the corresponding outgoing lepton. In a CC νe interaction, we expect an electron in the

final state, and so on for νμ and ντ interactions. In NC interactions, the neutrino appears

in both the initial and final state and the exchange of a Z boson mediates the transfer of

energy. More generally, CC and NC interactions proceed as

ν� + A → �− +X (CC) (2.13)

ν� + A → ν� +X (NC) (2.14)

where ν� represents a neutrino of flavor � = e, μ, τ , A is the target nucleus, � is the

charged outgoing lepton (in CC interactions only), and X represents final-state particles.1

Figure 2.4 shows examples of typical CC and NC neutrino interactions. In addition to CC

and NC, GeV-scale neutrino interactions (the focus of this thesis) are further subdivided into

distinct interaction types depending on the incident neutrino energy and how it interacts

with a target nucleus. For our purposes, the most relevant neutrino interaction modes are the

quasielastic (QE) and resonant modes. We discuss these, as well as other relevant interaction

modes, in the following sections.
1Note that the corresponding processes with an antineutrino and a positively-charged lepton are also

valid.
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Figure 2.3: The standard model of particle physics.

(a) Charged current
(b) Neutral current

Figure 2.4: Diagrams of typical CC and NC νe interactions.

11



2.4.1 Quasielastic Interactions

For ∼1 GeV neutrino energies, the most common interaction mode is the quasielastic (QE)

mode. In QE interactions, an incoming neutrino interacts with the nucleus, modifying the

quark flavor content of a nucleon in the process, as shown in Figure 2.5a. A more general

charged current quasielastic (CCQE) interaction is given by

ν� + n → �− + p (2.15)

ν̄� + p → �+ + n (2.16)

where n and p represent a neutron and proton, respectively. For NC elastic (NCE)

interactions, a neutrino transfers energy to a single nucleon via Z boson exchange, so the

interaction proceeds as

ν� +N → ν� +N (2.17)

where N represents a nucleon. Note that NCE interactions also produce a nuclear recoil

which is not shown in Equation 2.17. CCQE interactions are significantly easier to recognize

than NCE interactions due to the presence of an outgoing charged lepton. For NCE, the

signal is generally a single neutron or proton in the final state, which can be difficult to

distinguish from background. NCE interactions will not be considered further in this work.

Most simulated event generators use the Llewellyn-Smith model [11] for CCQE interac-

tions, although the more recent Nieves model [12] appears to offer better agreement between

simulation and data for some experiments with larger target nuclei [13].

2.4.2 Resonant Interactions

When a neutrino strikes a nucleon with sufficient energy, the interaction may result in a

nucleon resonance, as shown in Figure 2.5b. These resonances quickly decay, generally

producing a nucleon and some number of mesons (often pions) in the final state. Resonant

pion production is the dominant pion production mode for GeV-scale energies, and these
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(a) CCQE

(b) Resonant

(c) DIS

Figure 2.5: Diagrams of common neutrino interaction modes at GeV-scale energies. Note
that these examples show charged current interactions.
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pions can be a significant background for neutrino oscillation experiments (see Chapter 3).

In fact, resonant NC π0 production constitutes one of the largest background sources for

νμ → νe oscillation searches—if only one of the two photons from π0 decay is detected, it

can mimic the single-electron signal sought by νe appearance searches [14]. At energies of

∼1 GeV, the dominant resonant production is the Δ(1232), which is the first excited state

of a nucleon. Higher-order resonances can occur as well, although these are far less common

in this energy regime.

Historically, the most commonly used resonant model in simulation has been the Rein-

Sehgal model [15]. The more recent Berger-Sehgal [16] model improves on the older model

by including experimental pion scattering data and leptonic mass correction terms.

2.4.3 Other Interactions

CCQE and resonant interactions are the most common neutrino interaction types at GeV-

scale energies, which is the regime most relevant to the work described in this thesis.

However, even at lower energies, other interaction processes may contribute subdominantly.

Deep inelastic scattering (DIS, shown in Figure 2.5c) occurs when a high-energy neutrino

interacts directly with a constituent quark, breaking apart the nucleon and resulting in a

hadronic shower. DIS dominates for energies above ∼10 GeV, much higher than the GeV-

scale energy we consider in this work.

In addition to the resonance mode discussed in the previous section, pions can also

be produced in coherent scattering. In coherent scattering, a low-energy neutrino interacts

inelastically with the nucleus as a whole, producing either a charged or neutral pion. As with

resonant production, coherent pion production is modeled using either the Berger-Sehgal or

Rein-Sehgal models.

Finally, neutrino interactions which resemble CCQE can also arise from “two-particle

two-hole” (2p2h) processes. In these processes, a neutrino scatters on a pair of nucleons

which are interacting with each other via meson-exchange currents (MEC). Older versions

of simulated event generators do not account for MEC interactions. Recent versions of the

widely-used GENIE event generator [17] include a model of CC 2p2h interactions based on
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the work of Nieves et al. [12]. For NC, the only 2p2h treatment available in GENIE is the

empirical Dytman model described in Reference [18].

2.4.4 Summary

As discussed in the previous sections, challenges arise when measuring and predicting

neutrino-nucleus cross sections for heavier nuclei. Historical constraints of nuclear form

factors come from scattering experiments using hydrogen or deuterium as the target, but

more recent experiments use nuclei such as carbon, iron, lead, or argon. In addition to

uncertainties on nuclear form factors, final-state interactions (FSI) also complicate these

predictions. In large nuclei, final-state particles must travel through the nucleus before being

emitted in a detectable state. While traversing the nucleus, particles (particularly protons

and pions) can re-interact within the nucleus before exiting. Pions, for example, can charge

exchange (converting a neutral pion to a charged pion or vice versa), or be absorbed by the

nucleus. FSI are difficult to model, and therefore greatly increase the systematic uncertainty

on cross section measurements. Most event generators model intranuclear interactions using

a cascade model, in which particles interact with a series of individual nucleons. The

interaction probability with each nucleon is governed by a mean free path, which depends

on the nucleon cross section. Due to the computational challenges involved in performing a

full cascade simulation, most generators simplify this into an effective cascade model which

uses a single effective nuclear cross section.

Modern experimental cross section measurements using heavier nuclei show broad

agreement between prediction and data in the CCQE mode, although discrepancies exist in

the most forward-scattering regions [19, 20]. Significant tensions between data and prediction

exist for resonant pion production [20]. More experimental data is necessary to resolve these

tensions.

Figure 2.6, taken from Reference [21], summarizes experimental world data for the three

major interaction modes: CCQE, resonant, and DIS. Figure 2.6 also shows the predicted

total cross section. The data shown here come from a variety of experiments using different

target nuclei, and have been collected over several decades.
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2.5 Open Questions in Neutrino Physics

Despite the abundance of neutrinos in nature, many open questions remain about their

basic properties. For example, we do not yet know whether neutrinos are Dirac or Majorana

fermions. This question essentially boils down to whether the neutrino is its own antiparticle,

in which case it would be a Majorana particle. To answer this question, some experiments

are searching for a process known as neutrinoless double-beta decay [23]. Double beta decay

is a rare process that has been observed in atoms (such as Germanium and Selenium) in

which regular beta decay is energetically suppressed, while double beta decay is allowed. In

every observed case to date, this process released two neutrinos, as expected. However, if the

neutrino is its own antiparticle, there is a small probability that the two neutrinos released

in double beta decay will annihilate, and the two outgoing electrons will carry away the

entirety of the decay energy. In principle, this would result in an energy spike characteristic

of the atom in question. To date, neutrinoless double-beta decay has not been observed, but

increasingly sensitive experiments are under development [24].

Another open question is the absolute mass of each mass eigenstate. The current best

upper bound on the effective mass (i.e., the sum of the masses of the three mass states)

comes from the KATRIN experiment [25], who place the upper bound at 1.1 eV at a 90%

confidence level. While the absolute masses of each mass eigenstate remain unknown, the

mass splittings have been measured with reasonable precision (see Section 3.4). However,

there is an ambiguity in the ordering of the masses. This ordering is known as the neutrino

mass hierarchy (or mass ordering). The normal hierarchy has m1 < m2 < m3, while the

inverted hierarchy has m3 < m1 < m2. This is depicted in Figure 2.7. We know that

m1 < m2 from examining solar neutrino oscillation probabilities. Neutrinos produced in the

Sun have their oscillation parameters modified by matter effects, known as the Mikheyev-

Smirnov-Wolfenstein (MSW) effect [26, 27, 28]. In particular, solar νes interact with the

electrons in solar matter via CC interactions, and this introduces a dependence on the sign

of Δm2
21 (see Equation 5 of Reference [29]), allowing us to determine the ordering of those two

states. As for m3, current neutrino experiments are not sensitive to the small matter effects

caused by neutrino propagation through the Earth, meaning that we cannot yet determine
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whether m3 is the heaviest state or the lightest. Future oscillation experiments are expected

to resolve the neutrino mass hierarchy.

In addition to the mass splittings, other ambiguities remain in certain oscillation

parameters. The three mixing angles in Equation 2.4 have been measured with reasonable

precision, but there remains an ambiguity of the octant in which θ23 lies. This angle has been

measured to be close to 45◦, but it is currently unclear whether the true value is greater than

45◦, less than 45◦, or exactly 45◦. In the latter case, we would say that the mixing is maximal,

implying that the νμ and ντ components of ν3 would be equal and providing evidence for

a previously unknown symmetry in the neutrino sector [30]. Furthermore, some neutrino

oscillation models relate the θ23 octant to the mass hierarchy [31]. The determination of the

θ23 octant is therefore important for understanding neutrino oscillations.

Finally, there remain large uncertainties in the determination of the CP-violating phase

δCP . This may manifest, for example, as an asymmetric oscillation probability between

νe → νμ and ν̄e → ν̄μ oscillations. At present, CP violation has been observed in the quark

sector, but not the leptonic sector. CP violation may provide an explanation for the matter-

antimatter asymmetry of the universe. The quark sector observations of CP violation are not

sufficient to explain the asymmetry, making the leptonic sector an attractive avenue through

which to explain this.

Open questions in neutrino physics relating to oscillation parameters require precise

experimental measurements. In the next chapter, we discuss the major types of neutrino

experiments and the current best-fit values of the neutrino oscillation parameters.
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Figure 2.6: Summary of accumulated neutrino-nucleus cross section data as a function of
neutrino energy [22]. The data come from a wide variety of experiments on various target
nuclei.

Figure 2.7: Depiction of the normal (left) and inverted (right) neutrino mass hierarchies.
Each mass eigenstate (denoted as ν1, ν2, and ν3) is a superposition of three flavor states.
Δm2

atm and Δm2
sol represent the atmospheric and solar neutrino mass splittings, respectively.
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Chapter 3

Neutrino Experiments

Neutrino experiments broadly fall into four categories: solar experiments, which seek to

detect neutrinos emitted by the Sun during the fusion of helium into hydrogen; atmospheric

experiments, which measure neutrinos produced during the collision of cosmic rays with

nuclei in the Earth’s atmosphere; reactor experiments, which detect ν̄e emitted from nuclear

reactors during β decay from unstable fission fragments; and finally, accelerator-based

experiments, which use particle accelerators to produce a neutrino beam from proton beam

collisions with a fixed target. While the focus of this thesis is accelerator neutrinos, we pause

here to briefly discuss the other experiment types in order to contextualize the accelerator

results. In each of the following sections, the discussion of global fits comes primarily from

References [32] and [33] and the best-fit values of neutrino mixing parameters come from the

Particle Data Group (PDG) [22].

Most experiments assume the standard three-flavor neutrino oscillation model discussed

in Section 2.3, but recent anomalies point toward the existence of sterile neutrino states

which only interact via the gravitational force. Such sterile flavor states would be a major

discovery if confirmed, as the standard model currently assumes only three active neutrino

states.

Sections 3.1–3.4 discuss each of the aforementioned experiment types. Section 3.5

discusses the MiniBooNE low-energy excess anomaly, the primary motivation for the

MicroBooNE experiment.
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3.1 Solar Neutrino Experiments

The Sun produces neutrinos during thermonuclear reactions, primarily through the pp

(proton-proton) chain and Carbon-Nitrogen-Oxygen (CNO) cycle. Neutrinos from the pp

chains are low-energy, about 400 keV. However, other solar neutrino production modes can

produce neutrinos with energy O(10) MeV. Solar neutrino experiments were the first to prove

the existence of neutrino oscillations: in 1965, the Homestake experiment [34] measured the

solar neutrino flux by examining Cl37 β decay via the νe+ Cl37 → Ar37 + e− reaction. The

result was a substantial deficit of detected νes, roughly one third of the prediction at the time.

This became known as the solar neutrino problem. Throughout the late 20th century, other

experiments observed a similar deficit [35, 36]. In 1968, Pontecorvo proposed the possibility

of neutrino oscillations [10] to explain this apparent deficit. In this scenario, many of the

νes produced in the Sun oscillate into different flavor states by the time they reach the

Earth, making them undetectable by the aforementioned Cl37 decay channel. Finally, in

2002, the Sudbury Neutrino Observatory (SNO) experiment confirmed neutrino oscillations

by measuring both the total neutrino flux and the νe flux. Thus, neutrinos were confirmed

to oscillate as a function of distance [7], with the beyond-standard-model implication that

neutrinos masses are non-zero.

Solar experiments are particularly well-suited to measure the oscillation parameters Δm2
21

and θ12. Indeed, θ12 is often referred to as the “solar” mixing angle. Recent global fit

analyses include results from all past and present solar experiments, particularly Homestake,

GALLEX/GNO, Borexino, and Super-Kamiokande. They also include results from the

KamLAND reactor experiment, whose long baseline (distance the neutrino travels) of 180

km makes it sensitive to Δm2
21. The current 1σ best-fit values for each of these parameters

are Δm2
21 = 7.42+0.21

−0.20 × 10−5 eV2 and θ12 = 33.44+0.77
−0.74 degrees for the normal hierarchy, and

Δm2
21 = 7.42+0.21

−0.20 × 10−5 eV2 and θ12 = 33.45+0.78
−0.75 for the inverted hierarchy.
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3.2 Reactor Neutrino Experiments

Reactor neutrino experiments measure the incidental neutrino flux produced in nuclear

reactors during β decay. Here, the unstable isotopes U235, U238, Pu239, and Pu241 decay

into fission products (such as Xe140 and Sr94) which then produce neutrinos via inverse β

decay. The average energy of the fission reaction is about 200 MeV, but most of this energy

is retained as heat in the nucleus. The resultant ν̄es are therefore generally low energy, O(1)

MeV. Unlike other types of neutrino experiments, reactor experiments only measure one

flavor: ν̄e. Reactor experiments are generally sensitive to θ13 and Δm2
31. Analogous to θ12’s

moniker as the solar mixing angle, θ13 is often referred to as the “reactor” mixing angle. In

addition to KamLAND, reactor data primarily come from the RENO, Daya Bay, and Double

Chooz1 experiments. The current 1σ best-fit parameters are Δm2
31 = 2.517+0.026

−0.028 × 10−5 eV2

and θ13 = 8.57+0.12
−0.12 degrees for the normal hierarchy, and Δm2

31 = 2.498+0.028
−0.028×10−5 eV2 and

θ13 = 8.60+0.12
−0.12 for the inverted hierarchy.

An open question in reactor experiments pertains to the so-called “reactor anomaly,” in

which the measured ν̄e fluxes are consistently lower than predicted [37]. It remains an open

question whether this is due to mis-modeling of neutrino flux predictions, or whether this

points to the existence of one or more sterile neutrino state which do not interact via the

weak force. The potential existence of sterile neutrino oscillations will be discussed further

in Section 3.5.

3.3 Atmospheric Neutrino Experiments

When cosmic rays collide with air nuclei in the atmosphere, they produce hardonic showers

which eventually result in an atmospheric neutrino flux. Most commonly, charged pions

decay into muons and νμs, and the muons further decay into electron, νμs, and ν̄es.

Atmospheric neutrino experiments detect the neutrinos produced in these interactions. The
1The global analysis in Reference [33] only uses RENO and Daya Bay. The best fit parameters are still

reasonably consistent with Reference [32].
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range of energies for atmospheric neutrinos is large—anywhere from MeV-scale to 109 GeV—

but modern detection technology can only detect neutrinos up to about 100 TeV. For

oscillation experiments, only energies up to about 100 GeV are considered.

While the Super-Kamiokande experiment was the first to definitively confirm neutrino

oscillations [8], early indications of this phenomenon were seen in atmospheric experiments

during the late 20th century. Experiments such as Kamiokande [38], IMB [39], and SOUDAN

2 [40] measured the ratio of muon-like to electron-like events (which provides a handle on the

ratio of νμ-like events to νe-like events) in both data and simulation, with the expectation

that the ratio be unity if atmospheric neutrino fluxes were accurately predicted. While the

number of νe events generally met expectation, the number of observed νμ events was far

below, resulting in measured ratios less than unity. It was later discovered that this was due

νμ → ντ oscillations, with a large mixing angle θ23 (known now as the “atmospheric” mixing

angle).

Global fits to atmospheric neutrino data mostly use Super-Kamiokande [41], IceCube [42],

and the IceCube DeepCore upgrade [43]. The current 1σ best-fit value for the atmospheric

mixing angle is θ23 = 49.2+0.9
−1.2 for the normal hierarchy and θ23 = 49.3+0.9

−1.1 for the inverted

hierarchy.

3.4 Accelerator-Based Neutrino Experiments

The final type of neutrino experiment, and the primary focus of this thesis, is the accelerator-

based neutrino experiment. Accelerator-based experiments rely on a neutrino beam incident

on some target nucleus contained within the detector. Here, the idea is to accelerate protons

(usually stripped from Hydrogen gas) to near-light speed and smash them into a target such

as beryllium, graphite, or water. This collision produces secondary particles—mostly pions

and kaons—which are focused using magnetic focusing horns before finally decaying into νμ

(or ν̄μ, depending on the direction of the current in the focusing horn—see Section 4.1). The

remaining secondaries are collected in a beam dump, leaving a pure beam of (anti)muon

neutrinos. These neutrinos then reach a detector where their interactions with the target

nucleus allow for reconstruction of particle interactions. Accelerator neutrino energies vary
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depending on the initial energy of the proton beam, but generally range from O(100) MeV

to O(100) GeV. Since the neutrinos come from proton-nucleus collisions, the amount of

data collected by accelerator experiments is generally reported in terms of protons-on-target

(POT). Naturally, the number of POT varies between experiments, but is generally > 1020

POT.

As an example, Figure 3.1 shows an overview of the accelerator complex at Fermilab.

The accelerator complex provides two neutrino beams: the Booster Neutrino Beam (BNB)

and Neutrinos at the Main Injector (NuMI) [44]. The BNB takes proton accelerated up to 8

GeV by the Booster ring (red ring in Figure 3.1) which are then impinged upon a beryllium

target. NuMI, on the other hand, takes protons accelerated up to 400 MeV from the Linear

Accelerator (Linac, not shown in Figure 3.1) which are then further accelerated to 120 GeV

by the Main Injector (blue ring in Figure 3.1).

Accelerator experiments are subdivided into long-baseline and short-baseline experiments.

Equation 2.11, which describes the neutrino oscillation probability, P (να→β), contains two

experimentally tunable parameters: L, the distance the neutrinos travel, and E, the

neutrino energy. The ratio of these parameters, L/E, characterizes an experiment as

either long (L/E � 103 km/GeV) or short (L/E � 1 km/GeV) baseline. Long-baseline

experiments use two detectors, one placed close to the neutrino source (aptly named the

near detector), and another detector usually hundreds of kilometers away from the source

(the far detector). The two detectors allow for observation of both neutrino appearance

and disappearance. In appearance experiments, a neutrino of flavor β appears in να → νβ

oscillations. Disappearance searches start with a beam of νβ and observe να. Short-baseline

experiments, on the other hand, generally feature only one detector, usually within one

kilometer of the neutrino source. Due to their short baseline, these experiments are not well-

suited to oscillation searches under the three-flavor oscillation model. They are, however,

applicable to searches for more massive (eV-scale) sterile neutrino states, which will be further

discussed in the next section.

Global fits to oscillation parameters use data from the long-baseline NOνA [45], T2K

[46], and MINOS [47] experiments.2 These experiments are sensitive to Δm2
31, θ23, θ13,

2Reference [33] also uses K2K [48] data.
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the CP-violating phase δCP , and the neutrino mass hierarchy. The most recent results

from T2K and NOνA introduce an additional tension in the δCP parameter, reducing the

sensitivity relative to previous global fits [49] under the normal hierarchy hypothesis. While

this particular tension is not present in the inverted hierarchy, other experimental data show

a slight preference for the normal ordering. Future experimental data, particularly from the

upcoming long-baseline Deep Underground Neutrino Experiment (DUNE) and Hyper-K, are

needed to resolve this tension.

Table 3.1 summarizes the 1σ best-fit values for the neutrino oscillation parameters. In

general, measurements of the three-flavor oscillation parameters are well-constrained, with

the notable exception of δCP . Accurate measurements of this phase may help explain the

matter-antimatter asymmetry of the universe. Future measurements from DUNE and Hyper-

K are expected to constrain this uncertainty.

Up until this point, we have focused on three-flavor oscillations predicted by the standard

model. However, some experiments have observed anomalous results under the standard

three-flavor model. Such anomalies may indicate additional, non-active (sterile) neutrino

states or previously unknown or mis-modeled background sources. Different sterile neutrino

models assume different numbers of sterile states. For example, models that assume one

sterile neutrino state are referred to as 3+1 models (one sterile state in addition to the

three known mass states). In the next section, we discuss the MiniBooNE low-energy excess

anomaly, one of the primary indications for the existence of sterile neutrino states, and the

main motivation for the MicroBooNE experiment.

3.5 Short-Baseline Accelerator Anomalies

In 2001, the Liquid Scintillator Neutrino Detector (LSND, shown schematically in Figure

3.2a) experiment reported a significant excess of ν̄e appearance events [50], shown in Figure

3.2b. As a short-baseline experiment (L = 30 m, Eν ∼ 50 MeV), LSND should have

been insensitive to νμ → νe oscillations under the standard three-flavor model. However,

an additional mass-squared splitting of Δm2
41 ∼ 1 eV2—several orders of magnitude larger

than either of the three-flavor mass-squared splittings—could increase the flavor oscillation
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Figure 3.1: Cartoon depiction of the Fermilab accelerator complex.

Table 3.1: Summary of best-fit (BF) three-flavor oscillation parameters, along with 3σ ranges.
Values taken from Reference [32].

Normal Hierarchy Inverted Hierarchy
Parameter 1σ BF 3σ range 1σ BF 3σ range

θ12 (◦) 33.44+0.77
−0.74 31.27 – 35.86 33.45+0.78

−0.75 31.27 – 35.87
θ23 (◦) 49.2+0.9

−1.2 40.1 – 51.7 49.3+0.9
−1.1 40.3 – 51.8

θ13 (◦) 8.57+0.12
−0.12 8.20 – 8.93 8.60+0.12

−0.12 8.24 – 8.96
δCP (◦) 197+27

−24 120 – 369 282+26
−30 193 – 352

Δm2
21 (10−5 eV2) 7.42+0.21

−0.20 6.82 – 8.04 7.42+0.21
−0.20 6.82 – 8.04

Δm2
31 (10−3 eV2) 2.517+0.026

−0.027 2.435 – 2.598 2.498+0.028
−0.028 2.414 – 2.518
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frequency such that additional sterile neutrino states appear at short-baseline values. Indeed,

LSND concluded that the observed excess was consistent with a Δm2 > 0.4 eV2. In order

to explain this excess, the MiniBooNE experiment was constructed at Fermilab along the

Booster Neutrino Beamline (BNB). MiniBooNE began taking data in 2002, accruing over

18.75×1020 protons-on-target (POT) worth of data. Similarly to LSND, MiniBooNE’s short-

baseline values of L = 541 m and an average Eν of 700 MeV should make it insensitive to νe

appearance. Although designed to explain the observed LSND excess, MiniBooNE itself saw

a 4.8σ excess [51] of νe-like events in the region of Eν � 600 MeV. This is shown in Figure

3.3b. The observed data are significantly higher than both the predicted background and a

best-fit 3+1 oscillation model (dashed line in Figure 3.3b). This anomaly is referred to as

the MiniBooNE low-energy excess (LEE).

MiniBooNE was a mineral oil Cherenkov detector, a type of detector which has difficulty

distinguishing photons from electrons. When charged particles travel faster than the speed of

light in a medium, they emit Cherenkov radiation, similar to a sonic boom created when an

object travels faster than the speed of sound through air. Cherenkov radiation is emitted in

a cone of light, which is then detected by a photodetection system in a Cherenkov detector,

usually an array of photomultiplier tubes (PMTs). The Cherenkov radiation then manifests

as a ring of activity in the PMTs. Minimally-ionizing muon tracks are indicative of νμ

interactions, while electromagnetic showers indicate either νe or π0 events. Because muons

travel in a long, straight path, the resulting Cherenkov ring is distinctly sharp. Showers, on

the other hand, create “fuzzy” rings due to the cascade of particles. Electron showers from

νe interactions create a single fuzzy ring, while two-photon events from a π0 → γγ decay will

appear as two overlapping fuzzy rings. Figure 3.4 shows illustrations of each of these types of

Cherenkov rings. This presents a problem in distinguishing electrons from photons: in cases

where only one of the two π0 showers is detected—due, for example, to one shower exiting

the detector—the resultant ring is identical to that of an electron shower. Similarly, if the

two rings overlap completely, this mimics an electron ring. Thus, Cherenkov detectors show

considerable difficulty in distinguishing photons from electrons. The MiniBooNE LEE must

therefore be either electron-like or photon-like in nature. The former case would indicate

an excess of νe appearance events at a short baseline, providing evidence for sterile neutrino
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(a) LSND Detector

(b) LSND Excess

Figure 3.2: (a) Schematic of the LSND detector and (b) excess of electron antineutrino
events observed by the LSND experiment in terms of L/E. The red and green histograms
represent the expected background, while the blue histogram assumes an additional neutrino
oscillation with Δm2 ∼1 eV2.

(a) MiniBooNE detector (b) MiniBooNE LEE

Figure 3.3: (a) Schematic of the MiniBooNE detector and (b) observed excess of low-energy
electron neutrino-like events in MiniBooNE. The colored histograms represent the predicted
backgrounds, while the black dots show the measured data. Systematic uncertainties
(vertical lines on the background histogram) primarily come from uncertainties on the
neutrino flux and cross sections and are constrained using in-situ cross-section measurements.
The dashed line represents the best-fit assuming a 3+1 oscillation model.
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oscillations; the latter implies a previously unknown or mis-modeled background source. As

of this writing, the source of the MiniBooNE LEE remains an open question in experimental

neutrino physics.

To investigate the MiniBooNE LEE, the MicroBooNE experiment was built along

Fermilab’s Booster Neutrino Beamline, the same beamline MiniBooNE used. Using the

liquid argon time projection chamber (LArTPC) technology, MicroBooNE can distinguish

electron showers from photon showers, and will provide resolution to the LEE anomaly. In

the next chapter, we discuss the MicroBooNE experiment, including the relevant neutrino

beams and detector subsystems.
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Figure 3.4: Illustration of Cherenkov rings as detected by MiniBooNE.
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Chapter 4

The MicroBooNE Experiment

MicroBooNE, the successor to MiniBooNE, is a liquid argon time projection chamber

(LArTPC) operating along Fermilab’s Booster Neutrino Beamline (BNB) since 2015. It

is the first detector in Fermilab’s planned Short-Baseline Neutrino (SBN) program [52],

which will also include the upcoming Short-Baseline Near Detector (SBND) and the recently

commissioned ICARUS experiment, both of which are also LArTPCs. LArTPCs are one of

the preferred technologies for current and future neutrino oscillation experiments due to

their exceptional position and calorimetric resolution capabilities. LArTPCs can accurately

measure the energy deposition per unit length, dE/dx, of reconstructed particle objects,

which allows for accurate particle identification. In particular, the dE/dx profile for

electromagnetic showers in the active volume can distinguish electron showers from photon

showers, which will aid in answering the question of whether MiniBooNE’s LEE is electron-

like or photon-like. While investigation of the LEE is MicroBooNE’s primary physics goal,

it will also serve the neutrino community by providing high-statistics neutrino-argon cross

section measurements, along with LArTPC detector physics measurements and calibration

techniques. These measurements will inform future LArTPC experiments such as SBND,

ICARUS, and the upcoming Deep Underground Neutrino Experiment (DUNE).

MicroBooNE receives neutrinos from both the BNB and NuMI (see Section 3.4)

beamlines. The BNB is on-axis relative to MicroBooNE, meaning that the beam direction

is parallel to the z (forward) direction in the MicroBooNE detector. NuMI, on the other

hand, is an off-axis neutrino beam. This can be used for independent measurements such as
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studying the normalization of CC and NC π0 production. One such measurement includes

the recent νe+ν̄e CC inclusive cross section on argon [53]. Data from the NuMI beam

also provide an excellent opportunity to simultaneously measure the electron-neutrino cross

section due to its higher electron-neutrino flux component. This sample is also very useful

in developing and testing νe reconstruction methods. While NuMI provides an additional

neutrino source for various cross-checks, the work performed in this thesis does not use NuMI

data. We therefore choose to focus on the BNB.

Section 4.1 describes the design and operation of the BNB, which provides a pure beam

of νμ to the MicroBooNE detector. The remaining sections discuss the MicroBooNE detector

itself (Section 4.2), the major detector subsystems (Sections 4.3–4.8), and the current status

of the MicroBooNE detector 4.9.

4.1 Booster Neutrino Beam at Fermilab

MicroBooNE sits along Fermilab’s Booster Neutrino Beamline, the same beamline used by

the MiniBooNE experiment. A diagram of the beamline is shown in Figure 4.1. H− ions are

first accelerated through the Fermilab Linear Accelerator (Linac) to a kinetic energy of 400

MeV [54]. These H− ions then pass through carbon foil, stripping the electrons and leaving

bare protons. These protons are then injected into the Booster, a 474 m circumference

synchrotron operating at 15 Hz. The Booster accelerates the protons to 8 GeV momentum

and sorts them into beam spills of 4 × 1012 protons spaced apart by a 1.6 μs time window,

commonly referred to as the beam window. The spills are then sent to a target hall containing

a beryllium target.

The proton-beryllium (p-Be) collision produces secondary particles (see Section 3.4)

which are then focused toward the beamline by a magnetic focusing horn pulsed at ±174 kA.

A positive current produces a beam composed mostly of neutrinos (“neutrino mode”), while

a negative current leads to a beam of anti-neutrinos (“anti-neutrino mode”). A schematic of

the focusing horn is shown in Figure 4.2. In neutrino mode, the current runs along the beam

direction in the inner conductor before being redirected up and backward along the outer

conductor. This produces a magnetic field perpendicular to the beam direction which focuses
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same-charged particles along the beam direction and defocuses oppositely-charged particles.

The focused particles then travel through a 50 m cylindrical decay pipe filled with air, in

which they decay into the neutrinos which comprise the beam. Any remaining backgrounds

stop either in the concrete at the end of the decay pipe (the “beam dump”), or in the dirt

between the decay pipe and the detector. The neutrinos that reach the detector comprise

the beam.

Secondary particles in the decay pipe generally decay into νμ, but some contributions from

other neutrino flavors also reach the detector. Figure 4.3 shows the predicted composition

of the BNB while running in neutrino mode. In this mode, the beam is predicted to be

∼93.6% νμ, with the next largest contribution coming from ν̄μ (5.86%), especially at energies

below 200 MeV; νe (0.52%) and ν̄e (0.05%) contributions are orders of magnitude below νμ

components. The νμs are mainly produced via π+ → μ++ νμ, which has a branching ratio

of ∼99.98%. The ν̄μ component generally comes from highly-energetic, forward-going π−,

which fail to be completely defocused by the magnetic horn. νes are produced via π+ → e++

νe, a process which is suppressed by a factor of 10−4 relative to the π+ → μ++ νμ process

due to helicity conservation. Finally, the ν̄es come from semileptonic decays of K0
L.

The BNB has been operational for nearly twenty years, and as such, is one of the

most well-understood neutrino beams in the world. Still, due to the difficulty of predicting

neutrino fluxes, sizeable systematic uncertainties exist in the flux prediction. The dominant

source of systematic uncertainty in the BNB flux prediction comes from the uncertainty in

hadron production following the p-Be collision. Other subleading contributions come from

uncertainties in the proton delivery rate, horn current modeling, and the the total interaction

cross section for p-Be collisions. MiniBooNE performed a simulation-based constraint on the

total flux uncertainty [54]. MicroBooNE, following a similar procedure, obtained updated

systematic uncertainty values [56], which are listed in Table 4.1. The work in this thesis is

focused on the νμ component of the beam, where the dominant systematic is π+ production.
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Figure 4.1: Diagram of the Booster Neutrino Beamline.

Figure 4.2: Diagram of the magnetic focusing horn used in the BNB, taken from Reference
[54]. In neutrino mode, the positive 174 kA current flows from left to right along the inside
of the aluminum conductors (gray), then from right to left along the outside. The inner
conductor components are shown in blue and green in the center.

Table 4.1: Contributions to the total systematic uncertainty on the BNB flux. Hadron
production uncertainties are the dominant source for each ν flavor. Here, “other” includes
horn current modeling and the total p-Be interaction cross-section.

Systematic νμ/% ν̄μ/% νe/% ν̄e/%
Proton delivery 2.0 2.0 2.0 2.0
π+ 11.7 1.0 10.7 0.03
π− 0.0 11.6 0.0 3.0
K+ 0.2 0.1 2.0 0.1
K− 0.0 0.4 0.0 3.0
K0

L 0.0 0.3 2.3 21.4
Other 3.9 6.6 3.2 5.3
Total 12.5 13.5 11.7 22.6
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Figure 4.3: Predicted neutrino-mode BNB composition received by MicroBooNE, taken from
Reference [55]. The average νμ energy is ∼700 MeV.

Figure 4.4: (Left) schematic view of the MicroBooNE detector and (right) picture of the
TPC as viewed through the anode plane. Note that the cylindrical cyrostat is not shown in
the picture on the right.
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4.2 The MicroBooNE Detector

470 m downstream of the BNB sits the MicroBooNE detector, a 170 tonne (90 tonne active

volume) LArTPC shown in Figure 4.4. The detector active volume dimensions are 2.56 m

(drift direction, x), 2.16 m (vertical direction, y), and 10.36 m (beam direction, z). Anode

and cathode plane arrays establish an electric field (E-field) within the TPC volume. The

cathode plane is held at a constant -70 kV with a field cage composed of 64 2.54 cm diameter

stainless steel tubes that uniformly steps down the voltage in 1 kV increments to ground at

the anode. The anode consists of three readout wire planes, labeled as U, V, and Y. The

U and V planes contain 2400 wires each and are oriented at ±60◦ relative to the vertical,

while the collection plane contains 3456 wires oriented vertically, making for a total of 8256

wires. Each wire is made of copper-plated stainless steel. They are 150 μm thick, with 3

mm separation between each wire and wire plane. Behind the anode is an array of 32 8-inch

photomultiplier tubes (PMTs) for light collection and amplification (not shown in Figures

4.4 or 4.5). The TPC is housed in a cylindrical cryostat 12.3 m long and 3.81 m in diameter

insulated with 41 cm of polyurethane foam. The cryostat maintains a temperature of 89 K.

LArTPCs seek to reconstruct particle interactions, or “events,” by analyzing signals

induced on the anode wires. When a neutrino interacts with the argon, it can produce

charged particles. As charged particles traverse the detector volume, they ionize the argon

atoms. The resultant ionization electrons are then drifted toward the anode plane under the

influence of the applied E-field. As electrons travel through the anode, charge is induced

on U and V (“induction”) planes, and the electrons are subsequently collected on the Y

(“collection”) plane. These signals induced on the readout wires are used to reconstruct

neutrinos events, as shown in Figure 4.5. By analyzing the induced signal on each plane, we

can reconstruct accurate 3D event displays of particle interactions. A sample collection-plane

event display is shown in Figure 4.6.

In order for ionization electrons to travel unimpeded to the anode wires, the argon

in the TPC must be kept pure. Electronegative contaminants such as O2 and H2O can

reduce the electron drift lifetime, thereby attenuating the collected signal. The MicroBooNE
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Figure 4.5: Diagram of LArTPC detection. Ionization electrons are drifted toward three
readout wire planes via an electric field and the signals are used to reconstruct the neutrino
event. Also shown is the MicroBooNE coordinate system in which x is the electric field
direction, y is the vertical direction, and z is the beam direction.
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30 cm
Run 3469 Event 28734, October 21st, 2015 

(a) U plane

30 cm
Run 3469 Event 28734, October 21st, 2015 

(b) V plane

30 cm
Run 3469 Event 28734, October 21st, 2015 

(c) Y plane

Figure 4.6: Sample MicroBooNE event display showing a candidate νμ interaction from on-
beam data as viewed on each wire plane. The y axis corresponds to drift time, the x axis to
wire number. Event displays on the collection (Y) plane can be thought of as a top-down
view of the candidate neutrino interaction.
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purification subsystem consists of two pumps that circulate the argon through filters designed

to remove O2 and H2O impurities [57].

MicroBooNE has been taking data since August 2015, with over 7.5 × 1020 POT. Since

March 2017, the detector has been taking data with a cosmic ray tagger (CRT) system,

accumulating 2.5× 1020 POT with the CRTs.

4.3 Data Acquisition Readout Electronics

In order to convert the LArTPC signals into a useful data format, MicroBooNE employs

readout electronics which amplify, shape, and digitize the data. These electronics are split

into warm and cold components. The cold electronics consist of complementary metal-oxide

semiconductor (CMOS) application-specific integrated circuits (ASICs). These analog front-

end ASICs contain a signal pre-amplifier, shaper, and driver, and are mounted on front-

end motherboards (FEMBs) placed in the liquid argon near the anode-plane wires. This

proximity to the wires, along with the low liquid argon temperature, reduces the impact of

electronics noise.

From the ASICs, induction signals are transmitted through twisted-pair copper cables

to a warm flange, and then to an intermediate amplifier line-driver, which accounts for

signal losses as the signals are finally carried through additional twisted-pair copper wires to

data acquisition (DAQ) machines. The DAQ contains an analog-to-digital converter (ADC),

which digitizes the signals at a rate of 2 MHz; this sampling rate defines one time “tick” as

0.5 μs. The DAQ readout window of 9600 ticks (or 4.8 ms) corresponds to roughly twice the

maximum ionization electron drift time of 2.3 ms. Finally, the digitized signals are passed

to a field-programmable gate array (FPGA) for data processing and reduction. A schematic

of the MicroBooNE readout electronics chain, taken from Reference [58], is shown in Figure

4.7.

The ASICs can operate at one of four gain settings (4.7 mV/fC, 7.8 mV/fC, 14 mV/fC,

or 25 mV/fC) and four peaking times (0.5 μs, 1.0 μs, 2.0 μs, or 3.0 μs), where the peaking

time is defined as the time difference between 5% of the signal peak and the magnitude of

the signal peak value. The choice of gain setting impacts the signal pulse heights, while
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the peaking time affects pulse widths. The gain setting must be chosen so as to provide

a high signal-to-noise ratio for minimally-ionizing particle tracks (such as cosmic muons),

while avoiding channel saturation from highly-ionizing sources (such as stopping protons);

the chosen gain value is 14 mV/fC. Meanwhile, the peaking time must be optimized so as to

accurately record the induced signals without introducing additional noise. Considering the

MicroBooNE sampling frequency of 2 MHz, one may assume that a peaking time of 1 μs is

the obvious choice. However, due to the relatively slow drift time of ionization electrons (2.3

ms at the maximum drift distance), signal waveforms are broadened due to a) the longer

drift time through the anode wires and b) signal-attenuating effects such as electron diffusion.

Thus, we choose a peaking time of 2 μs, as little information is lost relative to a 1 μs peaking

time, and the longer peaking time reduces inherent noise [58].

Post-installation studies into the readout electronics have revealed a number of misconfig-

ured, shorted, and dead wire regions in the detector. Misconfigured regions are those in which

the raw data read from the ASICs is consistent with the factory default gain and peaking

time settings of 4.7 mV/fC and 1 μs, respectively. These channels—of which there are 224,

all in the first induction plane toward the downstream end of the TPC—have higher inherent

noise and a lower signal-to-background ratio than properly configured channels. Signals from

these channels are corrected using an offline noise filter. In addition to the misconfigured

region, the first induction plane also contains a region of shorted wires, believed to be the

result of direct contact between many U-plane wires and a single V-plane wire. This results

in some electrons being collected on the U plane instead of the Y plane in this so-called

“U-shorted region.” The collection plane signals in this region therefore show a lower signal

amplitude than those in other regions. Finally, the collection plane contains a region of

functionally dead wires in which signals are almost entirely collected on the V plane. In the

MicroBooNE coordinate system, this dead region corresponds to z-positions ranging from

roughly 675 to 775 cm.
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4.4 Ionization Signal

For each MeV of energy deposited by a charged particle in the MicroBooNE active volume,

approximately 4 × 104 ionization electrons are produced. These electrons drift toward the

anode plane under the influence of an applied electric field, with a maximum drift time

of 2.3 ms. As the electrons drift through each of the three anode wire planes, they induce

signals on nearby wires, manifesting as a bipolar response on the induction planes (a positive

response as the electrons approach the plane, and a negative response as they leave) and

a unipolar response on the collection plane; see Figure 4.8. These response functions are

convolutions of a field response and an electronics response. The field response describes the

charge induced on one anode-plane wire by a single ionization electron, while the electronics

response describes the impact on the signal waveform due to shaping and amplification during

signal readout [59]. Each plane maintains a constant bias voltage to ensure transparency to

drifting electrons. The V and Y planes are shielded by the voltages on adjacent planes, but

the U plane can see ionization clouds from farther away, broadening the response function

on that plane.

As ionization electrons drift through the detector volume toward the anode plane, several

physical effects can modify or distort the shape of the electron clouds, which in turn modifies

the signal. For example, local E-field distortions caused by Ar+ ions which drift slowly

(relative to ionization electrons) toward the cathode plane; we refer to this as the space

charge effect (SCE) [60]. SCE impact the spatial resolution of the detector, resulting in

reconstructed tracks that may appear bent or bowed. These local distortions also alter the

local drift velocity of the ionization electrons.

Ionization electrons may also recombine with argon ions, reducing the collected charge.

Electron-ion recombination, or simply “recombination,” depends on the local density of

ionization electrons and the local E-field strength. In addition to recombining with Ar+

ions, ionization electrons can also attach to electronegative contaminants such as O2 and

H2O, attenuating the collected signal. The electron lifetime—which describes the expected

drift time of ionization electrons and serves as a measure of argon purity—has been measured
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Figure 4.7: Schematic of the MicroBooNE readout electronics chain, taken from Reference
[58].

Figure 4.8: Average time-domain response on the induction (black and red) and collection
(blue) planes.
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to be 18 ms in MicroBooNE [61], significantly greater than the maximum drift time of 2.3

ms.

Finally, electron diffusion acts to spread the ionization clouds as a function of drift time.

The transverse component (in the plane parallel to the anode wire plane) spreads charge

to neighboring wires, while the longitudinal component (perpendicular to the wire plane)

widens signal pulses in time. We discuss electron diffusion in detail in Chapter 6.

4.5 Light Collection

Liquid argon is a bright scintillator, producing O(104) photons per MeV of deposited energy

at the nominal E-field of 273 V/cm. Additionally, argon is transparent to its own scintillation

light, making light collection an efficient method of determining the precise time an event

occurred, denoted as t0. The MicroBooNE light collection system consists of 32 8-inch

Hamamatsu 5912-02MOD PMTs arranged behind the collection plane, shown in Figure 4.9.

The PMTs are most efficient at detecting light with wavelengths between 350 and 450 nm;

however, argon ionization light peaks in the vacuum ultraviolet (VUV) spectrum at 128 nm.

Thus, each PMT is coated with wavelength-shifting Tetraphenyl Butadiene (TPB) to bring

the ionization light into the visible spectrum of the PMTs.1

Scintillation light in argon is produced when excited diargon atoms (dimers) radiatively

decay following excitation [62]. There are two methods by which dimers form in liquid

argon: self-trapping and recombination luminescence. In self-trapping, a charged particle

excites an argon atom, which then “traps” a ground state argon atom, forming a dimer. In

recombination luminescence, an ionized argon atom combines with an ionization electron

and a ground state argon atom to form the dimer. In both cases, the excited dimer can form

in either a singlet or triplet state, with the singlet (triplet) state having a decay time of 6

ns (1.6 μs). These processes are shown in Figure 4.10. Scintillation light originating from

the decay of the singlet state is referred to as prompt light, while the slower light from the

triplet state decay is called late light.
1The PMT array also contains 4 light guide paddles, but these are intended for R&D for future, larger

LArTPCs, since the PMT-plus-plate system is not scaleable.
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Figure 4.9: (Left) PMT diagram and (right) picture of the PMT array mounted behind the
anode plane in the MicroBooNE TPC, take from Reference [57].

Figure 4.10: Cartoon of scintillation light production processes in liquid argon. Image credit:
Reference [63].
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4.6 UV Laser System

As discussed in Section 4.4, MicroBooNE’s position resolution is impacted by SCE, primarily

caused by slow-drifting Ar+ ions. These ions distort the local E-field in their vicinity, leading

to non-uniformities in both the electric field and the drift velocity. To study this effect, and

to obtain a correction map for E-field and drift velocity values, MicroBooNE employs an

ultraviolet (UV) laser system [64], shown diagrammatically in Figure 4.11. Before entering

the cryostat, the beam is directed, attenuated, and sized in a dark laser box. Two mirrors

(labeled M1 and M2 in Figure 4.11) align the beam, while an attenuator controls the beam

energy and an aperture controls the size. M1 transmits IR light while reflecting green and

UV; the infrared (IR) light is collected by the first beam dump (BD1). M2 then transmits

green light (collected by BD2) and reflects the UV light to a third mirror, M3, which directs

the beam to the 2.5 m feedthrough. At the end of the feedthrough is a rotatable cold mirror

submerged in the liquid argon, which can be used to control the beam angle in the TPC.

The UV laser system has been used to measure local drift velocity and E-field variations,

as well as the average drift velocity of ionization electrons. Because the angle of the beam

is a known quantity, we can compare the reconstructed track to the “true” laser track to

observe track distortions as a function of TPC position. The result of this is a distortion

map, which can then be used to obtain a correction map to correct the local drift velocity

and E-field values. Details of obtaining these maps can be found in Reference [64].

4.7 Cosmic Ray Tagger System

As a surface-level detector, MicroBooNE is exposed to a high rate of cosmic ray flux. In a

given 4.8 ms readout, we expect about 20 cosmic muons to enter the detector. In order to

tag these cosmic tracks and reduce backgrounds, MicroBooNE installed a series of Cosmic

Ray Tagger (CRT) planes outside the top, bottom, anode, and cathode faces of the detector.

Figure 4.12 shows the placement of the CRT planes relative to the detector, along with a

simulation of cosmic muons crossing the CRT planes. The design and construction of the

CRT system is described in detail in Reference [65].
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Figure 4.11: Diagram of the UV laser system in MicroBooNE. The 266 nm laser is aligned
by two mirrors (M1 and M2), and passed through an attenuator to control the beam energy,
and an aperture to control beam size. The laser then enters the TPC after being directed
by a third mirror (M3). Finally, the rotatable cold mirror reflects the beam within the TPC
volume.
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Figure 4.12: Overview of the CRT layout in MicroBooNE. The left shows a cartoon of where
the CRT planes are placed, while the right shows a simulation of cosmic muons (brown lines)
passing through the CRT planes. Note that “feedthrough” and “pipe” side refer to the anode
and cathode side, respectively.
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Each CRT plane is comprised of several CRT modules (denoted as individual rectangles

in the left side of Figure 4.12) arranged into top and bottom layers. These modules are

themselves composed of 16 10.8 × 2 cm plastic scintillating strips. When crossing cosmic

muon tracks interact with the scintillator, they produce scintillation light, which is collected

by silicon photomultipliers (SiPMs) in the scintillation strips. This signal is then digitized

and read out by specialized front-end boards (FEBs). Using this signal, along with the start

and end points of the reconstructed cosmic track, we can determine the precise time that

a cosmic muon entered the detector, denoted by t0. Tracks with a known t0 are said to be

t0-tagged.

Due to space constraints in the Liquid Argon Test Facility (LArTF)—which houses the

MicroBooNE detector—there are no CRT planes at the upstream or downstream ends of

the detector. Additionally, the top plane is 5.4 m from the top face of the detector in order

to accommodate detector electronic racks. Thus, the CRTs attain a maximum solid angle

coverage of 85%.

Due to budget constraints, the CRT system was not installed until March 2017, meaning

that the first two data-taking runs lack CRT information.

4.8 Data-Taking Triggers

If every event in MicroBooNE were recorded, that collected data would amount to about 13

TB per day. Obviously, this is not sustainable in the long term. To reduce this sizeable data

load, MicroBooNE employs two data-taking triggers to determine whether an event should

be recorded or not.

The first of these triggers is a hardware trigger. Because the BNB is delivered in discrete

“spills,” MicroBooNE can leverage timing information from the accelerator division to know

when to expect a spill to reach the detector; this is the purpose of the hardware trigger. When

the hardware trigger fires, the TPC readout stream opens up a 4.8 ms readout window, while

the PMT stream opens up a 23.4 μs readout. The hardware trigger efficiency is 99.8%.

Even after applying the hardware trigger, however, only about 1 in 600 spills will produce

a neutrino interaction. To further slim down the collected data, a software trigger in the
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PMT stream checks for optical activity exceeding a certain threshold. Here, the threshold is

6.5 effective photoelectrons (PE),2 where the number of PE is determined by comparing the

maximum optical waveform value with a baseline value. This trigger is “online,” meaning

that the decision to keep the data is made after recording the TPC and PMT streams. The

software trigger rejects about 97% of spills, increasing the signal to background ratio from 1

in 600 to roughly 1 in 6.

In addition to the hardware and software triggers for on-beam events, MicroBooNE also

uses an external trigger to collect background (cosmic) data. As a surface-level detector,

MicroBooNE has no shortage of cosmic events. Thus, the software trigger is applied to

the external sample as well. Data collected from the external trigger is often referred to as

“EXT” or off-beam. When generating simulation samples for analyzers, MicroBooNE takes

GENIE-generated particle interactions and overlays EXT data on top to accurately reflect

the impact of the large cosmic background. These samples are commonly referred to as

MC-Overlays. Details of the MicroBooNE simulation and reconstruction will be discussed

in the following chapter.

4.9 Detector Operations

MicroBooNE has been collecting data since August 2015, with over 1.3 × 1021 protons-on-

target (POT) collected to date. However, the software trigger (described in Section 4.8)

was not implemented until February 2016, meaning that data collected before this date is

generally not used. The first run period (“Run 1”) is therefore considered to start with

the implementation of the software trigger. The work in this thesis will only consider data

collected during the first three runs of data taking; this corresponds to the time period from

February 2016 to March 2018, during which a total of ∼ 7 × 1020 POT was collected. Figure

4.13 shows the cumulative collected POT during these dates.

For the purpose of minimizing potential bias in evaluating the cause of the MiniBooNE

LEE, most MicroBooNE data is “blinded,” meaning that it is not available for analyzers to

use. Instead, analyzers generally use a small “unblinded” sample of Run 1 data corresponding
2Here, an “effective” PE refers to a recorded optical waveform consistent with a single PE.
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to approximately 5 × 1019 POT (roughly 5% of the expected final dataset). This is often

referred to as simply the “5e19” sample. As noted in Section 4.7, the CRT was not operational

until Run 3, although installation began during Run 2. To allow analyzers to use CRT data,

and to check for cross-run differences, a small sample of Run 3 data collected with the CRT

is unblinded as well. To date, MicroBooNE has performed five full runs of data-taking, with

scheduled shutdowns and maintenance performed in between runs. The work in this thesis

only uses data from Runs 1–3, which corresponds to about two-thirds of the total expected

dataset from all five runs. Table 4.2 summarizes the five data-taking runs.
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Figure 4.13: Cumulative POT collected by MicroBooNE during Runs 1–5, excluding the
period before the software trigger was applied. The total POT delivered across all five runs
with the software trigger is 1.39× 1021, while the POT written to tape is 1.33× 1021.

Table 4.2: Summary of the five data-taking run periods in MicroBooNE. Data from Runs 4
and 5 are not used in this thesis, but are noted here for completeness. The low-purity data
in Run 4 were caused by a delivery of impure argon to the detector. Note that the date
format used here is mm/dd/yy.

Run Period Start Date End Date POT Delivered Notes
Run 1 02/10/16 07/29/16 1.90× 1020 Software trigger applied
Run 2 10/15/16 07/07/17 3.30× 1020 CRT planes installed
Run 3 10/27/17 07/06/18 3.15× 1020 CRT operational
Run 4 09/17/18 07/06/19 3.76× 1020 Includes low-purity data
Run 5 11/05/19 03/21/20 1.79× 1020
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Chapter 5

Simulation and Reconstruction in

MicroBooNE

This chapter describes the simulation and reconstruction algorithms used in MicroBooNE,

both for generating Monte Carlo (MC) samples and for reconstructing data. These

algorithms are implemented into the Liquid Argon Software (LArSoft) [66] framework, a

common framework used by multiple LArTPC experiments, including future experiments

such as DUNE. Section 5.1 describes the simulated generation of particles from neutrino-

nucleus interactions and their propagation through liquid argon. Section 5.2 discusses

the detector response modeling, while Section 5.3 explains how we reconstruct neutrino

interactions based on the measured TPC signals. Finally, calibration methods applied to

MC and data are described in Section 5.4.

5.1 Particle Generation and Propagation

As discussed in Section 4.1, neutrinos in MicroBooNE are produced from the decay of

secondary mesons resulting from proton-beryllium collisions. To simulate this, we use the

GEANT4 [67] framework for both the primary proton-target interaction and the decay of

secondary particles as they travel through the air-filled decay pipe. This results in neutrino

momentum and spatial position distributions at the upstream end of the TPC, which are

subsequently used to configure the GENIE event generator [68] to simulate neutrino-nucleus
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interactions in the active TPC volume. MicroBooNE uses GENIE v3, which includes the

nuclear model set listed in Table 5.1.

The GENIE v3 nuclear model treats nucleons as a non-interacting Fermi gas, and is

therefore referred to as the local Fermi gas (LFG) model [69]. Quasielastic (QE) interactions

and the meson exchange current (MEC) channel—which accounts for correlated nucleon

pairs—are modeled using the Nieves model [12]. This model accounts for random phase

approximation (RPA) screening and multinucleon effects in charged current channels. As of

this writing, no equivalent for neutral current channels exists, so GENIE uses an empirical

model instead. Both resonance and coherent pion production are modeled according to

Berger and Sehgal [16], an updated version of the classic Rein-Sehgal resonance model [15].

Relative to the Rein-Sehgal model, Berger-Sehgal includes lepton mass effects and updated

pion scattering data. Deep inelastic scattering is modeled using the Bodek-Yang model

[70]. Final-state hadron production (or hadronization) uses the Andreopoulos, Gallagher,

Kehayias, and Yang (AGKY) model, which transitions from the Koba-Nielsen-Olesen model

[71] at low hadron invariant mass to the PYTHIA model at higher invariant mass [72].

Finally, final-state interactions (FSI) are modeled according to an effective cascade model

(denoted hA) [73], which treats FSI as a single interaction parametrized by a mean free path

and interaction probabilities, rather than multiple intranuclear interactions.

The output of GENIE neutrino-nucleus scattering simulation is a set of final-state

particles that exit the nucleus. These particles are then propagated through the liquid

argon using a LArSoft implementation of the GEANT4 framework [67], known as LArG4.

GEANT4 simulates the traversal of particles through a given medium based on the mean

free path and interaction probability of the particle in that medium. This proceeds in

discrete steps within the defined detector volume, resulting in simulated energy depositions

at each step. These depositions are then drifted toward the anode plane, where the number

of remaining electrons is calculated based on the simulated recombination model and the

measured electron lifetime. The position of the electron cloud is calculated from a Gaussian

probability distribution, and the cloud is then assigned to the nearest readout wire. In

addition to the information provided from GEANT4, MicroBooNE applies spatial corrections

to depositions to account for the space charge effect (SCE, see Section 4.4). This information
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is then passed to the detector simulation, which handles the modeling of the detector response

function described in the next section.

5.2 Signal Processing

The MicroBooNE detector simulation utilizes the novel Wirecell (WC) framework, described

in extensive detail in References [59] and [74]; much of the information in this section is

derived from those sources.

Once the ionization electrons reach the anode wire plane, the process of unfolding the

“true” signal from the measured signal begins. Recall from Section 4.4 that the detector

response function is modeled as a convolution of a field response—which describes the signal

on a wire due to a single ionization electron, as modeled by Ramo’s theorem [75]—and

an electronics response, which describes the effect of the readout electronics (see Section

4.3). The ultimate goal of MicroBooNE’s signal processing is to recover the arrival time

distribution of an ionization electron cloud, the integral of which provides the total collected

charge. To do so, we deconvolve the measured signal with the modeled detector response and

electronics noise. In the case of a simple one-dimensional deconvolution, the true deconvolved

frequency-space signal, S(ω), can be modeled as [59]

S(ω) =
M(ω)

R(ω)
F (ω), (5.1)

where M is the measured signal, R is the detector response, and F is a Gaussian low-pass

noise filter used to mitigate the impact of electronics noise. To simplify the computation, the

field response used in the deconvolution is calculated for the central wire and 10 neighboring

wires on either side, for a total of 21 wire response calculations. Each individual wire response

is averaged over six equally-spaced drift paths within 1.5 mm (half of one wire pitch) of the

wire. The electronics response is the same for all channels. The software filter, F , is a

“Wiener-inspired” filter based on the classic Wiener filter [76]. The modifications introduced

to the standard Wiener filter account for variations in the TPC signal due to event topology

and the increased impact of electronics noise due to MicroBooNE’s “long” (4.8 ms) readout

window.
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The MicroBooNE deconvolution is two-dimensional, applied in both the time and wire

dimensions. The time-dimension deconvolution accounts for the drifting of ionization

electrons through the anode plane, while the wire dimension corrects for charge induced

on neighboring wires in the vicinity of the central wire. To expedite this process, and to

save on computational resources, the deconvolution is applied to a Region of Interest (ROI)

around the signal peak. This ROI-finding method also mitigates the impact of low-frequency

noise, as noisy regions outside of the signal are generally ignored. The result is known as a

deconvolved waveform, an example of which is shown in Figure 5.1.

Following the extraction of the arrival time distribution of the ionization electron cloud,

the WC framework then calculates a TPC drift simulation based on the SCE-corrected input

from GEANT4. Recall from the previous section that GEANT4 simulates energy depositions

of a charged particle traveling through the liquid argon, and then assigns each deposition to

a wire with a given position distribution and number of arriving electrons, after which we

apply SCE corrections. The WC drift simulation then accounts for drift-dependent effects

that modify the shape of the electron cloud, such as electron diffusion, attenuation, etc.

In addition to drift-dependent effects, the event topology can significantly impact the

extracted signal. The track angle in the xz-plane, denoted θxz, affects the width of the

extracted charge distribution. This effect is especially pronounced for θxz > 60◦, as shown

in Figure 5.2. Tracks with a large θxz result in energy depositions to appear “stretched” in

time on neighboring wires, increasing the charge bias and resolution. The induction planes

are especially sensitive to this effect due to their bipolar response functions. Similarly,

θyz, the angle with respect to the beam direction in the yz-plane, affects the height of

extracted pulses. At high θyz, more ionization electron clouds fall on or near the central

wire, increasing the signal amplitude. Charge bias and resolution studies accounting for

both of these topological effects have been performed, and the signal processing framework

has been extensively validated using MicroBooNE data.

54



Table 5.1: List of nuclear models used in GENIE v3.

Interaction Model
Nuclear model Local Fermi Gas
Quasielastic scattering Nieves w/ dipole axial FF
CC MEC Nieves
NC MEC Empirical
NC elastic Ahrens
Resonance Berger Sehgal
Coherent pion production Berger Sehgal
Deep inelastic scattering Bodek-Yang
Hadronization AGKY
Final-state interactions hA2018
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Figure 5.1: Sample deconvolved waveform recovered using MicroBooNE’s 2D deconvolution.
Only an ROI around the signal peak is preserved.
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5.3 Reconstruction of Particle Objects

The previous section outlined the detector response simulation, the goal of which is to obtain

the arrival time distribution of ionization electron clouds. From here, we begin the process

of reconstructing the particle interaction of interest, or “event.” In addition to ionization

signal, the reconstruction also utilizes PMT information to aid in background rejection,

particularly those due to cosmic rays. There are three primary reconstruction algorithms

used by MicroBooNE analyses: the Pandora pattern recognition algorithm [77], a deep

neural network algorithm known as Deep Learning (DL) [78], and the novel Wire-Cell (WC)

reconstruction algorithm [79] (not to be confused with the WC drift simulation discussed

in the previous section). The DL reconstruction is an image-based algorithm that seeks to

identify particles based on individual pixels in the event display. The WC reconstruction is a

tomographic algorithm that uses charge information collected on the wire planes to construct

3D images from the 2D charge distribution on each individual plane. While the DL and WC

algorithms have both produced significant physics results in MicroBooNE, the work in this

thesis relies on the Pandora pattern recognition algorithm. Sections 5.3.1 and 5.3.2 describe

Pandora in more detail.

5.3.1 Optical Signal Reconstruction

The goal of optical reconstruction is to combine optical activity recorded in the PMTs into a

reconstructed object known as a flash. The timing of the flash can then be used to identify

candidate neutrino interactions through the process of flash matching.

The PMTs record optical activity as raw waveforms. First, these waveforms are examined

for optical pulses, defined as optical activity that exceeds some threshold value. A baseline-

finding algorithm calculates a rolling mean for each time tick outside the pulse region

(assuming that this is a signal region), and interpolates the baseline within the pulse

region. Waveforms exceeding the threshold are stored as optical hits, which contain relevant

information such as the waveform height, width, and area. A combination of multiple time-

coincident optical hits forms a reconstructed flash. These flashes aid in neutrino interaction

identification through the process of flash matching. For each PMT, the reconstructed optical
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activity is compared to the predicted activity for each candidate interaction in the event.

The interaction whose optical activity most closely matches expectation (based on a χ2

test) is then “matched” to the reconstructed flash. This flash-matching technique reduces

backgrounds by an order of magnitude, significantly improving MicroBooNE’s ability to

distinguish neutrino interactions against a large cosmic background [80].

5.3.2 Ionization Signal Reconstruction

Once deconvolved waveforms (such as those shown in Figure 5.1) are obtained, the

reconstruction algorithm fits a Gaussian to these waveforms. This Gaussian fit is known

as a hit (not to be confused with the optical hits described in the previous section). Hits

contain key information about the underlying waveform, particularly the peak value and the

width. These hits are then input to Pandora, which groups hits into clusters, and associates

those clusters with a particle object. These objects are further grouped into hierarchies of

parent and daughter particles, known as Particle Flow Objects (PFOs).

In LArTPCs, the two primary reconstructed objects are particle tracks and electromag-

netic (EM) showers. Tracks tend to manifest as relatively straight and narrow lines traversing

the TPC volume, such as the cosmic muons shown in Figure 4.6. At MicroBooNE energies,

the most common track-producing particles are muons, charged pions, and protons. Showers,

on the other hand, produce a cascade of particles in a roughly conical shape, such as the

one shown just below the interaction vertex in Figure 4.6. EM showers in MicroBooNE

are generally produced by either electrons or photons. Electrons shower immediately when

produced, and thus the showers are usually attached to the interaction vertex. Photons, on

the other hand, propagate invisibly over some distance before converting to an e+/e− pair,

which then creates the shower. Photon showers therefore show a distinct gap between the

interaction vertex and the shower starting point, such as the aforementioned shower shown

in Figure 4.6.

The first step in identifying candidate neutrino interactions is the process of cosmic

rejection. Pandora first identifies “unambiguous” cosmic rays (CR), usually by identifying

clusters which either a) enter the TPC outside of the known beam timing window or b) both

enter and exit the detector, meaning that both the start and endpoints pass through the
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top and bottom of the TPC. Tracks identified as unambiguous cosmics are then removed,

along with any associated daughter delta rays, and their hits are no longer considered. In

cases where an unambiguous cosmic overlaps a track not easily identified as cosmic, the hits

of the unambiguous cosmic are preserved. For example, if a cosmic track overlaps with a

neutrino-induced muon tracks, then the hits of both tracks are kept. At the end of cosmic

removal, ambiguous clusters (those that aren’t clearly of cosmic origin) of hits are divided

into candidate neutrino slices.

After removing easily-identifiable cosmics, Pandora then runs its neutrino hypothesis

algorithms over the remaining hits in order to identify candidate neutrino interactions. The

cosmic hypothesis algorithms are also re-run over each slice in order to compare the cosmic

and neutrino hypotheses for each slice. The neutrino algorithms first group hits into 2D

clusters on each wire plane. This processes utilizes timing information, which is common to

all three planes. New clusters are formed any time a cluster shows a significant deviation in

its direction (shown in Figure 5.3a), which increases cluster purity while sacrificing cluster

completeness. Here, purity is defined as the number of hits in a cluster the are truly associated

with the correct underlying particle object (e.g., the number of proton hits associated to a

true proton), while completeness is defined as the number of associated hits relative to

the total number for that particle. Cluster merging algorithms subsequently improve the

completeness while maintaining purity.

From here, Pandora begins the process of finding a 3D interaction vertex that forms a

consistent grouping. To do so, Pandora places an interaction vertex at each possible cluster

start and end point, and then evaluates how “neutrino-like” the interaction looks with a

vertex in that position. An example of the vertex finding is shown in Figure 5.3b. The

next step is to match the clusters between the views that correspond to the same particle

trajectory using an iterative process. During this process, clusters that cause ambiguities

are identified. For example, an induction-plane cluster may be matched to two collection-

plane clusters, resulting in an ambiguity. The 2D clusters are then split or merged using this

new information, and the 3D reconstruction begins again. This process is repeated until all

ambiguities are removed and a single, consistent 3D neutrino interaction is reconstructed.

This process takes place in each neutrino slice, and each slice is then evaluated under both
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Figure 5.2: Simulated charge distribution for varied θxz values on the collection plane, with
θyz fixed at 0◦. As θxz increases, the charge distribution is smeared, particularly for tracks
above θxz > 60◦.

(a) 2D Clustering
(b) Vertex Finding

Figure 5.3: Example of the Pandora (a) 2D clustering and (b) vertex finding algorithms on
a typical simulated CC νμ interaction. Each visible identified particle is shown in a different
color.
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the neutrino and CR hypotheses and assigned a neutrino slice score, where a higher score

indicates a more neutrino-like interaction, and a lower score indicates a CR-like interaction.

Figure 5.4 shows a flowchart summarizing the Pandora pattern recognition process. The

result of this process is a candidate neutrino slice (the one with the highest slice score) and a

set of reconstructed objects within that slice which are scored as either track-like or shower-

like. Downstream reconstruction in LArSoft uses the track and shower scores to identify

objects as either tracks or showers.

The performance of Pandora reconstruction varies depending on several factors. The

number of final-state particles, particle momenta, event topology, and the interaction mode

can all impact Pandora’s reconstruction efficiency [81]. Here, efficiency is defined as the

number of simulated particles that are matched to one reconstructed particle. We can also

define the correct event fraction as the percentage of events in which all simulated particles

are matched to one reconstructed particle. For example, in simulated CC 1μ1p events, the

muon reconstruction efficiency is 95.8% and the proton efficiency is 87.3%, leading to a

correct event fraction of 83.6%.

Other, more complex event topologies can prove more challenging to reconstruct correctly.

Reconstructing two showers coming from π0 → γγ decay proves especially difficult for several

reasons. In highly asymmetric π0 decays, the subleading (less energetic) photon may not be

reconstructed due to being too low-energy. For events with a high-momentum, forward-going

π0, the two photon showers may overlap and be reconstructed as a single shower. Finally,

either photon may have a large conversion distance, defined as the distance traveled by the

photon before pair-converting. Photons which convert far from the interaction vertex may

not be correctly associated with that vertex. For simulated CC resonant π0 events with one

muon and one proton in the final state, the leading shower reconstruction efficiency is 88.0%,

while the subleading shower efficiency is 66.4%. The muon and proton efficiencies are similar

to the CC 1μ1p case described earlier, leading to a total correct event fraction of 49.9%.
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5.4 Calorimetry and Calibration

Although the algorithms described in the previous sections have been extensively studied and

validated using MicroBooNE data, imperfections in the reconstructed objects are inevitable.

In particular, the collected charge per unit length, dQ/dx, and the energy deposition per

unit length, dE/dx (which is extracted from dQ/dx), show significant differences between

data and MC. These quantities are vital to any analysis in a LArTPC. dE/dx describes

the energy loss of a particle as it travels through the liquid argon in the TPC, and is an

invaluable tool in particle identification (PID). Recall from Section 3.5 that the MiniBooNE

low-energy excess (LEE) is believed to be either electron-like or photon-like, as Cherenkov

detectors have difficulty distinguishing electrons from photons. In LArTPCs, the primary

way to distinguish electron showers from photon showers is by their measured dE/dx profile.

Since photon showers are created by the conversion of a photon into an e+/e− pair, the

measured dE/dx is expected to be twice that of a lone electron shower. Proper calibration

of the extracted dE/dx is therefore vital to MicroBooNE’s primary physics goal of explaining

the LEE.

There are several potential causes of the known differences in dQ/dx and dE/dx in data

vs. MC. As discussed in Section 4.4, a multitude of physical processes modify ionization

electron clouds as they drift in the electric field. Electron-ion recombination, diffusion, local

E-field distortions caused by SCE, etc. can all significantly impact the measured arrival time

distribution of the electrons, from which we extract dQ/dx. We also discussed in Section 4.3

that many of the TPC readout wires are either misconfigured, shorted, or dead, all of which

affect the measured charge on the collection plane. Finally, detector conditions are known

to vary over time,1 particularly the argon purity, which in turn impacts the electron drift

lifetime. The combined result of these effects is a non-uniformity in the collected charge as a

function of TPC position. Figure 5.5 shows a collection-plane view of these non-uniformities

in terms of the yz-position of the deposited charge. Recall from Section 4.3 that a significant

number of wires in the U plane (first induction plane) are known to be shorted in the region

z < 400 cm, leading some charge to be collected on the U plane instead of the collection
1“Time” here meaning months or years, not to be confused with the O(ms) readout window.
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plane; this is shown in the left boxed region of Figure 5.5. The boxed region on the right

(around z ∼ 700 cm) shows the collection-plane dead wire region, where practically no charge

is collected. The purpose of dQ/dx calibration is to correct these non-uniformities, as well

as the smaller non-uniformities observed throughout the TPC volume. Once we obtain a

calibrated dQ/dx calibration, we can then obtain dE/dx. This can be summarized as

dQ

dx

Uniformity−−−−−−→
correction

(
dQ

dx

)
cal

Recombination−−−−−−−−→
correction

(
dE

dx

)
cal

. (5.2)

The dQ/dx calibration consists of two parts: a yz spatial correction and an electron

lifetime correction. The yz correction addresses the impact of transverse diffusion and

shorted/dead wires, while the lifetime correction accounts for longitudinal diffusion, electron

attenuation, and other drift-dependent effects. We calculate many lifetime correction factors

corresponding to different days of data-taking, so these corrections also account for temporal

variations in detector conditions, such as fluctuations in argon purity. To derive each of

these correction factors, we use a sample of crossing cosmic muon tracks, meaning that the

track crosses both the anode and the cathode. These tracks traverse the entire drift distance

and are uniformly ionizing, allowing for study of drift-dependent effects. Furthermore, their

known start and end positions allow for extraction of the precise arrival time of the track, t0,

which allows for a more precise calibration. Tracks that are either perpendicular to or parallel

with the collection plane wires are discarded, as these lead to poor signal reconstruction.

To obtain E-field corrections, we use the measured E-field map derived using the UV laser

system [64]. This map provides local E-field values in 10 cm voxels in the detector volume,

and we obtain correction values by comparing the local value to the nominal value of 273

V/cm. The derivation of yz correction factors is similar: we first split the yz plane into 5×5

cm bins, and calculate the median dQ/dx in each bin. This median value is then compared

to a global value derived using all reconstructed hits from the crossing muon sample. The

ratio of the local dQ/dx to the global dQ/dx forms the yz correction factor. For the lifetime

correction, we split the drift coordinate into 10 cm bins, and extract the median dQ/dx for

each bin. We then plot dQ/dx vs. x and extract the electron lifetime, τ , from the slope

of this fit. Electron attenuation is modeled as an exponential process, so the lifetime is
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Figure 5.4: Flowchart of the Pandora pattern recognition reconstruction process. The top
row shows the process of identifying unambiguous cosmic rays (CR), while the bottom row
includes 2D clustering, 3D vertex reconstruction, and neutrino slice score assignment.

Figure 5.5: Extracted dQ/dx in the collection plane as a function of yz-position. The boxed
region on the left shows the U-shorted region, while the box on the right shows the collection
plane dead wire region.
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extracted from an exponential fit to the dQ/dx distribution. In practice, however, the slope

is very small due to the high argon purity in MicroBooNE, as shown in Figure 5.6. This

procedure is performed for each day of data-taking, resulting in many lifetime measurements

corresponding to different dates, and we store these values in a lifetime database. These

values are then used to correct drift-dependent effects in the measured dQ/dx. Note that

these corrections are applied sequentially, meaning that the yz correction is input to the

lifetime correction, and the E-field correction is input to the yz correction.

The correction factors described above result in a corrected dQ/dx distribution. To

extract the calibrated dE/dx, we use the modified box model [82] for recombination,

(
dE

dx

)
cal

=

exp
[
( dQ

dx )cal
Ccal

β′Wion
ρε

]
− α

β′
ρε

, (5.3)

where (dQ/dx)cal is the calibrated dQ/dx, Wion is the work function in argon, ε is the

electric field,2 ρ is the argon density at the nominal operating pressure of 124 kPa, and

α and β′ are measurable recombination parameters. The work function, electric field, and

argon density are known quantities, while α and β′ have been measured in argon by the

ArgoNeuT experiment [82]. Finally, Ccal is a calibration constant used to convert the ADC

value obtained during signal readout to the number of electrons. Table 5.2 lists the values of

each variable. The details of measuring the calibration constant can be found in Ref. [83].

Note that this quantity is different for data and MC.

With these known values, we can readily obtain the calibrated dE/dx distribution, an

invaluable tool in PID. To illustrate this, Figure 5.7 shows the leading shower dE/dx from the

NuMI CC inclusive analysis [53]. When calculating shower dE/dx, we take the first 4 cm of

the shower and calculate the average dE/dx as though it were a track. This method accounts

for the spurious nature of shower topologies, which can be difficult to fully reconstruct [84].

Recall from Section 3.5 that one of MicroBooNE’s primary physics goals is to investigate

the MiniBooNE LEE, which requires separation of electrons from photons. Figure 5.7 shows
2Note that we’re only using ε to denote the electric field to avoid confusion with the E in dE/dx. This

will not necessarily be the case in the remainder of this thesis.
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Figure 5.6: dQ/dx vs. x distribution for a high-purity sample, dated June 23, 2018. Spatial
and E-field corrections have been applied. The flat slope indicates a high electron lifetime.

Table 5.2: Input values to the modified box model [82] when calculating dE/dx from the
corrected dQ/dx. e denotes the number of electrons.

Parameter Value
MC Ccal (ADC/e) (5.077± 0.001)× 10−3

Data Ccal (ADC/e) (4.113± 0.011)× 10−3

Wion (MeV/e) 23.6× 10−6

ε (kV/cm) 0.273
ρ (g/cm3) 1.38
α (dimensionless) 0.93
β′ (kV/cm)(g/cm2)/MeV 0.212
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that νe-induced electron showers peak at 2 MeV/cm, while photon-like showers from π0 decay

peak at 4 MeV/cm due to their conversion into an e+/e− pair.

In addition to shower dE/dx, Figure 5.8 shows the distribution of track dE/dx vs.

residual range (defined as the distance from a point along the track to the track endpoint) for

a BNB-induced inclusive CC νμ sample. The colored curves show the theoretical expectation

based on the Bethe-Bloch formula. By examining the dE/dx vs. residual range distribution,

we can reasonably distinguish between protons and muons.3 In MicroBooNE, multiple PID

algorithms exist which use the dE/dx information—as well as other calorimetric, geometric,

and kinematic variables—to formulate a test statistic which quantifies the likelihood of a

particle being a particular species. For example, the PID-a algorithm [85] parametrizes the

dE/dx distribution as an exponential of the form aRb, where R is the residual range and a

and b are fit parameters. The ArgoNeuT collaboration found b = −0.42 to be a reasonable

approximation [85], and so the extracted fit a can be used to determine the particle species.

In MicroBooNE, the PID-a algorithm was found to have poor agreement between data and

MC [63], leading to the development of other algorithms. The most recent log-likelihood-

based PID algorithm improves on older version by accounting for the various detector effects

listed in Section 4.4 and the event topology [86], which can significantly impact charge

reconstruction and therefore dE/dx. This novel algorithm is over 80% efficient at identifying

proton tracks using charge information from all three anode wire planes.

3Differentiating muons and charged pions is much trickier. Although not shown in Figure 5.8, the pion
curve is quite similar to the muon curve making the separation of the two difficult.
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Figure 5.7: Distribution of the most energetic (leading) shower dE/dx from the NuMI CC
inclusive analysis at MicroBooNE [53]. νe-induced electron shower peak at 2 MeV/cm, while
photon showers from π0 decays peak around 4 MeV/cm.

Figure 5.8: dE/dx vs. residual range distributions for an inclusive CC νμ sample. The
colored lines represent the theoretical expectation from the Bethe-Bloch formula [22].
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Chapter 6

Measurement of Longitudinal Electron

Diffusion in MicroBooNE

Statement of disclosure: This chapter contains an edited version of a soon-to-be published

journal article [87]. While this article lists the entire MicroBooNE collaboration as the author

(this is standard MicroBooNE procedure), I contributed the majority of the material in the

article along with my colleague Adam Lister. The version in this thesis has been edited

to remove redundant introductory material, particularly information on the MicroBooNE

detector which was covered in Chapter 4. I’ve also made slight changes to wording throughout

and modified the format to be consistent with the remainder of this thesis.

In Section 4.4, we discussed some of the physical processes that alter extracted LArTPC

signals as a function of drift time, including the space charge effect (SCE), electron-ion

recombination, and ionization electron diffusion. This chapter focuses on the measurement

of the longitudinal component of electron diffusion, DL, in MicroBooNE. Section 6.1 provides

the motivation of the analysis and current world data on DL measurements in liquid

argon. Section 6.2 describes the analysis method. Section 6.3 provides the central value

measurement result, while Section 6.4 discusses systematic uncertainties. Finally, Section

6.5 discusses our result in the context of the current world data and theoretical prediction.
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6.1 Introduction

Electron diffusion is non-isotropic under the influence of an electric field [88, 89, 90] and is

split into components which are transverse and longitudinal to the E-field. The transverse

component, DT , impacts the spatial resolution of a given LArTPC in the plane parallel to the

readout wire plane (the yz-plane in the MicroBooNE coordinate system, shown in the top

half of Figure 6.1). Similarly, the longitudinal component, DL, impacts the spatial resolution

along the drift coordinate (perpendicular to the wire plane as shown in the bottom half of

Figure 6.1) broadening the signal waveforms as a function of drift time as shown visually in

Figure 6.2. For particles near the anode, where the drift time is low, the signal waveform

is relatively tall and narrow. As the drift time increases, the pulses become shorter and

broader.

Few measurements of DL currently exist in liquid argon. In 1994, the ICARUS

collaboration reported measurements of DL in a three-ton test stand at E-fields ranging from

100 to 350 V/cm using a three-ton LArTPC with a maximum drift distance of 42 cm [89].

A more recent but preliminary measurement using the ICARUS T600 detector is reported

in Reference [91]. Li et al. from Brookhaven National Lab (BNL) reported measurements

between 100 and 2000 V/cm in 2015 using a laser-pulsed gold photocathode with drift

distances ranging from 5 to 60 mm [90]. The ICARUS results show good agreement with the

prediction of Atrazhev and Timoshkin [88], while the results of Li et al. are systematically

higher than both. Figure 6.3 summarizes the current world data for DL measurements.

This work describes the measurement of longitudinal ionization electron diffusion in the

MicroBooNE detector using cosmic-ray muons tagged by the CRT system (see Section 4.7).

The CRT data used in this measurement were collected between October 27, 2017 and March

13, 2018.

6.2 Method

To first order, the relationship between the time-width of a signal pulse at a given time t,

σt(t), and DL can be parametrized [89, 90] as
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Figure 6.1: Diagram of the MicroBooNE coordinate system and wire planes. The beam
travels along the z-direction, while ionization electrons drift in the decreasing x-direction. y
denotes the vertical direction. The angles θxz and θyz denote the angle of a reconstructed
object (i.e., track or shower) with respect to the beam direction in the xz- and yz-planes
respectively. The top half shows a side view of the TPC through the anode plane, while
the bottom half shows a top-down view. The colored lines (dots) on the top (bottom) half
represent the three readout wire planes.
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Figure 6.2: Visualization of the impact of DL on signal waveforms as a function of drift time.
The waveform peak times have been shifted in order to align with one another. One time
tick is equivalent to 0.5 μs. Each waveform displays the deconvolved ADC count, arbitrarily
scaled.
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Figure 6.3: Summary of world data for longitudinal electron diffusion in liquid argon. The
orange-dashed curve shows the theory prediction [88], the blue dot-dashed curve shows the
parametrization from Li et al. [90], and the red and dark blue points show the ICARUS [89]
and Li et al. measurements, respectively. Details of this plot can be found in Appendix A.
Note that the ICARUS error bars (± 0.2 cm2/s) are obscured by the data point.
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σ2
t (t) � σ2

t (0) +

(
2DL

v2d

)
t, (6.1)

where vd is the drift velocity and σ2
t (0) is added to account for the Gaussian noise filter used

during waveform deconvolution [59] which enforces a minimum width for the pulses. The

expected minimum width is σ2
t (0) ∼ 1.96 μs2. Because equation 6.1 is an approximation, DL

is actually an effective diffusion coefficient that contains a small contribution from transverse

diffusion (see section 6.4). Equation 6.1 assumes a constant vd. However, due to the abundant

cosmic ray flux in MicroBooNE caused by its location near the surface, the electric field

varies as a function of position in the detector due to SCE. This means that vd also changes

throughout the detector volume. MicroBooNE has measured the values of vd as a function of

TPC position using electric field maps determined using UV laser data [92]. Because equation

6.1 captures the size of the electron cloud at the point of measurement, it is important to use

the value of the drift velocity at the location of that measurement. Specifically, the signal

processing removes the electronics response and the field shaping and returns a measured time

distribution that corresponds to the arrival time of the electrons at x = 0 (the first induction

plane) convoluted with a Gaussian low-pass filter function that removes high frequency noise.

Thus, the mean drift velocity at x = 0, vd = 1.076 mm/μs, is used for the measurement of

DL in the MicroBooNE data. When measuring DL from our simulation samples (see section

6.3.1), we use the nominal simulated vd value of 1.098 mm/μs, since the simulated signal

deconvolution assumes the ionization electrons drift at this velocity across the volume.

Although the MicroBooNE E-field varies as a function of position within 273.9+12%
−8% V/cm

[60, 92] due to space charge effects, equation 6.1 assumes that the value of DL is constant.

Figure 6.3 shows that, within MicroBooNE’s E-field variations, the current world data and

theoretical expectations for DL are consistent with an assumption of a constant DL value

in the region of the MicroBooNE E-field. The MicroBooNE nominal DL simulation value

is extracted from the parametrization of Li et al. (blue-dashed curve in Figure 6.3) at

E = 273.9 V/cm and corresponds to a DL value of 6.40 cm2/s.

Due to the linear relationship between the squared-pulse-width in time and ionization

electron drift time (Equation 6.1), it suffices to perform a linear fit of σ2
t versus t and
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extract DL from the slope. The widths of waveforms (“pulse widths”) are sensitive to more

effects than just longitudinal diffusion. Transverse diffusion, the detector response modeling,

collinear delta ray production, and the angle of the reconstructed track can all significantly

impact the measured time width of the pulse. To minimize the additional broadening

from such effects, we place a strict set of requirements on tracks reconstructed from the

MicroBooNE data.

6.2.1 Track Selection

To measure DL, we use cosmic muons tagged by MicroBooNE’s CRT. Using the signals read

out from the CRT system along with the start and end points of the reconstructed cosmic

track, we can determine the precise drift time (t0) that a cosmic muon entered the detector.

This allows us to use t0 as the track start time to determine the drift time of the waveforms

used in the final measurement. Tracks with a known t0 are said to be t0-tagged. For CRT-

tagged tracks with length greater than 50 cm, the t0-tagging efficiency is 56.6%. For this

analysis, we require that tracks must

• have a reconstructed length greater than 50 cm;

• be through-going, meaning that both the start and end points must be within 5 cm of

any TPC wall;

• have |θxz| < 6◦ and |θyz| < 40◦ (figure 6.1); and

• have an average track deflection of less than 6 cm.

The track length requirement ensures track reconstruction quality and reduces potential

track mis-identification of shorter tracks or shower-like objects. We require through-going

tracks as an additional reconstruction quality check. The strict angular selection is designed

to mitigate additional pulse width broadening due to the combined effects of track angle,

DT , and the detector response modeling (see Figure 9 of Reference [59]) particularly in

the xz-plane. As θxz increases, so does the intrinsic spread in x of the ionization position

distribution. A stringent θxz requirement therefore mitigates this effect while providing a
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sufficient number of waveforms to perform the analysis. θyz, on the other hand, impacts pulse

height rather than pulse width, so we choose a looser requirement for that angle. Finally,

as a measure of track straightness, we use the average deflection defined as the average

transverse distance between each point along the track and a straight line connecting the

track start and end points. Track angles are determined using the track starting direction,

but, in some cases, the track can significantly deviate from this starting direction. This

requirement therefore ensures that tracks remain relatively forward-going. An event display

of a selected track is shown in Figure 6.4.

Track length distributions at each stage of the selection are shown in Figure 6.5, while the

selection efficiencies and number of selected tracks are shown in Table 6.1. The requirements

on the track angle are the least efficient, reducing the number of selected tracks by two orders

of magnitude. The final selection contains ∼70,000 tracks and each track can have hundreds

of waveforms. This provides an ample number of waveforms to perform the analysis.

6.2.2 Waveform Selection

The pulse widths in this analysis are extracted from deconvolved waveforms, low-level data

products which attempt to recover a “true” signal by deconvolving the raw signal measured

at the anode wires with the detector response. Recall from Section 4.4 that the MicroBooNE

detector response is modeled as a convolution of a field response and an electronics response.

The field response describes the charge induced on one anode-plane wire by a single ionization

electron, while the electronics response describes the impact on the signal waveform due to

shaping and amplification during signal readout [74, 58]. The deconvolution process also

applies a Gaussian low-pass noise filter to mitigate the effects of electronics noise [58]. The

MicroBooNE deconvolution is two-dimensional, applied in both time and wire space. The

result of this deconvolution is a signal waveform with a distinct region of interest preserved

around signal peaks that exceed a predefined threshold value.

As with the reconstructed tracks, we place a set of requirements on the reconstructed hits

to ensure waveform quality. While the final DL measurement uses deconvolved waveforms

rather than reconstructed hits, hit information is easily accessible and can be used as a proxy
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Figure 6.4: Collection-plane view of a track that passes the diffusion track selection
requirements outlined in section 6.2.1. The horizontal axis is the wire number (increasing
from left to right), while the vertical axis is the drift time (increasing from bottom to top).

Table 6.1: Selection efficiencies after each selection requirement and number of selected
tracks. Relative efficiencies are calculated relative to the number of tracks at the previous
stage of the selection.

Relative Absolute
Selection Requirement No. Tracks Efficiency Efficiency
Total tracks 5.27×107 100% 100%
Length > 50 cm 2.27×107 43.1% 43.1%
t0-tagged 1.28×107 56.4% 24.3%
Through-going 1.25×107 97.7% 23.7%
Angular requirement 79,896 0.64% 0.15%
Deflection requirement 71,698 89.7% 0.14%
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Figure 6.5: Track length distributions at each stage of the track selection. The peak around
230 cm in the orange and black curves corresponds to the height of the TPC since most CRT
tracks traverse the detector top-to-bottom.
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for the shape of the underlying waveform. We require reconstructed waveforms for which

the reconstructed hits have

• been fit to a single Gaussian distribution;

• a goodness-of-fit (GoF) < 1.1; and

• a z-position between 400 cm < z < 675 cm or 775 < z < 951 cm.

Requiring the waveform to have been fit to a single Gaussian distribution removes hits

that are contaminated with other charge depositions, particularly those due to delta ray

production along the reconstructed track. The hit GoF test ensures that the waveform

shape is reasonably Gaussian; we model electron diffusion as a Gaussian process, and the

deconvolution uses a Gaussian noise filter. We expect the waveforms to follow this shape

as well. Finally, we apply a hit fiducial volume along the z-direction. The first induction

plane in MicroBooNE is known to have a region of shorted wires in the upstream half of

the TPC [59, 58]; requiring hit positions to be at least 400 cm from the upstream end of

the TPC removes this region from consideration. The downstream portion of the detector

volume is impacted by SCE [92], so we remove that region as well. Finally, we ignore the

region between 675 and 775 cm in z to avoid a region of dead wires in the collection plane.

Figure 6.6 shows the yz-position distribution of reconstructed space points corresponding to

the selected hits. The waveform fiducial volume removes slightly more than half of the TPC

volume with most of the selected waveforms coming from z > 800 cm due to the detector

geometry combined with the requirement that reconstructed tracks have a shallow θyz and

be through-going.

In addition to the criteria listed above, we place an additional requirement that the hit

width of each individual waveform be representative of the pulse width distribution in its

corresponding bin of drift time. To do so, we reject all waveforms whose hit widths fall

outside of a one standard deviation region around the median value in that drift bin as

shown in Figure 6.7. The dark blue regions in Figure 6.7a show that many hit widths differ

significantly from the median value in that drift bin largely due to effects such as unresolved

delta rays, misreconstruction, and the statistical nature of diffusion. This leads to long “tails”
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Figure 6.6: yz-position distribution of reconstructed space points corresponding to selected
hits on the collection plane. The majority of the selected hits are in the downstream portion
of the detector due to geometric effects along with the track selection. The empty region at
the top of the detector around z ∼ 550 cm is due to the overlap of two dead regions on the
two induction planes. 3D reconstructed objects such as space points require charge to have
been measured on at least two wire planes.
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Figure 6.7: (a) Distribution of hit widths vs. drift time. (b) The same distribution after
requiring hits be within one standard deviation of the median value in each drift bin as
described in the text. Each bin of drift time has been area normalized in the two dimensional
histogram so that the structure is more visible. The bottom histograms show the number of
hits collected in each bin of drift time.
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in the distribution of σ2
t in each bin which could bias the width of the resultant summed

waveforms in each bin.

6.2.3 Extraction of DL

The electron drift time in MicroBooNE ranges from 0 to 2300 μs, which we split into 25 bins.

At the nominal drift velocity of 1.098 mm/μs, each bin corresponds to roughly 10 cm of drift

distance. Within each of the 25 drift time bins, we employ a waveform summation technique

to obtain a single representative waveform of that bin. To account for time offsets between

waveforms we iteratively shift each additional waveform from -5 ticks to +5 ticks relative to

the center of the summed waveform and choose the configuration which minimizes the hit

width (RMS) of the resultant summed waveform. An example of this process is shown in

Figure 6.8, and a sample summed waveform is shown in Figure 6.9. The summed waveform

retains a Gaussian shape, without a significant additional broadening due to the waveform

summation method; see section 6.4.4.

Once we have a summed waveform in each bin, we fit a Gaussian to that summed

waveform, taking the standard deviation as our measure of σt, and the mean as t. We

then plot σ2
t vs t, and extract DL from the slope of this fit. Figure 6.9 shows a sample

summed waveform with the Gaussian fit drawn on top. It is clear that the underlying

distribution is not perfectly Gaussian, but when restricted to the region around the peak

of the distribution, the Gaussian functional form is a good estimator of the width of the

distribution. The statistical uncertainty on σt is negligible due to the large number of

waveforms used in each drift bin.

6.3 Measurement of Longitudinal Electron Diffusion

6.3.1 Method Validation on Simulated Samples

To validate the method described in section 6.2, we use simulated samples containing only a

single muon. These simplified samples contain 500 events, each with exactly one muon track

and no backgrounds. The muon tracks are generated precisely in-time with the beam, so
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Figure 6.8: Illustration of the waveform summation technique employed in this analysis.
The cyan waveform is iteratively shifted from -5 to +5 ticks in increments of one tick. At
each iteration, the cyan waveform is added to the magenta waveform and the hit width of
the summed waveform (black) is calculated. In this simplified example, the cyan waveform
is shown shifted by -1, 0, and +1 ticks. In this case, the left-hand configuration would be
selected.
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Figure 6.9: Sample summed waveform with Gaussian fit. σt is extracted from the standard
deviation of the fit and t from the mean. This waveform is taken from the first drift bin on
the collection plane.
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there is no potential bias from t0 mis-tagging. They populate the detector volume uniformly

and have a fixed momentum of 1 GeV/c, with an angular coverage of θxz = ±6◦. Figure 6.10

shows the resultant plots of σ2
t vs. t on each wire plane for simulated single muons within the

angular selection values listed in section 6.2.1. For each plane, the top plot shows the linear

fit and an area-normalized histogram of the number of waveforms in each bin; the bottom

plot shows the fit residuals. As discussed in the previous section, each point on the plots in

Figure 6.10 represents the standard deviation of a Gaussian fit to the summed waveforms

in each bin of drift time. We extract the measured DL value from equation 6.1 using the

simulated drift velocity vd = 1.098 mm/μs. This simplified sample results in a measured DL

value of 6.30 cm2/s. Compared to the nominal (default) simulation value of 6.40 cm2/s, the

measured value is well within the estimated systematic uncertainties, discussed in section

6.4. The values of σ2
t (0) are extracted from the y-intercept of the linear fit, and their values

are close to the expected value of σ2
t (0) = 1.96 μs2. Fit errors on DL and σ2

t (0) are negligible

(<1%).

6.3.2 Measurement using CRT Data

Figure 6.11 shows the σ2
t versus drift time distribution from which we extract DL for

MicroBooNE data. When using CRT data, the distribution of waveforms peaks near the

cathode because of the CRT plane geometry; the CRT plane on the cathode side is nearly

twice as large as the anode-side plane. The DL central value extracted from the slope is 3.74

cm2/s when using collection-plane waveforms. The statistical uncertainties and uncertainties

from the fit are negligible. The y-intercept of 1.88 μs2 is slightly below the expected 1.96

μs2. While Figure 6.11 shows the fit results on all three wire planes, we choose to quote

the value extracted on the collection plane as our measurement. There are two primary

reasons for this: 1) the induction planes are known to be more impacted by electronics

noise than the collection plane, and 2) the bipolar nature of the induction plane response

functions may introduce additional bias in the extracted pulse widths during deconvolution

[59]. The other wire planes are used for systematic uncertainty studies as described in section

6.4.3. As a cross-check of this measurement, Figure 6.12 shows area-normalized comparisons

of summed waveforms between MicroBooNE data and simulated datasets with DL = 6.40
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cm2/s (MicroBooNE nominal) and DL = 3.74 cm2/s (measured data value). It is clear

from these comparisons that the DL = 3.74 cm2/s dataset more closely matches the data

waveforms, lending weight to our measurement. Table 6.2 displays a summary of the results

presented in figures 6.10 and 6.11.

The extracted DL value of 3.74 cm2/s differs significantly from the default simulation

value of 6.40 cm2/s. Recall Figure 6.3 which shows a summary of current world data on

diffusion. The blue dot-dashed curve shows the parametrization of Li et al. [90] while

the orange-dashed curve shows the theory prediction of Atrazhev and Timoshkin [88]. The

default simulation value was extracted from the Li et al. parametrization which is known to

be systematically higher than the theory curve.

6.4 Evaluation of Systematic Uncertainties

This section describes studies performed to evaluate the total systematic uncertainty on the

DL measurement. While a multitude of effects could potentially bias the measurement, the

largest expected systematic effects are due to transverse diffusion, drift velocity variations,

and the detector response function modeling. We also considered other possible sources of

systematic uncertainty but found them to be sub-dominant.

6.4.1 Transverse Diffusion

Recall that DL in equation 6.1 is actually an effective longitudinal diffusion coefficient with

residual contributions to the pulse width from DT [90]. For tracks with non-zero θxz, adjacent

electron clouds begin to overlap as they spread in the yz-plane under the influence of DT

causing additional σt smearing. Figure 6.13 shows an illustration of this effect. The impact

of DT increases as a function of track θxz. This motivates the strict angular requirement

outlined in section 6.2.1.

To evaluate a systematic uncertainty on DT , we generate three simulated particle gun

samples using the same configuration as the sample described in section 6.3.1 except that

we vary the simulated DT value in each sample. The ratio DL/DT can be expressed as
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Figure 6.10: Plots of σ2
t versus t for simulated muons generated within the angular selection

values of θxz = ±6◦ and θyz = ±40◦. The shaded histograms show the area-normalized
distributions of the number of waveforms in each bin. The bottom plots show the fit residuals
of each point. The induction planes are used only to estimate systematic uncertainties (see
section 6.4.3).
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Table 6.2: Summary of the measured values of DL from the MicroBooNE data and
simulation. The value extracted on the Y plane constitutes our final measurement. The
induction planes are used only to estimate systematic uncertainties (see section 6.4.3).

Measured DL Value (cm2/s)
Sample U Plane V Plane Y Plane
Simulation (DL = 6.4 cm2/s) 6.46 6.29 6.30
Data 3.78 3.99 3.74
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Figure 6.13: Illustration of the impact of DT on the DL measurement. DT causes electron
clouds (light blue gradient) to spread in the yz-plane as a function of drift distance. For
tracks with non-zero θxz (purple line), the z-direction spread (green arrows) causes adjacent
electron clouds to overlap as they drift toward the anode plane. The y-direction spread (red
arrow) does not significantly impact DL.
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DL

DT

= 1 +
E

μ(E)

∂μ(E)

∂E
, (6.2)

where μ(E) is the electron mobility as a function of electric field strength [90]. Figure

10 of Reference [90] shows that, at the MicroBooNE E-field of 273.9 V/cm, ∂μ(E)/∂E is

approximately constant, and thus DL/DT is constant. We choose DT variation values of 4.8

cm2/s (down), 5.7 cm2/s (central value), and 7.2 cm2/s (up). These values are scaled from

the nominal simulated MicroBooNE DT value and uncertainties, which were designed using

the Atrazhev-Timoshkin theory [88] and the available world data [89, 90].

Table 6.3 shows the results of running these DT -varied samples through the DL analysis.

The measured DL central values and σ2
0 values show virtually no change when varying DT .

We attribute this to the two-dimensional nature of the MicroBooNE deconvolution—which

deconvolves the signal in both time and wire space, mitigating the impact of charge spread to

neighboring wires—and our stringent requirement on the value of θxz. We conclude that the

uncertainty on DT does not contribute to the systematic uncertainty on the DL measurement.

6.4.2 Drift Velocity

Equation 6.1 shows that DL is proportional to v2d, meaning that any uncertainty in vd could

lead to a sizeable systematic uncertainty on DL. MicroBooNE has measured the drift velocity

across the active volume of the detector using UV laser and cosmic data [60, 92]. Across

the anode plane, the drift velocity is not constant due to edge effects near the field cage. To

extract DL from the measured slope in Figure 6.11 (using Equation 6.1), we use vd = 1.076

mm/μs, the average value of the measured drift velocity across the anode plane.

To evaluate a systematic uncertainty on the measurement from the drift velocity, we take

1σ variations of vd near the anode and recalculate DL using these varied vd values. Figure

6.14 shows a 2D map of the percent variation of vd with respect to vd = 1.076 mm/μs in

a yz-slice near the anode. The drift velocity values in each bin come from the UV laser

data map which was calculated using data from a dedicated calibration run in Summer

2016. Here, we ignore any bins that fall outside the waveform fiducial volume (see section

6.2.2). The maximum vd variation is approximately 3% in the region near z = 400 cm where
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y < 0. However, Figure 6.6 shows that our selected waveforms fall mostly in the region

where z > 800 cm. In this region, the drift velocity map shows that the vd variations are

sub-percent level.

Additional sources of uncertainty on vd include the statistical and systematic uncertainties

on the drift velocity map and cosmic ray flux variations over time. Reference [92] shows that

the uncertainties in the drift velocity map are dominated by statistical errors, but those

errors are sub-percent level in our region of interest. The drift velocity map was calculated

using laser data during the Summer of 2016, while the CRT data used in this analysis was

taken between October 2017 and March 2018. Time variations of the SCE were studied

in Reference [60] and found to be small compared to the absolute scale of the effect. We

therefore conclude that variations in SCE due to cosmic ray flux variations are already

accounted for in the drift velocity map.

Considering that variations of vd in our region of interest are sub-percent level and that

other potential sources of uncertainty are small, we choose to apply a ±2% variation to vd.

Varying the anode vd up and down by 2% yields variation values of 1.098 mm/μs and 1.055

mm/μs, respectively. This difference covers any impact caused by cosmic ray flux variation

and statistical uncertainties in the drift velocity map. Re-calculating the DL value shown in

Figure 6.11 using these variation values, we obtain an asymmetric drift velocity systematic

uncertainty of +3.9%, −4.1%.

6.4.3 Detector Response Function

Equation 5.1 shows that the MicroBooNE 2D deconvolution depends on the detector response

function, R(ω), as part of the deconvolution kernel. The response function has been validated

on each of the three wire planes using MicroBooNE data [59], but small uncertainties on

the width of the field response function1 can have a significant impact on the width of

deconvolved waveforms which in turn impacts DL. While the final DL measurement uses

only collection-plane waveforms, we can perform the measurement on each of the three wire

planes as shown in figures 6.10 and 6.11. Since the response function on each plane was tuned

independently of the others, we expect some difference in the extracted DL on each plane.
1Recall that the response function is itself a convolution of a field response and electronics response.
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Table 6.3: Results of σ2
t vs. t fits for simulated muon particle gun samples with DT varied.

Simulated DT (cm2/s) Measured DL (cm2/s) Measured σ2
0 (μs2)

4.80 6.26 1.96
5.70 6.26 1.97
7.20 6.25 1.98
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Figure 6.14: 2D distribution of the percent variation of the drift velocity relative to the
average drift velocity near the anode, vd = 1.076 mm/μs, using the UV laser data map.
Here, we’ve applied the waveform fiducial volume described in section 6.2.2
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The difference in the measured DL serves as a conservative estimate of the uncertainty of

the wire response tuning method.

Table 6.2 shows that the maximum cross-plane difference in DL is 6.5% corresponding

to the difference between the V and Y planes. We therefore take 6.5% as the systematic

uncertainty on the response function modeling.

6.4.4 Waveform Summation Method

The waveform summation technique described in section 6.2.2 may introduce additional

broadening in the summed waveform. When aligning two waveforms, we can only shift them

by integer tick values meaning that the peaks may be misaligned by as much as half a tick.

We mitigate this smearing by taking the configuration which minimizes the resultant hit

width, but there may still be some residual broadening.

To check the impact of this effect and whether the impact is drift-dependent, we perform

a study in which we sum 1000 idealized Gaussian waveforms under different conditions. We

start by generating an initial Gaussian whose mean and standard deviation resemble those

of waveforms from particle interactions near the anode; here, we chose “anode-like” values of

μ = 891.5 ticks2 and σ = 1.42 ticks.3 To simulate the impact of misalignment, we also apply

a random shift drawn from a uniform distribution between −0.5 and +0.5 ticks to the mean

of this initial Gaussian. In the control case, we simply add this waveform to itself 1000 times

using our waveform summation technique. Then, to simulate the effect of adding misaligned

waveforms, we instead add 1000 waveforms with the same σ as the initial generated Gaussian,

but whose means have been shifted randomly between -0.5 and +0.5 ticks. Any difference in

the extracted μ and σ is attributed to the summation technique. We then repeat this study

using “cathode-like” waveform values of μ = 5123.4 ticks and σ = 3.80 ticks. Figure 6.15

and Table 6.4 summarize the results of this study. While σ does increase slightly in each

case, the broadening is consistent at both the anode and the cathode. This may impact our

extracted σ2
t (0) but not DL. We repeated this study multiple times to account for different

2MicroBooNE TPC waveforms are recorded beginning 800 ticks before the trigger time, so the position
of the anode is at 800 ticks.

3σ here should not be confused with σt, the time width of measured signal pulses.
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random shifts in the mean of the initial Gaussian and found no significant change in the

results, including for cases where the initial Gaussian was shifted by the maximum allowed

value (±0.5 ticks). We conclude that the waveform summation technique does not introduce

a sizeable systematic uncertainty to the DL measurement.

6.4.5 Summary and Other Systematic Uncertainties

Other systematic uncertainties that may impact the DL measurement include microphysics

effects that are either drift-dependent or field-dependent, particularly SCE, electron-ion

recombination, and electron attenuation. For SCE, the size of the electron cloud when

it arrives at the anode wire plane depends only on the amount of time that has elapsed since

the electrons were ionized. We measure this time directly by using the t0 extracted from CRT

information meaning that the measurement is not biased by the presence of space charge.

Thus, the measured slope of the line in Figure 6.11 has no systematic uncertainty due to

space charge. The strength of electron-ion recombination changes with the electric field, but,

for MicroBooNE E-field fluctuations, this effect is small [93]. Moreover, the impact of the

recombination systematic uncertainty on collected charge is much smaller than the impact

of statistical Landau fluctuations in the density of ionization electron clouds. As for electron

attenuation, the measured electron lifetime in MicroBooNE [61] is 18 ms. The maximum

drift for a single electron is 2.3 ms meaning that charge attenuation in MicroBooNE is

minimal, and this is due to the extremely high argon purity in the TPC. We conclude that

both electron recombination and attenuation do not contribute to the systematic uncertainty

on DL.

Table 6.5 summarizes the DL systematic uncertainties. The two dominant systematic

uncertainties come from the uncertainties on the response function modeling and the drift

velocity. We have considered many other potential sources of systematic uncertainties but

found them to be sub-dominant. We assume that the individual systematic uncertainties

are uncorrelated and add them in quadrature to obtain the total systematic uncertainty

of +7.6%, −7.7.%. This results in our final measurement from the MicroBooNE data of

DL = 3.74+0.28
−0.29 cm2/s.
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Figure 6.15: Results of the study of the waveform summation technique for anode-like (left)
and cathode-like (right) Gaussians.

Table 6.4: Results of a study of waveform summation. “Un-shifted” denotes the control case,
in which we add the same Gaussian to itself 1000 times, while “Shifted” denotes the case in
which each added waveform has its mean randomly shifted before addition.

μ (ticks) σ (ticks)
Anode-like

Un-shifted 891.5 1.44
Shifted 891.1 1.48

Cathode-like
Un-shifted 5123.4 3.80
Shifted 5123.1 3.83

Table 6.5: Summary of systematic uncertainties on the DL measurement. The total
uncertainty assumes that the systematic uncertainties are uncorrelated.

Systematic Value
Response Function 6.5%
Drift Velocity +3.9%, -4.1%
DT < 1%
Waveform Summation < 1%
Noise and microphysics < 1%
Total +7.6%, -7.7%
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6.5 Discussion and Conclusions

We report a measurement of the effective longitudinal electron diffusion coefficient of DL =

3.74+0.28
−0.29 cm2/s at an E-field of 273.9 V/cm. This represents the first measurement in a

large-scale (90 tonne) LArTPC. Figure 6.16 shows the measured DL value in MicroBooNE

as it compares to the Li et al. parametrization, the theory curve, and the available data

from ICARUS and Li et al. The vertical error bars correspond to systematic uncertainties

on DL, while the horizontal error bars account for the maximum E-field variation values

of 273.9+12%
−8% . The MicroBooNE DL value sits slightly below the theory curve even when

including systematic uncertainties, but it should be noted that this curve is ill-defined for

E-fields greater than zero and below ∼1 kV/cm. We used an interpolation in that region, the

details of which are described in Appendix A. Our measurement is in better agreement with

the ICARUS measurement and the Atrazhev-Timoshkin prediction than the measurement

and parametrization of Li et al.

At present, the cause of tension among DL measurements is unknown. Li et al. performed

their measurements using a gridded drift cell, similar to historical measurements performed in

gaseous media [94, 95], with a maximum drift distance of 60 mm. They note the possibility

of underestimating the impact of Coulomb repulsion among the drifting electrons, which

they calculated using an approximate model described in Reference [96]. Based on their

calculations, Li et al. chose not to apply a correction for this effect. ICARUS, however,

concluded that this effect contributes significantly to their measured value when using the

same model [89]. We apply no such correction in this work. Further measurements in

LArTPCs are needed in order to resolve this tension.

One potential application of the DL measurement is to t0 tag small energy depositions to

investigate MeV-scale physics in LArTPCs. The potential for using diffusion to t0-tag single

waveforms has been investigated and is presented in Appendix B.
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Figure 6.16: Comparison of the MicroBooNE result with world data [89, 90] for DL, along
with the Atrazhev-Timoshkin theory curve [88] and the parametrization of Li et al. [90].
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94



Chapter 7

The MicroBooNE Single-Photon

Analysis

This chapter presents the current status of the MicroBooNE search for single-photon events

as they pertain to the photon-like hypothesis of the MiniBooNE low-energy excess (LEE,

see Section 3.5). Although my work is specifically in the NC π0 sideband selection, we

discuss the single photon selection here in order to contextualize the NC π0 selection.

Furthermore, the two analyses share a similar framework, so all discussion presented on

the single-photon analysis is directly relevant to the NC π0 analysis. Section 7.1 introduces

the NC Δ resonance, the radiative decay of which is the dominant contributor to single-

photon events in MicroBooNE. Section 7.2 presents an overview of the common elements

between the single photon and NC π0 analyses, including common analysis inputs (Section

7.2.1) and an overview of Boosted Decision Trees (BDTs, Section 7.3). Finally, Section 7.4

briefly discusses the current status of the single-photon selection.

7.1 NC Δ Resonance

Recall from Section 4.1 that the BNB flux peaks at around 700 MeV. At these neutrino

energies, the most common source of single-photon events is the production of an NC Δ

resonance followed by Δ radiative decay. A diagram of this process is shown in Figure

7.1a. Although this process is the leading contributor of single-photon events, the far more
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common decay mode of the Δ is NC resonant π0 production, shown in Figure 7.1b. The

branching fraction of resonant π0 production is 99.4%, while the radiative decay mode is

inferred to be between 0.55 and 0.65% [22]. However, Δ radiative decay has never been

observed in neutrino scattering. Experimental measurements come from electron scattering

experiments [97], and the branching ratios for neutrino-induced resonance decay have been

estimated using the electron scattering data.

To date, two experimental searches have been performed for NC Δ radiative decay in

neutrino scattering. The NOMAD experiment [98] searched for neutrino-induced single-

photon events (not necessarily CC or NC) from the 25 GeV Super Proton Synchrotron

(SPS) beam. They reported a null measurement of an excess of single-photon events, and

placed an upper bound of 4 × 10−4 single-photon events per CC νμ interaction. The T2K

experiment searched for NC single-photon events using neutrinos from the J-PARC beam at

an average energy of 600 MeV [99]. T2K also reported a null result, and placed an upper

bound on the NC Δ radiative cross section at 0.114×10−38 cm2 with a 90% confidence level.

As a potential explanation for the MiniBooNE LEE, MicroBooNE is performing a similar

search for NC Δ radiative decays in neutrino-nucleus scattering. The single photon emitted

during this process can mimic the single-electron signal in νμ → νe oscillation searches. The

lack of experimental observation of this process points to a potential for a mis-modeled or

underestimated interaction rate. Previous work on MicroBooNE has shown that, in order

to explain the MiniBooNE LEE, the NC Δ radiative decay standard model (SM) rate must

be scaled up by a factor of three [100]. Figure 7.2 (modified from Reference [99]) shows

the T2K upper limit along with the J-PARC neutrino flux, the theoretical prediction of

Wang et al. [101], and the NOMAD measurement. Figure 7.2 also shows the theoretical

calculation scaled up by a factor of three (green line) to show the scaling required to explain

the MiniBooNE LEE. Even assuming this enhanced NC Δ radiative production rate, the

T2K upper limit cannot definitely exclude this hypothesis at ∼1 GeV-scale energies.

A substantial hurdle in measuring NC Δ radiative decay is the large background from NC

resonant π0 decays. As previously mentioned, the resonant π0 production mode is far more

common; we expect roughly 200 NC resonant π0 events for each NC Δ radiative decay. NC

π0 events in which one photon isn’t detected—possibly due to exiting the detector, being too
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(a) NC Δ radiative decay (b) NC resonant π0 production

Figure 7.1: Diagrams of (a) NC Δ radiative decay and (b) NC resonant π0 production.

Figure 7.2: Current world data on neutrino-induced NC Δ radiative decay [99]. The blue lines
show the T2K upper bound (expectation from MC in cyan, actual measurement in dark blue),
the red line shows the NOMAD measurement, and the blue histogram (arbitrarily scaled)
shows the J-PARC neutrino flux prediction. Also shown are the theoretical calculation of
Wang et al. [101] (black line) and this same calculation scaled up by a factor of three (green
line) to represent the scaling required to explain the MiniBooNE LEE [100].
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low-energy, or being mis-reconstructed—can mimic the NC Δ radiative signal. To constrain

this background, most experiments measure the NC resonant π0 production rate in situ. In

particular, MiniBooNE constrained their systematic uncertainties on photon backgrounds

using a large sample of NC π0 events from their NC π0 cross section measurement on CH2

[14]. In MicroBooNE, we seek to perform a similar constraint, which will be covered in detail

in the next chapter.

7.2 Analysis Overview

To begin, it is prudent to emphasize that when we talk about the MicroBooNE single-

photon selection, what we are actually referring to is a search for the radiative decay of the

Δ(1232). At the average BNB energy of ∼ 700 MeV, the Δ(1232) is the dominant nucleon

resonance. Other sources of single-photon production—such as higher-order Δ resonances,

coherent single-photon production, and MEC interactions (see Section 2.4.3)—have been

considered in [102], but are expected to be subdominant to incoherent Δ(1232) radiative

decay. Although the Δ radiative decay is the dominant source of single-photon events, we

still expect to see only a few hundred Δ radiative decay events in MicroBooNE, even when

assuming a factor of three enhancement in the SM prediction. We therefore simply refer to

the Δ radiative decay search as the single photon selection.

As shown in Figure 7.1a, the Δ decays into a single photon and a nucleon. The final-state

nucleon may be either a proton or a neutron or, in some highly-energetic interactions, there

may be multiple final-state nucleons. If a proton exits the nucleus, we expect a relatively

short, highly-ionizing particle track to be reconstructed. Neutrons, on the other hand,

propagate invisibly in LArTPCs, and therefore cannot be reconstructed as a track. We

therefore target the one-shower, one-track topology (1γ1p) and the one-shower, zero-track

topology (1γ0p). Final states with more than one reconstructed track are not considered in

this analysis.

In tandem with the single-photon selection, we’ve developed a targeted NC π0 sideband

selection. In this case, we target the 2γ1p and 2γ0p topologies in order to obtain

mutually exclusive, independent samples of NC π0 events. We expect two reconstructed
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electromagnetic (EM) showers corresponding to two photons from π0 → γγ decay. This

sample then provides an in situ constraint on the correlated interaction uncertainties in the

single-photon selection.

The efficiencies for each topological selection are shown in Table 7.1. The left column

describes various simulated samples used. Here, BNB All refers to all on-beam backgrounds,

NC π0 is the resonant π0 background, NC ΔRad refers to the Δ radiative signal, BNB νe

refers specifically to the on-beam background contribution from νe contamination in the

neutrino beam, BNB External is the off-beam cosmic background, and Dirt refers to events

which occur outside the TPC and scatter in. The second column shows the percentage of

events for each sample that contain a candidate neutrino vertex (see Section 5.3.2). This

efficiency is lowest for off-beam backgrounds due to Pandora’s cosmic rejection algorithms.

The remaining columns show the topological reconstruction efficiency for each of the selection

topologies described in the preceding paragraphs. These efficiencies are generally low due

to the challenge of reconstructing EM showers, particularly for the 2γ cases. We choose

to proceed with these rigid topological selections in order to obtain independent, mutually-

exclusive selections for each topology.

Once the signal topologies have been identified and selected, we then apply a series

of conservative “pre-selection” cuts. These cuts vary depending on the signal topology,

but generally consist of, for example, reconstructed shower energy thresholds, minimum

shower conversion distances, etc. The pre-selection cuts are not intended to reject a

significant number of backgrounds, but instead are utilized to remove events that may be

mis-reconstructed. For example, low-energy showers may be reconstructed as tracks, so we

apply shower energy thresholds. The process of background rejection begins in the next stage

of the analysis in which we apply tailored Boosted Decision Trees (BDTs) to separate signal-

like events from background-like events. Section 7.3 will give a brief overview of BDTs, while

Section 7.4 and Chapter 8 will discuss the specific implementation used in each analysis.

7.2.1 Analysis Inputs

Both the single photon and NC π0 selections rely on simulated samples generated using the

GENIE v3 model predictions described in Section 5.1. We use these GENIE predictions

99



to generate dedicated samples of various types of signal and backgrounds for each analysis.

Both the 1γ and 2γ selections use the same set of simulation samples. The simulated sample

names and definitions are as follows:

• SM NC Δ Radiative: True NC Δ radiative decay according to the standard model

prediction (i.e., no factor-of-three enhancement)

• NC π0 Non-Coherent: NC π0 events with one final-state π0

• CC νμ π0: CC νμ
1 π0 events with one final-state π0

• BNB Other: On-beam backgrounds which do not fall into any other category listed

here

• CC νe/ν̄e : Events which contain a νe/ν̄e interaction from νe contamination in the

beam, also referred to as “intrinsic” νes

• Dirt (Outside TPC): Events which occur outside the TPC and scatter into the active

volume

• Cosmic Data Overlays: Off-beam cosmic data overlaid on top of GENIE-generated

neutrino interactions used to emulate the effect of cosmic contamination in on-beam

events

For both the 1γ and 2γ selections, we denote a corresponding signal sample (NC Δ

radiative decay for 1γ, NC π0 for 2γ) and refer to the others as backgrounds. These simulation

samples are common to each topology, but when performing data-to-MC comparisons, the

on-beam data samples are different for the 1γ and 2γ selections. The reason for this is that

MicroBooNE is performing a blind analysis for LEE-like signals, including the NC Δ radiative

decay signal and νμ → νe oscillation signals. Any LEE search is therefore restricted to a small

subset of the total collected data. This “unblinded” dataset corresponds to approximately

5× 1019 POT and is often simply referred to as the “5e19” sample. The 5e19 sample comes

entirely from Run 1 of data-taking, so a smaller subset of Run 3 data is also unblinded
1Note that the νμ CC π0 sample is the only one that was generated without ν̄μ. This difference has no

significant impact on any of the selections.
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corresponding to roughly 0.73× 1019 POT. On the other hand, the NC π0 analysis is blind

to both Δ radiative and νμ → νe oscillation signals and is therefore allowed to analyze a

larger dataset. This is done through the implementation of data filters targeting the 2γ1p

and 2γ0p topologies. Appendix C describes the data filters implemented in the 2γ1p and

2γ0p selections in detail. These filters are applied to Runs 1, 2 and 3 of data-taking, and

correspond to about 5.8× 1020 POT each.

The simulation and data samples used in each analysis are summarized in Table 7.2.2

The BNB, dirt, and filtered data samples contain events from Runs 1–3, while the NC Δ

radiative, NC π0, νμ CC π0, and νe samples contain events only from Runs 1 and 3. Unless

stated otherwise, all data-to-MC comparisons shown in this section correspond to a selection

using a combination of Runs 1, 2, and 3. Note that, when comparing data to MC, the MC

samples are all scaled to match the POT of the corresponding data sample. For example,

when looking at 2γ1p filtered data, the simulated NC π0 sample is scaled by a factor of

5.8e20/5.0e21 � 0.08, and so on for the other simulates samples.

7.2.2 Shower Energy Correction

In general, the reconstructed shower energy in MicroBooNE is systematically below the

true shower energy due to lossy effects in the detector volume, namely mis-clustering and

thresholding. Showers are clustered via Pandora, but this often fails to correctly cluster the

entire shower, leading to a partially reconstructed shower. Furthermore, some shower hits

fall below our energy threshold and therefore aren’t reconstructed. On average, we expect

shower energy losses of ∼20% due to these effects [84].

To account for this, we derive a shower energy correction factor. Using Run 1 NC π0

production overlay samples, we begin by plotting reconstructed photon energy vs. true

photon energy for all showers with at least 30 MeV of simulated and reconstructed energy;

see Fig. 7.3a. As expected, the reconstructed energy is systematically below the simulated

energy. We then perform a linear fit to the most probable value (MPV) in variable-sized

slices of true shower energy. The width of each true shower energy slice is hand-tuned to
2The slight difference in POT between the two filters is due to grid processing inefficiencies; we processed

the 2γ0p filter several months after the 1p filter.
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Table 7.1: Topological efficiencies for the 1γ0p, 1γ1p, 2γ0p, and 2γ1p selections. The sample
definitions (left column) are described in the text. “ν Candidate” refers to the percentage of
events in each sample which contain a candidate neutrino vertex.

Sample ν Candidate 1γ0p 1γ1p 2γ0p 2γ1p

BNB All 43.0% 0.7% 2.9 % 0.4% 0.8%
NC π0 41.9% 3.8% 7.1 % 3.6% 5.3%
NC ΔRad (All) 62.5% 12.8% 17.5 % 3.0% 3.8%
NC ΔRad (1γ1p Signal) 72.5% 9.63% 28.9 % 2.3% 4.1%
NC ΔRad (1γ0p Signal) 64.3% 20.6% 11.6 % 4.3% 4.0%
BNB νe 79.7% 6.5% 16.2% 2.9 % 6.1%
BNB External 15.0% 0.37% 1.68% 0.13% 0.27%
Dirt 22.8% 0.49% 1.77% 0.14% 0.24%

Table 7.2: Summary of simulation and data samples used in the single photon and NC π0

analyses. Here, we show number of events and POT equivalent for each sample. Note that
for filtered 2γ on-beam data, the number of events only shows those that pass the filter,
while the quoted POT for MC samples corresponds to all generated events.

Sample No. Events POT
Simulation

SM NC Δ Rad. 39k 1.9e23
NC π0 191k 5.0e21
νμ CC π0 280k 9.8e21
BNB Other 2.7M 3.3e21
Intrinsic νe/ν̄e 42k 2.5e22
Dirt (Outside TPC) 511k 1.6e21

Data
Unblinded 5e19 data 157k 4.1e19
Open Run 3 data 28k 0.7e19
2γ1p Filtered On-Beam Data 4,609 5.8e20
2γ0p Filtered On-Beam Data 3,223 5.9e20
Cosmic Data 7.7M —
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account for lower statistics at high energies and to provide a reasonable fit to the underlying

2D distribution. We then take the equation of this linear fit, and derive a correction factor

that corrects the line to y = x. The linear fit equation is

Ereco = (0.83± 0.02)Etrue + (−8.15± 3.79) MeV, (7.1)

where Ereco and Etrue correspond to the reconstructed and true shower energies, respectively.

This yields the correction equation

Ecorr = (1.21± 0.03)Ereco − (−9.88±−4.86) MeV. (7.2)

As expected, this represents an approximately 20% correction. Figure 7.3b shows the

corrected shower energy vs. true energy. The effect of the correction on the π0 invariant mass

can be seen in later sections such as Figure 8.5a, where the result is a distribution whose

peak more closely aligns with the expected π0 mass of 135 MeV, while preserving data/MC

agreement. This correction is applied to all 1γ and 2γ selection whenever we are discussing

shower energies, or higher order quantities such as invariant masses, which are functions of

shower energies.

7.2.3 Notes on Nomenclature

Certain π0 kinematic variables, such as the invariant mass and opening angle between the

photons, depend on both the energy and direction of the showers. When showing plots in

which we’ve applied the shower energy correction from Section 7.2.2, we label the plot as

“corrected.” For shower directions, there are actually two possible definitions. One is the

default direction as reconstructed by Pandora. Pandora reconstructs shower directions based

on the direction of the EM cluster as a whole. In general, this direction should point back to

the neutrino interaction vertex, but this isn’t always the case. For this analysis, we choose

to use what we call the “implied” shower direction, defined as a unit vector pointing straight

from the neutrino interaction vertex to the shower start point. We have generally found that

these implied shower directions provide better data-to-MC agreement and have therefore

chosen to use this definition of shower direction when reconstructing, for example, the π0
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invariant mass. A π0 mass peak with both the shower energy correction and the implied

shower directions will therefore be labeled as the “corrected implied π0 invariant mass.” The

same is true for π0 momentum, opening angle between the showers, etc.

Finally, it is important to note that the term “signal” has some ambiguity in the following

sections and chapter. For the 1γ selections, the signal is a factor-of-three enhancement to

the standard model rate of Δ radiative decay. This is the signal enhancement required to

explain the MiniBooNE LEE. For the NC π0 selection, the signal is defined as a neutral

current interaction with a single π0 in the final state (see Chapter 8 for more details). Note

that, by this definition, non-resonant π0 production is also considered signal. We expect

non-resonant π0 production to account for less than 20% of the final selection (see Table 8.5

in Section 8.4).

7.3 Boosted Decision Trees

Before proceeding to the details of the single photon and NC π0 analysis details, it is

instructive to pause here to discuss Boosted Decision Trees (BDTs). This type of machine

learning algorithm is central to both analyses, and understanding the basic principles of

machine learning is important for understanding the work presented in later sections.

For our purposes, we use BDTs to sort data as either signal-like or background-like. This

is known in machine learning as a classification problem. Furthermore, the work described

here is considered supervised learning because the user is able to define the BDT input and

monitor the corresponding output. Here, the input to the BDTs is a dataset in which all

members have a known classification. For example, we may hand the BDT a sample of

MC-generated NC π0 events and classify this as the signal sample. We can similarly input

other MC-generated neutrino interactions as background. We then define a vector of training

variables which are chosen to allow the BDT to learn to distinguish signal from background,

where signal and background are defined in the BDT configuration. In addition to the

training variables, we also split the input data into training and testing samples. These

samples are independent, mutually exclusive subsets of the full input dataset. The training

sample is used to train the BDT to distinguish signal from background, while the testing
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sample provides a cross-check of training performance. Ideally, the BDT performance should

be similar between the training and testing samples.

A common method of classifying data is through the use of a decision tree. A decision

tree is a flowchart-like structure in which a decision is made based on a test performed at

each node (or branch). As a simple example, Figure 7.4 [103] shows a decision tree for a

person deciding whether to walk to work or take the bus. The most important test, shown

at the top (“root”) node, is whether it’s raining outside. If it’s raining, the person takes the

bus, and the decision is made. If, on the other hand, the weather is sunny or cloudy, the

decision is then further split by how much time the person has (in the case of sunny weather)

or how hungry they are (in the case of cloudy weather). Note that the test performed at each

node is binary. Even when asking how much time the person has (a continuous quantity),

the decision must be made based on some binary split. In this case, the decision point is

whether the person has more or fewer than 30 minutes to get to work.

For a realistic classification problem, a single decision tree is insufficient. More robust

methods use many decision trees and combine the results into a final decision. Such

algorithms can be broadly categorized as bagging and boosting. In bagging, each tree makes

an independent decision in parallel with the other trees. In boosting, decisions are made

sequentially, with errors in each tree informing the decision of subsequent trees. In this

work, we focus on a particular type of boosting algorithm known as AdaBoost [104] (short

for “adaptive boosting”). In the AdaBoost algorithm, misclassified samples from one tree

are assigned a larger weight in subsequent trees such that the later trees learn from this

misclassification. This is shown visually in Figure 7.5 [105]. Here, the first tree misclassifies

two blue circles as red. The second tree then assigns a larger weight to these misclassified

samples (denoted by the size of the circles in Figure 7.5) in order to learn from this mistake.

This process repeats until all samples are correctly classified, as shown in the rightmost plot

of Figure 7.5.

Both the single photon and NC π0 analyses use the eXtreme Gradient Boosting

(XGBoost) algorithm [106] to implement BDTs. XGBoost uses a modified version of the

AdaBoost algorithm, with the primary difference being how it calculates optimal split points

in a decision tree. When deciding where to split a decision tree, most algorithms implement
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(b) Corrected

Figure 7.3: (a) 2D distribution of reconstructed shower energy vs. true energy for
reconstructed showers with at least 30 MeV, taken from the MC sample of true NC π0

events. The points represent the most probable value in each slice of true energy. The
slice width (shown by the horizontal error bars) is hand-tuned to account for the decreasing
statistics at high true energy values. (b) Corrected shower energy vs. true shower energy.

Figure 7.4: Example of a decision tree in which a person commuting to work decides whether
to walk or take the bus, taken from Reference [103].
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some form of purity metric, where the purity is defined as the percentage of “signal” relative

to the total number of entries in each leaf. XGBoost uses a more sophisticated algorithm

which attempts to minimize the gradient of the training errors. Reference [106] describes

this algorithm in more detail.

One potential drawback of the AdaBoost algorithm and, by extension, its implementation

in XGBoost, is the possibility of overtraining or undertraining the BDT (also called

overfitting and underfitting). When a BDT is overtrained, it begins to interpret statistical

noise in the training sample as a true feature of the underlying data. This leads to a high

variance3 in the BDT. Here, variance is defined as the degree to which the BDT prediction

fluctuates when given different input data. An overtrained BDT will apply its knowledge of

statistical noise in one training set to another, leading to a substantially different prediction

in the latter set. On the other hand, an undertrained BDT will perform similarly across

input datasets, but will not accurately separate signal from background. In other words, an

undertrained BDT has low variance but high bias, defined as how closely the BDT prediction

matches the optimal prediction. Visual examples of undertrained, overtrained, and optimally

trained BDT models are shown in Figure 7.6.

When configuring a BDT, one must account for this bias-variance tradeoff in order to

obtain a balanced model that accurately describes the data without picking up on statistical

noise. In order to ensure a balanced model, a BDT must be configured with a number of

hyperparameters. Hyperparameters refer specifically to those parameters which configure

the BDT learning process, not to be confused with more general parameters relating to the

input data. A brief description of the relevant XGBoost hyperparameters are listed below.

• Number of trees: the number of decision trees in the BDT. Too few trees leads to

undertraining, while too many trees can lead to overtraining.

• Maximum tree depth: the largest number of decision nodes in any single line of the

decision tree. For example, the tree shown in Figure 7.4 has a maximum depth of 3.
3Note that variance here should not be confused with the statistical term referring to the square of the

standard deviation, σ2.
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Figure 7.5: Visualization of the AdaBoost algorithm, taken from Reference [105].

(a) Underfit (b) Overfit (c) Optimal fit

Figure 7.6: Examples of undertraining and overtraining in machine learning. Here, the BDT
model (red line) tries to separate X’s from O’s. In (a), the model underfits the data, leading
to high bias and low variance. In (b), the model overfits the data, leading to low bias and
high variance. Finally, in (c), the model is balanced between bias and variance.
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• Gamma: the minimum information gain required to cause additional splits in the

decision tree. A larger gamma will lead to a more conservative algorithm, reducing the

possibility of overtraining. We explicitly spell this out as “gamma” in order to avoid

confusion with the γ symbol used to denote photons in this chapter.

• Eta: the BDT learning rate. A smaller value increases model complexity and training

time, but may lead to overtraining if set too small.

We will discuss these parameters as they relate to the NC π0 analysis in Chapter 8.

7.4 Single-Photon Selection

In this section, we give a brief overview of the MicroBooNE single photon selection. My

work is primarily focused on the NC π0 selection but, given that the NC π0 selection is used

to constrain the errors on the single photon selection, it is important to review the single

photon selection in order to contextualize the NC π0 analysis.

As discussed in Section 7.2, the single-photon selection begins with a topological selection.

Here, the topologies considered are the 1γ1p (one shower, one track) and 1γ0p (one shower,

zero tracks). The efficiencies of these topological selections (relative to all generated MC

events) can be found in Table 7.1. These reconstructed objects are then passed through a

series of conservative pre-selection cuts, such as a shower energy threshold of 40 MeV and a

5 cm fiducial volume for the reconstructed vertex. In the 1γ1p case, additional pre-selection

cuts are placed on the track, including a track containment cut (meaning that the start and

end points of the track are within 5 cm of any TPC wall). Figure 7.7 shows a sample pre-

selection distribution for the 1γ1p selection at the pre-selection stage. Here, the Δ invariant

mass is reconstructed assuming that the event is a true Δ → Nγ event (as opposed to an NC

π0 event in which one photon was not detected). The distribution shows overall reasonable

agreement between data and MC. However, the NC Δ radiative signal (yellow) is not even

visible at this stage due to the overwhelming number of background events.
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Figure 7.7: Distribution of the implied Δ invariant mass at the pre-selection stage for the
1γ1p selection. The calculation of the Δ invariant mass uses the shower energy correction
described in Section 7.2.2 and the implied shower directions discussed in Section 7.2.3.

Table 7.3: BDT response cut values and signal efficiencies for the 1γ selections. The signal
efficiency is defined here as the percentage of signal events remaining after the BDT response
cut relative to the number of signal events before the cut.

BDT Cut Signal
Position Efficiency

1γ1p
NC π0 0.467 14.6%
Cosmic 0.953 18.3%
BNB Other 0.985 12.1%
νe 0.747 12.9%
SSV 0.709 17.2%

1γ0p
NC π0 0.429 47.4%
Cosmic 0.988 55.3%
BNB Other 0.893 69.6%
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The 1γ1p selection rejects these backgrounds by implementing five separately-trained

BDTs. Each BDT targets a specific type of background event: NC π0, νe, cosmic (off-

beam), other BNB backgrounds, and a second shower veto (SSV). The SSV further targets

NC π0 backgrounds by searching for shower-like clusters that were not associated with the

neutrino slice during Pandora’s reconstruction. Each of these BDTs uses a set of training

variables specifically tuned to reject the specific background in question. The 1γ0p selection,

however, does not use a dedicated νe or SSV BDT. The νe BDT was found to be redundant,

with all events rejected by the νe BDT also being rejected by the BNB BDT. The νe BDT

was therefore removed. As for the SSV, without access to a reconstructed track, Pandora’s

placement of the vertex is less precise than when a track is present. In this case, the vertex

is usually placed at the shower start point. This means that the SSV has difficulty finding

additional showers which point back to the interaction vertex, even when a second shower

truly is present. The 1γ0p selection therefore only uses the NC π0, cosmic, and BNB BDTs

for background rejection. Figures 7.8 and 7.9 show the 1γ0p and 1γ1p BDT responses,

respectively, while Table 7.3 summarizes the BDT response cut values and signal efficiencies.

Final selection distributions for the two single-photon topologies are shown in Figure 7.10.

Due to the low statistics of selected data events from the unblinded 5e19 sample,4 here we

show MC-only distributions scaled to 6.91×1020 POT, the total POT collected during Runs

1–3. We see that the overwhelming majority of background events are rejected by the BDTs.

However, the Δ radiative signal is still a relatively small portion of each selection. In both

cases, NC π0 events comprise the single largest remaining background. In the 1γ1p selection,

87.9% of backgrounds are NC π0s, while in the 1γ0p selection, 46.0% of the backgrounds

are NC π0s. Furthermore, the large correlated interaction uncertainties caused by this NC

π0 background contribute significantly to the error bars shown in Figure 7.10. These large

uncertainties in turn reduce the sensitivity of the single-photon selection to the Δ radiative

LEE signal.

4As of this writing, only one event in the unblinded 5e19 sample passes the 1γ1p selection, and only seven
pass the 1γ0p.
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Figure 7.8: BDT response (score) distributions for the 1γ0p selection.
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Figure 7.9: BDT response (score) distributions for the 1γ1p selection.
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Figure 7.10: Final selection distributions for the 1γ1p and 1γ0p selections. Note that these
are MC-only predictions scaled to 6.91 × 1020 POT, the total expected POT for Runs 1–3.
Even after applying the background rejection BDTs, a large NC π0 background remains in
both selections.
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Chapter 8

Constraining the NC π0 Background for

MicroBooNE’s Single-Photon Selection

As described in Section 7.1, Neutral Current (NC) π0 events with a π0 decaying into

two photons (and where one of the photons is not reconstructed) comprise the dominant

background in the search for NC Δ radiative decay (single-photon) events. Recall that the

Δ (1232 MeV) resonance has two primary decay modes: Nπ, with a branching ratio of of

99.4%, and Nγ, with a branching ratio between 0.55% and 0.65% [22]. In order to reduce the

systematic uncertainty on the single-photon analysis, we adapt the single-photon analysis

framework to select a sample of well-reconstructed two-EM-shower NC π0 events, which we

subsequently use to constrain the rate of NC π0 misidentified backgrounds in the final single-

photon sample selection. Section 8.1 describes the analysis inputs and topological selection.

Section 8.2 then describes the conservative “pre-selection” cuts we apply to minimize poorly

reconstructed events prior to BDT training. The BDT used in this selection is described in

Section 8.3, while Section 8.4 shows the final selection obtained using this BDT. Section 8.5

discusses fits to the reconstructed π0 mass peak, followed by comparisons of mass peak fits for

individual runs in Section 8.6. Section 8.7 discusses systematic uncertainties, while Section

8.8 shows the results of the NC π0 constraint. Finally, Section 8.9 provides a summary and

discussion of the NC π0 analysis.
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8.1 Inputs and Topological Selection

The MC and data input samples are described in Section 7.2.1 and Table 7.2. As discussed

in Section 7.2.1, MicroBooNE is pursuing a blind analysis strategy for its low-energy excess

(LEE) results. However, analyzers may be approved to use on-beam data filters which haven

been shown to maintain blindness to LEE-like signals. For the NC π0 analysis, we use the

NC π0 filtered samples (described in Appendix C) in order to examine a larger dataset than

the available open data (the “5e19” sample).

The NC π0 analysis framework is an adapted version of the single-photon framework. At

truth level, we define our signal as a true neutral current interaction with exactly one π0 in

the final state. We then identify neutrino interactions whose topologies are consistent with

reconstructable objects resulting from NC resonant pion production. We define our signal

topology as neutrino interactions that contain two reconstructed EM showers and either one

or zero reconstructed particle tracks (the 2γ1p and 2γ0p topologies, respectively). Each

EM shower corresponds to the pair conversion of a photon from π0 decay. These photons

propagate invisibly through the detector and subsequently convert to e+/e− pairs, which

manifest as showers in the detector volume. The particle track requirement is intended to

include events in which a proton exits the nucleus, although even in cases where one or

more protons exits the nucleus, they may not be reconstructed, either due to being too low-

energy or being misreconstructed as a shower-like object. Protons tend to produce short,

highly-ionizing tracks at the interaction vertex, while neutrons propagate invisibly.

Even for events with two photons, most are reconstructed with only one shower. The

subleading shower is often misreconstructed or missed altogether, particularly those that are

low-energy or have a high conversion distance. Low-energy showers may be misidentified

as small tracks, while showers that have a large conversion distance—and are therefore far

away from the vertex—may not be associated with the correct Pandora neutrino slice. While

the requirement of two reconstructed showers is restrictive, requiring two showers serves two

purposes: 1) it allows us to reconstruct important π0 kinematic variables, including the π0

invariant mass, momentum, and the opening angle between the two photons, and 2) it keeps

the NC π0 selection mutually exclusive from the single photon selection.
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In order to estimate the number of events that could pass the NC π0 selection, we begin

by applying a truth-level signal definition to estimate the percentage of reconstructable

events. Table 8.1 shows the signal definition for each topology, along with the passing rate

and number of events (scaled to 5.85e20 POT) that satisfy each portion of the definition.

The event numbers are extracted from our combined NC π0 sample, which contains events

generated in the TPC. We choose a 20 MeV true energy threshold for the track and showers,

as objects below these thresholds are difficult to reconstruct correctly. While most showers

pass the energy thresholds, fewer than 40% of true NC π0 events pass the 2γ1p proton energy

threshold. We expect a neutron to exit the nucleus in about 55% of NC π0 events, and even

in cases where a proton exits, it may not be reconstructed correctly. Of the events that pass

the 2γ1p signal definition, 14.6% are reconstructed with the 2γ1p topology.1

The 2γ0p signal definition is identical to that of the 2γ1p case, except that we define the

signal to have zero final-state protons with energy greater than 20 MeV. While this definition

does allow for events with true low-energy protons exiting the nucleus, protons with less than

20 MeV energy will likely not be reconstructed, and thus the event would be reconstructed

with a 2γ0p topology. Relative to the number of events that pass the 2γ0p signal definition

shown in Table 8.1, the 2γ0p topological efficiency is 12.3%.

8.2 Pre-Selection Cuts

Following the topological selection, we apply a series of conservative pre-selection cuts. While

these cuts do reduce the number of background events, their primary purpose is to prevent

the BDT from training on misreconstructed events, which could bias the training. We apply

the following requirements to both topologies:

• Reconstructed neutrino vertex > 5 cm from any TPC wall

• Reconstructed leading shower energy > 30 MeV

• Reconstructed subleading shower energy > 20 MeV
1Note that this number is higher than the one quoted for the 2γ1p topological reconstruction efficiency

quoted in Table 7.1. This is because the number here is quoted relative to the truth-level signal definition,
while the number in Table 7.1 is relative to all events.
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and the following additional requirements only to the 2γ1p topology :

• Shower conversion distances > 1 cm

• 3D Distance between the vertex and the track starting point < 10 cm

We take the vertex position cut as our definition of a fiducial volume. This reduces the

number of events in which the track or one of the showers exits the TPC, while also reducing

dirt and cosmic backgrounds. This fiducial volume is chosen to maintain consistency with

the π0 filter fiducial volume cut (see Appendix C for details about the 2γ π0 filters). The

shower energy thresholds help us avoid low-energy shower-like objects that may be poorly

reconstructed. The 2γ1p conversion distance cut is defined as the distance between the

reconstructed shower start point and the vertex. We expect photons to propagate some non-

zero distance before pair converting, which distinguishes photon-like showers from electron-

like showers, which tend to be attached to the vertex. Finally, for events with a proton

track, we expect the vertex to be reconstructed at the track starting position; events where

the vertex is more than 10 cm away from this point are likely misreconstructed. The signal

efficiency for each of these cuts is listed in Table 8.2.

Figure 8.1 shows data/MC comparisons of the π0 invariant mass at the pre-selection stage

for each topology, with the shower energy correction (discussed in Section 7.2.2) applied.

Here, each sample contributing to the stacked histogram (listed in Section 7.2.1) is scaled to

∼6e20 POT to match the total on-beam data collected from the corresponding data filter

applied to Runs 1–3. The hatched error bands on the stacked histogram include uncertainties

on the neutrino beam flux and the cross-section uncertainties from the GENIE model set

used.

Data/MC plots also list the ratio of the number of data events to the number of MC

events, labelled “Data/MC", along with the binned Kolmogorov-Smirnov (KS) test statistic

[107], the χ2 per number of degrees of freedom (nDOF), and the χ2 probability. Note that

the MC error bands include flux and cross-section systematics, but not detector systematics

(this will be discussed further in Section 8.7). At the pre-selection stage, all distributions

show reasonable agreement between data and MC. The signal distributions peak near the

expected π0 mass value of 135 MeV, but the signal purity at this stage is relatively low,
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Table 8.1: Truth-level signal definition cuts and expected event rates for the 2γ1p and 2γ0p
signal topologies. The two signal definitions are identical except for proton energy threshold.
The fractions shown here are cumulative, not individual, and are calculated relative to the
generated NC π0 MC samples, scaled to 5.85e20 POT to match the filtered data POT from
Runs 1–3.

Definition Signal No. Events in
Fraction 5.85e20 POT

True NC w/ one π0 in final state in TPC 100.0% 11,958
True neutrino vertex in 5 cm fiducial volume 78.0% 9,327
True leading photon energy > 20 MeV 77.1% 9,217
True subleading photon energy > 20 MeV 75.5% 9,030
No. protons w/ kinetic energy > 20 MeV

One (2γ1p) 34.2% 4,092
Zero (2γ0p) 24.7% 2,949

Total 34.2% (2γ1p) 9,234 (2γ1p)
24.7% (2γ0p) 6,654 (2γ0p)

Table 8.2: Cumulative pre-selection cut signal efficiencies, relative to the number of events
that satisfy the topological definition.

Cut 2γ1p Signal Eff. 2γ0p Signal Eff.
5 cm fiducial volume 92.1% 90.5%
Leading shower energy > 30 MeV 91.0% 89.9%
Subleading shower energy > 20 MeV 82.7% 82.1%
Leading shower conversion distance > 1 cm 72.0% —
Subleading shower conversion distance > 1 cm 65.9% —
Distance from vertex to track start < 10 cm 63.6% —
Total 63.6% 82.1%
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roughly 20%. We also observe a greater fraction of coherent signal NC π0 events in the 0p

selection. Coherent interactions are less likely to produce an outgoing proton track and are

therefore more likely to be reconstructed with the 2γ0p topology.

8.3 BNB Boosted Decision Tree

To aid in background rejection, we employ a single BDT trained on MC BNB neutrino

interactions via the same framework as the single-photon analysis. As discussed in Section

7.3, this BDT uses the XGBoost implementation of the AdaBoost algorithm [106, 104]. For

the NC π0 search, we utilize a variety of variables that aid in rejecting on-beam backgrounds

whose topology can mimic that of our signal topology. The BDT takes as input MC

distributions of kinematic and geometric variables for true signal and background events.

As an example, Figure 8.2 shows both the MC separation and data/MC agreement for the

track mean truncated dE/dx. One of the most powerful BDT variables, the track dE/dx

shows both excellent separation between signal and background in MC and reasonably good

data/MC agreement at the pre-selection stage (note that Figure 8.2 does not include detector

systematic uncertainties, which cover the apparent shift near 2 MeV/cm; see Figure 8.10). By

training on these distributions and noting the correlations between them, the BDT assigns

a score—known as the BDT response—to each event. Signal-like events tend to accrue at

higher BDT response values, while background-like events do the opposite. Figure 8.3 shows

the BDT response distribution for each selection. By placing a cut on this score, we can

reject the majority of background-like events while maintaining signal efficiency, the result

of which is a reasonably pure selection of signal events. For the NC π0 selections, we choose

a cut value to maximize signal efficiency times purity in the final selection. The cut value is

0.854 for the 2γ1p selection and 0.950 for 2γ0p.

For both selections, we choose training variables based on the level of data/MC agreement

at the pre-selection stage and the separation power between signal and background in MC.

The number of training and testing events for both selections is shown in Table 8.3. We

currently utilize 10 training variables in each selection. While there is some overlap in the

chosen variables between the two selections, the 0p training must rely on more detailed
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Figure 8.1: Data/MC comparisons of the reconstructed π0 invariant mass at the pre-
selection stage for both signal topologies. The MC error bands include flux and cross-section
systematics.

0 2 4 6 8 10 12 14 16
Reco Track Truncated Mean dE/dx Best Plane [MeV/cm]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Ev
en

ts
 [A

re
a 

N
or

m
al

iz
ed

]

 Non-Coherent0πNC 1 BNB Other

MicroBooNE Simulaton In-Progress - Training Variable

1pγ2

(a) MC-Only Distribution

200

400

600

800

1000Ev
en

ts  Radiative 2.0ΔSM NC  Coherent 9.20πNC 1 
 Non-Coherent 713.60πNC 1  539.50π 1 μνCC

BNB Other 455.6  Intrinsic 27.8eν/eνCC
Dirt (Outside TPC) 291.4 Data, Run 1+2+3 Cosmic 1044.8
Total Prediction: 3083.8 Data, Run 1+2+3 On-Beam 2923
Flux & XSec Sys

Filtered 5.84E20 POT
1pγSelection 2

MicroBooNE Preliminary

0 2 4 6 8 10 12 14 16
Reco Track Truncated Mean dE/dx Best Plane [MeV/cm]

0

0.5

1

1.5

D
at

a/
Pr

ed
ic

tio
n

: 0.020)val P2χ: 53.08/34)    (DOF/n2χ 0.13)     (KS: 0.285)     (±(Data/Pred: 0.95 

(b) Data/MC Distribution

Figure 8.2: (a) MC-only distribution of track mean truncated dE/dx, separated between
signal (red) and BNB backgrounds (blue). (b) Data/MC distribution of the same variable.
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Figure 8.3: BDT response distributions for the two NC π0 selections. To maximize efficiency
times purity in the final selection, we place a cut on the 2γ1p distribution at 0.854 and on
the 2γ0p distribution at 0.950.

Table 8.3: Number of training and testing events for each selection.

Sample Signal Background
2γ1p

Training 15,725 2,187
Testing 3,149 3,016

2γ0p
Training 13,178 924
Testing 2,558 1,208
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shower kinematics due to the absence of a reconstructed track. Table 8.4 lists the training

variables for each selection and their importance, defined here as the relative BDT gain of the

variable. Variables with a higher importance tend to reject more backgrounds compared to

those with lower importance. In the 1p case, the track dE/dx (Figure 8.2) is by far the most

important variable due to its large separation power between signal and background. Other

track-specific variables also rank highly in terms of importance. However, in the 0p case,

all variables have similar importance values; in this case, the BDT cuts on each variable at

roughly the same rate. Data/MC distributions of all training variables at the pre-selection

stage can be found in Appendix D.1 (2γ1p) and D.2 (2γ0p).

The BDT response for 2γ0p (Figure 8.3b) shows a significantly different shape than the

2γ1p response. In the 1p case, the presence of a reconstructed track allows for variables

such as calorimetry and track length to aid in rejecting CC-π0-like events, while the 0p case

has to rely solely on shower information. However, photon-like showers tend to look similar

across different interaction types, leading to worse separation power in the 0p BDT than in

the 1p case. This leads to the “hill-like” structure of the 0p response, where the 1p response

has clear peaks at high and low values. This also explains why the 0p response distribution

requires a higher cut value in order to achieve maximum efficiency times purity.

8.4 Final Selections

Final selections for each topology are obtained by placing a cut on the BDT responses shown

in Figure 8.3. The events with BDT response greater than the chosen cut value comprise

the final selection. After applying a cut at 0.854 in Figure 8.3a, we arrive at our final 2γ1p

selection. The final selection is 69.9% efficient (relative to the pre-selection) and 63.5% pure

in NC 1π0 events. Data/MC comparisons of several important kinematic quantities for the

final selection are shown in Figure 8.5. Each distribution that depends on reconstructed

shower energy is calculated using what we call implied shower directions—that is, a unit

vector pointing straight from the shower start point to the vertex (see Section 7.2.3 for

details)—and the shower energy correction described in Section 7.2.2. Distributions which

use implied shower directions are labeled as “Implied” in the x-axis label. Compared to the
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Table 8.4: Training variables for each selection and their importance, where importance is
defined as the relative BDT gain.

Variable Importance
2γ1p

Track dE/dx 0.43
Track displacement 0.17
Ratio of track front-half to end-half dE/dx 0.11
Track θyz 0.06
Leading shower energy 0.05
Leading shower impact parameter 0.04
Subleading shower conversion distance 0.04
Track end distance to wall 0.04
Leading shower conversion distance 0.03
Subleading shower impact parameter 0.03

2γ0p
Leading shower conversion distance 0.15
Leading shower energy 0.12
Subleading shower conversion distance 0.11
Pandora neutrino slice score 0.10
Leading shower θyz 0.09
Subleading shower energy 0.09
Subleading shower ratio of length/energy 0.09
Subleading shower impact parameter 0.09
Leading shower impact parameter 0.09
Leading shower ratio of length/energy 0.08
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pre-selection stage (Figure 8.1), we see an ∼80% reduction in the number of each category

of background events, while maintaining a signal efficiency of nearly 70%.

Figure 8.5a shows the π0 invariant mass of the final selection. The 2γ1p final selection

shows a ∼20% deficit in data relative to the MC prediction. However, this is covered by

flux and cross-section uncertainties, the combination of which is roughly a 20% effect. A

Gaussian-plus-linear fit to the data points (shown in Figure 8.7) gives a mean of 138.9

± 2.1 MeV with a width of 31.7 ± 2.4 MeV. Figure 8.5b shows the π0 momentum. The

reconstructed cosine of the center-of-mass (CM) decay angle—defined as the angle between

the lab-frame π0 momentum direction and the nearest photon in the CM frame—is shown

in Figure 8.5c. In theory, this quantity should give a flat distribution for signal events, but

in reality we see some tapering off at high cos(θcm) corresponding to more asymmetric π0

decays. When reconstructing asymmetric π0 decay events, we are more likely to miss the

subleading photon shower due to its low energy. The opening angle between the photon

showers (again, calculated using implied shower directions) is shown in Figure 8.5d. Figures

8.5e and 8.5f show the dE/dx for each shower, which is calculated using a Kalman fitter

algorithm [108]. Finally, Figures 8.5g and 8.5h show the shower conversion distances. These

distributions generally show the expected exponential shape, except for the first bin, where

the shower conversion distance pre-selection cut of 1 cm reduces the number of events in

that bin. Note that, aside from shower conversion distances, the BDT doesn’t train on any

of these variables.

Additionally, Figure 8.4 shows final distributions of the two track calorimetry variables

used in the 2γ1p BDT, namely the track mean truncated dE/dx (8.4a) and the ratio of the

track start half dE/dx to the track end half dE/dx (8.4b). At the final selection, the BDT

cuts almost all events with a mean dE/dx near 2.0 MeV/cm. The track dE/dx ratio of the

start and end half separates tracks with a clear Bragg peak—which is expected for proton

tracks—from MIPs. This distribution shows a slight deficit in data (relative to the MC

prediction) in the proton-like signal peak region. However, the p-value is still greater than

0.05 (although just barely), and these plots do not include detector systematics. Table 8.4

shows that these two variables provide some of the largest gain in the selection, with the mean
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truncated dE/dx providing the largest relative gain by far. These variables demonstrate the

power of track calorimetry to identify proton-like tracks.

Final selection distributions for the 2γ0p selection are shown in Figure 8.6. Unlike in

the 1p case, the data/MC normalization difference is less than 10%. The 0p selection is

54.8% efficient (relative to the pre-selection) and 59.6% pure in signal events. Both the

efficiency and purity are lower in this selection than in the 2γ1p case. This is largely due to

the absence of a track which, as previously discussed, provides powerful separation between

signal and background events through the track calorimetry. A Gaussian-plus-linear fit to

the data points in the invariant mass distribution gives a mean of 143.3 ± 3.2 MeV and a

width of 47.9 ± 4.9 MeV. In general, the final selection distributions show good agreement

between data and MC. One notable exception is the 2γ0p leading shower dE/dx, which shows

discrepancies around 6 MeV/cm. However, nearly all other bins are covered by systematics

uncertainties, and the few bins that deviate significantly are in a region with fewer than 10

events per bin. Note that none of the distributions in Figure 8.6 are BDT training variables.

Table 8.5 breaks down the signal events in the final selections in terms of interaction type.

As expected for MicroBooNE energies, the majority of selected NC π0 events are resonant.

Deep inelastic events comprise ∼10% of each selection, while quasielastic and MEC events

each account for ∼1% or less. The primary difference between the 1p and 0p cases is the

significant increase in coherent NC π0 events for the 0p selection. As mentioned previously,

coherent events are less likely to produce a final-state proton, making them more likely to

fall into the 2γ0p selection.

8.4.1 Breakdown of Final-Selection Backgrounds

While the purity of the final selection is quite good, a significant number of CC π0 and other

BNB backgrounds survive. In order to understand why these backgrounds appear in the

final selection, we break them down categorically. BNB Other backgrounds are broken down

into the following categories:

126



20

40

60

80

100

120

140

160

Ev
en

ts  Radiative 0.9ΔSM NC  Coherent 1.60πNC 1 
 Non-Coherent 503.80πNC 1  71.80π 1 μνCC

BNB Other 78.1  Intrinsic 5.3eν/eνCC
Dirt (Outside TPC) 38.7 Data, Run 1+2+3 Cosmic 96.1
Total Prediction: 796.3 Data, Run 1+2+3 On-Beam 634
Flux & XSec Sys

Filtered 5.84E20 POT
1pγSelection 2

MicroBooNE Preliminary

0 2 4 6 8 10 12 14 16
Reco Track Truncated Mean dE/dx Best Plane [MeV/cm]

0

0.5

1

1.5

D
at

a/
Pr

ed
ic

tio
n

: 0.797)val P2χ: 27.02/34)    (DOF/n2χ 0.21)     (KS: 0.968)     (±(Data/Pred: 0.80 

(a) Track truncated mean dE/dx
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(b) Ratio of track Start/End dE/dx

Figure 8.4: Track calorimetry distributions used in the 2γ1p BDT: (a) the track truncated
dE/dx, and (b) the ratio of the track start half dE/dx to the track end half dE/dx. The latter
provides a measure of whether a track has a Bragg peak, which is expected for proton-like
tracks.

Table 8.5: Breakdown of interaction types in the NC π0 selections, both at the pre-selection
stage and final selection.

Resonant DIS QE Coherent MEC
2γ1p

Pre-Selection 81.3% 16.3% 1.3% 1.31% 0.06%
Final Selection 85.2% 13.2% 1.2% 0.28% 0.07%

2γ0p
Pre-Selection 79.1% 14.9% 0.52% 5.5% 0.02%
Final Selection 79.2% 13.5% 0.45% 6.8% 0.00%
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(f) γ2 dE/dx

Figure 8.5: Data/MC comparisons for the 2γ1p final selection with flux and cross-section
uncertainties.
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• π0 Charge Exchange: Events with at least one π± exiting the nucleus and no

exiting π0, but both reconstructed showers come from photons resulting from π0 decay,

implying a π0 underwent charge exchange in the nucleus

• CC Multi-π0: CC events with more than one π0 in the final state

• CC Other: CC events that don’t fall into the above categories

• NC Multi-π0: NC events with more than one final-state π0

• NC Other: NC backgrounds with no final-state π0s or EM showers from π0 decay

• η Decay: Events in which the photon showers came from an η decay instead of a π0

• Overlay: Events in which at least one of the reconstructed objects contains 80% or

more contamination from cosmic data overlays

• Other: Events that don’t clearly fall into any of the categories above, likely due to

misreconstruction.

CC 1π0 events in the 2γ1p selection are categorized according to the identity of the

reconstructed objects:

• Proton track: Events in which both showers come from photons resulting from π0

decay, but the reconstructed track matches to a proton

• Muon track: Events in which both showers come from photons resulting from π0

decay and the track matches to a muon, as expected for CC π0 events

• Shower mis-ID: Events in which either of the reconstructed showers is not a true

shower, but a misreconstructed object instead

• Overlay: Same as in the BNB Other case

• Other: Events that don’t clearly fall into any of the above categories
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Table 8.6 shows the percentages of each category that appear in the BNB Other for both

selections, and CC π0 backgrounds for the 2γ1p selection. For BNB Other backgrounds,

the single largest background source in both selections is overlay contamination. We also

see a significant portion of NC Multi-π0 events, as well as “Other” events, likely either

misreconstruction or some as-yet-unconsidered category.

The majority of selected CC π0 events in the 1p selection are those in which the

reconstructed track matches to a proton instead of a muon. In these cases, the muon falls

outside the Pandora neutrino slice, and the remaining reconstructed objects precisely match

what we expect from an NC π0, making these difficult to distinguish from true NC π0 decay.

We also see a large number of CC π0 in which one or both of the reconstructed shower

objects is not truly an EM shower, but instead some misreconstructed object, likely a short

track.

8.5 π0 mass fit

Given the purity of the 2γ selections in terms of true π0 events, we use the reconstructed π0

invariant mass distribution to cross-check our ability to accurately and precisely reconstruct

calorimetric information. To evaluate the π0 mass reconstruction, we use a Gaussian-plus-

linear fit to the selected data. The π0 mass distributions with this fit are shown in Figure

8.7. We chose a Gaussian-plus-linear fit functional form in order to account for non-Gaussian

backgrounds in the final selection. The Gaussian and linear parameters extracted from the

fits are summarized in Table 8.7. The π0 mass extracted from the Gaussian portion of the

fit in the NC π0 selection is consistent with the expected value in the 2γ1p selection, though

the 2γ0p value is slightly higher than expected. The fitted resolutions are 32.2% for the 2γ1p

selection and 35.6% for the 2γ0p selection.

This result builds confidence that well-reconstructed 2γ samples are available and can

thus be used to constrain the dominant background to the single-photon selections when

searching for a low-energy excess.
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Figure 8.5 continued: Data/MC comparisons for the 2γ1p final selection with flux and cross-
section uncertainties.

Table 8.6: Truth-level breakdown of BNB Other backgrounds in the final 2γ1p and 2γ0p
selections, as well as CC π0 backgrounds in the final 2γ1p selection.

Background 2γ1p % 2γ0p %
BNB Other

π0 Charge Exchange 10.9 8.7
CC Multi-π0 3.5 5.5
CC Other 16.9 13.0
NC Multi-π0 20.7 14.5
NC Other 5.3 12.6
η 6.0 7.3
Overlay 23.9 23.3
Other 13.5 15.2

CC π0

Proton track 49.6 —
Muon track 11.5 —
Shower Mis-ID 31.4 —
Overlay 2.2 —
Other 5.4 —

Table 8.7: Gaussian and linear fit parameters for the 2γ1p and 2γ0p combined-run selections,
using the 2γ1p and 2γ0p filtered data sets.

Selection Gaussian Gaussian Linear Linear
Mean (MeV) Width (MeV) y-intercept slope

2γ1p 138.9 ± 2.1 31.7 ± 2.4 12.9 ± 1.7 -30.6 ± 5.1
2γ0p 143.3 ± 3.2 47.9 ± 4.9 4.7 ± 2.4 -9.2 ± 6.7
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Figure 8.6: Data/MC comparisons for the 2γ0p final selection.
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8.6 Run-to-Run Comparisons

The NC π0 filters (see Appendix C) allow us to compare data/MC distributions between Runs

1 and 32 to ensure consistency. There are known detector response differences between Runs

1 and 3. However, those are primarily attributed to a decrease in light yield [109], which

we use minimally in our analysis (light information is only used at trigger and Pandora

reconstruction stage, not for topological selection stages and onward). To investigate the

impact of cross-run differences on the NC π0 selections, we compare the reconstructed π0

mass distributions from Runs 1 and 3 for both the 2γ1p and 2γ0p selections. These are

shown in Figures 8.8 and 8.9. Table 8.8 summarizes the results of Gaussian fits applied to

each of these distributions. The extracted fit parameters for each selection are consistent

(within uncertainties) across runs. We conclude that run-to-run variations are a minimal

effect for this analysis.

8.7 Systematic Uncertainties

Systematics uncertainties for the single-photon and NC π0 selections are broadly divided into

three categories: flux, cross-section (abbreviated “XS” in plot labels), and detector systematic

uncertainties. The flux uncertainties encapsulate the uncertainties in the expected event rate

due to the uncertainty on the flux of the neutrino beam. Cross section systematics include

uncertainties on various parameters used in the GENIE nuclear model set. Finally, detector

systematic uncertainties account for variations in the detector conditions as a function of time

or location within the TPC. The specific method for evaluating each of these uncertainties

differs slightly, but the basic idea is the same for all three: determine reasonable 1σ variations

for various parameters, run those variations through the analysis (or the relevant part of the

analysis, at least), and see how the results are impacted.

Flux and cross-section uncertainties are said to be reweightable, meaning that, rather

than vary each individual parameter and propagate uncertainties through the entire analysis
2The filtered data sets also allow us to look at a large portion of Run 2 data. However, our current MC

analysis samples do not contain sufficient Run 2 MC events to allow for high-statistics comparisons. For
now, we choose to focus on Runs 1 and 3.
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Figure 8.7: Reconstructed π0 mass distributions for (a) 2γ1p and (b) 2γ0p with a Gaussian-
plus-linear fit to the data points (cyan line).

Table 8.8: Gaussian-plus-linear fit parameters for the 2γ1p and 2γ0p Run 1 and Run 3
selections.

Gaussian Gaussian Linear Linear
Mean (MeV) Width (MeV) y-intercept Slope

2γ1p
Run 1 139.5 ± 4.2 34.1 ± 4.3 10.1 ± 2.2 -25.5 ± 5.9
Run 3 135.8 ± 5.1 39.4 ± 6.1 11.4 ± 3.7 -26.0 ± 11.0

2γ0p
Run 1 138.6 ± 8.5 42.0 ± 9.2 7.7 ± 5.0 -21.3 ± 16.8
Run 3 132.5 ± 6.5 54.1 ± 8.9 -0.27 ± 5.0 4.7 ± 14.2
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(b) Run 3

Figure 8.8: Reconstructed 2γ1p π0 invariant mass distributions for Runs 1 and 3 individually
with a Gaussian-plus-linear fit, using NC π0 filtered data. The correction factor from
Equation 7.2 is applied to each shower energy.

10

20

30

40

50

60

70

80

90

Ev
en

ts  Radiative 0.1ΔSM NC  Coherent 5.80πNC 1 
 Non-Coherent 74.40πNC 1  9.50π 1 μνCC

BNB Other 8.9  Intrinsic 0.4eν/eνCC
Dirt (Outside TPC) 13.8 Data, Run 1 Cosmic 26.2
Total Prediction: 139.2 Data, Run 1 On-Beam 116
Flux & XS Systematics

Filtered 1.45E20 POT
0pγSelection 2

MicroBooNE Preliminary

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
 Invariant Mass [GeV]0πCorrected

0

0.5

1

1.5

D
at

a/
Pr

ed
ic

tio
n

: 0.074)val P2χ: 17.03/10)    (DOF/n2χ 0.19)     (KS: 0.596)     (±(Data/Pred: 0.83 

(a) Run 1

20

40

60

80

100

Ev
en

ts  Radiative 0.1ΔSM NC  Coherent 6.80πNC 1 
 Non-Coherent 88.70πNC 1  9.90π 1 μνCC

BNB Other 11.5  Intrinsic 0.6eν/eνCC
Dirt (Outside TPC) 16.7 Data, Run 3 Cosmic 19.8
Total Prediction: 154.1 Data, Run 3 On-Beam 137
Flux & XS Systematics

Filtered 1.73E20 POT
0pγSelection 2

MicroBooNE Preliminary

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
 Invariant Mass [GeV]0πCorrected

0

0.5

1

1.5

D
at

a/
Pr

ed
ic

tio
n

: 0.795)val P2χ: 6.23/10)    (DOF/n2χ 0.20)     (KS: 0.774)     (±(Data/Pred: 0.89 
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Figure 8.9: Reconstructed 2γ0p π0 invariant mass distributions for Runs 1 and 3 individually,
using NC π0 filtered data. The correction factor from Equation 7.2 is applied to each shower
energy.
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chain, we can apply known “weights” to simulated events in order to calculate the impact of

these variations. This drastically reduces computation time. For a given physics parameter

P , we can vary P as

P → P ′
(
1 + xP

δP

P

)
(8.1)

where δP is the estimated standard deviation of P and xP varies between −1 and +1.

xP is sometimes referred to as a “knob” (or dial) that tweaks the weight of a simulated

event. When this knob is set to zero, P = P ′, meaning that the event weight has not

changed. To calculate systematic uncertainties on reweightable parameters, we apply these

weights within the known ±1σ variations and examine the impact on our analysis. Note that

GENIE’s reweighting framework also accounts for correlations between different parameters.

The complete list of interaction parameters and their uncertainties can be found in Reference

[68].

The BNB neutrino flux has been extensively studied by both MiniBooNE [54] and

MicroBooNE [110]. The primary sources of flux uncertainty are discussed in Section 4.1

and listed in Table 4.1. Sources of uncertainty in the beam flux include hadron production

rates (particularly π±), horn current modeling, and proton delivery to the beryllium target.

Hadron production uncertainties are constrained using world data [111] but are still the

dominant contributor to the total uncertainty on νμ and νe flux. Combined with the horn

current modeling and proton delivery uncertainties (both percent-level), the total νμ (νe)

flux uncertainty is 12.5% (11.7%).

As previously noted, the full list of cross-section parameters used in the GENIE model set

and their uncertainties can be found in Reference [68]. For this analysis, the largest relevant

uncertainty is on the neutral current resonant axial mass form factor. This form factor is

used in the calculation of the NC resonance production rate in the Berger-Sehgal resonance

model [16], and its uncertainty is ±20%. Nuclear form factors are generally constrained using

data from the Argonne National Lab (ANL) and Brookhaven National Lab (BNL) bubble

chamber experiments [112, 113]. However, as we can see in the case of the NC resonant axial

mass, large uncertainties remain in many cross-section parameters.
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In contrast to flux and cross-section systematic uncertainties, detector systematics are not

reweightable. To evaluate detector systematic uncertainties, MicroBooNE has developed a

novel wire modification framework in which deconvolved waveforms are individually modified

to account for differences in the pulse height and width between data and MC. By examining

the differences in waveforms in data vs. MC, we obtain a ratio function that allows us

to modify each bin in a deconvolved waveform. For example, we obtain an x-dependent

correction function by examining reconstructed hit widths as a function of x. This correction

accounts for various drift-dependent effects such as longitudinal electron diffusion and

electron attenuation. We then re-run the Pandora reconstruction over these modified events

to obtain a varied selection. This points to a key difference between reweightable (flux and

cross section) and non-reweightable (detector) systematics: reweighting an event modifies the

underlying distribution, but not the reconstruction; a reweighted event can’t be added to or

removed from the selection. Wire modification, however, may cause a reconstructed object to

be classified differently. In other words, it’s possible that, after wire modification, an object

previously classified as shower-like may now be considered track-like, or vice versa. Using

this framework, we create multiple detector systematic samples in MC with key detector

response variables varied by ±1σ. These variables include the aforementioned x correction,

a transverse (yz) correction, a correction for the space charge effect, and PMT light yield

corrections. These variations are then propagated through the selection to obtain the full

detector systematic uncertainty. Due to a lack of available MC detector variation samples

as of this writing, all detector systematic uncertainties are assumed to be uncorrelated.

Using these variation methods for flux, cross-section, and detector systematics, we

construct a covariance matrix, M , according to

Mij =
1

N

N∑
n=1

(Pi − V k
i,n)(Pj − V k

j,n). (8.2)

where P is the central value prediction, V is the varied distribution, k denotes the particular

source of systematic uncertainty, and i and j are bin numbers. We consider up to N = 1000

varied distributions for each source of systematic uncertainty. Figure 8.11 shows the

corresponding collapsed fractional covariance and correlation matrices. Each block in the
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covariance/correlation matrices corresponds to one of the four signal topologies. The strength

of the resultant constraint on correlated interaction uncertainties depends on the level of

correlation between the corresponding 2γ and 1γ samples. From Figure 8.11b, we can

see that the correlation coefficients between the 1γ1p and 2γ1p selections are generally

around 60–80%, while the 0p correlations are around 60–70% in the most relevant bins.

We therefore expect a reasonably strong constraint from the 2γ samples. We apply this

conditional constraint using a block diagonal matrix formulation,

Cov(X) = Σ =

⎛
⎝Σ1γ,1γ

ij Σ1γ,2γ
ib

Σ2γ,1γ
aj Σ2γ,2γ

ab

⎞
⎠ (8.3)

where each Σ represents a block covariance matrix and i and j (a and b) run from 1 to the

number of 1γ (2γ) bins. Equation 8.3 shows a simplified 2× 2 version of the full 4× 4 block

matrix shown in Figure 8.11. The constrained covariance matrix for the 1γ1p and 1γ0p

selections is then calculated via

Σ1γ,1γ constrained = Σ1γ,1γ − Σ1γ,2γ(Σ2γ,2γ)−1Σ2γ,1γ. (8.4)

The constrained error bars for the 1γ final selections can then be obtained by taking the

square root of the diagonal elements of Σ1γ,1γ constrained.

We perform the side-by-side fits using the final-selection distributions shown in Figure

8.12. Due to the large detector systematic uncertainties per bin, the 1γ1p final selection is

treated here as a single-bin counting experiment. This is consistent with the overall goal of

measuring the NC Δ radiative decay rate as opposed to a full cross-section measurement.

8.8 Constraint Results and Sensitivity Projection

Figure 8.13 shows the reduction in the full systematic error bars in the 1γ selection due

to the 2γ constraint. The 1γ1p error bar is reduced by roughly a factor of two, while the

1γ0p uncertainty is reduced by O(10)% per bin. The weaker constraint in the 0p sample

is due to the weaker correlations between the 1γ0p and 2γ0p selections (compared to the

correlations between the 1p samples), as can be seen in Figure 8.11b. To illustrate the impact
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Figure 8.10: Track mean truncated dE/dx with detector systematic uncertainties. The
addition of detector systematics sufficiently covers the shift in data relative to MC around 2
MeV/cm.
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Figure 8.11: Final fractional covariance matrix (left) and correlation matrix (right) for (from
left to right) the 1γ1p, 1γ0p, 2γ1p and 2γ0p combined fit, with full flux, cross section, and
detector systematics included.
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Figure 8.12: Final selection distributions for 1γ (top), 2γ (bottom), 0p (left) and 1p (right)
topologies. The 1γ distributions show predictions scaled to 6.9×1020 POT, whereas the 2γ
distributions correspond to the currently available filtered data (see Appendix C).
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(a) 1γ1p (b) 1γ0p

Figure 8.13: Reduction of full flux, cross-section, and detector systematic errors in the 1γ1p
(left) and 1γ0p (right) selections due to the 2γ constraint.

(a) 1γ1p (b) 1γ0p

Figure 8.14: Reduction of flux and cross-section systematic errors in the 1γ1p (left) and
1γ0p (right) selections due to the 2γ constraint. In the absence of uncorrelated detector
systematics, the 2γ constraint is significantly more powerful.
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of uncorrelated detector systematics, Figure 8.14 shows the impact of the 2γ constraint when

considering only flux and cross-section uncertainties. In this case, the 1γ1p systematic error

is reduced by nearly a factor of three, while the 1γ0p uncertainties see a factor of 2–3

reduction in most bins. Naturally, the inclusion of detector systematics will always increase

the uncertainty, but the lack of correlations between detector systematic samples significantly

reduces the power of the constraint.

As stated in previous sections, the purpose of the 2γ selections and constraint is to

improve the sensitivity of the single-photon analysis to the MiniBooNE LEE signal. We

define the photon-like LEE signal as a factor-of-three enhancement to the predicted SM rate

of Δ → Nγ production. In this case, the null hypothesis would be a measurement consistent

with the SM prediction. We then define a two-hypothesis test where HSM corresponds to the

SM prediction and HLEE corresponds to a factor-of-three enhancement. These hypotheses

contain no free parameters, so the sensitivity evaluation is calculated using simulated pseudo-

experiments through the SBNFit framework [114]. For each hypothesis, SBNFit pulls varied

data points Di by considering the full systematic variations (Figure 8.11) and constructs a

varied dataset D. We then calculate the combined Neyman-Pearson (CNP) χ2 [115] for each

hypothesis and the Δχ2 between them,

Δχ2 = χ2
CNP (D,H0)− χ2

CNP (D,H1). (8.5)

We then plot the Δχ2 probability distributions assuming each hypothesis is true and can

then calculate the p-value, α, of rejecting the null hypothesis. These distributions, along

with the p-value calculations, are shown in Figure 8.15. Here, the SM Δ radiative decay

rate is taken as the null hypothesis (blue histograms), and we calculate the p-value based on

the power of the analysis to reject this hypothesis in favor of the LEE rate (red histograms).

Figure 8.15a shows these distributions before applying the 2γ constraint, while Figure 8.15b

shows the increased sensitivity after applying the NC π0 constraint. Before the constraint,

the median sensitivity is 0.9σ, which increases to 1.5σ after the constraint.

While the power of the NC π0 constraint is apparent from Figure 8.15, the current

median sensitivity calculation of 1.5σ is too low to reliably reject the null hypothesis. As

142



0 5 10 15 20 25 30
LEE (x3)
2χ - 

SM (x1)
2χ = 2χΔ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
PD

F

σ
-2

)σ | 3.2-3.14(10α(0.023)β1-
σ-2

σ
-1

)σ(0.018 | 2.1α(0.159)β1-
σ-1

M
edian

)σ(0.178 | 0.9α(0.500)β1-
Median

σ
+1

)σ(0.588 | -0.2α(0.841)β1-
σ+1

σ
+2

)σ(0.913 | -1.4α(0.977)β1-
σ+2

SM (x1)

LEE (x3)

(a) Before 2γ constraint

10− 0 10 20 30 40 50
LEE (x3)
2χ - 

SM (x1)
2χ = 2χΔ

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2PD
F

σ
-2

)σ | 3.6-3.83(10α(0.023)β1-
σ-2

σ
-1

)σ(0.005 | 2.5α(0.159)β1-
σ-1

M
edian

)σ(0.072 | 1.5α(0.500)β1-
Median

σ
+1

)σ(0.347 | 0.4α(0.841)β1-
σ+1

σ
+2

)σ(0.739 | -0.6α(0.977)β1-
σ+2

SM (x1)

LEE (x3)

(b) After 2γ constraint

Figure 8.15: Sensitivity of the single-photon analysis to an LEE signal before and after the
2γ constraint
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of this writing, the single-photon analysis is largely limited by low data statistics. As the

MicroBooNE experiment moves toward unblinding its full dataset, we expect this projected

sensitivity to improve significantly.

8.9 Summary

The selection presented in this section provides a high-statistics NC π0 sample that can be

used to constrain 1γ systematic uncertainties caused by the dominant NC π0 background.

Final selected data-to-MC comparison plots show good agreement within flux and cross-

section systematic uncertainties, although we observe an overall data deficit in the 2γ1p

selection. Furthermore, the final selection distributions show the expected shape for a π0

sample, both in data and MC, in several reconstructed kinematic variables. The π0 mass

peaks for both 2γ1p and 2γ0p align with the expected value of 135 MeV, and the shower

conversion distances show the expected exponential shape, with photon-like showers generally

having a gap between the vertex and the conversion point.

For the 1p selection, track calorimetry verifies that the selected signal events have proton-

like tracks, as expected for NC resonant pion production in which a proton exits the nucleus.

The ratio of the track dE/dx at the start half and end half shows a deficit at the signal peak,

but this is in line with the general 2γ1p normalization difference, which itself is covered by

systematic errors. Both selections are reasonably pure in signal NC π0 events, with the 2γ0p

selection being somewhat less efficient due to the less powerful signal/background separation

power of the 0p BDT. The clear signal and background peaks of the 1p BDT response (Figure

8.3a) demonstrate the power of track calorimetry in separating events with proton-like tracks

from those with muon-like tracks.

Finally, Figure 8.16 shows two event displays of selected NC π0 candidate events from

MicroBooNE on-beam data. These events each contain one short, highly-ionizing track with

two cleanly reconstructed EM showers pointing back to the interaction vertex. For the event

shown in Figure 8.16a, the reconstructed leading and subleading shower energies are 332

MeV and 98 MeV, respectively, corresponding to an invariant mass of 158.2 MeV. For the

event shown in Figure 8.16b, the reconstructed invariant mass is 146.2 MeV.
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(a) Candidate NC π0 interaction from Run 1

(b) Candidate NC π0 interaction from Run 3

Figure 8.16: Event displays for NC π0 candidate events from (a) Run 1 and (b) Run 3. Both
displays show the interaction as viewed by the collection plane.
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Chapter 9

Conclusions

This thesis presents my work on two novel analyses in liquid argon time projection chambers:

a measurement of the longitudinal electron diffusion coefficient, DL, in a hundred-tonne-scale

LArTPC and a data-driven rate constraint on the NC π0 background for the NC Δ radiative

decay search. These measurements are not only important for MicroBooNE, but will also

benefit future LArTPC experiments.

During my time at Fermilab, I worked as the co-lead analyzer on The DL measurement,

which represents the first of its kind at medium electric field strength in a large-scale

LArTPC. Our reported measurement of DL = 3.74+0.28
−0.29 cm2/s is in tension with the

measurement of Li et al. but is more consistent with the ICARUS data and the theory

calculation of Atrazhev and Timoshkin. In this E-field region, the theory curve is ill-defined

and there are few experimental measurements. This tension therefore points to the need for

more measurements in this E-field region. The measurements of Li et al. and ICARUS were

performed in smaller test-stand detectors in which the electric field strength could be varied,

but the MicroBooNE value applies only to the nominal E-field strength of 273 V/cm. One

potential avenue for a future study would be to perform measurements in MicroBooNE at

various E-fields. This would require a dedicated detector run in which the cathode voltage is

turned up or down, but such a run has not been performed in MicroBooNE as of this writing.

Thanks to the coverage and tagging efficiency of the CRT system, it may be feasible to accrue

enough high-quality cosmic muon tracks to perform the analysis after a relatively short period

of running. The data collected for the measurement in this thesis were collected during a
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five-month period with ∼ 70, 000 tracks passing the selection requirements. Considering that

each track can have hundreds of waveforms, a measurement could be performed with only

a few hundred tracks, provided the spatial coverage is sufficient. This would provide more

data at intermediate field strengths, further benefiting future LArTPC experiments.

In addition to my work on the DL measurement, I developed a BDT-based NC π0 selection

in MicroBooNE. The NC π0 selection is the largest of its kind on argon to date, with 634 on-

beam data events selected in the 2γ1p topology with 63.5% purity and 496 events in the 2γ0p

with 59.6% purity. The reconstructed π0 invariant mass distributions peak near the expected

value of 135 MeV, lending credibility to the selection. This selection demonstrates the power

of BDTs in rejecting backgrounds based on reconstructed quantities. BDTs are becoming

increasingly popular in physics analyses, particularly for rare event searches. Furthermore,

BDTs are highly configurable and relatively transparent. As machine learning algorithms

become more popular, BDTs will likely become an increasingly common method of selecting

signal events in various experiments.

While an NC π0 selection on argon is interesting in its own right, my selection is

specifically designed for a data-driven rate constraint applied to the systematic uncertainty on

the single photon selection. MicroBooNE’s primary physics goal is to explain the MiniBooNE

LEE, which is only possible with a high enough sensitivity to accept or reject the photon-

like hypothesis of the LEE. The single photon analysis in MicroBooNE is searching for

the Δ radiative decay as a candidate for the photon-like hypothesis, but these events are

overwhelmed by a large NC π0 background. The constraint provided by this selection

improves the sensitivity of the single-photon analysis to the LEE signal from 0.9σ to 1.5σ.

At present, this analysis is largely statistics-limited, so this sensitivity is expected to improve

significantly as more data become available to analyzers. In addition, the NC π0 selection can

be readily adapted to obtain valuable neutrino-argon cross section measurements. As of this

writing, the NC π0 selection is being adapted to a flux-averaged cross section measurement,

and could evolve into a differential cross section measurement in the near future.

The future of Fermilab’s SBN program depends on LArTPC technology, with multiple

upcoming experiments utilizing this detector technology. With the SBN program ramping

up in the near future, precision measurements and constraints on systematic uncertainties
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are crucial for SBN’s LArTPC experiments. The Short-Baseline Near Detector (SBND) is

planned for commissioning soon, while the ICARUS T600 detector currently commissioning.

In addition to the SBN LArTPC experiments, the ProtoDUNE experiment (the 400-ton

DUNE prototype detector) will be entering its Phase II in 2022, and the Deep Underground

Neutrino Experiment (DUNE) is planned to begin collecting its first physics data in the

late 2020s. All of these experiments use LArTPC technology similar to MicroBooNE. The

analyses presented in this thesis will benefit these future experiments by constraining large

uncertainties. The DL measurement points to the need for additional measurements at

E-fields of O(100) V/cm, while the NC π0 selection can provide valuable cross-section

data to constrain large interaction uncertainties on heavy nuclei. In the near future, we

may have answers to such questions as the matter-antimatter asymmetry of the universe,

the neutrino mass hierarchy, and potentially beyond-standard-model physics informed by

neutrino experiments. It is truly an exciting time for the field of neutrino physics.
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A Diffusion World Data Summary Plot Details

Statement of disclosure: This appendix contains an edited version of an appendix from

a soon-to-be published journal article CITE ARXIV. While this article lists the entire

MicroBooNE collaboration as the author (this is standard MicroBooNE procedure), I

contributed the majority of the material in the article along with my colleague Adam Lister.

The version in this thesis has been edited with slight changes to wording throughout and

modified to match the format of the remainder of this thesis.

This Appendix describes the production of the DL world data summary plot (Figure

6.16). The Atrazhev-Timoshkin theory calculation [88] and the Li et al. data [116] are

presented in terms of the effective longitudinal electron energy, εL, while the MicroBooNE

and ICARUS [89] results are in terms of DL. To convert between εL and DL, we use the

Einstein-Smoluchowski relation [117, 118],

DL =
μ(E)εL

e
, (1)

where μ(E) is the electron mobility as a function of electric field and e is the electron charge.

The Atrazhev-Timoshkin theory calculation is parametrized in terms of the effective

longitudinal and transverse electron energies, εL and εT , respectively. They note that, for

E-fields above 103 V/cm,

εL = 0.5εT , (2)

where εT is given by

εT = 0.8T (E/Eh). (3)

Here, Eh is the boundary field strength above which electrons are considered “hot.” For fields

below this value, εL = T . There is no description of εL for intermediate fields (i.e., above 0

and below 103 V/cm), so we interpolate in this region. We use a fourth order polynomial

fit between T = 7.67× 10−3 eV (89 K) and the region above E = 1200 V/cm (which follows

Equation 3). The resultant functional form is given by
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εL =7.67× 10−3 + 1.39× 10−5E

+ 2.19× 10−9E2 − 2.69× 10−13E3

+ 1.15× 1017E4.

The data of Li et al. are estimated using graph clicking software. The functional form of

the parametrization is provided in [116]. This reference also provides a parametrization of

μ(E), which is shown in Figure 10 of Reference [116] to have excellent agreement with world

data. Finally, the ICARUS data point is taken directly from [89], which reports an average

DL value of DL = 4.8± 0.2 cm2/s for E-field values of 100, 150, 250, and 350 V/cm.
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B Potential for Tagging t0 Using Diffusion

Statement of disclosure: This appendix contains an edited version of an appendix from

a soon-to-be published journal article CITE ARXIV. While this article lists the entire

MicroBooNE collaboration as the author (this is standard MicroBooNE procedure), I

contributed the majority of the material in the article along with my colleague Adam Lister.

The version in this thesis has been edited with slight changes to wording throughout and

modified to match the format of the remainder of this thesis.

The potential for t0-tagging using diffusion has been investigated in reference [119] where

many hits along a single track are considered in order to reconstruct a t0 for that track.

Recently, this method has gained some attention in the context of t0-tagging individual

energy depositions. The feasibility of performing t0-tagging for individual energy depositions

using this method is dependent on the spread of the hit RMS values for each drift time. This

is shown in figure 6.7a, where each bin in drift time has a wide range of allowed hit widths.

In addition, comparisons of the hit RMS distributions at drift times of 45 μs, 1150 μs, and

2254 μs are shown in figure B.1. Each of these plots uses the nominal angular selection of

this analysis, θxz < 6◦, meaning this should be comparable to a point source. Figure B.1

shows that the spread in the hit RMS is relatively wide on all three planes. In order to

boost the success rate of tagging the t0 of individual energy depositions, one may imagine

performing charge matching across planes in order to obtain three hits rather than one;

however, statistical fluctuations in electron transport are likely much larger than any plane-

to-plane differences that might be present in a given LArTPC. The collection plane has the

narrowest hit RMS distributions and therefore should be the most promising for t0 tagging

individual waveforms, and so we focus the rest of this appendix there.

The ability to t0-tag a single energy deposition accurately relies on each hit RMS value

corresponding to a tight distribution of possible drift times. The wider the distribution

of possible drift times, the less accurately the t0 can be measured. Figure B.2 shows the

distribution of hit times on the collection plane for hits in 0.1 μs bins of hit width from zero

to the maximum drift time in the MicroBooNE TPC, 2300 μs. For each bin of hit RMS,

the range of drift times spans the entire 0-2300 μs region. To make a more quantitative
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statement, we fit a Gaussian functional form around the peak of the 1.5 μs < Hit RMS

< 1.6 μs plot, from which we can estimate a 1σ uncertainty of approximately ±560 μs.

However, we caution that the distribution is relatively non-Gaussian and this should be

taken as a lower bound on the resolution. We also note that the resolution is likely larger

for hits with larger drift times because the hit width is proportional to
√
t and the width

changes more slowly for longer drifts. The first 10-kTon module of the DUNE Far Detector

is planned to have a drift distance of 3.6 m with a drift field of 500 V/cm resulting in a

maximum drift time of 2.25 ms. The data presented in this work cover this region of drift

time and the field dependence of DL is negligible (figure 6.16), making this measurement

relevant for the DUNE far detector.

It is clear that even using the collection plane, which is expected to out-perform the

induction planes, there remain significant hurdles to overcome. The measured central value

of DL combined with statistical fluctuations from the diffusion process means that t0 tagging

of individual energy depositions using hit RMS alone will result in poor time resolution.

Combination of the hit RMS with other variables has not been investigated in this work.

Application of this technique to charged particle tracks which are reconstructed from energy

depositions on many readout channels remains an intriguing possibility, as the statistical

fluctuations will average out as the number of hits increases.

To aid in making predictions for future long-drift detectors, we make the observation

that for drift times above ∼ 1000 μs the ratio of the width to the hit RMS distribution

with the mean of the hit RMS distributions is approximately constant at 0.056 (figure

B.3). This relationship does not appear to hold for the induction planes. We provide this

extrapolation for use with other LArTPCs, but we emphasize that this is not a substitution

for a full analysis with a dedicated simulation. Such an endeavor demands more precision

from simulations than has been required to date. For example, we have noted that the

distribution of the hit RMS for a given drift time tends to be narrower in our simulations

than in our data (figure B.4). Any attempt to t0 tag single energy depositions using diffusion

would need to tune the simulation to the data with great care.
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C NC π0 Data Filters

In order to analyze events from across Runs 1-3 while satisfying the MicroBooNE blindness

criteria, we employ two data filters, one for each of the 2γ topologies (see Section 8). The

MicroBooNE blindness criteria states that a data filter must not select more than 45 νe

or Δ radiative LEE events per 13.2e20 POT according to the GENIE v3 prediction. The

blindness criteria ensures that no data filter accidentally examines the blinded LEE-like

data. This section describes the cuts used in each filter, along with the predicted passing

rates of our signal and the relevant LEE backgrounds. All data-to-MC comparisons shown

in Section 8 use the filtered data from Runs 1, 2 and 3 as the on-beam data sample. To

date, this corresponds to ∼ 6×1020 POT for each topology. The following two sections come

with the caveat that the filter blindness studies were performed using older versions of the

corresponding samples, hence the total number of events in each sample and exact signal

definition passing rates differ from those listed in Sections 7.2 and 8. However, because these

older studies led to the approval of the filters, we choose to show as they were at the time

of approval.

C.1 2γ1p Filter

The 2γ1p filter consists of three primary cuts:

• The reconstructed event topology consists of two showers and one track

• The conversion distances for both showers must be greater than 1 cm

• The reconstructed neutrino vertex must be at least 5 cm away from any TPC wall

Note that these cuts are a subset of the pre-selection and topological cuts used in the

NC π0 analysis. Figure C.5 shows the filter passing rates of various samples as a function of

true neutrino energy. The samples are divided into the following definitions:1

• Signal NC π0

1Note that the 2γ1p filter studies were performed at a time where we used a 10 cm fiducial volume and a
40 MeV proton kinetic energy threshold. This has no significant impact on the filter performance or blindness
tests.
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– True NC event with exactly one π0 in the final state

– One proton in the final state with range-based kinetic energy > 40 MeV

– Two photon showers originating from π0 decay, each with > 20 MeV energy

– True neutrino vertex at least 10 cm from any TPC wall

• Other NC π0:

– True NC event with exactly one π0 in the final state

– Fails some combination of the fiducial volume and/or energy thresholds listed

under “Signal NC π0.”

• Intrinsic νe:

– True CC νe or ν̄e

– True neutrino energy between 50 MeV and 1.5 GeV

• NC Δ radiative:

– True NC Δ radiative decay

– No π0 in the final state

– One photon decay from Δ with energy > 20 MeV

– For the 1g1p (1g0p) topology, one (zero) proton(s) in the final state with range-

based kinetic energy > 40 MeV

– True neutrino vertex within 10 cm of any TPC wall

The efficiencies of each cut, along with the number of selected events as a function of

true neutrino energy, can be found in Table C.1. Here, the “Definition” column shows the

number of MC events that pass the above sample definitions, scaled to 13.2e20 POT;2 The

“Topology” column then shows the number of events that pass the topological definition of

the NC π0 filter, i.e., two showers and one track; and the “Filter” column shows how many
2While the expected final dataset is now ∼ 12.25×1020 POT, the MicroBooNE blindness criteria are still

defined relative to 13.2e20 POT, so we use this number for blindness studies. This applies to the 2γ0p case
as well.
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events pass the conversion distance and fiducial volume cuts listed earlier in this section.

The MicroBooNE blindness criteria states that a filter must not select more than 45 νe or

Δ radiative LEE events per 13.2e20 POT. The filter satisfies these conditions.

C.2 2γ0p Filter

The 2γ0p filter uses three primary cuts:

• The reconstructed event topology consists of two showers and zero tracks

• The leading shower energy must be greater than 30 MeV

• The reconstructed neutrino vertex must be at least 5 cm away from any TPC wall

As in the 1p filter, we require a specific topology with a vertex within a 5 cm fiducial

volume. However, instead of cutting on shower conversion distances, we instead cut on the

leading shower energy. In events with no reconstructed tracks, Pandora generally places the

vertex at the leading shower starting position. A conversion distance cut on the leading

shower would therefore remove the majority of signal events. Furthermore, the lack of a

track makes determining shower directions difficult, as we don’t have a handle on how far

each photon pair traveled before converting. We therefore choose to use the leading shower

energy as a conservative cut for removing poorly-reconstructed or low-energy events.

Figure C.6 shows the filter passing rates as a function of true neutrino energy. Here, the

samples are divided into a more inclusive and streamlined set of definitions relative to the

2γ1p case:

• NC π0

– True NC event with exactly one π0 in the final state

– Two photon showers originating from π0 decay, each with > 20 MeV energy

– True neutrino vertex at least 5 cm from any TPC wall

• Intrinsic νe:

– True CC νe or ν̄e
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Figure C.5: NC π0 2γ1p filter efficiency as a function of true neutrino energy for various
samples.

Table C.1: NC π0 2γ1p filter passing rates for various samples, scaled to 13.2e20 POT.
Passing rate percentages are defined relative to the “Definition” column. The meaning of
each column title is described in the text.

Sample Definition Topology Filter
Signal NC π0 8,318 (100%) 1,305 (15.7%) 1,126 (13.5%)
Other NC π0 42,415 (100%) 1,343 (3.2%) 781 (1.8%)
Intrinsic νe 1,195 (100%) 63 (5.3%) 32 (2.7%)
Δ rad 1g1p 87 (100%) 4 (4.6%)) 3 (3.4%)
Δ rad 1g0p 102 (100%) 4 (3.9%)) 2 (2.0%)
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– True neutrino energy between 50 MeV and 1.5 GeV

• NC Δ radiative:

– True NC Δ radiative decay

– No π0 in the final state

– One photon decay from Δ with energy > 20 MeV

– True neutrino vertex within 5 cm of any TPC wall

The efficiencies of each cut, along with the number of selected events as a function of

true neutrino energy, can be found in Table C.2. As before, the “Definition” column shows

the number of MC events that pass the above sample definitions, scaled to 13.2e20 POT; the

“Topology” column then shows the number of events that pass the topological definition of

the NC π0 filter, i.e., two showers and no tracks; and the “Filter” column shows how many

events pass the shower energy and fiducial volume cuts listed earlier in this section. The

2γ0p filter satisfies the blindness criteria.
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Figure C.6: NC π0 2γ0p filter efficiency as a function of true neutrino energy for signal and
relevant LEE backgrounds.

Table C.2: NC π0 2γ0p filter passing rates for various samples, scaled to 13.2e20 POT.
Passing rate percentages are defined relative to the “Definition” column. The meaning of
each column title is described in the text.

Sample Definition Topology Filter
NC π0 8,806 (100%) 1,008 (11.4%) 987 (11.2%)
Intrinsic νe 1,479 (100%) 40 (2.7%) 36 (2.4%)
Δ rad 227 (100%) 8 (3.5%)) 7 (3.1%)
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D NC π0 BDT Training Variables

D.1 2γ1p Training Variables

Figure D.7 shows the data-to-MC comparisons for all training variables in the 2γ1p selection

at the pre-selection stage. Flux and cross-section uncertainties are included. At this stage,

the only variable with a χ2 p-value < 0.05 is the track mean truncated dE/dx. This is due

to a shift near the peak at 2 MeV/cm, where we expect minimally-ionizing particles (MIPs)

such as muons to peak. In all other regions of track dE/dx, the data/MC agreement is quite

good. This shift is covered by detector systematic uncertainties, as shown in Figure 8.10.

We also note that, at the final selection, the data/MC agreement improves significantly even

without detector systematics, as the BDT cuts nearly all events near the MIP-like peak.

This is shown in Figure 8.4a. All other variables show good agreement between data and

MC at the pre-selection stage, as evidenced by the p-values and the χ2/nDOF.

D.2 2γ0p Training Variables

Figure D.8 shows the data-to-MC comparisons for all training variables in the 2γ0p selection

at the pre-selection stage. Flux and cross-section uncertainties are included. All variables

show good agreement between data and MC at the pre-selection stage, as evidenced by the

p-values and the χ2/nDOF.
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(f) Track length

Figure D.7: Training variables for 2γ1p.
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(g) continued Track θyz
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(h) continued Distance from track end point to
nearest TPC wall
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(i) continued Track mean truncated dE/dx

100

200

300

400

500

600

Ev
en

ts  Radiative 2.0ΔSM NC  Coherent 9.20πNC 1 
 Non-Coherent 713.60πNC 1  539.50π 1 μνCC

BNB Other 455.6  Intrinsic 27.8eν/eνCC
Dirt (Outside TPC) 291.4 Data, Run 1+2+3 Cosmic 1044.8
Total Prediction: 3083.8 Data, Run 1+2+3 On-Beam 2923
Flux & XSec Sys

Filtered 5.84E20 POT
1pγSelection 2

MicroBooNE Preliminary

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Ratio of Truncated Mean Start/End Track dE/dx Best Plane

0

0.5

1

1.5

D
at

a/
Pr

ed
ic

tio
n

: 0.483)val P2χ: 33.69/34)    (DOF/n2χ 0.13)     (KS: 0.904)     (±(Data/Pred: 0.95 

(j) continued Ratio of track start/end dE/dx

Figure D.7 continued: Training variables for 2γ1p.
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(a) Leading conversion distance
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(b) Subleading conversion distance
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(c) Leading shower impact parameter

200

400

600

800

1000

1200

Ev
en

ts  Radiative 2.4ΔSM NC  Coherent 34.00πNC 1 
 Non-Coherent 559.50πNC 1  105.30π 1 μνCC

BNB Other 252.9  Intrinsic 25.7eν/eνCC
Dirt (Outside TPC) 384.5 Data, Run 1+2+3 Cosmic 1141.3
Total Prediction: 2505.5 Data, Run 1+2+3 On-Beam 2402
Flux & XS Systematics

Filtered 5.89E20 POT
0pγSelection 2

MicroBooNE Preliminary

0 2 4 6 8 10 12 14 16 18 20
Subleading Shower Impact Parameter [cm]

0

0.5

1

1.5

D
at

a/
Pr

ed
ic

tio
n

: 0.789)val P2χ: 27.22/34)    (DOF/n2χ 0.08)     (KS: 0.802)     (±(Data/Pred: 0.96 

(d) Subleading shower impact parameter
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(e) Leading shower energy
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(f) Subleading shower energy

Figure D.8: Training variables for 2γ0p.
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(g) continued Ratio of leading shower length/en-
ergy
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(h) continued Ratio of subleading shower
length/energy
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(i) continued Leading shower θyz
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(j) continued Leading shower neutrino slice score

Figure D.8 continued: Training variables for 2γ0p.
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