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Abstract

The Fermilab Muon g−2 experiment is currently preparing for its fourth data-

taking period (Run-4). The experiment-wide effort on the analysis of Run-1

data is nearing completion, with the announcement of the first result expected

in the coming months. The final goal of the experiment is to determine the

muon magnetic anomaly, aµ = g−2
2

, to a precision of 140 ppb. This level of pre-

cision will provide indirect evidence of new physics, if the central value agrees

with the previously-measured value of aµ. Essential in reducing the systematic

uncertainty on aµ, through measurements of the muon beam profile, are the

in-vacuum straw tracking detectors. A crucial prerequisite in obtaining accu-

rate distributions of the beam profile is the internal alignment of the tracking

detectors, which is described in this thesis. As a result of this position cali-

bration, the tracking efficiency has increased by 3%, while the track quality

increased by 4%.

This thesis also discusses an additional measurement that will be made using

the tracking detectors: a search for an electric dipole moment (EDM) of the

muon, through the direct detection of an oscillation in the average vertical

angle of the e+ from the µ+ decay. An observation of a muon EDM would be

evidence of new physics and would provide a new source of CP violation in

the charged lepton sector. Essential in measuring the EDM, as well as aµ, are

accurate and precise estimations of potential non-zero radial and longitudinal

magnetic fields, which were estimated using the Run-1 data. In addition, a

preliminary analysis using the Run-1 data was undertaken to estimate the

available precision for the aµ measurement using the tracking detectors.
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Impact Statement

The results of the fundamental research increase humanity’s understanding of

the Universe and are of great value for society. The Fermilab g−2 experiment

will make two measurements to establish the presence of new physics – new

particles or forces. The work described in this thesis has had a direct contri-

bution in making these measurements possible. Should signs of new physics

be observed, it would result in the first fundamental discovery in the field of

experimental particle physics since 2012, and would set a clear pathway for

future experiments to explore this new potential phenomenon more rigorously.

As has been the case in the past, fundamental discoveries in particle physics

were later able to significantly benefit humanity technologically, beyond their

original scope of research. For example, proton therapy is now an established

procedure to cure cancer, with its origin rooted in particle accelerators. More-

over, an emerging challenge for a truly globalised world of the 21st century is

global security. Notably, research into muons allowed for the development of

muon tomography, enabling to improve the detection of nuclear materials. It

remains to be seen what technological advancements will be enabled by new

physics.

The technological expertise developed during this thesis is directly applicable

to tackle one of the four Grand Challenges1 to put the UK at the forefront of

the industries of the future – AI and Data Economy. By 2030, the AI industry

is projected to expand the UK economy by 22%2.

1HM Government, Industrial Strategy White Paper (2017).
2McKinsey Global Institute, Artificial intelligence in the United Kingdom (2019).
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Chapter 1

Introduction

Despite many successes of the current theoretical framework, the Standard

Model (SM), that describes known fundamental particles and their interac-

tions, there exist several unexplained phenomena in physics that motivate

searches for new particles or forces. The last discovered fundamental parti-

cle, the Higgs boson, in 2012 further verified the predictive power of the SM.

However, the search for new physics remains highly motivated, as fundamental

questions such as the origin of the universe’s matter-antimatter asymmetry, the

source of neutrino mass, and the origin of the dark matter remain unanswered.

Many experiments are trying to discover signs of new physics. One such project

is the Fermilab Muon g − 2 experiment, which will provide a stringent test of

the SM through a precise comparison of the theoretical prediction with an

experimentally measured value. If the two values disagree, this would be in-

dicative that the theory has not accounted for an effect seen by the experiment,

providing indirect evidence of new physics. The measurement of interest is the

so-called muon magnetic anomaly, aµ. The current world’s best measurement

of aµ at Brookhaven National Laboratory (BNL) [1] yielded a discrepancy be-

tween the theoretically predicted and experimentally measured values of more

than 3σ: a possible indication of new physics, but below the 5σ “discovery

threshold”. The Fermilab Muon g− 2 experiment will determine aµ to a preci-

sion of 140 parts-per-billion (ppb), sufficient to establish the presence of new

physics at a significance of 6σ should the same central value be measured.

17
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Additionally, the experiment will search for a muon electric dipole moment

(EDM), with at least a factor of 10 improvement in sensitivity compared to

the BNL g − 2 experiment. An observation of a muon EDM would provide

a new source of charge parity (CP) violation in the charged lepton sector

– a potential candidate to explain the matter-antimatter asymmetry of the

universe.

This thesis describes the author’s contributions to the Fermilab Muon g − 2

experiment in making these measurements possible. Chapter 2 gives a brief

overview of the theory of the two dipole moments of the muon. The Fermilab

Muon g − 2 experiment and the methodology of the measurements are pre-

sented in Chapter 3. Chapters 4 and 5 give a more detailed description of

the data acquisition system and the tracking detector. The estimation of the

systematic uncertainty on the beam measurements due to misalignment of the

tracking detector is presented in Chapter 6. The internal alignment strategy

and results are given in Chapter 7. Chapter 8 gives the results of constraining

the radial curvature of the tracking detector. A preliminary aµ analysis with

data from the tracking detector is presented in Chapter 9. Chapter 10 con-

tains analysis work on the search for a muon EDM. Finally, in Chapter 11 the

results achieved in this thesis are summarised.

1.1 Personal contributions
The work of hundreds of scientists, engineers, graduate students and interns over

more than a decade went into developing, building, and running the experiment, as

well as the processing and analysing of the experimental data. Any work presented

in this thesis that was not made by the author is indicated and cited. The author’s

direct contribution to the success of the experiment is listed below, for clarity:

1. Systematic studies for the EDM and aµ measurements. The residual

radial and longitudinal magnetic fields were estimated using data from the

tracking detector. This work is presented in Chapter 10, with the produced

analysis code available [2]. Moreover, the first effort to begin the aµ analysis

with data from the tracking detector was made in Chapter 9.
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2. Internal alignment of the tracking detector. The internal alignment, of

the two tracker stations in Run-1 and Run-2, has been successfully determined.

An alignment manual [3] allowing future alignment determinations, has been

produced. The derived alignment constants were written into a PostgreSQL

database, where each set of constants is associated with a given range of runs.

This work was presented at the American Physical Society division conference,

with an associated conference proceeding paper [4]. The produced analysis

code is also available [5]. This work is presented in Chapter 7.

3. Alignment contribution to the measurement of the spatial and tem-

poral distribution of the stored beam. If the internal misalignment of

the tracking detector is not determined and corrected for, there is a systematic

effect on the measurement of the beam profile. The uncertainty on the mean

radial and vertical extrapolated beam positions were estimated in Chapter 6.

4. Estimation of the radial curvature of the tracking detector and its

contribution to the measurements of the stored beam. The accuracy

of beam position determination is affected by detector effects, such as the

radial detector curvature. This effect was estimated in Chapter 8.

5. Data reconstruction on the UK grid. To speed-up the experiment-wide

data reconstruction effort, the track reconstruction code was configured to run

on grid resources in the UK, as detailed in Section 3.8.2.

6. Data acquisition system (DAQ) expert on-call. To support the smooth

operation of the experiment and ensure continuous data taking, a team of

DAQ experts are available for 24/7 support. The author actively participated

as the DAQ on-call expert during Run-1 and Run-2. The DAQ of the g − 2

experiment is described in Chapter 4.

7. Tracking detector testing. The tracking detector was developed by the

University of Liverpool, with the UCL g − 2 team developing the tracker

DAQ; both were subsequently installed and tested at Fermilab. Some of this

work is described in Chapter 5.



Chapter 2

Theory

The search for new physics in the charged lepton sector provides an exciting and

promising avenue for discovery. In the g − 2 experiment, two such searches will

be performed: a measurement of the muon magnetic anomaly and the search for a

non-zero muon EDM.

2.1 Muon magnetic anomaly
The muon has an intrinsic magnetic dipole moment, µ, that is coupled to its spin [6],

s, by the g-factor, gµ,

µ = gµ

(
e

2mµ

)
s, (2.1)

where mµ is the mass of the muon and e is the elementary charge. The Dirac

equation predicts the value of gµ to be exactly equal to 2. However, additional

radiative corrections, due to the contribution of virtual particles, cause it to be

slightly larger than 2. This difference, aµ, is defined as

aµ =
gµ − 2

2
, (2.2)

and is known as the muon magnetic anomaly. Defining aµ this way allows for

Equation (2.1) to be written in the form

µ = (1 + aµ)

(
e

mµ

)
s, (2.3)

which clearly demonstrates the influence of the muon magnetic anomaly on the

magnetic dipole moment.

20
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The current theoretical calculations of aµ is 0.00116591810(43) [7], with a precision

of 369 ppb. This calculation comprises several contributions:

a
SM
µ = a

QED
µ + a

EW
µ + a

Hadron
µ , (2.4)

where a
QED
µ , aEWµ , and a

Hadron
µ are contributions from the electromagnetic, elec-

troweak, and hadron sectors respectively, as shown in Figure 2.1.

(a) (b) (c)

(d) (e) (f)

Figure 2.1: Examples of SM contributions to aµ: (a) Dirac (b) Schwinger (c) higher
order QED (d) electroweak (e) hadronic light-by-light (f) hadronic vac-
uum polarisation.

a
QED
µ is the dominant contribution, while the uncertainty is dominated by the

hadronic part (lowest order hadronic vacuum polarisation and light-by-light interac-

tions), as shown in Figure 2.2. A more detailed account of SM contributions to aµ,

and their corresponding theoretical uncertainties, is given by T. Aoyama et al. [7]

and A. Keshavarzi [8].
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Figure 2.2: The uncertainty on the theoretical prediction of aµ. It is dominated
by the hadronic interactions.

The theoretical accuracy of aµ is comparable to the experimental accuracy of the pre-

vious Muon g−2 experiment at BNL, with the final result of 0.00116592091(63) [1],

having a precision of 540 ppb. The difference between the BNL g − 2 experiment

and theory is given by

δaµ = a
experiment
µ − a

SM
µ = 281(76)× 10

−11 (2.5)

which corresponds to a deviation between the experiment and the theory of 3.7σ.

To account for this discrepancy, a new physics correction (aNP
µ ) to a

SM
µ may be

required. One of such possible corrections, using an extension to the SM known as

supersymmetry, is discussed in [9].

2.1.1 Muon’s aµ sensitivity to new physics
Other fundamental particles, such as an electron, also posses a magnetic dipole

moment, which can be used in searches for new physics. However, the contribution

of the virtual particles to the magnetic anomaly, aNP
l , of leptons scale with mass [10]

according to

a
NP
l ∼ m

2
l

Λ
2 , (2.6)

where ml is the mass of a lepton, and Λ is the mass scale of new physics. Given

the muon-to-electron mass ratio (m2
µ/m2

e) of O(10
4
), the search for new physics with

muons is much more effective than with electrons, given the relative experimental

precision of these measurements.
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What makes this search different, compared to the one with the electron, is the fact

that the muon is an unstable particle. The muon decay channel of interest to the

experiment is µ+ → e
+
νeν̄µ. This process is illustrated in Figure 2.3.

(a) (b)

Figure 2.3: (a) Feynman diagram for the decay of a positive muon. (b) Helicity
diagram of positive muon decay in its rest frame. Bold arrows indicate
spin, and long arrows indicate momentum.

The three-body decay of the muon in Figure 2.3 provides information on the muon

spin orientation at the time of the decay. The V −A structure of the weak interaction

means that the highest energy positrons from the decay of the µ+ are preferentially

emitted along the direction of the muon spin.

2.2 Electric dipole moment
Analogous to µ in Equation (2.1), a potential muon EDM, dµ, is defined by

dµ = η

(
e~

4mµc

)
s, (2.7)

where η is a dimensionless constant [11], analogous to gµ in Equation (2.1).

The SM prediction of the electron EDM, de, is 10−38
e·cm [12]. The scaling law [13]

suggests that the corresponding value for the muon EDM would be

dµ ' de

mµ

me
. (2.8)

This yields a value of dµ of 10−36
e·cm, well below the current experimental reach.

Hence, any observation of dµ would be evidence of NP.
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The goal of the Fermilab g − 2 experiment is to measure dµ with a sensitivity

greater than 10
−21

e·cm [14], more than a factor of 10 improvement on the current

best experimental limit from the BNL experiment [15].

The transformation properties of the dipole moments reveal an important conclusion.

The Hamiltonian [6] for the muon in an applied magnetic, B, and electric, E, fields

is given by

H = −µ ·B − dµ ·E. (2.9)

Transformations under time reversal (T) are odd for axial vectors (i.e. d,µ, and

B) and even for polar vectors (i.e. E), while the reverse is true for charge (C) and

parity (P) transformations, as shown in Table 2.1.

E B µ or d

P − + +
C − − −
T + − −

Table 2.1: Transformations of E, B, µ and d under the P, C and T operators: (+)
denotes an even transformation and (-) an odd.

The first term in Equation (2.9) is invariant under a T transformation

HB = −µ ·B →T −(−)µ · −B = −µ ·B. (2.10)

However, the second term is not

HE = −d ·E →T −(−)d ·E = d ·E. (2.11)

Therefore, assuming an overall CPT invariance, T violation implies CP violation.

Hence, an EDM measurement by the g − 2 experiment (above 10
−36

e·cm) would

provide clear evidence of CP violation in the charged lepton sector. A more detailed

discussion of the muon EDM is available from B. Roberts and Y. Semertzidis [6].

The methodology of the EDM measurement with the tracking detector is given in

Section 10.2.



Chapter 3

The Muon g − 2 experiment at

Fermilab

This chapter describes the methodology of the measurement of the muon magnetic

anomaly by the Fermilab g− 2 experiment. Section 3.1 provides an overview of the

entire experiment, with a more detailed description of the beamline, storage ring

components, spatial and temporal distribution of the stored beam, magnetic field,

and detectors given in Sections 3.2 to 3.6. A more in-depth description of the data

acquisition (DAQ) and the tracking detectors is given separately in Chapters 4 and 5,

respectively, while the methodology of the EDM measurement with the tracking

detector is given in Section 10.2.

The performance of the experiment in the data taking periods from 2017 to 2020 is

discussed Section 3.7. The expectation for future data taking periods is also given.

An overview of the experimental data reconstruction is given in Section 3.8, where

data quality cuts are also discussed, along with an alternative implementation of

tracker data reconstruction in the UK. Finally, the experiment’s simulation frame-

work is described in Section 3.9.

3.1 Overview
The principal goal of the Fermilab Muon g − 2 experiment is the reduction of the

experimental uncertainty on the measurement of aµ, as compared with the BNL

experiment, using a measurement strategy similar to the one at the BNL [1]. This

reduction in the uncertainty on aµ will be achieved via reductions in the statistical

25
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uncertainty due to the use of the Fermilab muon beam [16], and the systematic uncer-

tainty due to improvements in the detectors, such as the in-vacuum tracking detec-

tors [17], and more finely segmented calorimeters [18], a better field uniformity [19],

and a laser calibration system [20], as well as improved analysis techniques.

Achieving the experimental goal requires a dataset containing 1.6 × 10
11 positrons

with energies above 1.8 GeV. The momentum of the injected muons is 3.09 GeV:

the so-called “magic momentum” at which the effect of the motional magnetic field

is zero (see Section 3.3.3). This momentum corresponds to a boosted lifetime of

the muon of 64 µs. To perform the measurement of aµ, two measurable quantities

are of interest: the anomalous precession frequency, ωa, and the applied magnetic

field, B. ωa is defined as the difference between the spin and cyclotron frequencies

(see Section 3.3.3). In the case of a uniform magnetic field and negligible betatron

oscillations, the relationship between aµ, ωa, and B can be written as follows

ωa = aµ
e

mµ
B =

(
g − 2

2

)
e

mµ
B. (3.1)

Longitudinally polarised muons are injected into the storage ring, as shown in

Figure 3.1a, where they ultimately follow a circular orbit of mean radius, R0, of

7.112 m in the magnetic dipole field and are vertically focused using electrostatic

quadrupoles (ESQs). The muon beam enters the ring through the inflector magnet,

designed to cancel out the dipole magnetic field, at a slightly larger radius than the

ideal orbit. The kicker magnets are used to deflect the beam onto the correct orbit.

Since aµ > 0, the muon spin precesses faster than the momentum vector in the

storage ring. Due to the V −A structure of the weak interaction, the highest-energy

positrons, from the decay of the µ+, are preferentially emitted along the direction of

the muon spin, as shown in Figure 2.3. The positrons curl inwards, where they can

interact with one of the 24 calorimeters placed around the interior of the storage ring.

This is shown in Figure 3.2a. High energy positron events are then histogrammed

as a function of time to extract ωa, as shown in Figure 3.2b.
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(a)

(b)

Figure 3.1: The g−2 storage ring. (a) Superconducting magnets provide a uniform
vertical magnetic dipole field of 1.45 T. The muon beam enters the
storage ring via the inflector. The direction of the beam is clockwise
in this orientation. (b) A photograph of the ring with the location of
the two tracker stations indicated. The 24 calorimeter readout crates
(shown in black) are distributed uniformly on the inside of the ring.



3.1. Overview 28

(a) (b)

Figure 3.2: Measurement of ωa: (a) a decay positron entering one of the 24
calorimeters, (b) ωa is extracted from a fit to calorimeter events after
30µs, when the beam is stable. Plot (b) courtesy of J. Hempstead [21].

The magnetic field is determined through a frequency measurement: the Larmor

frequency of a free proton, ωp. It is measured using nuclear magnetic resonance

(NMR) and the relationship

ωp = γp〈B〉, (3.2)

where γp is the proton gyromagnetic moment ratio [22]. Using Equation (3.2), aµ
can be expressed as a function of the two experimentally measured frequencies and

well-determined ratios

aµ =
ωa/ωp

µµ/µp − ωa/ωp

=
ωa

ωp

(ge
2

)(mµ

me

)(
µp
µe

)
, (3.3)

where ge, µp/µe, and mµ/me are known [22] with uncertainties of 0.00026 ppb, 3.0

ppb, and 22 ppb, respectively.

The simple harmonic motion of the stored muon beam in the horizontal plane,

known as the coherent betatron oscillation (CBO) [23], contribute significantly to

the systematic uncertainty on ωa. The fraction of events where a positron is detected

by the calorimeters depends on the radius of the muon beam at the point of decay.

The CBO of the stored beam can thus produce an amplitude modulation in the

observed positron time spectrum, as described in Section 3.4.2. One of the aims of

the tracking detectors is to measure the CBO.
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3.2 Beamline
The aim of the accelerator complex, shown in Figure 3.3, is to deliver a beam of

muons, which is largely free of contaminants (e.g. p, e, d, π), into the g − 2 storage

ring. The muons in the g − 2 experiment come from pion decays

π
+ → µ

+
+ νµ, (3.4)

which are produced by sending a proton beam with a momentum of 8.89 GeV– with

O(10
12
) protons in a single bunch of O(100) ns – on an Inconel 600 [24] production

target

p+ p(target) → p+ n+ π
+
. (3.5)

µ
+ are used in the experiment, as the cross-section for π+ production is greater

than that for π−. Each proton bunch delivered by the accelerator complex to the

pion production target corresponds to a muon fill in the g − 2 storage ring. The

proton beam is bunched in the Recycler to fill the g− 2 storage ring optimally. The

produced 3.11 GeV pions, as well as any remaining protons, undergo five revolutions

in the Delivery Ring. This is done to allow all pions to decay, and to separate muons

from electrons and protons, as much as possible. Further details on the beamline

are given by D. Stratakis et al. [16].

Figure 3.3: The schematic above (not to scale) shows the accelerator complex at
the Fermilab Muon Campus. The proton beamlines are shown in black,
and secondary beamlines in red. The protons are accelerated through
a linear accelerator (LINAC) and the Booster to reach 8.89 GeV.
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3.3 Storage ring components
One muon fill (700 µs) corresponds to a single accumulation of the muons and defines

the measurement window for the experiment. The goal of the storage ring compo-

nents described here is to keep the beam stable during this time. For a cyclotron

period, Tc, of 149 ns this corresponds to ∼ 4, 500 revolutions of the beam around

the ring.

3.3.1 Inflector
The delivered muon beam to the g−2 experiment passes through an inflector magnet

which facilitates injection of the beam into the storage ring by cancelling the main

magnetic dipole field (1.45 T) of the ring. The inflector provides a field-free region

(beam channel) through which the injected muon beam passes without deflection,

as shown in Figure 3.4. This requirement on the inflector means that the beam

is injected at a 1.25
◦ angle, meaning that the actual orbit is displaced by 77 mm

radially outward from the closed orbit of the storage ring. The inflector is made

of niobium-titanium-copper-aluminium superalloy, with a nominal design current

of 2850 A. Further details of the inflector can be found in the technical design

report [11].

(a) (b)

Figure 3.4: (a) Vector sum of inflector and storage-ring magnetic fields, through
a cross-section of the inflector. The superposition creates a field-free
region through which the injected muon beam enters the ring. Plot
courtesy of N. Froemming et al. [25]. (b) A rendering of the inflector
on the outside of the storage ring. The inflector is placed inside the
vacuum chamber just before the beam pipe. Image courtesy of K.
Badgley [26].
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3.3.2 Kicker
The displaced orbit instantiated by the inflector is adjusted by the fast muon kicker,

as shown in Figure 3.5. The kicker is a pulsed magnet with a vertical magnetic field

that directs the muons onto the ideal orbit. The kick requires an integrated vertical

magnetic field of 1.2 kG-m, for O(120) ns. After which the field must return to zero

before the lead muons complete a single revolution and re-enter the kicker aperture

149 ns later. The kicker is further described by A. Schreckenberger et. al [27].

(a) (b)

Figure 3.5: (a) Rendering of lines of the produced magnetic field around the two
kicker plates, with colours representing relative field intensities. (b)
The kicker plates mounted in the vacuum chamber of the storage ring.
Images courtesy of D. Rubin [28].

The kicker and the inflector are crucial components in maximising the number of

stored muons, as well as the position of the beam in the ring. Their optimisation is,

therefore, critical to the operation of the experiment.

3.3.3 Electrostatic quadrupoles
To provide a stable beam storage ESQs, as shown in Figure 3.6, are used to focus the

beam vertically using an electric field of O(20) kV. Without the vertical focusing,

the beam would diverge and would ultimately be lost after only a few turns around

the ring. Moreover, the ESQs are used to remove stored muons that fall outside of

the storage region – a process knows as scraping. This involves adjusting the voltage

on the quadrupoles to scrape the beam against collimators, one of which is shown

in Figure 3.7. The collimators have an inner radius of 45 mm, which defines the

storage region aperture. After scraping, the beam stabilises after 30 µs and can be

used for measuring ωa.
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(a) (b)

Figure 3.6: (a) The electric field lines produced by the ESQs. (b) The ESQs plates
in the vacuum chamber of the storage ring. Images courtesy of the g−2
collaboration [11].

(a) (b)

Figure 3.7: (a) Photograph of a half-aperture (radius=45 mm) beam collimator,
which is used for scraping, during installation. Image courtesy of J.
George [29]. (b) After scraping, the beam stabilises after 30µs and
can be used for performing the measurement of ωa.

An important property of the ESQs is the so-called field-index, n, which characterises

the strength of the electrostatic focusing in relation to the magnetic field strength

(1.45 T), B0

n =
κR0

βB0
, (3.6)

where κ is the electric quadrupole gradient, and β · c is the velocity of the muon

beam. In the g − 2 experiment, a typical value of n is ∼ 0.1, which corresponds to

the so-called weak focusing mode.
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The importance of the ESQs is further demonstrated by considering the measure-

ment of ωa. The cyclotron ωc (149 ns) and spin precession ωs frequencies of the

muon beam are given by [6]:

ωc = − e

mµγ
B, (3.7)

and

ωs =
−e
γmµ

[
(1 + γaµ)B⊥ + (1 + aµ)B‖ +

(
1

γ + 1
+ aµ

)
γE

c
× β

]
, (3.8)

for a muon moving in a horizontal plane of a magnetic storage ring, where γ is the

Lorentz factor, β = v/c, with the magnetic field components resolved relative to

the muon trajectory. The anomalous precession frequency, ωa (i.e. “the g − 2 fre-

quency”), is defined as the difference of the spin precession and cyclotron frequencies,

which corresponds to the rate of muon spin precession relative to the momentum

vector

ωa = ωs −ωc = − e

γmµ

[
γaµB −

γ
2
aµ

γ + 1
(B ·β)β+

(
aµ − 1

γ
2 − 1

)
γE

c
×β

]
. (3.9)

Assuming the muon velocities to be near perpendicular to B, the inner product of

B · β → 0. As the momentum of the injected muons has been deliberately set to

the “magic momentum” of 3.09 GeV (γ = 29.3) the last term in the Equation (3.9)

vanishes. However, in reality these conditions are not realised exactly, and small

corrections to Equation (3.9) must be applied. These corrections are the pitch and

electric field corrections, and are discussed next. Further details on the ESQs can

be found in the technical design report [11].

3.4 Spatial and temporal distribution of the

stored muon beam
Several important effects arise in the storage process of the muon beam in the

experiment. In this section, effects such as vertical pitch, CBO, fast rotation, closed-

orbit distortions, and lost-muons are considered, as they are directly referenced in

the further chapters of this thesis. The full description of the beam effects is given

in [30].
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3.4.1 Vertical pitch
The muons in the storage ring undergo a vertical motion due to the focusing from

the electrostatic quadruples, as shown in Figure 3.8a. This introduces an additional

term in the expression of ωa in Equation (3.1) that needs to be incorporated into

the analysis

ωa =
e

mµ

[
aµB −

γaµ
γ + 1

(B · β)β
]
. (3.10)

This changes the measured spin precession frequency, and so needs to be corrected

for by the so-called pitch correction, Cpitch, which is proportional to the vertical

width of the beam, σvertical

Cpitch =
∆ωa

ωa
= − n

2R
2
0

〈y2〉 = − n

2R
2
0

σ
2
vertical. (3.11)

σvertical is measured by the tracking detectors, as shown in Figure 3.8b.

(a) (b)
Figure 3.8: Vertical pitch: a) the up-and-down motion experienced by the muons

due to the quadrupole electric field, (b) Vertical position of the beam
from the tracking detectors. Plot (b) courtesy of J. Mott [31].

A misalignment of the tracking detectors will bias the beam measurement, and hence

the pitch correction. The alignment of the tracking detectors and its impact on the

pitch correction is described in Chapters 6 to 8.
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3.4.2 Coherent betatron oscillations (CBO)
The fraction of events where a positron is detected by the calorimeters depends on

the radial position of the muon beam in the storage ring. The beam has a finite

momentum and position distribution, and so, any particles not having exactly the

“magic momentum” or not positioned at the ideal orbit will be subject to restoring

forces from the ESQs and the magnetic field. These restoring forces cause simple

harmonic motion of the beam, with the muons oscillating in-and-out radially. This

results in slightly different cyclotron periods for different momenta. As each detector

is effectively sampling the beam at the cyclotron frequency (∼ 6.71 MHz),

fc =
vB0e

2πmµc
, (3.12)

while the radial betatron frequency (∼ 6.34 MHz)

fxBO =
√
1− nfc, (3.13)

is larger than fc/2, there is an aliasing effect such that the radial betatron motion

of the beam is instead observed as an apparent slow-moving oscillation (c.f. Nyquist

frequency [32]). The actual frequency measured by a detector, as illustrated in

Figure 3.9a, is

fCBO = fc − fxBO = fc(1−
√
1− n). (3.14)

(a) (b)

Figure 3.9: a) The betatron oscillation is shown in red. A detector sees the motion
at the CBO frequency. The location of a single detector is shown. Di-
agram courtesy of O. Kim et al. [23]. b) Reconstructed radial position
of the muon beam plotted against time, as measured by the tracking
detectors. Plot courtesy of J. Mott [33].
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The radial position of the muon beam can be monitored as a function of time using

the tracking detectors, as shown in Figure 3.9b, in order to estimate the amplitude

and frequency of the CBO.

Analogous to the CBO is the so-called vertical waist (VW), with the corresponding

vertical betatron frequency (∼ 2.21 MHz)

fyBO =
√
nfc. (3.15)

Since fyBO is smaller than fc/2, the VW oscillation

fVW = fc − 2fyBO = fc(1−
√
n), (3.16)

is measured directly by the detectors (i.e. there is no aliasing effect), as described

in more detail by T. Halewood-Leagas [34].

Both the CBO and VW oscillations must be accounted for in the analysis: if these

effects are not included, then significant residuals between the data and the fit to

data, as discussed in Chapter 10, are obtained.

3.4.3 Fast rotation and electric field corrections
To account for the fact that not all stored muons have the “magic momentum”, an

electric field correction [11], Celectric, to Equation (3.9) is implemented

Celectric =
∆ωa

ωa
= −2n(1− n)β

2 〈x2e〉
R0

, (3.17)

where

〈x2e〉 = x
2
e + σ

2
radial, (3.18)

and xe is the equilibrium radius of the beam (i.e. the average radial position of

the beam), and σradial is the radial width of the beam. σradial and xe are extracted

directly from the so-called fast rotation analysis, as shown in Figure 3.10a, which

considers how stored muons at various momenta cause “de-bunching” of the beam.

For example, for a group of muons with momentum larger than the “magic mo-

mentum”, the stored orbit will have a larger radius leading to a larger fc. The

methodology of the fast rotation analysis is described in [35].
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(a) (b)

Figure 3.10: (a) The equilibrium beam position from the fast rotation analy-
sis. Both analysis methods, Fourier and χ

2 produced similar results
(xe ∼ 6mm). Plot courtesy of A. Chapelain [35]. (b) The measured
CBO amplitude as a function of time in the fill. Plot courtesy of J.
Mott [33].

3.4.4 The effect of the CBO and xe on the beam
The mean stored radial beam position is slightly larger than expected, due to the

kicker providing a field below the design value. This is implemented in the simulation

using data-derived parameters for xe, using the fast rotation analysis, and the radial

CBO amplitude, as measured by the tracking detectors, as shown in Figure 3.10b.

Using the measured CBO and xe produces a more realistic radial beam profile in the

simulation, as shown in Figure 3.11, where it is compared with the default simulation

and data.

Figure 3.11: The modified simulation has an extrapolated radial beam position
that more closely resembles the one seen in data (xe ∼ 7mm, in one
of the two tracker stations), in comparison to the default simulation.
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3.4.5 Closed-orbit distortion
Another assumption in Equation (3.9) is the uniformity of the magnetic field

throughout the ring. In practice, the field has small inhomogeneities, which con-

tribute to an effect known as closed-orbit distortion, which results in different equi-

librium positions of the beam around the ring. That is, xe varies with azimuth.

The analytically estimated [36] model and three measurements of xe are shown in

Figure 3.12. Two of these measurements come from the tracking detectors: each

detector observes different segments of the beam’s orbit. These measurements are

sensitive to the global alignment, as described in Appendix A. Further details on

the closed-orbit effect are presented in [36].

Figure 3.12: xe as the function of azimuth (φ) around the g− 2 storage ring. The
three measurements are xe from the fast rotation analysis, and two
radial beam position measurements from the two tracking detectors
at 180

◦ and 270
◦. Plot courtesy of J. Grange [36].

3.4.6 Lost-muons
Some of the stored muons in the ring will interact with material (e.g. collimators)

emitting radiation and losing energy. These so-called “lost-muons” will curl inwards

towards the centre of the ring and exit the storage ring. However, some of them

will still deposit a small amount of energy in the calorimeters and fail the energy

cut. Matching calorimeter and tracker measurements via E/p can be used to distin-

guish between e
+ and µ

+, as discussed in Section 5.3. A corresponding systematic

uncertainty on the measurement of ωa arises from time-dependence and momentum-

dependence of the muon loss. Both of these effects introduce a time-dependent phase

that biases ωa. Further details on the study of lost-muons are given in [37].
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3.5 Magnetic field system
The magnetic field system aims to produce a uniform vertical magnetic field of 1.45 T

and to measure it with an uncertainty of 70 ppb. This measurement is performed

in the cross-section of the storage region, as shown in Figure 3.13a, in the volume

of 1.1 m3.

(a) (b)

Figure 3.13: (a) Cross-section of the g − 2 magnet. The muon storage re-
gion is shown inside the magnet’s yoke. Illustration courtesy of J.
George [29]. (b) The correction coils. The system consists of 100
concentric current carrying coils, above and below the vacuum cham-
bers. Image courtesy of R. Osofsky [38].

A formidable technical challenge was the so-called “shimming” of the superconduct-

ing magnet, which involved physical modifications of the magnet to set a uniform

field around the ring. The result of this procedure is shown in Figure 3.14.

Figure 3.14: The normalised difference between the measured field (B) at a loca-
tion and the average field (〈B〉) as the function of azimuth (φ) around
the g−2 storage ring. The field before the shimming is shown in red,
the one after shimming in blue, and the goal of 25 ppm is shown in
purple. Plot courtesy of J. George [29].
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To further refine the uniformity of the magnetic field, as well as to ensure stability

over time, an active shimming was implemented. This was done using a power

supply feedback to keep the dipole field constant using correction coils to smooth

the field. This process achieved the field uniformity of 1 parts-per-million (ppm)

[29], with the correction coils shown in Figure 3.13b.

When the muons are not stored in the ring, the magnetic field is measured by

a trolley system, which contains 17 NMR probes. The trolley completes a full

revolution around the ring in approximately three hours every three days to map

the field profile in the storage region, as shown in Figure 3.15 for one azimuthal

location.

Figure 3.15: A cross-section of the field in the storage region at one azimuthal
location. Image courtesy of R. Osofsky [39].

When the muons are injected, the field is continuously measured by fixed NMR

probes located outside of the storage region. This is done in order to track the

field between the trolley runs. This field map is then convoluted with the beam

profile (see Section 5.3.7) measured by the tracking detectors to find the average

field experienced by the muons before decay.

Further details of the field measurements, including the absolute field calibration,

and the relative trolley calibration using a plunging probe, are given in [40].
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3.6 Detectors
An in-depth description of the DAQ and the tracking detectors is given in Chapters 4

and 5, respectively, while the calorimeters and the auxiliary detectors are described

in more detail in [41], as well as in the technical design report [11].

3.6.1 Calorimeters
The ωa measurement will be realised by 24 electromagnetic calorimeter detectors,

which are distributed uniformly on the inside of the storage ring. Each calorimeter

comprises 54 segmented lead-fluoride Cherenkov detectors, as shown in Figure 3.16.

Each crystal is read out by a Hamamatsu silicon photomultiplier (SiPM), which are

constantly gain-calibrated between the muon measurements by a laser calibration

system [20]. The calorimeters measure the energy and time of arrival of the positrons,

from the muon decay.

(a) (b)

Figure 3.16: (a) The calorimeter crystals during assembly. (b) A rendering of
the calorimeter outside of the storage ring. Images courtesy of J.
Hempstead [21].

The largest single systematic uncertainty associated with the calorimeters is pileup,

which occurs when, for example, two low energy positrons deposit energy in the same

crystal close together in time (within ∼ 5 ns). The tracking detectors can be used to

investigate pileup in the adjacent calorimeters, as they can reconstruct independent

trajectories of the positrons. The final goal for a systematic uncertainty on the ωa

measurement is 70 ppb, while the experimental goal of collecting 1.6×10
11 positrons

corresponds to a statistical uncertainty of 100 ppb. Combining the statistical and

the systematic uncertainty from the determination of ωa in quadrature with the field

measurement uncertainty gives the total experimental design uncertainty of 140 ppb.
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3.7 Data-taking periods

3.7.1 Commissioning run
To ensure that all components of the experiment were performing adequately, a

commissioning run, which lasted from 31 May 2017 until 7 July 2017, was undertaken

to collect preliminary data. During the commissioning run, protons and pions were

also delivered to the storage ring, in addition to muons. This was due to the Delivery

Ring not being used.

3.7.2 Run-1, Run-2 and Run-3
The first data-collection period (i.e. Run-1) happened from 25 March 2018 until 8

July 2018, Run-2 took place from 23 March 2019 until 5 July 2019, while Run-3

happened between 25 November 2019 and 19 March 2020. The total number of

collected e+ in these periods, as a fraction of the total number collected at the BNL,

is shown in Figure 3.17a.

(a) (b)

Figure 3.17: Run-1, Run-2 and Run-3 results. (a) The number of recorded
positrons in Run-1, Run-2 and Run-3 as a fraction of total data col-
lected by the BNL experiment. Plot courtesy of M. Lancaster [42].
(b) This plot was accumulated from 60 hours of data (dataset 1a),
and has one billion positrons. The number of muons collected in this
period is similar to the one achieved by the BNL experiment in the
entirety of 1999. Plot courtesy of the g − 2 collaboration [11].

The work in this thesis will primarily focus on analysing the Run-1 data, as described

in Chapter 10. Run-1 and Run-2 data has also been used to check the calibration

of the tracking detectors as described in Chapter 7.
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The datasets collected in Run-1 are summarised in Table 3.1, with a preliminary ωa

analysis-level plot of the 1a dataset shown in Figure 3.17b. The total amount of raw

data collected, that will be used for the analysis, is roughly 0.5 PB in Run-1.

Dataset e+ Number of Raw data field
name (E > 1.7 GeV) tracks size [TB] index, n

1a 9.34× 108 3.51× 107 55 0.108

1b 8.70× 108 4.83× 107 75 0.120

1c 2.13× 109 7.23× 107 113 0.120

1d 4.10× 109 1.40× 108 273 0.108

Total 8.03× 109 2.96× 108 516 -

Table 3.1: The collected data in Run-1 is split into four datasets [43]. For each
dataset, the total number of collected e+ above the energy threshold, the
number of tracks, the raw data size in TB, as well as the corresponding
field-index (see Equation (3.6)) are shown. The number of tracks is the
number of the good-quality tracks, which are discussed in Section 5.3.6.

3.7.3 Run-4 and beyond
The next run will begin in December 2020 and will accumulate positrons at a higher

rate due to the use of a new upgraded inflector [26], which is shown in Figure 3.18.

The new inflector will increase the number of stored muons by ∼ 20% per fill.

(a) (b)

Figure 3.18: (a) Run-4 and Run-5 projections. Plot courtesy of M. Lancaster [42].
(b) The new inflector during construction in 2018. Image courtesy of
K. Badgley [26].
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3.8 Data reconstruction
Given the large amount of raw data collected by the experiment, an automated

process, known as “data production”[44], which involves data transfer, reconstruc-

tion and calibration, is used, as demonstrated in Figure 3.19. Technologies such as

dCache and sequential access via metadata (SAM) [45] allow for robust storage and

cataloguing of data.

Figure 3.19: The workflow for the data reconstruction in the experiment. The
raw output data from the DAQ is stored on a local RAID. It is
then catalogued (via SAM) and stored on tape (dCache). During
the reconstruction on distributed worker grid nodes, the calibration
constants are loaded from a database. Diagram courtesy of R. Fatemi
et al. [44].

The CPU-intensive process of data reconstruction involves the processing of raw

data to form physics-level data objects (e.g. tracks). This process is facilitated

using distributed computing resources on the FermiGrid [46] and the Open Science

Grid (OSG) [47]. To simplify this workflow, a Production Operations Management

Service (POMS) [45] is used, that allows automated scheduling and monitoring of

data production.
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3.8.1 Data quality control
It is essential that all data used in the analysis (c.f. Table 3.1) is of good quality. This

good quality condition is defined by all subsystems of the experiment performing at

their nominal operational settings. If an apparatus, for example, the ESQs, recorded

an abnormal drop in its current, the recorded data during this time is marked as

being of bad quality and is not used during the analysis. This is shown in Figure 3.20.

Figure 3.20: The current fluctuations of the ESQs during the 1a dataset as a func-
tion of the online run number. The acceptable variation is indicated
by two horizontal lines, which contain 94.8% of the data points. Plot
courtesy of F. Gray [48].

3.8.2 Track reconstruction in the UK
The processing of large datasets is an intensive and costly task. In the context of

the g − 2 data reconstruction, the tracking algorithms use up to 50% of the CPU,

while only accounting for 10% of the raw data volume. Therefore, the addition of

extra grid computing resources dedicated to tracking is well-motivated.

In Run-2, 3 TB of raw track data was recorded, while the reconstruction step will

produce 50 TB of track data. To facilitate this, grid nodes at the UK universities

in Manchester, Liverpool and Lancaster were added to the “g − 2 pool”, as shown

in Figure 3.21. Singularity [49] was used to ensure that the g − 2 software could

execute on the UK grid nodes.
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Figure 3.21: The UK grid nodes running g − 2 reconstruction on 13 March 2020.

3.9 The simulation framework
A simulation framework is essential in understanding the performance of the exper-

iment. This framework is a C++ code-base, that relies on Fermilab’s central software

infrastructure, art [50], which distributes external software products (e.g. ROOT [51]

and Geant4 [52]). The geometry of the detectors, in Geant4, is used both during

particle generation and during data reconstruction, for both simulated and non-

simulated data. The geometry of the storage ring in Geant4 is shown in Figure 3.22.

Figure 3.22: A portion of the storage ring in the simulation. Rendering courtesy
of L. Welty-Rieger [53].



Chapter 4

Data acquisition system

This chapter describes the DAQ system of the g − 2 experiment in Section 4.1,

while a detailed description of the tracking detector readout electronics is given in

Section 4.2.

4.1 DAQ overview
An essential component of the experiment is the DAQ system [54], which manages

the data flow from the detector electronics. In addition, the DAQ interfaces to the

accelerator signals (triggers) and distributes a clock. The experiment is acquiring

raw data at a rate of 20 GB/s. This is accomplished by employing a parallel data-

processing architecture using 28 high-speed GPUs (NVIDIA Tesla K40) to process

data from 12-bit waveform digitisers, reducing the recorded (to tape) data rate to

200 MB/s. The system processes data from 1296 calorimeter channels (54 channels

per calorimeter), two straw tracker stations, auxiliary detectors, the kicker, ESQs

and NMR probes. The total data output of the experiment to tape during Run-1 was

2 PB. Additionally, a PCI-based GPS synchronisation card is used to timestamp the

digitised data to facilitate subsequent matching between the detector system readout

and the magnetic field readout. The DAQ system achieved > 90% uptime in Run-1,

with nearly twice the amount of collected data compared to the E821 experiment,

as shown in Figure 3.17a. The DAQ performance in Run-2, in terms of the online

run length and the number of recorded e
+ per fill, is shown in Figure 4.1.

47
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(a) (b)

Figure 4.1: Run-2 DAQ performance. (a) The distribution of online run lengths
(including systematic runs). (b) The raw number of recorded positrons
per fill.

Each proton bunch delivered by the accelerator complex (see Section 3.2) to the

pion production target corresponds to a muon fill in the g − 2 storage ring. One

muon fill corresponds to a single accumulation (i.e. triggered time window). DDR3

memory blocks allow the data from multiple triggers to be buffered in hardware,

which allows the exploitation of the periodic long gaps between muon fills for asyn-

chronous readout. The readout is decoupled from the trigger sequence (in time)

to avoid buffer overfill, thus preventing back-pressure on the upstream components.

The fill structure is shown in Figure 4.2.

Figure 4.2: Fill structure of the experiment: 1 ms muon fills are separated by
10 ms gaps, which set the frequency of the data readout. The larger
gaps (with no fills) are the consequence of sharing the accelerator with
other experiments at Fermilab. These time gaps are used by the DAQ
system to write buffered data to disk. Image courtesy of the g − 2
collaboration [11].
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During the data-taking periods, two shifters are always present in the control room

of the g − 2 experiment. The shifters control and monitor the data flow from the

detector systems. This control is implemented via a state machine interface imple-

mented in MIDAS [55]. In addition to shifters, 24/7 on-call g−2 experts for the DAQ,

as well as the other subsystems, are available to ensure any software or hardware

issues are solved in a timely fashion.

4.1.1 Data quality monitoring
To ensure that there are no issues during the data-taking, it is desirable to recon-

struct and analyse a fraction of newly-recorded data. A data quality monitoring

system [41] assesses the performance of the experimental subsystems in real-time,

as shown in Figure 4.3.

(a)

(b)

Figure 4.3: Examples of data quality monitoring plots. (a) The recorded number
of hits in a tracker module during a data-taking period. The number
of hits is higher in the channels (straws) located closer to the muon
beam. (b) The recoded number of positrons in the 24 calorimeters.



4.1. DAQ overview 50

4.1.2 Clock blinding
A common practice in scientific investigations is to try and reduce cognitive bias

by “blinding” the data. In the g − 2 experiment, this is achieved in hardware by

offsetting the 40 MHz master clock, shown in Figure 4.4.

Figure 4.4: After the blinding was implemented, the master clock crate was cov-
ered and locked to the collaboration, and monitored weekly by Fermi-
lab scientists independent of g− 2. Image courtesy of L. Gibbons [56].

The clock is offset by a frequency ζ, which shifts the measured value of ωa (and ωp)

by as much as 75 ppm. This process is known as absolute blinding. ζ is monitored to

prevent any drifts in the blinding signal, as described in [57]. The absolute blinding

is augmented by an additional software blinding, shifting ωa in the uniform range of

±24 ppm with an additional ±1 ppm Gaussian tail. The net shift in the value of ωa

due to this double-blinding is by design larger than the previous ωa measurement’s

discrepancy with the theory of 2.4 ppm (see Section 2.1).

In fitting the periodic variation of the number of decay positrons in the so-called

“wiggle plot” (e.g. Figure 3.17b) to determine ωa, a parameter R is defined

R =
ωa − ω

0
a

ω
0
a

, (4.1)

where ω0
a = 1.439 µrads−1, and R is expressed in ppm. The value of R returned

in fitting has the additional software blinding, ∆Ri
s, which is different for each

analysis team, such that

ω
i
a = 2π · 0.2291 MHz · (1 + [R+∆R

i
s]× 10

−6
). (4.2)

Different analyses can be compared by setting ∆Ri
s = 0, whilst still retaining

the hardware blinding.
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4.2 Tracking detector DAQ
This section describes the readout electronics of the tracking detector, as well

as the testing and commissioning of the tracking detector DAQ at Fermilab.

A more in-depth description of the development, testing and characterisation

of the DAQ for the tracking detector is given by T. Stuttard [17].

4.2.1 Readout electronics

4.2.1.1 Front-end electronics
The schematic of the front-end (FE) electronics is given in Figure 4.5.

(a)

(b)

Figure 4.5: (a) Schematic showing the top view of the manifold and the detector
electronics. (b) The side view of the logic boards are shown in the
FLOBBER. Images courtesy of the g − 2 collaboration [11]
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The amplified shaper discriminator charge (ASDQ) [58] cards are located inside

the top and bottom manifolds. The ASDQ processes an analogue signal from a

straw, and sends a digital signal to the time-to-digital converter (TDC) board

via a Flexicable. Moreover, the ASDQ filters the high voltage (HV) from the

HV boards to the straws. A logic board serves as an interface between the

TDC and the back-end (BE) electronics. The electronic boards external to

the gas volume (i.e. the manifold) reside in the front-end low voltage optical

box to back-end readout (FLOBBER).

4.2.1.2 Back-end electronics
A fibre cable, connected to a logic board, passes digitised data from all the

tracking detectors in a station to the FC7 [59] card in the µTCA [60] crate

(Vadatech VT891). An AMC13 [61] card receives the data from the two FC7

cards (one per station), via a backplane, and transmits data to a local PC,

which in turn passes it to the Event Builder on a single BE machine, on which a

central run-control framework – MIDAS – is run. The AMC13 is also connected

to the 40 MHz external master clock. A second tracker PC provides control

of the HV, low voltage (LV) and slow control (SC) via USB serial interfaces.

The MCH [60] in the µTCA crate monitors and controls the FC7, AMC13,

and manages the crate cooling. This readout chain is depicted in Figure 4.6.

Figure 4.6: The schematic of the Tracker DAQ from the perspective of a straw.
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4.2.2 DAQ development at UCL
The FE electronics require a steady input of +5 V. The LV system was devel-

oped by engineers at UCL, and was integrated into the tracker test-station, as

shown in Figure 4.7. Connections between the LV system and logic boards are

made via cables with D-sub (9-pin) connectors, which were installed at UCL.

To ensure the integrity of cables and connectors, an Arduino LV test-stand was

developed, as shown in Figure 4.8a. The tracker test-station was used to inte-

grate and test DAQ components. One of the most common tests performed is

an ASDQ threshold scan shown in Figure 4.8b.

(a) (b)
Figure 4.7: (a) Tracker test-station at UCL. A single tracker module with a LV

crate, readout DAQ chain, as well as water cooling is shown. (b) LV
boards inside the crate during testing.

(a) (b)
Figure 4.8: (a) Arduino LV test-stand. Each of the 9-pins on the male end receives

a signal, which is checked at the female connector. (b) The number of
noise hits in 16 ASDQ channels as a function of threshold. All channels
display satisfactory noise levels.
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4.2.3 DAQ commissioning at Fermilab
The BE electronics was assembled and tested at Fermilab as shown in Fig-

ure 4.9. The commissioning of the FE electronics and tracking detector itself

is described in Section 5.2. The first data from the stored muon beam was

acquired on 2 June 2017.

(a) (b)

Figure 4.9: (a) The tracker rack inside the g− 2 storage ring. (b) The zoom-in on
the µTCA crate: the orange fibre cables are carrying the data from
the tracker modules to the two FC7 cards.



Chapter 5

Tracking detector

This chapter describes the hardware and software infrastructures of the track-

ing detector. The methodology of the EDM measurement using data from the

tracking detector is given in Section 10.2.

5.1 Overview
The primary aim of the tracking detector is to reduce the systematic uncer-

tainty on ωa via a measurement of the muon beam profile and its evolution

with time. The geometry and the material of the straws are designed to min-

imise the energy loss and scatter of positrons. The tracking detector, shown in

Figure 5.1, measures the trajectory of the positron from the µ+ decay in the

storage ring. Each tracker module consists of four layers of 32 straws oriented

at ±7.5◦ to the vertical. Each aluminised mylar straw is 15 µm thick, and is

held at 1 atm pressure. Each straw is filled with a 50:50 Ar:Ethane mixture

and contains a central wire that is held at a +1.65 kV potential. The modules

are inside the vacuum of 10−9 atm and experience a predominantly vertical

magnetic field. The magnetic field in the tracker region varies radially from

1.45 T – at the closest point to the stored muon beam – to 1.0 T. Eight tracker

modules make up a tracker station, as shown in Figures 5.2 and 5.3, with the

two stations, labelled S12 and S18, located in front of two calorimeters, as

indicated in Figure 3.1b.
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Figure 5.1: A single tracker module with 128 straws, which are held between two
manifolds. A straw with a diameter of 5 mm is an ionisation chamber
filled with 50:50 Ar:Ethane, with a central anode wire at +1.65 kV. The
active tracking region is inside the storage ring vacuum of 10−9 atm.
A carbon fibre post (black) supports the weight of the top manifold.
Images courtesy of the g − 2 collaboration [11].

Figure 5.2: Rendering of a positron (from a muon decay) trajectory passing
through the tracker station before hitting the calorimeter. The mod-
ules are mounted into the vacuum chamber, with the module closest
to the calorimeter indicated in green. Image courtesy of the g − 2
collaboration [11].
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Figure 5.3: The tracker station is shown with respect to nearby calorimeter detec-
tors on the inside of the storage ring. Rendering courtesy of the g − 2
collaboration [11].

5.2 Hardware
The design, manufacture and testing of the tracker modules were done by a

team of engineers and scientists at the University of Liverpool, with a detailed

description of the process available in [34, 62, 63].

5.2.1 Commissioning at Fermilab
The assembly and commissioning of the detector components took place at

Fermilab, with the assembled detector system ready for the June 2017 com-

missioning run. The installation of FE electronics into the FLOBBER units

are shown in Figure 5.4.

(a) (b)

Figure 5.4: Assembly: a) FLOBBER units, and b) FE electronics inside a unit.

Figure 5.5 shows the FE electronics outside of the vacuum chamber, while

Figure 5.6 provides a view of the active tracking region inside of the vacuum

chamber.
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Figure 5.5: Assembled tracker station S12 during Run-1. The FLOBBER units
are seen on the outside. The readout fibre cables (orange) bring the
data upstream to the DAQ system, while HV (red) and LV (silver)
cables provide power to the FE electronics.

Figure 5.6: The view of the straws and the carbon fibre post from within the vac-
uum chamber. The muon storage region is indicated. Image courtesy
of J. Grange [64].
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5.3 Software
The actual measurement that is being made by the tracker is the time a charged

particle traversed a straw – the hit time. This time needs to be correlated

with the mean hit time across multiple straws to calculate the so-called drift-

time in a straw. The drift-time is then used to calculate the distance from

the central anode wire that the charged particle passed in a given straw. A

combination of multiple hit distances allows a reconstruction of the trajectory

of that particle. The reconstructed trajectory allows for the measurement of

the particle’s momentum, as well as – via “track extrapolation” – an estimation

of where the µ+ decay producing the e+ took place.

5.3.1 Hit formation
The detected signal in the tracker comes from the collected charge on the

central wire in the straw. This charge is due to the ionisation electrons, liber-

ated from Ar atoms by a charged particle traversing the straw. The liberated

electrons drift towards the wire, which is held at +1.65 kV. The net drifting

motion of the liberated electrons is curved due to the presence of the magnetic

field. The produced charge signal on the wire will be digitised and the drift-

time recorded, if the pulse passes the threshold set by the discriminator. The

absolute hit position in the straw is not known, only a drift circle is deter-

mined, a radius of which is given by the distance of closest approach (DCA),

as illustrated in Figure 5.7 in a 2D representation through a cross-section of a

straw.

Figure 5.7: The drift circle, as a cross-section of the drift cylinder, is indicated.
The magnetic field, By = 1.45 T, is along the vertical (y).
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The radius of the drift circle is inferred from the time-to-distance relationship

shown in Figure 5.8a. The shape of the drift-time distribution is shown in Fig-

ure 5.8b, where three efficiency regimes are apparent: there are fewer hits with

small and large drift-times, corresponding to the hits close and far away from

the wire, respectively. The closer tracks produce fewer secondary ionisations,

while tracks close to the straw wall produce fewer primary ionisations.

(a) (b)

Figure 5.8: (a) Mean track DCA versus drift time. Plot courtesy of G. Hes-
keth [65]. (b) The histogram of drift-times in an online run 15922
(∼ 1 h).

The hit occupancy distribution in both stations is shown in Figure 5.9, where

no cuts are applied, demonstrating that there are no noisy straws.

Figure 5.9: Distribution of recorded hits in the two stations. The hit density peaks
closer to the storage region on the right. Plot courtesy of the g − 2
collaboration [11].
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5.3.2 Straw coordinate system
The straws are split into two stereo orientations – U and V – each at θ = ±7.5◦

to the vertical as shown in Figure 5.10.

Figure 5.10: Straw coordinate system.

A transformation between the global coordinate system (XY) and the local
(UV) coordinate system is done via

u
v

 =

cos θ − sin θ

sin θ cos θ

x
y

 . (5.1)

5.3.3 Left-Right ambiguity
At the point of generation (in simulation) of a hit in a straw, or fitting of a

track (in data or simulation), a left-right (LR) “sign” is assigned. For example,

if the hit is generated on the left side of the straw centre relative to the beam,

it will be an “L” hit. Hits generated close to the straw centre can be smeared

to the other side. This effect can be further magnified if a given hit is also

displaced in the same direction (i.e. away from the truth hit position) by the

effect of misalignment.

5.3.4 Track reconstruction
The g − 2 track reconstruction framework was developed by N. Kinnaird [66],

and is implemented with the GEANE package [67]. The framework incorporates

a model of the tracker’s geometry and material, as well as a model of the mag-

netic field, and utilises transport and error matrices for particle propagation

though the straws. GEANE is be able to reconstruct tracks when the candidate

hits are close together in space and time, as shown in Figure 5.11.
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Figure 5.11: Hits in the straws from two tracks close in time.

The full tracking algorithm is schematically represented in Figure 5.12, while

the formation of a residual between the measurement (i.e. drift circle) and the

prediction (i.e. fitted track) is depicted in Figure 5.13.

Figure 5.12: The steps leading to reconstructed charged particle track trajecto-
ries: the originally recorded drift-time data goes through multiple
algorithms to form a track. The GEANE package is used in the last
step of track fitting.

The DCA resolution of hits within the straws is approximately 120 µm to

150 µm [66], which surpasses the design goal of 240 µm. Similarly, a momentum

resolution was determined to be at 2% [66], which corresponds to ∼ 30 MeV for

the mid-momentum tracks, and is in-line with the design goal. The distribution

of measured track momenta is shown in Figure 5.14.
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Figure 5.13: A fitted track passing though a single straw. A residual between the
fitted track and the measurement is indicated.

Figure 5.14: Distribution of track momentum (p) in an online run 15922. The
peak at 2700 MeV is due to lost-muons (see Section 3.4.6).

5.3.5 Track extrapolation
The g−2 track extrapolation framework was developed by S. Charity [68]. The

fitted tracks are extrapolated back to the most probable muon decay point, as

shown in Figure 5.15, using a Runge-Kutta [69] algorithm that propagates the

tracks through the varying magnetic field, until the point of radial tangency is

reached. The extrapolated tracks are used to measure the muon beam profile,

as shown in Figure 5.16a, as well as to calculate the decay arc length, as shown

in Figure 5.16b where it is clear that higher momentum tracks originate further

away from the detector.
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Figure 5.15: A fitted track is extrapolated backwards to the muon decay point,
and forwards into the calorimeter.

(a) (b)

Figure 5.16: Backward extrapolation of tracks. (a) Reconstructed beam profile
from tracks that have been extrapolated back to their decay position.
(b) Reconstructed decay arc length as a function of track momentum.
Plots courtesy of S. Charity [68].

The tracks can also be extrapolated forward to the calorimeter, enabling par-

ticle identification, as shown in Figure 5.17a, as well as to investigate the effi-

ciency of matched calorimeter clusters and tracks, as shown in Figure 5.17b.

The efficiency decreases in the gaps between the crystals where a “lost-muon”

might split its small energy deposition between the two crystals, neither of

which goes above the threshold. The data in Figure 5.17b contain early times

in the fill (< 30 µs), so there are more “lost-muons”, which artificially lowers

the efficiency, but brings out the crystal structure (c.f. Figure 3.16). Matching

via E/p can also be used to independently monitor the calorimeter gain, and

identify the rate of pileup in the calorimeter.
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(a) (b)

Figure 5.17: Forward extrapolation of tracks. Tracks and calorimeter clusters are
matched based on their time proximity. (a) Comparing the mea-
sured momentum from the tracking detectors with the energy from
the calorimeters shows two distinct populations – positrons and high
momentum “lost-muons”. (b) Tracks extrapolated to the front face
of the calorimeter. The number of matched tracks is divided by the
total number of tracks to show the efficiency as a function of position.
Nearly all the missing calorimeter hits resemble “lost-muons”. Plots
courtesy of the g − 2 collaboration [11].

5.3.6 Track quality cuts
Analogous to the data quality control described in Section 3.8.1, the track re-

construction has its own set of criteria to define the quality of a track. These

criteria [70] are then used to define a sample of tracks appropriate for a partic-

ular analysis. Of particular interest to the analysis in this thesis are the cuts

imposing:

• Extrapolated track did not pass through a significant amount of material

(e.g. the wall of a vacuum chamber)

• Track passed through at least 12 straws

• Track has a good fit quality with a p-value > 5%

Imposing these and other criteria remove ∼ 60% of the tracks, which is an

acceptable reduction in statistics given the gain in the data quality.

5.3.7 Magnetic field convolution
The magnetic field (Figure 3.15) measured by the trolley is convoluted with

the beam profile (Figure 5.16a) measured by the trackers to find the average
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field, 〈B〉, experienced by the muons before decay. Additionally, the calorime-

ter acceptance (i.e. a fraction of events where a positron is detected by the

calorimeters) must be taken into account to estimate the distribution of the

muons that are used in the ωa analysis. An example of the acceptance-corrected

beam profile is shown in Figure 5.18.

Figure 5.18: The acceptance-corrected muon profile. Plot courtesy of J. Bono and
S. Charity [71].

5.3.8 Tracker calibration and efficiency
The track-reconstruction efficiency is defined as the fraction of recorded hits

that are associated with tracks. The work to improve the tracking efficiency

is ongoing and has so far been able to improve it by a factor of four [72].

Several factors determine the efficiency including the efficacy of the time-island

and clustering algorithms (see Figure 5.12), the time-to-distance calibration,

the efficacy of making the correct LR assignment, and the alignment of the

detectors.

The alignment is an important aspect in improving both the track-

reconstruction efficiency and the tracker resolution, with implications for

reducing the uncertainty in the tracker-based ωa analysis (see Chapter 9) and

the EDM analysis (see Chapter 10). The alignment is discussed in detail, and

the results of the alignment procedure presented, in Chapters 6 to 8.



Chapter 6

Systematic contribution of the

alignment to the beam

extrapolation

6.1 Introduction

A precise calibration of the tracking detector is required to reduce the sys-

tematic uncertainty on the aµ measurement and improve the sensitivity to a

muon EDM. The calibrations are the time-to-distance relationship and the

alignment. The alignment has two components: internal and global. The

internal alignment considers the positions of the tracking modules within a

station, while the global alignment considers the absolute position of the sta-

tion relative to the rest of the experiment. The internal position of the tracking

modules must be known to a high level of precision. Therefore, a physics-level

(i.e. track-based) alignment was implemented with data from Run-1 using the

Millepede-II framework [73]. The global alignment was implemented using

laser survey measurements of the tracking station chambers. The results and

methodology of the global and internal alignments are presented in Chapter 7.

It is imperative, for the beam measurements made with the tracking detectors,

to have an estimate of the systematic uncertainty that comes from an internally

misaligned detector. One way to produce such an estimate is to add sets
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of known misalignment offsets to the positions of the tracker modules and

reconstruct data with these offsets. A comparison can then be performed

between the nominal case and a case with the added offsets.

6.2 Methodology
The focus of this study was to quantify the effect that the internal misalign-

ments have on the radial and vertical estimate of the beam’s position. The

chosen run (nominal case) for this study was run 15922 (22 April 2018) that

contained one hour of data, and the nominal extrapolated radial and vertical

beam means and widths for both stations are shown in Figure 6.1.

(a) (b)

(c) (d)

Figure 6.1: Run 15922. Nominal radial and vertical beam position reconstructed
from ∼ 1.5 × 10

5 tracks in the two stations: (a) S12 vertical, (b) S18
vertical, (c) S12 radial and (d) S18 radial. The mean and the width of
each distribution are shown.
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All extrapolations were done after applying the track quality cuts. Addition-

ally, a further cut removing tracks that extrapolate back more than 50mm

from the beam centre was implemented. This selects tracks that have come

from a uniform field region of the storage ring (see Section 3.5). Moreover,

only tracks with a time more than 30 µs were considered. Such tracks have

originated from the decay muons that have already undergone scraping (see

Section 3.3.3) and have a stable orbit around the ring.

To extract the mean and width of the beam, the vertical distribution was fitted

with a Gaussian function between ±30mm using the χ2-minimisation method.

The radial distribution does not have a Gaussian shape, and so the mean and

the width are extracted directly from data. The reason for the non-Gaussian

shape of the radial distribution is discussed in Section 3.3.2.

Each of the eight modules in a station was misaligned independently with a

misalignment in the range of −100 µm to +100 µm. In this study, 100 samples

of random offsets were used, as shown in Figure 6.2. In Chapter 7, it is

shown that the mean measured misalignment per module is 31 µm and 82 µm

radially and vertically, respectively. Therefore, the estimated systematic error

in this study overestimates internal misalignment contributions to the beam

extrapolation.

The task consisted of running the track reconstruction 100 times on a single

data run. Each of the two tracker stations yields approximately ∼ 4 × 105

tracks per run (∼ one hour), which is reduced to ∼ 1.5× 105 tracks after the

track quality cuts are applied, as described in Section 5.3.6.
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(a)

(b)

Figure 6.2: The difference in (a) the mean and (b) the width (standard deviation)
of the extrapolated radial and vertical beam positions compared to the
nominal case in S12 and S18.
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6.3 Results
The results from the impact of the misalignment on the radial and vertical

beam extrapolation are shown in Table 6.1 and Table 6.2, respectively. The

extracted quantities of interest are: (1) the difference in the mean extrapolated

radial position, 〈dR〉, and (2) its standard deviation, σdR, as well as the differ-

ence in the width of the beam, 〈dRwidth〉, and its standard deviation, σdRwidth
.

This difference is defined with respect to the nominal value. R0, extrapolated

from run 15922, as shown below for the radial position

dRi = R0 − Ri, (6.1)

where Ri is one of the randomised samples. The results from Figure 6.2 were

accumulated in Figure 6.3 and Figure 6.4, where a comparison between a

nominal and a randomised sample was performed according to Equation (6.1).

The mean is then extracted from the ensemble as

〈dR〉 = 1

N

N=100∑
i=1

(dRi), (6.2)

and similarly for σdR, 〈dRwidth〉, and σdRwidth
, and the four counterpart vertical

(V) quantities.

The uncertainty on the beam extrapolation from the internal misalignment

was taken as the mean from the two stations, with the uncertainty computed

in quadrature. The final four systematics that were used in propagating the

internal alignment contribution to the beam extrapolation are summarised in

Table 6.3.
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(a) (b)

(c) (d)

Figure 6.3: Difference between the nominal case and 100 samples for the radial
beam extrapolation: (a) S12 radial mean, (b) S18 radial mean, (c) S12
radial width and (d) S18 radial width.

〈dR〉 [µm] σdR [µm] 〈dRwidth〉 [µm] σdRwidth
[µm]

S12 ⊕ S18 322 ± 105 741 ± 74 101 ± 24 162 ± 17

Table 6.1: Combined uncertainties, in both stations, on the radial beam extrapo-
lation arising from a 100 µm misalignment.
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(a) (b)

(c) (d)

Figure 6.4: Difference between the nominal case and 100 samples for the vertical
beam extrapolation: (a) S12 vertical mean, (b) S18 vertical mean, (c)
S12 vertical width and (d) S18 vertical width.

〈dV〉 [µm] σdV [µm] 〈dVwidth〉 [µm] σdVwidth
[µm]

S12 ⊕ S18 106 ± 18 129 ± 13 29 ± 8 59 ± 6

Table 6.2: Combined uncertainties, in both stations, on the vertical beam extrap-
olation arising from a 100 µm misalignment.
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6.4 Internal alignment contribution to the

beam extrapolation
The beam extrapolation determines the radial and vertical positions of the

muon beam in the storage ring. If the internal misalignment of the tracking

detectors is not determined and corrected for, the 1σ uncertainty on the mean

radial and vertical extrapolated beam positions correspond to 0.741 mm and

0.129 mm, respectively.

The pitch correction (see Section 3.4.1) is given by Equation (3.11). The

σdVwidth
from Table 6.3 potentially yields a 1.5 ppb uncertainty on the pitch

correction arising from the internal misalignment, if the misalignment is not

accounted for. Once the misalignment is corrected for, there is a negligible

uncertainty in Cpitch.

σdR [mm] σdRwidth
[mm] σdV [mm] σdVwidth

[mm]

0.741 0.162 0.129 0.059

Table 6.3: The final contribution of a randomised internal misalignment to the
beam extrapolation uncertainty.



Chapter 7

Internal alignment of the g − 2

straw tracking detectors

7.1 Introduction
A track-based internal alignment of the two tracking stations was implemented

using data from Run-1. A Monte Carlo simulation was also developed to

understand how the detector geometry affects how well the alignment can

be determined, as well as to test the alignment procedure itself. A high-

precision internal alignment of the tracking system is motivated by the need to

minimise the uncertainty on the extrapolated beam position. This is illustrated

in Figure 7.1, which highlights that even a relatively small-scale misalignment

can have a large impact on the extrapolated radial beam position. Additionally,

a precise alignment is essential for performing a search for the muon EDM, as

described in Section 10.2. Broadly speaking, an internal misalignment of an

element of a tracking detector results in a residual between a hit position (e.g.

DCA of a hit to a wire) and the fitted track. This residual arises from the fact

that the assumed detector position, used in the fitting of the track, is not the

actual position of that detector. The alignment procedure aims to establish

the corrections to the assumed detector position, and hence, minimise the

residuals.
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Figure 7.1: The change in the extrapolated radial beam position, relative to the
non-misaligned case, resulting from a randomised radial misalignment
of individual tracker modules at four scales of misalignment.

This chapter describes the internal alignment procedures. Section 7.2 describes

the chosen framework for the alignment, as well as the general methodology

of the internal alignment of a straw tracking detector. Section 7.3 describes

the integrity tests of the alignment procedure in a simplified 2D case with

straight tracks. Section 7.4 describes the results of the alignment using the

full 3D geometry of the real tracking system in an inhomogeneous magnetic

dipole field with curved tracks. At each stage, a thorough comparison was

made between simulation, data, and where available, analytical predictions.

Finally, in Section 7.5 alignment results with data are presented. An overview

of the global (external) alignment, which established an absolute position of

the tracker stations relative to the rest of the experiment, is described in

Appendix A.

7.2 Alignment methodology
The chosen alignment framework was Millepede-II [74], which simultane-

ously fits many parameters describing the detector geometry and the input

data. The framework accounts for the correlations between different align-

ment elements. This framework is widely used in particle physics: the inner

tracker of LHCb [75], and the Belle II [76] vertex detector have both been
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aligned using Millepede-II. Moreover, a track-based alignment with 50,000

parameters was successfully implemented by CMS [77, 78]. Outside of particle

physics, Millepede-II has been used in medical physics for the alignment of

Positron Emission Tomography Scanners [79].

The alignment is essentially a least squares regression (LSR) with a large

number of parameters. These parameters can be divided into two classes:

global and local parameters. Global parameters (i.e. alignment parameters or

geometry parameters) affect all tracks (e.g. the radial position of a detector).

Local parameters (i.e. track parameters) are associated with individual fitted

tracks. For example, a straight line-fit in 2D has two local parameters: a slope

and an intercept. Millepede-II performs a LSR, using both global and local

parameters, minimising a linearised function of a sum of residuals. A residual,

ri, is defined as the difference between a fitted (predicted) position, pi, and a

measured hit position, hi, as follows

ri = pi − hi, (7.1)

where the fitted track is described by some parametrisation. This is demon-

strated in Figure 7.2.

Figure 7.2: A vertical cross-section of a straw showing the DCA of a single hit (h)
and the residual (r) with respect to the fitted track (p).
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This parametrisation can be written in terms of the aforementioned global,

a, and local, bj parameters, and the dependence of these parameters on the

residual is

ri(a, bj) = fj(a, bj)− hi, (7.2)

where fj is the fit parametrisation, and subscript j defines the association of

the local parameters to a particular track. The χ2 of many residuals from a

single track is given by

χ2
j(a, bj) =

hits∑
i=1

(
ri(a, bj)

)2
(σdet

i )2
, (7.3)

where σdet
i is the estimate of the uncertainty in the hit position. The total χ2

for many tracks is then

χ2(a, b) =
tracks∑

j

hits∑
i

(
ri,j(a, bj)

)2
(σdet

i,j )
2

. (7.4)

A function F is then minimised with respect to a variation of the global and
local parameters

F (a, b) =
∂χ

2
(a, b)

∂(a, b)
=

tracks∑
j

hits∑
i

1

(σ
det
i,j )

2

(
ri,j(a0, b0,j) +

∂ri,j
∂a δa+

∂ri,j
∂bj

δbj
)2

∂(a, b)
= 0,

(7.5)

where a0 and b0 are the initial geometry and track parameters, respectively.

The corrections to the global parameters, δa, which minimise F , are added to

the assumed geometry of the detector to improve the relative alignment and

the overall quality of the fitted tracks.



7.2. Alignment methodology 79

7.2.1 Generalisation of the alignment methods
The alignment parameter basis, δa, is defined by six degrees of freedom (DoF)

in the Euclidean 3D space, as shown in Figure 7.3,

δa =



δx

δy

δz

δθ

δφ

δψ


, (7.6)

where θ, φ and ψ are the Euler angles. These DoF describe three translations

and three rotations of a detector.

Figure 7.3: The translation (x, y, z) and rotation (θ, φ, ψ) coordinates for a single
module.

In the minimisation from Equation (7.5), a vector containing the derivatives

of the residuals with respect to the alignment parameters, ∂r
∂a

, is used. The

individual derivatives depend on the functional form of the residual in Equa-

tion (7.2).
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A line in 3D can be parametrised with a variable parameter t as follows

s(t) =


x

y

z

 =


xL +mxt

yL +myt

t

 , (7.7)

as one needs only four parameters to specify a line in 3D. Assuming the track

is not parallel to the xy plane, as will be the case for all the tracks of interest

in this study, the parametrised track equations is

sT (t) =


xT +mxt

yT +myt

t

 = vt+ r0
T =


mx

my

1

 t+


xT

yT

0

 . (7.8)

This yields directly the four local parameters b

b =


xT

yT

mx

my

 , (7.9)

where the two intercept points xT and yT are at z = 0, and two slopes mi,

where i = x, y, are given by

mi =
pi
pz

= tan θi, (7.10)

where pi is the momentum in the i direction, and θi is the corresponding angle.
Therefore, the vector containing derivatives of the residuals with respect to the
fitted track parameters is given by

∂r

∂b
=



∂r
∂xT

∂r
∂yT

∂r
∂mx

∂r
∂my

 . (7.11)
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7.2.2 Coordinate system transformations

The coordinate systems used in the alignment are defined below. It is impor-

tant to note, that due to the geometry of the straw tracker, the alignment is

not sensitive to shifts in the z direction, the “beam direction”, and corrections

to translations along z will not be derived. The alignment corrections for the

other global parameters will be derived directly in the station coordinate sys-

tem. The coordinate systems are:

1) Global (ring) coordinates g = (xg, yg, zg).

2) Detector (tracker station) coordinates d = (xd, yd, zd), with the origin of d

at the centre of the first of the eight modules.

3) Local (tracker module) coordinates m = (xm, ym, zm), with the origin of m

at the centre of rotation of a module.

In the case of 3D translations and rotations, a tracker module is connected to

the station coordinate system via the relation

d = RTm+ d0, (7.12)

where d0 is the module position in the station coordinates, and RT is the 3D

rotation matrix (see Equation (B.35)). An example of such a transformation

in 2D is illustrated in Figure 7.4. With the above definition, the alignment

corrections, as given in the tracker station frame, can be represented by

d = RT δR(m+ δm) + d0, (7.13)

where corrections for translations, δm, and rotations, δR form the alignment

parameter vector described in Equation (7.6).

7.2.3 Parameter optimisation methods

The number of all the parameters in Equation (7.5) could be large, hence,

the differential equation is first linearised, to allow for a subsequent matrix
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Figure 7.4: The coordinate system used to define an anticlockwise rotation in 2D.

inversion, and then reorganised into a block matrix equation [80] of the form

(C) (a) = − (g) , (7.14)

where C is a matrix containing the connection between the local and global

parameters, a is the correction vector (for global parameters), and g a vector

of the normal equations [73]. Hence, a matrix inversion, whose dimension is

given by the number of global and local parameters, is necessary to obtain

the corrections to the global parameters that simultaneously minimises the χ2.

However, the size of the matrix can be reduced, as the derivatives with respect

to the global parameters are the only parameters of interest, as contained in

the sub-matrix C22  C11 CT
21

C21 C22

a1

a2

 = −

g1

g2

 . (7.15)

Advanced matrix algebra techniques and the assumption that C22 is invertible

are used [74] to remove the unnecessary parameters, such that only the inverse

of C22 is needed to establish the corrections to the alignment parameters.

7.2.4 Alignment software framework
An alignment software module, written in C++, has been developed as part of

the g−2 art software framework [50]. This module is run after the track-fitting

(see Section 5.3), and it can be used on data or simulation. The geometry is
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defined at the tracking stage and is passed to the alignment module, which also

calculates the residuals of the selected tracks, as well as computes the local

and global derivatives. A C++ module (Mille) is provided [74] to write this

information into a binary file which is passed to PEDE (a Fortran executable),

which performs a simultaneous fit via the matrix inversion described above.

The alignment module is also responsible for writing a constraints file (spec-

ifying the redundant DoF), and a steering file (specifying the mathematical

methods used by PEDE). The final outputs of the PEDE algorithm are labels

and the corresponding fitted values of the global parameters and their errors.

The components of the algorithm are shown in Figure 7.5.

Figure 7.5: An overview of the software components used in the alignment. The
external packages Mille and PEDE are shown in purple, while the g−2
art modules for tracking and alignment are shown in orange. The
outputs of each of the three stages (tracking, alignment, residual min-
imisation) are indicated in green.
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Given that the number of total alignment parameters for the tracking detector

is relatively small (< O(100)), then the PEDE inversion method with 10 itera-

tions (internal PEDE loop) and a 0.01 convergence rate on F in Equation (7.5) is

adequate for the minimisation of F . The advantage of this inversion method is

that it also provides uncertainties on the corrections to the global parameters.

The memory space requirement for the matrix inversion and the execution

time are acceptable. For an entire run of data with ∼ 5× 105 tracks the exe-

cution time of PEDE is O(1 min) and the memory footprint is below 200 MB.

The initial choice of convergence rate and number of iterations is empirical and

is comparable to the values deployed by Millepede-II developers [81]. The

final choice of steering and constraints methods is discussed in more detail in

Appendix C.

7.3 Alignment validation in simulation
To validate the alignment software independently of the g − 2 art framework,

a standalone framework was developed [5]. This framework, written in C++

and Python, interfaces with Millepede-II, and also incorporates a simplified

detector geometry. It generates straight tracks and reconstructs them in 2D.

This is described in Section 7.3.1. Section 7.3.2 describes the progression to a

3D geometry with a simplified art tracking chain with straight tracks, without

a magnetic field and no detector material. The next implementation using

a uniform magnetic field, curved tracks, and detector material is described in

Section 7.3.3. The final implementation with an inhomogeneous magnetic field

in the full g − 2 simulation is presented in Section 7.3.5.

7.3.1 2D geometry

Translational and rotational misalignments (as defined in Figure 7.3) in the

middle modules were considered, with the first and the last modules fixed with

no misalignment. An outline of the standalone simulation and fitting procedure

to validate and test the alignment using four tracker modules (with four layers

per module) with straight tracks in 2D is given below:
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1. Define the ideal geometry (i.e. assumed straw coordinates).

2. Define the misaligned geometry (i.e. actual (truth) straw coordinates).

3. Generate straight tracks of the form x = mz + c through the misaligned

geometry.

4. Calculate the measurement DCA, hi, from the truth track and a straw

hit in each layer (see Figure 7.2).

5. Smear the DCA by the detector resolution, σdet
p .

6. Reconstruct the DCA in the ideal geometry.

7. Fit a line to the reconstructed hit points (or reconstructed drift circles,

as described in the next section), and calculate the residual between the

fit and the hit point.

8. Pass residuals, as well as global and local derivatives, to PEDE to perform

the minimisation of the residuals using the matrix inversion method.

7.3.1.1 Translational misalignment in x with a straight

line-fit

In the simple 2D geometry it is possible to define three distinct manifestations

of misalignment:

1) M c
p is the characteristic misalignment, which is specific for each individual

straw layer p. M c
p is set in the simulation as the truth misalignment. The aim

of the alignment procedure is to then recover this input misalignment as close

as possible to the truth. The recovered misalignment is called the reconstructed

misalignment.

2) M0 is the overall misalignment given by

M0 =

∑P
i=1M

c
i

P
, (7.16)

where P is the total number of detector layers.

3) M s
p is the shear misalignment which corresponds to the mean of the residual,
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〈rp〉, for a layer p

〈rp〉 =
∑N

j=1 rj,p

N
, (7.17)

where N is the total number of tracks. With these definition, M s
p is then given

by

M s
p = 〈rp〉 =M c

p −M0 −
zp
∑P

i=1M
c
i zi∑P

i=1 z
2
i

, (7.18)

where zi is the horizontal position (along the beam) of a layer i. The standard

deviation (SD) for a distribution of residuals in layer p is given by

σ2
p =

∑N
j=1 (rj,p − 〈rp〉)2

N
. (7.19)

Using the above equations, it is possible to show (see Appendix B.1) that the

expected mean χ2 for a given set of characteristic misalignments is given by

〈χ2
Mis〉 = P − 2 +

∑P
i=1(M

c
i )

2 −
∑P

i=1 (M
c
i )

2

P
− 2

∑P
i=1 M

c
i zi∑P

i=1(zi)
2∑P

i=1(σ
det
i )2

, (7.20)

where the summation is over all layers. For a straight track-fit in 2D, there are

two redundant DoF, which are removed from the above equation. Any mis-

alignment will shift the mean of the residuals for the misaligned and the non-

misaligned modules. Moreover, for a non-misaligned scenario, the expected

SD of the residuals at layer p is given by

σp = σdet

√
P − 1

P
− z2i∑P

i=1 z
2
i

. (7.21)

The analytically derived equations for 〈χ2
Mis〉, σp and 〈rp〉 are compared to the

predictions from the simulation in Figures 7.6 to 7.7, and are seen to agree

excellently.

Having established the integrity of the analytical predictions, PEDE was then

used to study the number of tracks required for the alignment parameters to

converge on acceptable values. The inputs to PEDE are summarised below. The
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(a) (b)

Figure 7.6: Analytically predicted and reconstructed residual parameters from
simulation. (a) Residual mean with modules 2 and 3 misaligned by
500 µm and 1000µm, respectively. The net effect of the misalignment
shifts the mean position of the residuals in each layer (U0, U1, V0, V1)
in each of the four modules according to Equation (7.18). (b) Resid-
ual SD with no misalignment. The SD is smaller on the outer modules
(M1 and M4), as the lever-arm effect produces better fits away from
the mean z position, according to Equation (7.21).

Figure 7.7: χ2 distribution from the simulation, and a fit of a non-central χ2 func-
tion (mean = 94.04, DoF = 14). The expected mean, 〈χ2

Mis〉, is pre-
dicted from Equation (7.20), with M2 and M3 misaligned by −500 µm
and +500 µm, respectively.
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residual was defined according to Equation (7.2)

r = Track(x,m, c)− Hit = x− h = mz + c− h, (7.22)

where h is the closest vertical distance to a wire, in this simplified case. A

constant detector resolution (i.e. hit smearing) was defined for all hits of

σdet = 150 µm. (7.23)

Two local parameters defining the slope (m) and intercept (c) of the track were

used and only a single global (alignment) parameter (x) was used such that

the derivatives are:

∂r

∂c
= 1,

∂r

∂m
= z, and

∂r

∂x
=
∂r

∂c
= 1. (7.24)

Two modules were misaligned by 500 µm and 1000 µm, and the difference be-

tween the known input misalignment and that determined from PEDE is plotted

in Figure 7.8 as a function of the number of tracks. It is seen that acceptable

alignment parameters are determined after O(5000) tracks.

7.3.1.2 Translational misalignment in x with a circle-fit

In the previous study, a simplified straight line-fit to the hit positions was

used. In reality this is not possible, due to the so-called LR ambiguity (see

Section 5.3.3), and the fact that the measurement in the straw is a drift circle

(see Section 5.3.1). In the case of a misalignment, the LR ambiguity can cause

the alignment minimisation to fail. For this reason, only hits with h greater

than 500 µm are used. Moreover, this requirement is also necessary to avoid a

discontinuity in the residual derivative (see Equation (B.16)).

A simulation framework incorporating 2D misalignments using a circle-fit was

implemented. An example of five generated tracks in four tracker modules

is shown in Figure 7.9. Due to the empirical nature of the circle-fit (which is

performed by finding the minima numerically), the exact analytical predictions
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Figure 7.8: The difference in misalignment between the simulation input and the
PEDE prediction versus the number of generated tracks. M1 and M4
were not misaligned and fixed by constraints.

for σp, 〈rp〉, and 〈χ2
Mis〉 cannot be derived. However, other tools exist to check

the solutions, as described in the rest of this chapter.

The inputs to PEDE in the case of a circle-fit using straight tracks are given

below. In the circle-fit, the closest point on the drift circle to the track is

determined first, with the residual, r, given by

r = DCA(x,m, c)− h =
|c+mz − x|√

m2 + 1
− h, (7.25)

with two local derivatives, ∂r
∂c

and ∂r
∂m

given in Equations (B.16) and (B.17),

and a single global derivative

∂r

∂x
=
∂r

∂c
. (7.26)
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(a)

(b)

Figure 7.9: (a) Simulated tracks through a misaligned tracker station. Straws
with recorded hits are indicated in green. (b) Reconstructed tracks
through the assumed geometry. The recorded measurements from (a)
are shown as drift circles within the straws, and the fitted track is
shown in blue.

A simple 100 µm misalignment of M3 was analysed. The improvement in the

distribution of residuals is apparent as seen in Figure 7.10 and Figure 7.11;

with the final figure-of-merit for alignment given in Figure 7.12. To obtain the

results after the alignment, the predicted global parameters by PEDE were used

as the correctional offsets to the assumed geometry.

7.3.1.3 Translational and Rotational misalignment in

the xz plane with a circle-fit
The aim of this section is to evaluate the circle-fit residuals with a misalignment

induced by an anticlockwise rotation (φ) in the xz plane through the detector

centre.
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(a) (b)

Figure 7.10: Residual mean per layer (U0, U1, V0, V1) in the four modules. (a)
Before alignment with M3 offset by 100 µm. The residuals in neigh-
bouring modules, which were not misaligned, are also affected. (b)
After alignment. The truth misalignment is recovered within 5 µm,
after the first iteration. The distribution of residuals around 0 is
indicative of an aligned detector.

(a) (b)

Figure 7.11: Residual SD. (a) Before alignment with M3 offset by 100 µm. The
presence of relatively large misalignment in M3 is apparent. The
residuals in neighbouring modules are also affected. (b) After align-
ment. The residual SD is at the nominal level as in Figure 7.6, in-
dicative of an aligned detector.
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(a) (b)

Figure 7.12: Alignment figure-of-merit: (a) the χ
2
/DoF after alignment is indica-

tive of a correct detector position, (b) the p-value distribution for
the fitted tracks before alignment clearly highlights a poor fit for a
misaligned detector.

There are three coordinate systems defining straw positions (see Figure 7.4):

1) Global coordinates (z, x) relative to the “global” (0, 0). The derivatives of

interest are given in these coordinates.

2) Local module coordinates (zm, xm) in the un-rotated frame relative to the

centre of rotation of a module, which is given by (zcentre, xcentre).

3) Local module coordinates (z′m, x′m) in the rotated frame. Such that, the

centre of rotation (zcentrem , xcentrem ) = (z
′
centre
m , x

′
centre
m ) = (0,0), in the local co-

ordinates. With z′m = zm(φ) and x′m = xm(φ) transformations, the action

of an anticlockwise rotation is given by the reduced 2D form of the rotation

matrix (see Equation (B.35)), and the equation for the residual is derived in

Appendix B.2.

The result of the PEDE minimisation for modules 2 and 3 in x and φ is shown

in Figure 7.13. Again, the correct alignment is realised after O(5000) tracks

are fitted.

7.3.2 3D geometry

In this section we will consider the case of a misalignment in 3D, with the

tracker geometry coming from art. The residual of interest, between the re-
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Figure 7.13: The difference in misalignment between the simulation input and the
PEDE prediction versus the number of generated tracks.

constructed track through the detector and the “drift cylinder” (as shown in

Figure 5.13), is now a function of the DCA between two skew lines: the track

and the straw wire. The assumption of the two lines being non-parallel will

hold for all physical tracks of interest; the track and the wire can intersect,

however. The visualisation of this case study with four modules is given in

Figure 7.14. In this instance the x misalignment is radial and the y is vertical.

Figure 7.14: Straight truth tracks through a radially misaligned station of four
tracker modules.
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The DCA between the track and the wire is given by

DCA = |W − T | = |


x′W − x′T

y′W − y′T

z′W − z′T

 | =
√
(x′W − x′T )

2 + (y′W − y′T )
2 + (z′W − z′T )

2, (7.27)

where W and T are the points of closest approach between the wire and the

track, respectively – as indicated by the ′ notation on the coordinates. The

vector WT is perpendicular to both the wire and the track, as shown in

Figure 7.15.

Figure 7.15: Track-to-wire DCA in 3D.

In order to form the required derivatives with respect to local and global

parameters, one needs the functional form of the DCA expressed in terms of

the reconstructed track parameters and the wire parameters. These derivations

are given in Appendix B.3.

There are three possible rotations (see Figure 7.3) around the centre of the

tracker module. A rotation around the y-axis is the same as considered previ-

ously in Equation (B.23), but needs to be extended to a 3D geometry. With

the constraint that a point along the straw will have the same vertical height

(y) before and after the above rotation, the derivative for the anticlockwise

rotation φ along the y-axis given by

∂r

∂φ
=

∂r

∂zW
(−xW + xcentre) +

∂r

∂xW
(zW − zcentre), (7.28)

and similarly for the other two rotations, as shown in Appendix B.3.
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7.3.3 Uniform field
A uniform field throughout the tracker region of 1.5T was implemented in the

simulation as shown in Figure 7.16.

Figure 7.16: A uniform vertical magnetic field of 1.5T bends the particles as they
traverse the tracker station of four modules.

In a magnetic field, a fifth local parameter can be added to describe the track-

curvature, κ, where

κ =
1

p
, (7.29)

and p is the momentum of the particle, and the approximation p ≈ pz is used

to calculate the fifth local derivative, ∂r
∂κ

, as derived in Equation (B.40).

Results of the radial alignment with eight modules in 3D with curved tracks

are shown in Figure 7.17. The non-convergence of the recovered alignment,

as compared to the truth misalignment in some modules, is indicative of not

constraining the global DoF, as described in Section 7.3.4.

7.3.4 Constraining global parameters
In the particular case of the radial and vertical alignment of the tracking

detectors with curved tracks in a magnetic field, constraints to five global DoF

are applied. There are two overall translations, radially and vertically, that

must sum to 0, and two global rotation angles, also fixed at 0. The global

rotation is defined through the centre of the station. This is done to minimise
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Figure 7.17: The radial alignment results without constraining the global DoF.
The results were obtained with eight modules in 3D with curved
tracks after two iterations. The truth misalignment is indicated by
a circle (•), the first iteration is indicated by a cross (+), with no
error, and the second iteration is indicated by a line (I) with an error
bar.

the “lever-arm effect”. The fifth constraint addresses a radial detector curvature

(sensor curvature) [82] due to the radially curving tracks in the magnetic field.

The constraints can be summarised as follows: the radial constraints equation

0 = a(x− x0)
2 + b(x− x0) + c, (7.30)

and the vertical constraints equation

0 = b(x− x0) + c, (7.31)

where x0 = 482.394mm is the centre of the station, and a, b, and c are the

curvature, rotation, and translation parameters, respectively. The summary

of the steering and constraint inputs to PEDE is given in Appendix C.

The motivation behind constraining the overall translations and rotations is

simple: internal alignment should not return the module offsets related to the

global movements. The global alignment should independently measure these

global movements, as described in Appendix A. The constraint on the radial

detector curvature deserves a special mention, as it is essentially a “local min-

ima problem”. The internal alignment can place the tracker modules along a

curved path, as the residuals will be unchanged. This radial detector curva-
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ture, however, will change the measurement of the momentum of the tracks,

and the extrapolated beam position. The detector curvature, therefore, must

be measured and eliminated by another means, as described in Chapter 8.

7.3.5 Inhomogeneous magnetic field.

Finally, to make the simulation as realistic as possible, the modules were placed

in the vacuum chamber as shown in Figure 7.18.

Figure 7.18: The geometry of tracker modules inside the vacuum chamber in sim-
ulation.

The full experimental simulation framework (gm2ringsim), as described in

Section 3.9, is now used. This also adds an additional complication of a radially

non-uniform magnetic field in the tracker region as shown in Figure 7.19, and

multiple scattering due to the presence of material (e.g. a vacuum chamber).

7.3.6 Tracking cuts for alignment
The following cuts were used to select tracks, from simulation or data, to
determine the final alignment:
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Figure 7.19: The magnetic field in the tracker region varies radially from 1.45 T
to 1.0 T across a distance of 10 cm. The position of the stored beam
relative to the station is indicated by an arrow. Plot courtesy of N.
Kinnaird [66].

• Maximum layers with multiple hits = 0. Only select tracks that have

an unambiguous set of hits in a single straw per layer.

• DCA > 500 µm. A hit with a small DCA is not used in the alignment. This

is required to prevent a residual discontinuity as we cross the LR boundary

(Equation (B.29)-Equation (B.32)).

• p-value > 0.005. Only tracks that have a reasonable fit quality are used.

• Hits > 9. Only tracks that have hits in at least three modules are used.

• pz/p > 0.93. Tracks that have large curvature are removed, required by the

approximations used in Equation (B.40).

7.3.7 Iterative alignment
The process of iterative alignment uses the initial module offsets from PEDE in

the subsequent re-tracking. In iteration two onwards, the tracks are formed

through a corrected detector geometry, and only small alignment corrections

are returned in the subsequent PEDE alignment, as shown in Figure 7.20. The

iterative alignment is considered to converge when the returned alignment

results agree with a previous iteration to within the PEDE error (few µm).
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Figure 7.20: The radial alignment results per module in a tracker station in the
simulation are shown. The results of the reconstructed misalignment,
from the four iterations (I1-I4), are shown as the difference between
the truth (T) and a reconstructed misalignment. The reconstructed
misalignment from iterations 3 and 4 overlap, indicating convergence.

7.4 Alignment results in simulation
The mean values of the residuals per module before and after the alignment

are shown in Figure 7.21. The alignment results in both stations after three

iterations are shown in Figure 7.22. The improvement in the mean p-value and

number of reconstructed tracks as a function of number of iterations is shown

in Figure 7.23.

Figure 7.21: The mean values of the residuals per module before and after the
alignment in the simulation. The mean residual is expected to be at
0 for an aligned detector.
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Figure 7.22: The final simulation alignment results showing that alignment sta-
bility was reached. S12 was not misaligned vertically. The alignment
results from the previous iteration and the current iteration overlap.
The absolute mean reconstructed (〈|Reco|〉) and the absolute mean
truth (〈|Truth|〉) misalignments per module are indicated. The align-
ment convergence, with respect to the truth, was established within
3 µm and 6 µm radially and vertically, respectively.

The overall input (i.e. truth) misalignment in station 18 was greater; hence,

after the alignment, the improvement in station 18 is more significant than

in station 12. The alignment stability was reached, and the alignment con-

vergence was established within 3 µm and 6 µm radially and vertically, respec-

tively, in simulation.
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Figure 7.23: The improvement in the mean p-value and the number of tracks as a
function of the alignment iteration in simulation. The overall input
misalignment in station 18 was greater, hence, after the alignment,
the improvement in station 18 is more significant than in station 12.

7.5 Alignment results with data
The mean values of the residuals per module before and after the alignment,

using run 15922, are shown in Figure 7.24. The alignment results in both

stations after three iterations are shown in Figure 7.25. The results were

obtained with O(105) tracks, and were then used in the track reconstruction.

Figure 7.24: The mean values of the residuals per module before and after the
alignment in data. The mean residual is expected to be at 0 for an
aligned detector.
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Figure 7.25: The alignment results with data. The absolute mean reconstructed
(〈|Reco|〉) misalignment per module is indicated. The alignment sta-
bility was reached, as seen by the alignment results from the previous
iteration and the current iteration completely overlapping.

The improvement in the mean p-value and number of reconstructed tracks as

a function of number of iterations is shown in Figure 7.26. The change in the

distribution of p-values and momentum, as well as in the beam extrapolation

are shown in Figure 7.27 and Figure 7.28, respectively.
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Figure 7.26: The improvement in the mean p-value and the number of tracks as a
function of the alignment iteration.

Figure 7.27: The distribution of track p-values and momentum in both stations
before and after the alignment. Stations 12 and 18 have 2.0% and
6.4% improvement in the mean track p-value, respectively, with only
a small change in the mean track momentum. The peak at 2700 MeV
is due to lost-muons (see Section 3.4.6), as the alignment considers all
tracks, not just e+ from µ

+ decays, that have passed the alignment
cuts defined in Section 7.3.6.
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Stations 12 and 18 have a 2.0% and 6.4% improvement in the mean track

p-value, respectively. This implies that after the alignment the quality of the

reconstructed tracks is higher. Moreover, due to the improved alignment, more

tracks are reconstructed from the same hits in station 12 and 18, by 1.5% and

4.5%, respectively.

Figure 7.28: The vertical and radial distributions of the extrapolated beam posi-
tions in both stations before and after the alignment.

The extrapolated tracks (for t > 30 µs) from stations 12 and 18 have a radial

shift towards the centre of the ring of 164 µm and 538 µm, respectively. The

extrapolated tracks have a vertical shift downwards of 73 µm and 144 µm for

stations 12 and 18, respectively.

7.5.1 Alignment monitoring system and database
As seen from Figure 7.26, the most significant alignment corrections come after

the first iteration. Subsequent iterations yield corrections comparable to the
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PEDE uncertainty. Hence, an assessment of the alignment stability across all

g − 2 runs is possible, by running the alignment directly on the reconstructed

tracks from all runs without an iterative alignment. The radial alignment

results per module in station 12 over a 60-hour period (Run-1a dataset) are

shown in Figure 7.29.

Figure 7.29: The radial alignment results in the eight modules of station 12 across
60 hours of g − 2 data (Run-1a dataset).

The alignment stability in both stations, radially and vertically, across Run-1

and Run-2 is shown in Figure 7.30.

Figure 7.30: The alignment stability, radially and vertically, across Run-1 (online
run >10000) and Run-2 (online run >20000) in both stations. The
alignment stability is displayed as the difference between the mean
alignment for a given run and the alignment from a fixed reference
run (run 15922). S12 displays stable alignment throughout the two
Runs. The deviations in modules 4 (M4) and 6 (M6) in S18 are due
to physical module swaps [83] before Run-2, and after run 25086.
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The change in the internal alignment of the two modules is seen in Figure 7.30:

before the start of Run-2 in module 4, and after run 25086 in module 6. These

modules were replaced [83] with spare modules, since the existing modules had

developed a slightly higher gas leak rate into the storage ring vacuum than the

specification. New alignment constants for the replaced modules were derived.

The alignment constants were written into a PostgreSQL database, where each

set of constants is associated to a given range of runs.

7.5.2 Outlook
The internal alignment, radially and vertically, of the two tracker stations in
Run-1 and Run-2 has been successfully determined. Moreover, the alignment
manual [3], to monitor the alignment in the future, has been produced. There
are, however, a few more activities that are planned to further refine and
improve the alignment:

• Scattering target. A placement of a scattering target, as shown in Fig-

ure 7.31, in a known position in the g − 2 storage ring will give a precise

location of the starting position of the tracks. This project is being developed

by S. Foster [84].

• Internal alignment with rotations. The current tracking algorithm (see

Section 5.3) assumes that the tracker planes are parallel to each other. The use

of a Kalman filter algorithm, currently in development by A. Luca [85], will

allow for rotations of tracker planes, and hence, will improve the alignment.

(a) (b)

Figure 7.31: The implementation of a tungsten scattering target in the simula-
tion [84]. (a) Target location inside of the g − 2 ring relative to the
tracker station. (b) Vertical and radial extrapolated beam positions.
The target’s grid structure in seen in the tracker.
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7.5.3 Alignment impact on the systematic uncertainties

7.5.3.1 Pitch correction (ωa)
The beam extrapolation determines the radial and vertical positions of the

muon beam in the storage ring. The accuracy of this determination is affected

by detector calibrations, such as the alignment. The internal alignment of

the tracking detectors is now established, with the 1σ uncertainties on the

mean and width of the beam given in Table 7.1. In the table, the combined

uncertainty, in both stations, from Figure 7.28 was taken.

σdR [mm] σdRwidth
[mm] σdV [mm] σdVwidth

[mm]

S12 ⊕ S18 0.351 0.109 0.109 0.035

Table 7.1: The contribution of the internal alignment to the beam extrapolation
uncertainty in both stations.

However, the alignment is now accounted for, as the correct module positions

are now used in the track reconstruction. For example, in Chapter 6, the

uncertainty on the pitch correction, ∆Cpitch, from an averaged randomised

internal misalignment was estimated to be 1.5 ppb. After the implementation

of the internal alignment, this uncertainty was eliminated. This has reduced

the total contribution to the uncertainty on the pitch correction from tracking

(see Section 3.4.1) from 8.6 ppb to 8.4 ppb.

7.5.3.2 Field convolution (ωp)
The magnetic field is convoluted with the beam profile measured by the track-

ing detectors to find the average field experienced by the muons before decay,

as described in Section 5.3.7. As previously discussed, the measurement of the

beam profile from the tracking detectors is affected by the internal alignment.

A study of an impact of translations on the extrapolated beam profile from the

tracking detectors on the field measurements was performed by Jason Bono

and Saskia Charity [71]. Given the scale of translations induced by the align-

ment in Figure 7.28, it is possible to estimate the corresponding uncertainties

on 〈B〉, and hence ωp (see Equation (3.2)).
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The results for both stations are given in Table 7.2, with the average vertical

and radial uncertainties on 〈B〉 of 3.8 ppb and 0.7 ppb, respectively. After the

implementation of the internal alignment, these uncertainties were eliminated.

This compares to the overall goal of a 70 ppb uncertainty on the determination

of ωp at the end of the experiment’s data taking.

S12 radial S18 radial S12 vertical S18 vertical

1.5 ppb 6.1 ppb 0.4 ppb 0.9 ppb

Table 7.2: The alignment contribution to the uncertainty on 〈B〉.



Chapter 8

Detector curvature

8.1 Introduction
A radial curvature in the positions of the tracker modules, as shown in Fig-

ure 8.1, changes the measurement of the momentum of the tracks, and the

extrapolated beam position. As described in Section 7.3.4, this detector cur-

vature must be measured and constrained by a method that is independent

of the internal alignment. One such method is described here, along with the

derivations of the tracking systematic uncertainties arising from the curvature.

Figure 8.1: An illustration of radially misaligned detectors that cause an erroneous
momentum measurement. The positions of the eight tracker modules
are shown with positive and negative curvatures. Positive curvature is
defined as away from the centre of the g − 2 storage ring.
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8.2 Impact on alignment and tracking
If the internal alignment is established without constraining for the radial

detector curvature, the recovered alignment results will contain an erroneous

curvature. Even for a case of no input misalignment in simulation, the absence

of the correct constraints will introduce this erroneous curvature, as shown in

Figure 8.2.

(a) (b)

Figure 8.2: An unconstrained detector curvature yields an erroneous result. (a)
Truth misalignment and reconstructed alignment radially. (b) A circle
fit to the reconstructed module positions from (a).

Re-tracking with the modules placed in the suggested position from Figure 8.2

changes the momentum distribution of the tracks, but not their χ2 distribu-

tion, as shown in Figure 8.3. This is suggestive of the “local minima problem”

– Millepede-II minimises the χ2 function, and without providing more infor-

mation, this wrong solution could be a “valid” solution.

(a) (b)

Figure 8.3: The detector curvature effect on the reconstructed tracks: (a) change
in the mean momentum due to the detector curvature, (b) the χ

2

distribution of tracks is unaffected.
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Moreover, if a module is misaligned internally, this is manifested as a devi-

ation from the overall radial detector curvature in that module, as shown in

Figure 8.4.

(a) (b)

Figure 8.4: An unconstrained detector curvature with an additional internal mis-
alignment in one module. (a) Truth misalignment and reconstructed
alignment radially. (b) A circle fit to the reconstructed module posi-
tions from (a).

However, if the correct constraints from Equation (C.4) are used, the radial

detector curvature effect is removed completely as shown in Figure 8.5.

(a)

(b)

Figure 8.5: Constrained radial detector curvature with: (a) no misalignment, and
(b) internal misalignment.
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8.3 Methodology
This potential radial detector curvature, a (see Equation (7.30)), needs to be

measured independently of the internal alignment, analogous to the global

alignment measurements, described in Appendix A. One property that makes

this measurement possible is the momentum-dependence, p, of the extrapo-

lated tracks with respect to the input detector curvature, as shown in Fig-

ure 8.6.

(a) (b)

(c)

Figure 8.6: The high momentum, p, tracks have the largest response to the input
detector curvature, a, as seen for the positive detector curvature in (a)
and for the negative detector curvature in (b), shown here as a fraction
of the measured momentum over the truth (no curvature) momentum.
The overall mean momentum of the tracks changes depending on the
applied curvature as seen in (c).
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A standalone toy-model for this momentum-dependence of the curvature as a

function of momentum is shown in Figure 8.7.

Figure 8.7: The momentum change (∆p) caused by a change in the detector cur-
vature, a, as a function of momentum.

The previously seen effect is confirmed: larger curvatures have a larger impact

on the track momentum, and high momentum tracks have the largest response

to a given curvature. To further study this effect, laser-survey data (see Ap-

pendix A) of the modules was used to define a reasonable curvature range of

the modules.

The laser-survey alignment has an error of 200 µm on an individual module

position. This error can be used to fit a nominal (best fit) curve to the module

positions. The curvature parameter (a) is extracted directly from a fit to

Equation (7.30), along with the curvature parameters that lie within a 1σ

band of the nominal curvature. These are obtained using the Mahalanobis

method [86]. For a three parameter fit, there are 27 possible Mahalanobis fits.

These fits are shown in Figure 8.8, and the a parameter for these fits are shown

in Figure 8.9.
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Figure 8.8: The 27 Mahalanobis fits to the survey measurements of station 18.
∆R is defined as the difference between the assumed module position
and the position from the survey. The range of these fits encompasses
±1σ around the nominal curvature.

Figure 8.9: The 27 parameters from the Mahalanobis 1σ band fits and the asso-
ciated curvature (a) values; b was defined in Equation (7.30) as the
rotation parameter.
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8.3.1 Data-simulation comparison
Equation (7.30) and the estimated curvature parameters from Figure 8.9 were

used to misalign tracker modules in a curved position in the simulation. A com-

parison of the various curvatures with data, where this additional curvature

was not applied, was then performed. The assumption is that the simulated

curvature that best matched the data is the corresponding curvature in data.

The comparison criteria was the extrapolated radial beam position, as shown

in Figure 8.10, for a selection of the most closely matched curvatures in sta-

tion 18. The extrapolation on data was performed after internal and external

alignments as described in Section 7.5 and Appendix A, respectively. More-

over, the simulation’s beam distribution was tuned to match the data in Run-1

(see Section 3.4.4).

Figure 8.10: Extrapolated radial beam position with data in station 18, compared
to a simulation at various levels of detector curvature (a), as a func-
tion of track momentum. Negative curvature in data can be ruled
out. It is also clear that the curvature in data is no larger than
+10

−6
mm

−1.
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8.3.2 Comparison methods
The results in Figure 8.10 can now be compared using the χ2 method. This is

done by calculating the χ2 per momentum bin for a given simulation curvature

χ2/DoF =
1

Nbins

Nbins∑
i

(datai − simulationi + δr)2

(∆datai)
2 + (∆simulationi)

2 , (8.1)

as the function of δr, the amount of radial shift (for all momentum bins) needed

in simulation to align the extrapolated curve with data, such that

〈χ2〉
δr

= 0. (8.2)

The assumption is that the simulation result with the smallest corresponding
χ2/DoF is the best representation of the curvature in the data. An example

scan over δr for a curvature of a = 0.35× 10−6 mm−1 is shown in Figure 8.11.

Figure 8.11: The χ2
/DoF change for a curvature of a = 0.35 × 10

−6
mm

−1 as a
function of the radial shift (δr).

The final results of the χ2 method are summarised in Figure 8.12a. Alterna-

tively, as a cross-check, a residual method can be used. This method calculates

σ for each momentum bin, and extracts the lowest absolute value of σ/DoF

over many curvatures from

σ/DoF =
1

Nbins

Nbins∑
i

datai − simulationi√
(∆datai)

2 + (∆simulationi)
2
. (8.3)

The results from the residual method are summarised in Figure 8.12b.
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(a)

(b)

Figure 8.12: The results of the two comparison methods. (a) The χ
2 method.

The most likely curvature in data, as compared to simulation, has
the smallest value of χ2

/DoF: a = 0.5 × 10
−6

mm
−1 for station 12,

and a = 0.45× 10
−6

mm
−1 for station 18. (b) The residual method.

The most likely curvature in data is represented by the simulation
with the lowest |σ/DoF|: a = 0.5 × 10

−6
mm

−1 for station 12, and
a = 0.4× 10

−6
mm

−1 for station 18.
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8.3.3 Extrapolation with detector curvatures
To examine the effect of these curvatures, ∼ 4× 105 tracks were re-fitted with

a curvature offset and the tracks were extrapolated back to determine a beam

position. This shift of this beam position, both radially and vertically, from

the nominal, is shown in Figure 8.13.

Figure 8.13: The difference in the extrapolated mean and width of the radial and
vertical beam position for six values of curvature and the nominal
value in the simulation. Due to the tracker UV straw geometry (see
Section 5.3.2), a change in the radial position also induces a change
in the vertical position.
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Finally, a similar scale of curvatures can be applied to data, as shown in

Figure 8.14. The uncertainty coming from the detector curvature estimated

by comparison with simulation can now be directly extracted from these plots.

Figure 8.14: The difference in the extrapolated mean and width of the radial and
vertical beam position for six values of curvature and the nominal
value in the data.
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8.4 Results and outlook
The beam extrapolation determines the radial and vertical positions of the

muon beam in the storage ring. The accuracy of this determination is affected

by detector effects, such as the radial detector curvature. To estimate the

contribution of the detector curvature to beam extrapolation, the largest of

the values from the two methods in Section 8.3.2 was used, for a conservative

estimate. This value is a = 0.5 × 10−6 mm−1, and the corresponding beam

extrapolation uncertainties, extracted from Figure 8.14, are given in Table 8.1.

σdR [mm] σdRwidth
[mm] σdV [mm] σdVwidth

[mm]

S12 ⊕ S18 1.25 0.20 0.10 0.05

Table 8.1: The contribution of the detector curvature (a) to the beam extrapola-
tion uncertainty in both stations, given a = 0.5× 10

−6
mm

−1.

However, there is a motivation to improve the detector curvature estimation,
given it is one of the larger tracking systematics (see Section 3.4.1). Some of
the possible improvements are given below:

• Improved tracking and simulation. An improvement to the tracking

algorithms will allow for a more precise limit on the curvature to be placed.

Such improvements include LR assignment, hit selection, and improving track

quality, and are being developed by G. Sweetmore [87], S. Grant [88], and

A. Luca [85], respectively. Moreover, an improved simulation, that is more

representative of real data will also benefit the curvature study.

• Cosmic muons. An alternative estimation of the curvature is possible with

cosmic ray muons during periods when the magnetic field in the ring if off.

However, there are numerous challenges associated with this study, such as

maintaining long periods without the magnet on, developing a precise straight-

track fitting algorithm, and estimating the residual magnetic field.
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8.5 Impact on the systematic uncertainties

8.5.0.1 Pitch correction (ωa)
Using Equation (3.11), and an upper bound on a = 0.5 × 10−6 mm−1 from

Section 8.3.2, with the corresponding σdVwidth
= 0.05 mm (see Table 8.1), yields

∆Cpitch = 0.7 ppb.

8.5.0.2 Field convolution (ωp)
A study of an impact of translations on the extrapolated beam profile from the

tracking detectors on the field measurements was performed by Jason Bono

and Saskia Charity [71]. Given the scale of translations induced by the curva-

ture of a = 0.5× 10−6 mm−1, of 1.25 mm and 0.1 mm radially and vertically,

respectively (see Table 8.1). It is possible to estimate the corresponding un-

certainties on 〈B〉, and hence ωp (see Equation (3.2)). The results for both

stations are given in Table 8.2, with the average vertical and radial uncertain-

ties in both stations on 〈B〉 of 12.9 ppb and 0.6 ppb, respectively.

S12 radial S18 radial S12 vertical S18 vertical

11.6 ppb 14.2 ppb 0.6 ppb 0.6 ppb

Table 8.2: The detector curvature contribution to the uncertainty on 〈B〉.



Chapter 9

A preliminary track-based ωa

analysis

This chapter presents preliminary results from the first attempt at an ωa anal-

ysis with data from the tracking detector. This type of analysis has the ad-

vantage of having a different set of systematic uncertainties (e.g. pile-up,

“lost-muons”), as compared to the calorimeter-based analysis. The available

statistics in the tracker-based analysis is significantly lower. However, given

the previous ωa measurement’s discrepancy with the theory of 2.4 ppm (see

Section 2.1) and if the tracking detector measures the same value as the BNL,

then to exclude the theoretical prediction at 95% CL requires a measurement

with a precision of 1.4 ppm. In this chapter, an estimate is made of when

this threshold will be reached with the acquisition of more data, based on the

preliminary analysis of Run-1 data.

9.1 Analysis overview
The analysis work in this chapter follows closely the methodology of the ωa

analysis using calorimeter data [41, 57, 66]. The first statistical assessment

of Run-1 data, applying time cuts (see Section 3.3.3) and momentum cuts

(see Appendix D.2), is summarised in Table 9.1. The number of tracks (above

the p threshold) is ∼ 130 times less than the number of e+ (above the E

threshold) recorded by the calorimeters (c.f. Table 3.1 with Table 9.1).
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Dataset All quality Quality tracks Quality tracks
name tracks (t > 30µs) (t > 30µs, p > 1.8 GeV)

1a 3.51× 10
7

2.27× 10
7

7.25× 10
6

1b 4.83× 10
7

3.12× 10
7

9.93× 10
6

1c 7.23× 10
7

4.60× 10
7

1.46× 10
7

1d 1.40× 10
8

8.63× 10
7

2.74× 10
7

Total 2.96× 10
8

1.86× 10
8

5.92× 10
7

Table 9.1: For each dataset in Run-1, the total number of quality tracks (see Sec-
tion 5.3.6), as well as the number of tracks above certain time and
momentum cuts, are shown. Applying the time cut gives an estimate of
the number of useful tracks for the EDM analysis, while the additional
momentum cut gives an estimate of the number for the ωa analysis.

9.1.1 Five-parameter fit
The first step in the analysis was a simple five-parameter fit to the number of

quality tracks as a function of time

N(t) = N0e
−t/τ [1 + A cos(ωat+ φ)], (9.1)

where N0 is the overall normalisation, τ is the time-dilated muon lifetime, A

is the asymmetry, and φ is the phase. The value of ωa returned from the fit

is blinded in software and hardware (see Section 4.1.2), so that a value of R

(see Equation (4.2)) is reported instead. The result of the fitting procedure is

shown in Figure 9.1. Such a plot is known colloquially as a “wiggle plot”. The

choice of the width of a bin in this histogram is 149.2 ns, the cyclotron period.

It is important to note that the start-time of the fit should be at the edge of

a bin; otherwise, the fit quality is negatively affected.

The quality of the above fit can be assessed in terms of the distribution of the

fit pulls (i.e. normalised residual between the fit function in a given time bin

and the data), as shown in Figure 9.2a.
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Figure 9.1: Five-parameter fit to data from the Run-1a dataset in both tracker
stations (S12 and S18).

(a) (b)

Figure 9.2: Five-parameter fit (a) pulls and (b) FFT from the Run-1a dataset.

The non-centred distribution of fit pulls with σ significantly larger than 1

suggests that the chosen function doesn’t describe the data well. This can be

further verified by transforming the residuals from the time to the frequency

domain, using a fast Fourier transform (FFT) [89]. A large peak at 0 MHz is

observed, which is likely due to effects from lost-muons or pile-up. Moreover, a

peak at the CBO frequency (see Section 3.4.2) is also seen, which also couples

to the g − 2 frequency, fa,

fa =
2π

ωa

≈ 0.23 MHz. (9.2)

The expected frequencies of the peaks in Figure 9.2b depend on the field-index,

n (see Section 3.3.3 and Table 3.1.).
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9.1.2 Nine-parameter fit
The presence of the large FFT peak at the CBO frequency motivates incor-

porating additional terms in the fit function, which describe the impact of the

CBO on the number oscillation, such that

N(t) = N0e
−t/τ [1 + A cos(ωat+ φ)] · C(t), (9.3)

where C(t) is the CBO function [90] given by

C(t) = 1.0 + e−t/TCBOACBO cos(ωCBOt+ φCBO). (9.4)

Equation (9.4) is analogous to the original five-parameter function, but with

each term now describing the CBO parameters: lifetime (TCBO), amplitude

(ACBO), angular frequency (ωCBO), and phase (φCBO). This fit is shown in Fig-

ure 9.3a. With the CBO terms in the fit, the χ
2

DoF
is improved. To verify that

the correct model was used to describe the CBO’s influence on the oscillation,

the FFT analysis was repeated as shown in Figure 9.3b. The CBO peak is no

longer present.

(a) (b)

Figure 9.3: Nine-parameter (a) fit and (b) FFT from the Run-1a dataset.

9.1.3 Ten-parameter fit
The remaining feature in the FFT spectrum in Figure 9.3b that needs to be

accounted for is the peak at 0 MHz. The physical origin of this feature are

lost-muons (see Section 3.4.6). This can be incorporated by adding a term
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accounting for the lost-muons in the fit, such that the fit equation becomes

N(t) = N0e
−t/τ [1 + A cos(ωat+ φ)] · C(t) · Λ(t), (9.5)

where Λ(t) is

Λ(t) = 1−KLM

∫ t

t0

L(t′)et
′
/τdt′, (9.6)

the lost-muon term, with an arbitrary fit parameter KLM (i.e. normalisa-

tion). In this analysis, Λ(t) was taken from [66]. It should be noted, however,

that [66] defines the rate of lost-muons for a calorimeter-based determination

of ωa. The different acceptance of the tracking detectors means it is at best an

approximation of the lost-muon rate for a track-based ωa analysis. Neverthe-

less, incorporating the lost-muon term yielded improved results, as compared

to the nine-parameter fit, as shown in Figure 9.4. The fit χ
2

DoF
can be further

improved by adding systematic effects to the fit (e.g. pile-up), or performing a

dedicated lost-muon analysis in the tracking detector. However, the fit quality

is sufficient for this preliminary analysis to be able to estimate the statistical

precision on the tracker-based determination of ωa.

Figure 9.4: Ten-parameter fit to data from the Run-1a dataset.

With the ten-parameter fit, the slow effect is now diminished as seen in the

improved distribution of fit pulls in Figure 9.5a, and the prominent peak at

0 MHz is significantly reduced, as seen in Figure 9.5b.
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(a) (b)
Figure 9.5: Ten-parameter fit (a) pulls and (b) FFT from the Run-1a dataset.

9.2 Results
The statistical uncertainties on R, obtained from a ten-parameter fit, for all

four Run-1 datasets are summarised in Table 9.2, while the corresponding plots

are contained in Appendix D.1.

Dataset 1a 1b 1c 1d

δR (ppm) 18 15 13 10

Table 9.2: δR from the fit to the tracker data across Run-1 datasets.

The combined statistical uncertainty can be approximated [91] via

δR̄ =
1√∑
i δR

−2
i

= 7 ppm, (9.7)

which assumes a Gaussian distribution of errors and no correlations between

the datasets. To verify this estimation, the statistical uncertainty on R of 1.4

ppm from a fit of 930× 106 calorimeter events [66] in the Run-1a dataset can

be used to predict the expected precision on the tracker data of 59×106 events,

yielding

δR =

√
930

59
× 1.4 = 6 ppm. (9.8)

The estimated uncertainties in Equations (9.7) and (9.8) compare well, given

the precision on the calorimeter data is derived from a fit with better estimates

of systematic effects.
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It is now possible to calculate the number of tracks required to reach a defined

precision on R, and hence ωa, given that 59.2 × 106 tracks yield a ∼ 7 ppm

uncertainty. Therefore, to reach a precision on the ωa measurement of 1.4 ppm,

and thus confirm the BNL-SM discrepancy at 95% CL, should the same value

be measured, would require 1.3 × 109 tracks. While to reach a comparable

precision of the final ωa measurement at the BNL, of 0.54 ppm [1], would

require the experiment to accumulate 8.7× 109 tracks.

9.3 Outlook
For the tracker-based determination of ωa to become competitive, more tracker

data must be acquired, and the tracking efficiency increased. This efficiency

is described in Section 5.3.8, and will be applied to the already-collected data,

yielding at least a factor of four increase in the number of tracks.

Using Figure 3.17a, a relation can be made between the raw number of e+

collected in Run-1 and the number of tracks that were used in this prelimi-

nary ωa analysis. A projection can than be made, using Figure 3.18a, on the

expected number of tracks that can be used in the determination of ωa. This

projection, shown in Figure 9.6, is based on the assumption that the increase

in the quality data (see Section 3.8.1) will be between 60% and 80% [92, 93],

as compared to Run-1. Given the current improvements in tracking, a 95%

CL limit can be placed by Run-3. With further improvements, a comparable

precision to the one achieved at the BNL g− 2 (with calorimeter data) can be

reached by Run-5 with the Fermilab g − 2 tracking detectors alone.

Figure 9.6: Projected precision on ωa with tracker data.



Chapter 10

Systematic studies of the EDM

This chapter describes the methodology of the EDM measurement using data

from the tracking detectors. Section 10.2 contains the results of the EDM

analysis in the simulation. The impact of radial and longitudinal magnetic

fields on the EDM and ωa determination is introduced in Section 10.3, while

the results of their measurements are given in Section 10.4 and Section 10.5,

respectively.

10.1 Introduction
The effect of a potential EDM of the muon, which was introduced in Sec-

tion 2.2, would result in a tilt of the muon spin precession-plane as shown in

Figure 10.1. This tilt changes the observed precession frequency by an addition

of the precession resulting from a muon EDM [6], ωη,

ωη = η
e

2mµ

(
E

c
+ β ×B

)
. (10.1)

Equation (10.1) describes the muon experiencing a torque in the presence of

the electric field produced by the ESQs, as well as the apparent electric field

in the muon rest-frame resulting from the Lorentz boost to the laboratory-

frame magnetic field [15]. ωη is orthogonal to the vertically oriented ωa, and

is pointing radially inwards towards the centre of the g − 2 storage ring. This

results in the spin precession-plane tilting out from the orbit plane towards

the centre of the storage ring.
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(a) (b)

Figure 10.1: The tilt in the precession-plane of the muon due to an EDM, in the
muon rest-frame. The spin (s) of the muon precesses in the circle that
is orthogonal to the vertical magnetic field (By). The momentum
vector (β) is along the z-axis. The centre of the storage ring is along
the x-axis in the orientation. (a) A zero EDM produces no tilt. b)
The presence of an EDM tilts the plane by an angle δ. The precession
of s now has a vertical component.

There are two important consequences of a non-zero muon EDM: an increase

in the observed precession frequency, and an introduction of an oscillation of

the average vertical angle of the emitted positrons from the muon decay. The

magnitude of the observed precession frequency is now given by

ωaη =
√
ω2
a + ω2

η. (10.2)

The resultant tilt angle of the spin precession-plane in the muon rest-frame, δ,

is given by

δ = tan−1

(
ωη

ωa

)
= tan−1

(
ηβ

2aµ

)
. (10.3)

As the positrons are preferentially emitted along the direction of muon spin (see

Figure 2.3), the tilt will make the positrons on average downward going when

the spin is pointing towards the centre of the g − 2 storage ring, and upward

going when the spin points away from the centre of the ring. Therefore, the

observed average vertical angle varies with the magnitude of ωaη, and this

angle is the observable that is used in the g − 2 experiment to measure the

EDM using the tracking detectors.
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Finally, it is essential to emphasise that when the muon spin and momentum

vectors are aligned, the maximum ωa signal is observed. However, the vertical

angle oscillation is at the maximum when the spin is pointing radially outwards,

that is, 90◦ out-of-phase with the momentum vector. This property is used to

distinguish between an EDM and other effects, which are in-phase with ωa, that

can also impact the vertical angle oscillation. This is discussed in Section 10.3,

for potential non-zero radial and longitudinal magnetic field components.

10.2 EDM search with the tracking detectors
The goal of the Fermilab g − 2 experiment is to measure δ to within 0.4 µrad,

resulting in a sensitivity to an EDM of ∼ 10−21 e·cm [14]. The tracking

detectors will realise an EDM measurement through the direct detection of an

oscillation in the average vertical angle of the decay positrons. The tracking

detectors measure this vertical angle, θy, through the momentum components

of a track

θy = tan−1

(
py
pz

)
. (10.4)

For example, a distribution of measured vertical angles in the Run-1a dataset

are shown in Figure 10.2, with a width of 9.368(2) mrad.

Figure 10.2: The distribution of measured vertical angles (θy) of tracks in the
Run-1a dataset in tracking stations 12 and 18.
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10.2.1 Simulating a large EDM signal
In order to test and develop the analysis techniques, a simulation with a known

value of the EDM was used. The chosen value of the EDM was dµ = 5.4 ×

10−18 e · cm, which corresponds to a value ∼ 30 times larger than the EDM

limit set at the BNL experiment [15]. This value was chosen to resolve the

EDM signal with a relatively low number of available tracks from simulation

and permitted a cross-check with previous simulation results [68].

It is possible to analytically predict the observed oscillation amplitude, AEDM,

of θy
AEDM = aEDMδ

′, (10.5)

where δ′ is the precession-plane tilt angle in the lab-frame, and aEDM is the

asymmetry of ∼ 0.13 [94], which accounts for the fact that not all positrons

are emitted in the direction of the polarisation vector. The tilt angle in the

muon rest-frame, δ, is accessible via a Lorentz boost (see Appendix D.3)

δ′ = tan−1

(
tan(δ)

γ

)
. (10.6)

Finally, substituting η from Equation (2.7) into Equation (10.3) allows AEDM

to be directly expressed in terms of fundamental constants and the input EDM

signal (dµ = 5.4× 10−18 e · cm)

AEDM = aEDM tan−1

(
2dµβmµc

aµγe~

)
= 0.22 mrad. (10.7)

10.2.2 EDM measurement strategy in the simulation
To observe the oscillation of the vertical angle, and hence measure AEDM, it is

necessary to consider how θy changes with time, as shown Figure 10.3a, where

t is the track time in a fill. This time is then modulated by the g − 2 period

(∼ 4.4 µs), Tg−2,

Tg−2 =
2π

ωa

. (10.8)
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This is analogous to the method used in the BNL EDM analysis [95], which

is known as the period-binned analysis. This modulation method is useful

for looking at periodic effects, such as the vertical angle oscillation. Periodic

effects that do not have the same period as Tg−2 (e.g. betatron oscillations

mentioned in Section 3.4.2) will generate a flat background when many peri-

ods are considered, while the signal of interest adds constructively. The time

modulation, tmod
g−2 , is given by

tmod
g−2 =

(
t

Tg−2

− int

[
t

Tg−2

])
Tg−2. (10.9)

(a) (b)

Figure 10.3: (a) θy versus time in fill. (b) θy versus modulated time in fill.

θy was then profiled (i.e. averaged) into 50 ns bins, as shown in Figure 10.4.

The distribution of θy in each time bin is Gaussian, as shown in Figure 10.2.

The observed oscillation of the averaged vertical angle, 〈θy〉, is given by

〈θ(t)〉 = AEDM sin(ωat) + c, (10.10)

where c is the overall offset in θ(t). Equation (10.10) is the fit function used

in Figure 10.4. The fitting is done using the scipy.optimize Python library.

The optimal momentum and time cuts for this analysis are discussed in Sec-

tion 10.5.4. The extracted value of AEDM is 0.19(2) mrad, which agrees well

with the prediction from Equation (10.7).
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Figure 10.4: Averaged vertical angle oscillation with 4.3M tracks in simulation
from both stations (S12 and S18).

10.3 The significance of non-zero magnetic

fields
The g − 2 experiment is designed to have only the vertical component of the

magnetic field, with both radial and longitudinal components being zero. In

the experiment, the vertical magnetic field, By, is measured directly by the

NMR probes to an accuracy of 70 ppb, as described in Section 3.5. However,

no such direct measurements presently are possible to determine the radial,

Bx, or longitudinal, Bz, fields. Non-zero Bx or Bz can tilt the precession-

plane of the muon, as shown in Figure 10.5. This becomes an important

systematic effect for both the EDM and ωa analyses, as can be seen by adding

two aforementioned magnetic field terms to Equation (3.1)

ωa = aµ
e

mµ

B = aµ
e

mµ

(Byŷ +Bzẑ +Bxx̂). (10.11)

It is important to note, that Bx would have the same effect on the precession-

plane as the EDM (c.f. Figure 10.1). It is, therefore, crucial to estimate Bx in

order to not bias the results of a search for the muon EDM. Various strategies

exist to estimate Bx, both direct [96] and indirect. The approach taken in

this thesis is the indirect measurement of Bx using the tracking detectors, as

described in Section 10.4.
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(a) (b)

Figure 10.5: The tilt in the precession-plane of the muon due to non-zero field
components, in the muon rest-frame. The spin (s) of the muon pre-
cesses in the circle that is orthogonal to the vertical magnetic field
(By). The momentum vector (β) is along the z-axis. The centre of
the storage ring is along the x-axis in the orientation. (a) The tilt
due to the radial field (Bx), which is along the x-axis. (b) The tilt
due to a non-zero longitudinal field (Bz), which is along the z-axis.

A non-zero Bz, on the other hand, would tilt the precession-plane in the direc-

tion of the muon momentum vector. This produces an effect that manifests as

an EDM-like signal that is in-phase with the magnetic dipole moment (i.e. in-

phase with ωa) and out-of-phase with the EDM (see Section 10.1). Therefore,

one way to measure Bz is to perform a search for the in-phase signal using

data from the tracking detectors, as described in Section 10.5.

10.4 Preliminary estimation of B
x

10.4.1 Introduction
In the BNL experiment, the EDM limit is “equivalent” to a 30 ppm Bx, while

the determination of Bx was estimated with a precision of 10 ppm [15]. Had

the experiment had enough statistics, they would have been limited at
∣∣dµ∣∣ ∼

4.5×10−20 e ·cm due to the uncertainty on Bx, as demonstrated in Figure 10.6.

Therefore, in the Fermilab g−2 experiment more precise measurements of Bx,

both direct and indirect, are motivated to allow for an improved measurement

of the EDM. An accuracy of 0.2 ppm is required to probe dµ at the 10−21 e·cm

level.
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Figure 10.6: The value of the EDM, dµ, and the corresponding value of Bx. For
example, to realise the g − 2 experiment’s goal of measuring dµ
to 10

−21
e·cm, Bx must be known to 0.2 ppm. Plot courtesy of

J. Price [97].

The aim of this preliminary study was to estimate Bx by varying the electric

field produced by the ESQs (see Section 3.3.3) and measuring the resultant

mean vertical beam position, 〈y〉, using the tracking detectors, and using the

relation [98]

Bx =
nB0〈y〉
R0

, (10.12)

where n is the field-index (see Section 3.3.3), R0 is the storage ring radius, and

B0 is the magnetic field strength. n contains the electric field gradient of the

ESQs, which is directly proportional to the HV applied to the ESQs – QHV.

Increasing the value of QHV should result in the observed value of 〈y〉 decreas-

ing, and vice versa. Equations (3.6) and (10.12) allow the estimation [99] of

Bx

Bx ∼ (∆〈y〉∆QHV) (10.13)

where QHV is the variable, and 〈y〉 is the observable, and ∆〈y〉∆QHV can be

determined from tracker data. The objective is to verify the viability of such

a measurement.

10.4.2 Results
There were two periods in Run-2 that had a change in QHV: 20 June 2019

and 24 March 2019.
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The QHV settings versus time for 20 June are shown in Figure 10.7. To

ensure the measurement of 〈y〉 is only influenced by the QHV, settings of

other g−2 components (e.g. kicker voltages) are required to be constant. The

difference in the measured values of 〈y〉, at a given QHV setting, between the

two tracker stations, as seen in Figure 10.7b, are expected and their origin

discussed in Section 3.4.5.

(a) (b)

Figure 10.7: 20 June 2019. (a) QHV versus time. b) The QHV from (a) can be
split into three periods of nominal, low, and high QHV values.

〈y〉 in tracker station 12 (20 June) is plotted against (QHV)−1 in Figure 10.8a.

Using the obtained slope from Figure 10.8a and Equation (10.13), an estima-

tion of Bx is possible. The final result, 〈Bx〉 = 2.1(6) ppm, is summarised in

Figure 10.8b.

(a) (b)

Figure 10.8: (a) 〈y〉 versus QHV in S12 on 20 June 2019. The slope, ∆〈y〉∆QHV,
can be directly extracted from the plot. (b) The estimated values of
Bx, in ppm, in S12 and S18 on 20 June and 24 March. The weighted
mean, 〈Bx〉, and the 1σ uncertainty band are shown.
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10.4.3 Outlook
In this study, the preliminary-estimated value of Bx in Run-2 of 2.1(6) ppm
falls short of the required precision of 0.2 ppm, as outlined in Section 10.4.1.
Therefore, more precise measurements of Bx, both direct and indirect, are
motivated to allow for a more precise determination of the EDM. An improved
method to determine Bx was suggested by B. Kiburg [100]. This method will
determine Bx by a variation of QHV together with an applied radial field
gradient, ∆Bx, from the correction coils (see Section 3.5), that will induce a
large, and known, ∆Bx

〈∆y〉 ∼ 1

∆QHV
· (Bx ±∆Bx), (10.14)

where Bx is the unknown variable in this equation. A direct measurement of

Bx is also being developed by M. Fertl [101].

10.5 Estimation of Bz

The presence of a longitudinal magnetic field, Bz, tilts the precession-plane
of the muon, as shown in Figure 10.5. It is therefore imperative to accu-
rately and precisely measure Bz. As discussed in Section 10.3, a non-zero Bz

introduces an up-down oscillation of the vertical track angle, in-phase with
ωa. This oscillation is used in this analysis to determine Bz. This analysis
follows a similar methodology as the EDM simulation study described in Sec-
tion 10.2.2. Following the method used in the BNL experiment [95], two fits
are performed. Firstly, the number of quality tracks is time-modulated ac-
cording to Equation (10.9), and φ is determined using the five-parameter fit
of Equation (9.1) but with ωa fixed at the value measured by the BNL exper-
iment, ωa =1.439 311MHz [1]. The average vertical angle oscillation, 〈θy(t)〉,
is then fitted to the function

〈θy(t)〉 = ABz
cos(ωat+ φ) +AEDM sin(ωat+ φ) + c, (10.15)

where ABz
is the amplitude due to the longitudinal magnetic field, AEDM is

the EDM amplitude, and c is an overall offset.



10.5. Estimation of Bz 139

10.5.1 EDM blinding
As seen from Equation (10.15), the EDM amplitude is directly accessible. This
is not desirable when analysing data, as the aim is to measure ABz

without
revealing AEDM. A software-level blinding (see Section 4.1.2) can be applied
to data by injecting an unknown EDM amplitude to θy

θ
Blinded
y = θy +A

Blinded
EDM (G, S) · sin(ωat

mod
+ φ), (10.16)

where ABlinded
EDM is the unknown injected amplitude, which is a function of a set

of parameters, G, and a blinding string, S. G is set to produce a value of AEDM

comparable to the EDM limit set at the BNL experiment (∼ 10−19 e · cm),

while S allows a unique blinding per dataset.

The blinding procedure can be verified directly using the simulation, by com-

paring the fit-parameters before and after the blinding, as shown in Figure 10.9.

The unblinded fit parameters (ABz
and c), as well as χ

2

DoF
, remain unchanged,

while AEDM is blinded.

(a) (b)

Figure 10.9: Testing the blinding in the simulation with a large truth Bz and no
input EDM: a) unblinded, and b) blinded.

In data, a comparison was made between the blinding from Equation (10.16)

and a “randomised double” blinding: 2ABlinded
EDM × (1 + 0.25× rand[0, 1]). This

procedure allowed an additional unknown signal, without revealing the original

blinding.
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10.5.2 Fitting in data
The fit of Equation (9.1) to the number of quality tracks is shown in Fig-

ure 10.10a. This plot is analogous to the “wiggle plot” in Figure 9.1, but

with the time modulation of Equation (10.9) applied. The subsequent fit of

Equation (10.15) to the vertical angle oscillation, using the value of φ from

Figure 10.10a, is shown in Figure 10.10b, for tracks in a 100 MeV range.

(a) (b)

Figure 10.10: Fit results in station 12 in the Run-1a dataset for: a) the number
oscillation, and b) 〈θy〉 oscillation.

10.5.3 Momentum-binned analysis
The fit in Figure 10.10b is performed in a narrow momentum range (rather

than a simultaneous fit to all data) due to a variation in the overall offset in

the vertical angle (c) as a function of momentum, as demonstrated in Fig-

ure 10.11a. This is due to the vertical beam motion, discussed in Section 3.4.

Negative c is indicative of the centre of the beam being vertically lower than

the centre of the detector. The global alignment effects were excluded as a

cause, due to the two stations measuring the same variation in c, while having

different corrections from the alignment (see Table A.1).

Tracks of lower momentum exhibit an even more significant change in c and

therefore are not considered in this analysis. However, due to the optimal

momentum cuts for this analysis (see Section 10.5.4.3), and the effect of di-

lution described in Section 10.5.5, the lowest and highest momentum tracks

do not contribute significantly to the measurement of ABz
– regardless of the

observed change in c – and represent only a small population of all tracks (c.f.

Figure 5.14).
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Therefore, fits in individual momentum bins of 100 MeV are performed to

measure ABz
, separately for each station and dataset, in the momentum range

of 1100 MeV to 2300 MeV, as shown in Figure 10.11b for the Run-1d dataset.

(a) (b)

Figure 10.11: Momentum-binned analysis fit results in Run-1d dataset. The
tracks are split by momentum in 100 MeV bins, with the bin centre
values displayed on the x-axis. (a) The overall offset (parameter
c) as the function of momentum. (b) ABz

fit parameter in each
momentum bin, and the uncertainty-weighted mean (〈ABz

〉).

〈ABz
〉 per dataset is determined as the uncertainty-weighted mean. The fitting

results in the four Run-1 datasets are summarised in Figure 10.12a, while the

equivalent results in 1999 and 2000 at the BNL [15] experiment are summarised

in Figure 10.12b.

(a) (b)

Figure 10.12: (a) Run-1 ABz
fitting results. The mean result in each dataset

is in agreement with the overall Run-1 mean within 1σ. (b) The
equivalent results from 1999 and 2000 measurements at the BNL
g − 2 experiment [15].
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10.5.4 Optimising cuts selection
The results in Figure 10.10 were obtained with a particular choice of cuts:

fit-start and end-times (30.6 µs < t < 500.0 µs) and momentum (1800 MeV

< p < 3100 MeV, for the number oscillation). Moreover, the analysis relied on

a choice of the g− 2 period (Tg−2 ≈ 4.4 µs), as well as the phase (φ) extracted

from the fit of Equation (9.1). In this section, these choices will be motivated,

and their stability assessed.

10.5.4.1 Dependence of fit on data subset
In order to assess the robustness of the fit, fits can be performed to different

subsets of the data and the results compared. For example, varying the fit

start-time, where data at a later start-time is a subset of data at an earlier

time. The difference in a given fit parameter for the two datasets has an

allowed difference, σ∆21
, where 2 denotes the smaller dataset and 1 the larger,

is given by

〈(x1i − x2i)
2〉 = σ2

2i − σ2
1i → σ∆21

=

√
σ2
2i − σ2

1i. (10.17)

This equation is valid for any fit function, regardless of the number of param-

eters and possible correlations among them [102]. The results for ABz
with

different fit start-times are shown in Figure 10.13.

10.5.4.2 Fit start-time
First of all, a careful choice of the fit start-time is necessary – it should be

a multiple of Tg−2 because data is modulated using Equation (10.9). This is

demonstrated in Figure 10.14.

The second requirement is that the fit start-time must be greater than 30 µs

(see Section 3.3.3), and should be as low as possible to minimise the statistical

uncertainty. A fit start-time of 30.56 µs was therefore chosen, with the variation

of ABz
at later fit start-times shown in Figure 10.13.
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Figure 10.13: The variation of ABz
with the the fit start-time. Each fit start-

time in this plot is a multiple of Tg−2. The red band, given by
Equation (10.17), indicates the allowed set-subset variation.

(a) (b)

Figure 10.14: Fit residuals using different fit start-times. (a) The fit start-time is
not a multiple of Tg−2. This results in a large feature at 0.5 µs. (b)
The residual spectrum is uniform, with a correct choice of the fit
start-time.

10.5.4.3 Momentum cuts
Equation (10.15) is fitted in momentum bins of 100 MeV due to the strong

momentum dependence of c. Using the simulation with a truth value of

Bz = 1700 ppm, it was verified that a symmetric cut on momentum is more

appropriate than an asymmetric one (see Appendix D.2), as shown in Fig-

ure 10.15.
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(a) (b)

Figure 10.15: Simulation results with Bz = 1700 ppm. ABz
versus momentum

cut: a) asymmetric and b) symmetric. Symmetric cuts give a less
biased determination of ABz

, and particularly when the momentum
dependent dilution factor (see Section 10.5.5) is accounted for.

Tracks of higher momentum predominantly originate further away from a sta-

tion, as seen in Figure 5.16b. Therefore, high momentum tracks with large

angles (θy) miss the tracker station – this can be thought of as a “cone effect”.

As a consequence, the SD of θy (σθy) is narrower for higher momentum tracks,

as compared with lower momentum tracks, as measured by the detectors. This

is demonstrated in Figure 10.16.

Figure 10.16: The change in σθy with p in momentum bins of 100 MeV.

This effect directly leads to a reduction in the uncertainty of the ABz
parameter

in the fit at high momentum, as shown in Figure 10.17a where each momentum

bin has the same number of tracks.
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However, considering a non-fixed number of tracks in each momentum bin

results in the distribution shown in Figure 10.17b, where past 1600 MeV the

δABz
is increasing with a deceasing number of tracks per bin.

(a)

(b)

Figure 10.17: The change in δABz
with p. (a) Fixed number of tracks, Nbin =

6.6 × 10
4, in each momentum bin. (b) The non-fixed number of

tracks per bin follows the momentum distribution of Figure 5.14.

The mid-momentum tracks are thus the most sensitive in measuring ABz
. A

momentum range of 1100 MeV to 2300 MeV is therefore used to fit Equa-

tion (10.15), with separate fits performed in 100 MeV momentum bins.

10.5.4.4 Assessment of period and phase
In order to modulate data using Equation (10.9), Tg−2 must be known a priori

to a reasonable precision. Using the g − 2 frequency fa = 0.2290735 MHz, as

measured by the BNL experiment [1], yields the value of Tg−2 = 4.365 411 µs.

This choice can be evaluated by changing Tg−2 by −30 ppm to +30 ppm and

recording the change in ABz
, as shown in Figure 10.18a.
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The small variations in Figure 10.18a imply that there is no real systematic

effect there. However, extracting the slope of the fit allows an assessment of the

magnitude of the systematic uncertainty from the choice of Tg−2, as described

in Section 10.5.4.5, to be made.

The change in ABz
due to the variation of φ is shown in Figure 10.18b.

(a) (b)

Figure 10.18: The change in ABz
due to the variation of: a) Tg−2 and b) φ.

10.5.4.5 Systematic uncertainty evaluation
Small variations of ABz

due to the choices of Tg−2 and φ were observed. The

systematic uncertainty for each, and the total systematic uncertainty, on ABz

are summarised in Table 10.1. Slopes from Figures 10.18a and 10.18b were

used in the estimation, as well as the error from the fit on φ in Figure 10.10a.

The total systematic uncertainty of ∼ 0.1 µrad was found to be negligible

compared to the statistical uncertainty of 2.2 µrad (see Figure 10.12a).

Systematic source Value [µrad]
Tg−2 0.022

φ 0.085

Total 0.088

Table 10.1: Systematic uncertainties on ABz
.
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10.5.5 Conversion of AB
z
into Bz

With the optimal cuts justified, and systematic effects on ABz
evaluated, it is

now possible to convert the observed amplitude into Bz. ABz
is related to the

precession-plane tilt in the lab-frame, δ′, in the same way as AEDM in Equa-
tion (10.5). However, given that the muon motion is along z (c.f. Figure 10.5),
there is no Lorentz boost in this direction. Therefore, an estimate of Bz can
be derived directly from the measured angle in the lab-frame

δ
′
= tan

(
Bz

By

)
≈ Bz

By
=

ABz

dBz
(p)

, (10.18)

for By � Bz which is the case. In Equation (10.18), dBz
(p) is the asymmetry-

dilution factor, analogous to aEDM in Equation (10.5). This asymmetry fac-
tor was estimated from the simulation, as shown in Figure 10.19a, where a
parabolic function was fitted to the simulation data, given by

dBz
(p) = ap

2
+ bp+ d0. (10.19)

(a) (b)

Figure 10.19: (a) The estimated asymmetry-dilution (dBz
(p)) from the simulation,

and a fit of Equation (10.19). (b) The covariance matrix of the fit
parameters.

Finally, the uncertainty on Bz

By
in momentum bin i is given by

δ

(
Bz

By

)i

=

∣∣∣∣∣A
i
Bz

d
i
Bz

∣∣∣∣∣
√√√√(δAi

Bz

A
i
Bz

)2

+

(
δd

i
Bz

d
i
Bz

)2

, (10.20)

where δAi
Bz

is the fit error (e.g. Figure 10.10b), and δdiBz
is computed using

the variance of the parameters in Figure 10.19b.
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Using Equations (10.18) and (10.20), the measured value of Ai
Bz

in each mo-

mentum bin in Figure 10.11b, and the value of diBz
from Equation (10.19), Bz

By

was estimated (per momentum bin), as shown in Figure 10.20.

(a) (b)

Figure 10.20: (a) Bz results, in ppm, in each of the momentum bins in the Run-1d
dataset. The uncertainty-weighted mean (〈Bz〉) is indicated. The
large uncertainties at high p is the consequence of the small diBz

values in Equation (10.20) – their contribution to 〈Bz〉 is minimal.
(b) The zoomed version of the plot for p < 2200 MeV.

10.5.6 Analysis results
The measured values of Bz from the four Run-1 datasets are summarised in

Figure 10.21. The results from the individual datasets are compared to the

mean Run-1 result of 〈Bz〉 = −11.8(50.3) ppm, and are found to be in agree-

ment to better than 1σ.

Figure 10.21: Bz results, in ppm, in all Run-1 datasets. The mean value of Bz

was obtained from a weighted mean of the four datasets, its 1σ
uncertainty band is indicated in green and 2σ band in purple.
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10.6 Outlook
The analyses presented in this chapter - measurements of Bx and Bz using

the tracking detectors - were not attempted at the BNL experiment. The

preliminary measurement of Bx confirmed that such a technique is viable using

the tracking detectors, and yielded a value of 2.1(6) ppm in Run-2.

The measured value of Bz in Run-1 is consistent with zero, with a precision

of 50 ppm. Additionally, the measurement is in agreement with the direct

measurement of Bz = 0.14(36.9) ppm [96] before Run-1.

The precision (δBz = 50 ppm) will be improved with the increase in the num-

ber of reconstructed tracks by adding new data – Run-2 data-reconstruction is

currently ongoing. Moreover, the track-reconstruction with an improved track-

ing efficiency is currently ongoing on the UK grid (see Section 3.8.2). The final

precision is likely to reach 5 ppm by Run-5, as shown in Figure 10.22. This is

more precise than the design goal of < 7 ppm, which would correspond to the

uncertainty on ωa of < 20 ppb [103].

Figure 10.22: Projected precision on Bz with an increase in the data volume.
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Conclusions

The Fermilab Muon g−2 experiment will measure the muon magnetic anomaly,

with a precision of 140 ppb, and will search for the muon EDM, with at

least a factor of 10 improvement on the world’s best measurement. The three

data-taking periods, Run-1, Run-2, and Run-3, have been completed, with

preparations for Run-4 currently ongoing. Essential in reducing the system-

atic uncertainty on the measurement of ωa are the straw tracking detectors,

which perform track extrapolation backwards to the muon decay point and

forwards to the calorimeters. Moreover, systematic effects, such as the vertical

pitch, require a correction that is accessible via a measurement of the verti-

cal width of the beam by the tracking detectors. The beam profile from the

tracking detectors is also convoluted with the magnetic field map to find the

field experienced by the muons at the point of decay.

In order to accurately reconstruct the beam profile, the tracking detectors must

be correctly aligned. The alignment algorithms were validated using simula-

tion, which converged after three iterations with O(105) tracks to within 3 µm

radially and 6 µm vertically. The track-based internal alignment was imple-

mented with data from Run-1. The number of reconstructed tracks has in-

creased by 3% due to the position calibration from the alignment. Moreover,

an improvement in the mean track p-value of 4% was achieved. After the align-

ment procedure, the uncertainty contribution from the tracker misalignment

to the pitch correction is now negligible.

150



151

An alignment manual [3] allowing future alignment determinations, has been

produced. The derived alignment constants were written into a PostgreSQL

database, where each set of constants is associated with a given range of runs.

Additionally, the stability of the alignment results was verified using Run-2

data.

A potential EDM of the muon would increase the observed ωa signal and

tilt the precession-plane of the muon. The tracking detectors will realise an

EDM measurement through the direct detection of an oscillation in the average

vertical angle of the positron from the muon decay. An observation of a muon

EDM would be evidence of new physics and would provide a new source of CP

violation in the charged lepton sector.

Essential in measuring the EDM, as well as ωa, are accurate and precise estima-

tions of potential non-zero radial and longitudinal magnetic fields, which can

tilt the precession-plane of the muon. The radial and longitudinal magnetic

fields were estimated using data from the tracking detector. A preliminary

estimation of the radial field resulted in a value of 2.1(6) ppm. An in-depth

analysis of the vertical angle oscillation yielded a value of the longitudinal field

consistent with zero: −11.8(50.3) ppm. Moreover, the first analysis of ωa with

data from the tracking detector was made. The projected precision will allow

an independent cross-check of the BNL and Fermilab Run-1 determinations of

ωa, using the Run-1 to Run-3 datasets from the tracking detector.

At the time of writing, the experiment-wide effort on the analysis of Run-1

data is nearing completion, with the announcement of the first result expected

in the coming months. This could be a fascinating time for the scientific

community: only time will tell if the measurement by the experiment will be

the harbinger of new physics!



Appendix A

Global alignment of the tracking

detectors
This section on the global alignment briefly summarises the work done by

Dr Horst Friedsam [104], Dr Leah Welty-Rieger [105] and Dr Joe Price [106].

The global alignment established an absolute position of the tracker stations

relative to the rest of the experiment. This procedure consisted of two parts:

physical survey measurements of the modules by the Alignment and Metrology

Department at Fermilab, and the implementation of these measurements in

the software framework.

A.1 Survey alignment
The first step in the survey of the tracker compared measurements of a single

tracker module with the design model. Agreement was found within 50 µm,

with the survey points used in the comparison indicated in Figure A.1. The

design model was then used to transform from a point in a local tracker co-

ordinate system to the global coordinate system. As the tracker modules are

mounted into a vacuum chamber, as shown in Figure 5.2, the global align-

ment requires the radial and vertical positions of the vacuum chambers to be

determined. The measurements were performed using the API Laser Tracker

as shown in Figure A.2. These measurements and the design model was then

used to estimate the position of the module flange, the straws themselves, and

the carbon fibre post, with the error on the estimated positions determined to

be 200 µm.
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Figure A.1: The survey points used in the global alignment: the centre of the
carbon fibre post and top and bottom of first two and last two straws
in a layer.

(a) (b)

Figure A.2: The implementation of the survey measurements: a) the API Radian
Laser Tracker uses interferometer to accurately measure the vacuum
chamber position relative to the rest of the experiment, (b) the API
I-360 Wireless Probe was used to survey the individual module flanges.

A.2 Global alignment in simulation
The survey measurements described above resulted in four global corrections

per station: a radial translation, a vertical translation, a pitch (radial) rotation,

and a roll (vertical) rotation, as summarised in Table A.1.

vertical position [mm] vertical angle [rad] radial position [mm] radial angle [rad]
S12 −0.55 +4.11× 10−5 −1.51 −1.12× 10−3

S18 −0.61 −4.13× 10−4 −2.75 −2.36× 10−3

Table A.1: The corrections from survey alignment applied in the simulation to S12
and S18.
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A comparison between the extrapolated beam position determined before and

after the implementation of the global alignment is shown in Figure A.3 for

the vertical position. After the alignment, one would not expect the radial or

vertical beam distributions from the two stations to match exactly. This is

the case due to the closed-orbit effect (see Section 3.4.5), as the two tracker

stations see “different beams”. The summary of the change in the vertical and

radial extrapolated beam position after the global alignment is presented in

Table A.2.

(a) (b)

Figure A.3: Mean vertical (〈y〉) extrapolated beam positions: a) before global
alignment, and (b) after global alignment.

∆〈vertical〉 S12 [mm] ∆〈vertical〉 S18 [mm] ∆〈radial〉 S12 [mm] ∆〈radial〉 S18 [mm]
−0.50± 0.06 −1.02± 0.06 −0.35± 0.06 −0.33± 0.06

Table A.2: The change in the extrapolated beam position after applying the survey
corrections to both stations.

A.3 Global alignment uncertainty contribu-

tion
The Mahalanobis method [86] was used to estimate the uncertainty on the

beam extrapolation arising from the uncertainty on the global alignment. Nine

Mahalanobis points are derived from the two-parameter straight line-fit. The

results from placing the modules in one of these nine positions and determining
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the extrapolated beam positions are shown in Figure A.4.

Figure A.4: The extrapolated vertical beam position (for run 15922) using pa-
rameters from one of the nine Mahalanobis bands. The mean and the
width was estimated from a Gaussian fit to each of the nine distribu-
tions.

To estimate the uncertainty on the pitch correction from the global alignment,

the largest vertical beam width of the eight cases in Figure A.4, relative to the

nominal case, was used. This change (σdVwidth
) corresponds to 0.01 mm. Using

Equation (3.11) and the estimated σdVwidth
leads to ∆Cpitch of 0.3 ppb. This

is negligible, compared to the total tracker pitch correction uncertainty of 8.6

ppb (in Run-1), as described in Section 3.4.1.



Appendix B

Derivations of analytical

equations for internal alignment

This section provides derivations of the equations used in Chapter 7.

B.1 Straight line-fit in 2D
Derivations of Equations (7.18) to (7.21), describing the effect of a translational

misalignment on a line of best fit in 2D is given below, for a line of the form

x = mz + c, (B.1)

where x is a hit position (i.e. height) along an infinitesimally thin detector

plane, and z is a plane position along the direction of the beam. A residual,

ri, on a detector plane is given by

r = mzi + c− xi, (B.2)

with the χ2, as a sum of all the residuals in P planes, defined as

χ2 =
P∑
i

r2i

σ2 =
1

σ2

P∑
i

(mzi + c− xi)
2 =

=
1

σ2

P∑
i

(mz2i + c2 + x2i + 2cxi + 2mzixi − 2mzic),

(B.3)
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for a constant detector resolution, σ, and a special case of no misalignment

and no smearing. The aim is to minimise χ2 with respect to line parameters

m and c:
∂χ2

∂m
=

1

σ2

P∑
i

(2mz2i + 2xizi − 2zic), (B.4)

and
∂χ2

∂c
=

1

σ2

P∑
i

(2c+ 2xi − 2mzi). (B.5)

Without the loss of generality, one can define the “centre-of-mass” of planes

to lie at 0 along z, so that
∑P

i zi = 0, which simplifies the above equations to

m =

∑P
i zixi∑P
i z

2
i

, (B.6)

and

c =

∑P
i xi
P

. (B.7)

For a realistic case of non-zero characteristic misalignment, M c
i , along x, and

smearing due to the detector resolution, δ, on a plane, one has a hit position

defined by

x = mT z + cT + δi +M c
i , (B.8)

where one can define two variables relating the truth (e.g. mT ) and measured

line parameters due to the resolution and misalignment effects, substituting

for the measured slope, m, from Equation (B.6) into Equation (B.2)

δm = mT −m =
−
∑P

i (δizi +M c
i zi)∑P

i z
2
i

, (B.9)

and similarly for the intercept

δc = cT − c =
−
∑P

i (δi +M c
i )

P
. (B.10)
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Using Equations (B.8) to (B.10) the residual in a plane can be defined as

ri = mzi + c− xi = δmzi + δc+ δi +M c
i . (B.11)

It is now possible to derive an analytical form of the mean residual, 〈rp〉 in a

detector layer p, over N → ∞ tracks

〈rp〉 =
∑N

n rn,p
N

=

∑N
n (δmnzp + δcn + δp,n +M c

p)

N
=

=M c
p −

∑P
i M

c
i

P
−
zp ·
∑P

i M
c
i · zi∑P

i z
2
i

,

(B.12)

where
∑N

n δp,n → 0 was used. The second term in Equation (B.12) gives a

hint of an effect of misalignment in other layers on the residual in a particular

layer p. The analytical form of the standard deviation of the distribution of

residuals in a layer p, over N → ∞ tracks is given by

σ2
rp

=

∑N
n (rp,n − 〈rp〉)2

N
=

=
1

N

(
δmnzp + δcn + δp,n +

∑P
i M

c
i

P
+ zp

∑P
i M

c
i zi∑P

i zi

)2

= σ2 −
z2pσ

2∑P
i z

2
i

− σ2

P
.

(B.13)

Finally, an analytical equation for χ2 on a fit to a misaligned detector for

N → ∞ tracks can be derived

χ2 =
1

N

N∑
n

∑P
i r

2
i

σ2 =
1

Nσ2

N∑
n

P∑
i

(δmnzi + δcn + δi,n +M c
i )

2 =

= P − 2 +

∑P
i=1(M

c
i )

2 −
∑P

i=1 (M
c
i )

2

P
− 2·

∑P
i=1 M

c
i ·zi∑P

i=1(zi)
2∑P

i=1(σ
det
i )2

.

(B.14)

The derived equations for 〈rp〉, σ2
rp

, and χ2 apply for a 2D case of a straight

line-fit to a misaligned detector planes along x, with a given detector resolution

on hits. Nevertheless, the derived equations are quite instructive of the effect

of misalignment, and give correct analytical predictions for a 2D toy-model,

as shown in Figures 7.6 and 7.7.
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B.2 Residual derivatives with circle-fit in 2D
In the case of a circle-fit using straight tracks the residual, r, is given by

r = DCA(x,m, c)− h =
|c+mz − x|√

m2 + 1
− h, (B.15)

with two local derivatives,

∂r

∂c
=

c+mz − x√
m2 + 1|c+mz − x|

, (B.16)

and
∂r

∂m
=

(m2 + 1)z(c+mz − x)−m|c+mz − x|2

(m2 + 1)3/2|c+mz − x|
. (B.17)

The action of an anticlockwise rotation is given byz′m
x′m

 =

cosφ − sinφ

sinφ cosφ

zm
xm

 =

zm cosφ− xm sinφ

zm sinφ+ xm cosφ

 . (B.18)

The transformation back to the global coordinates is given byz
x

 =

z′m + zcentre

x′m + xcentre

 =

zm cosφ− xm sinφ+ zcentre

zm sinφ+ xm cosφ+ xcentre

 . (B.19)

The equation for a residual, under a 2D rotation, can be written using Equa-

tion (B.19), and is given by

r = DCA(z(φ), x(φ),m, c)− r =
|c+mz(φ)− x(φ)|√

m2 + 1
− r =

=
|c+mzm cosφ−mxm sinφ+mzcentre − zm sinφ− xm cosφ− xcentre|√

m2 + 1
− r.

(B.20)
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Ultimately, an expression for ∂r
∂φ

in terms of global and local parameters is used

∂r

∂φ
=
∂DCA(z(φ), x(φ),m, c)

∂φ
. (B.21)

This can be obtained using the chain rule

∂r

∂φ
=
∂DCA(φ)

∂φ
=
∂DCA(d)

∂d

∂d(φ)

∂φ
, (B.22)

where d represents a measurement (e.g. straw displacement in z or x). Us-
ing Equation (B.22) one can write the equation for the residual derivative
expressed without the use of the truth parameters (i.e. φ)

∂r

∂φ
=
∂r

∂z

∂z

∂φ
+
∂r

∂x

∂x

∂φ
=

m(c+mz − x)√
m

2
+ 1 · |c+mz − x|

× (−zm sinφ− xm cosφ) +

c+mz − x√
m

2
+ 1 · |c+mz − x|

× (zm cosφ− xm sinφ),

(B.23)

at this point, a substitution from Equation (B.19) can be used to simplify the
expression to

∂r

∂φ
=

m(c+mz − x)√
m

2
+ 1 · |c+mz − x|

× (−x′m) +
c+mz − x√

m
2
+ 1 · |c+mz − x|

× (z
′
m) =

∂r

∂z
(−x+ x

centre
) +

∂r

∂x
(z − z

centre
),

(B.24)

where all inputs come either from measurements or assumption of the ideal

geometry.
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B.3 Residual derivatives in 3D
The straw wire can be parametrised as

rW (s) =


x

y

z

 =


xW +mW s

s

zW

 = us+ r0
W =


mW

1

0

 s+


xW

0

zW

 , (B.25)

as the position on the straw is constant with z, and the slope in x is due to

the stereo angle on the straw wire, θW , of ∼ 7.5◦ with mW = tan(θW ). A

geometrical approach can be taken to express the requirements on the DCA

from Equation (7.27) as

DCA =
|u× v · (r0

W − r0
T )|

|u× v|
= |(r0

W − r0
T ) · n|, (B.26)

which projects the distance between the intercept of the lines, to the normal,

n, between the two lines.

Using the track parametrisation from Equation (7.8) the DCA in 3D is given
by

DCA(xT , yT ,mx,my, xW , zW ,mW ) =

|


1

−mW

mWmy −mx

 ·


xW − xT

−yT
zW

 |

|


1

−mW

mWmy −mx

 |

=

=
|mymW zW −mxzW +mW yT + xW − xT |√

(mWmy −mx)
2
+ (mW )

2
+ 1

,

(B.27)

and the residual is simply

r = DCA(xT, yT,mx,my, xW, zW,mW)− h. (B.28)

The four local derivatives ∂r
∂xT

, ∂r
∂yT

, ∂r
∂mx

, and ∂r
∂my

are then given by:
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For the “x-intercept”

∂r

∂xT
=

mWmyzW +mW yT −mxzW − xT + xW

−|mWmyzW +mW yT −mxzW − xT + xW |
√(

mWmy −mx

) 2
+m

2
W + 1

,

(B.29)

for the “y-intercept”

∂r

∂yT
=

mW (mWmyzW +mW yT −mxzW − xT + xW )

|mWmyzW +mW yT −mxzW − xT + xW |
√(

mWmy −mx

) 2
+m

2
W + 1

.

(B.30)

The “slope” (defined in Equation (7.10))

∂r

∂mx
=

(
mWmy −mx

)
|mWmyzW +mW yT −mxzW − xT + xW |((
mWmy −mx

) 2
+m

2
W + 1

)
3/2

−

−
zW (mWmyzW +mW yT −mxzW − xT + xW )

|mWmyzW +mW yT −mxzW − xT + xW |
√(

mWmy −mx

) 2
+m

2
W + 1

,

(B.31)

and

∂r

∂my
=

mW zW (mWmyzW +mW yT −mxzW − xT + xW )

|mWmyzW +mW yT −mxzW − xT + xW |
√(

mWmy −mx

) 2
+m

2
W + 1

−

−
mW

(
mWmy −mx

)
|mWmyzW +mW yT −mxzW − xT + xW |((

mWmy −mx

) 2
+m

2
W + 1

)
3/2

.

(B.32)

And the two global derivatives for radial and vertical translations are

∂r

∂xW
= − ∂r

∂xT
, (B.33)

and
∂r

∂yW
=

∂r

∂yT
. (B.34)

The 3D rotation matrix is given by

R=


cosφ cosψ cos θ sinψ + sin θ sinφ cosψ sin θ sinψ − cos θ sinφ cosψ

− cosφ sinψ cos θ cosψ − sin θ sinφ sinψ sin θ cosψ + cos θ sinφ cosψ

sinφ − sin θ cosφ cos θ cosφ


,

(B.35)
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where θ, φ and ψ are the Euler angles. There are three possible rotations (see
Figure 7.3) around the centre of the tracker module. A rotation around the
y-axis is the same as considered previously in Equation (B.23), but needs to be
extended to a 3D geometry. With the constraint that a point along the straw
will have the same vertical height (y) before and after the above rotation with
the derivatives for the anticlockwise rotation φ along the y-axis given by


x

y

z

 =


x
′
m + x

centre

ym + y
centre

z
′
m + z

centre

 =


zm sinφ+ xm cosφ+ x

centre

ym + y
centre

zm cosφ− xm sinφ+ z
centre

 . (B.36)

The global derivatives for the anticlockwise rotation φ along the y-axis is

∂r

∂φ
=

∂r

∂zW
(−xW + x

centre
) +

∂r

∂xW
(zW − z

centre
). (B.37)

and similarly for the rotation along the z-axis

∂r

∂ψ
=

∂r

∂xW
(−yW + ycentre) +

∂r

∂yW
(xW − xcentre), (B.38)

and x-axis
∂r

∂θ
=

∂r

∂yW
(−zW + zcentre) +

∂r

∂zW
(yW − ycentre). (B.39)

The fifth local derivative in the presence of a magnetic field is given by

∂r

∂κ
=

∂r

∂
(

1
pz

) =
∂r

∂mx

∂mx

∂κ
+

∂r

∂my

∂my

∂κ
=

∂r

∂mx
px +

∂r

∂my
py. (B.40)

The vector containing derivatives of the residuals with respect to the fitted
track parameters is given by

∂r

∂b
=



∂r
∂xT

∂r
∂yT

∂r
∂mx

∂r
∂my

∂r
∂κ


. (B.41)



Appendix C

Control and steering of PEDE

This section summarises the steering and constraint options used in PEDE.

The PEDE steering file is given by
1 ∗ g−2 Tracker Alignment : PEDE Steer ing Fi l e

2 ConstraintFi le . txt ! Constraints text f i l e

3 C f i l e s ! Following bin f i l e s are C f i l e s

4 Data . bin ! Binary data f i l e

5 method invers ion 10 0.01

The constraint equation is given by

c =
N∑
i

li · fl, (C.1)

where c is is the constraint value, l is the global parameter label, f is the

parameter factor, and the summation is taken over the parameters contributing

to the constraint. The constraints given in Section 7.3.4 can be written as the

inputs to PEDE as follows:

1. Constraint on the overall radial translation

0 =
N∑
i=1

li · 1 = 1211 · 1 + 1221 · 1 + ...1281 · 1, (C.2)

where, for example, label 1281 corresponds to station number 12, module

number 8 and parameter number 1 (i.e. radial shift). The factor of 1

simply means equal weighting for all parameters.
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Equation (C.2) is written in the PEDE format as follows
1 ! Radial t rans l a t i ona l f i x i n g (no overa l l movement) :

2 Constraint 0

3 1211 1

4 1221 1

5 1231 1

6 1241 1

7 1251 1

8 1261 1

9 1271 1

10 1281 1

2. Constraint on the overall vertical rotation

0 =
N∑
i=1

li · (N + 1− 2 · i) = 1212 · 7 + 1222 · 5 + ...1282 · −7, (C.3)

1 ! Vert ica l ro tat iona l constra int

2 ! around the centre of the stat ion :

3 Constraint 0

4 1212 7

5 1222 5

6 1232 3

7 1242 1

8 1252 −1

9 1262 −3

10 1272 −5

11 1282 −7

3. Constraint on the radial bowing effect

0 =
N∑
i

li · (N + 1− 2 · i)2 = 1211 · 49 + 1221 · 25 + ...1281 · 49, (C.4)

1 ! Bowing e f f e c t : parabloic rad ia l term

2 ! descr ib ing the track curvature

3 ! around the centre of the stat ion :

4 Constraint 0

5 1211 49

6 1221 25

7 1231 9

8 1241 1

9 1251 1

10 1261 9

11 1271 25

12 1281 49



Appendix D

Ancillary analysis plots and

derivations

This section contains accompanying plots and derivations to Chapters 9 and 10.

D.1 Ancillary wiggle plots
Wiggle plots and ten-parameter fits across the four datasets: Run-1a (Fig-

ure D.1), Run-1b (Figure D.2), Run-1c (Figure D.3), and Run-1d (Figure D.4).

Figure D.1: Ten-parameter fit in the Run-1a dataset.
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Figure D.2: Ten-parameter fit in the Run-1b dataset.

Figure D.3: Ten-parameter fit in the Run-1c dataset.

Figure D.4: Ten-parameter fit in the Run-1d dataset.
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D.2 Momentum cuts used in the wiggle plots
Imposing a momentum cut, pmin, on data in Figure 9.1 is motivated by the

muon decay asymmetry (A) and the number of tracks (N) used in the fit, such

that the optimal value of pmin corresponds to the quantity NA2 reaching the

maximum [102]. That is, the statistical uncertainty on ωa (or R) is minimised

when NA2 is maximised.

If the momentum fraction, y, is defined to be

y =
pmin

pmax

, (D.1)

then, in the lab-frame, both N and A can be expressed [11] as

N(y) ∝ (y − 1)2(−y2 + y + 3), (D.2)

and

A(y) =
y(2y + 1)

−y2 + y + 3
. (D.3)

The above expressions are plotted in Figure D.5a. Analytically, the optimal

asymmetric momentum cut (pmin) occurs at y ∼ 0.6 or pmin ∼ 1800 MeV. This

was empirically verified using the Run1-a dataset, with the optimal momentum

cut determined in Figure D.5b.

(a) (b)

Figure D.5: (a) The analytical change in NA
2 terms as the function of y in the

lab-frame, not including the effect of the detector acceptance. (b) The
measured change in NA

2 with pmin, as determined from the Run1-a
dataset.
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D.3 Lorentz boost of the tilt angle
The tilt angle of the muon spin precession-plane is reduced by the relativistic

effect of length contraction [94]. This is demonstrated in Figure D.6.

Figure D.6: The muon rest-frame and the lab-frame (i.e. the detector-frame) are
shown. The coordinate components of the lab-frame are “primed” (′)
for clarity.

The tilt angle, in the muon rest-frame, is given by

tan(δ) =
∆z

∆y
, (D.4)

which, in the lab-frame, is equivalent to

∆z′ =
∆z

γ
, (D.5)

and

∆y′ = ∆y. (D.6)

These allow for the tilt angle in the lab-frame to be expressed as

tan(δ′) =
∆z′

∆y′
=

∆z

γ∆y
. (D.7)

Therefore,

δ′ = tan−1

(
tan(δ)

γ

)
. (D.8)
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