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The inelastic coherent pion production induced by neutrinos is a rare process where
the neutrino interacts with the nucleus as a whole. The final state particles of the inter-
action are a lepton and a m meson created in small angles with regards to the incoming
neutrino direction. During the interaction, a small four-momentum is transferred to the
nucleus, leaving it in its initial state (no nuclear breakup), with a recoil energy below the
detection threshold. The process has been observed in both charged and neutral current
interactions, in a variety of materials, from a few to hundreds of GeV.

Experiments struggled to find evidence of the charged current channel at low neutrino
energies (~ 1 GeV), until 2014 when the MINERVA collaboration, using both muon neu-
trinos and muon anti-neutrinos in a CH target, was able to observe it by looking at
model-independent features of the interaction.

This thesis also makes use of the MINERvVA detector in the NuMI neutrino beam at Fer-
milab, to analyze the CC coherent production of pions, but with a more energetic and
intense v, beam (2 < E, < 20GeV, peaked at ~ 6GeV), and including measurements
from hydrocarbon, carbon graphite, iron (steel) and lead targets, allowing a wide range of
nuclear sizes.

This work represents the first simultaneous measurement of the CC coherent production
of pions in different materials. The first observation of the process using a pure carbon
target, and the first observation in iron and lead ever. Hints of the dependence of the
interaction’s cross section on the number of nucleons (A) in the nucleus are also shown
(A-dependence of the interaction scaling). Current models predict a cross section scaling

of A3, A2/3 or even an energy-dependent one.
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6.10

Top view of a simulated signal event in Fe target 1. A scale version of the

mner part of the detector can be observed. The muon and the pion tracks

go close to each other and then separate. The pion is seen interacting in

the KCAL, while the muon leaves the back of MINERvA to enter MINOS.

The red region is the fiducial volume of Fe in target 1. Each colored tri-

angle corresponds to a scintillator strip, and the color indicates the energy

deposited in the strip according to the scale in the right-hand side of the plot.[109
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Chapter 1

INTRODUCTION

Throughout history, apparently disconnected natural phenomena ended up being different
representations of the same underlying mechanism. A falling object on the surface of the
earth can be explained by the same formalism describing the movement of astronomi-
cal objects in the solar system: the law of “universal” gravitation, by Issac Newton. A
thunderbolt hitting the ground follows the same laws, as those followed by salt melting
ice: the laws of electromagnetism, brilliantly summarized in James Maxwell’s equations.
In the process of such unification, well established theories are often superseded by more
complete and far reaching theories that expand the limits of the old ones. That is the case
of general relativity developed mostly by Albert Einstein; and quantum mechanics built
by a myriad of scientists. Both pushed Newtonian mechanics in two different directions,
the former into the fast and astronomically big, the latter into the fast and atomically
(and sub atomically) small, both containing Newtonian mechanics as a special case.
These are the best two theories physics currently has to explain the universe. But despite
their success, they are not compatible with each other, avoiding a long searched “theory
of everything”, which intend to explain all known physical phenomena under the same
theoretical ground.

Although incompatible with general relativity, quantum mechanics is successfully com-
patible with the theory of special relativity. The union of both, called “quantum field

theory”, is the basis for a modern understanding of particle physics.

Greek philosophers of the fourth century BC thought of matter as irreducible and
indivisible particles they called “atoms” (individual in Greek), and that different proper-
ties of macroscopic matter were different arrangements of such atoms. It was not until
the nineteenth century AD that John Dalton concluded experimentally that the different

elements involved in chemical reactions, interact in discrete units of matter, what is now
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known as atoms. By the end of that century, J.J. Thomson showed the existence of “elec-
trons”, particles almost two thousand times lighter than the lightest atom (hydrogen),
with the same charge-to-mass ratio regardless of the material. He conceived the atom as
a uniform positively charged substance with the negatively charged electrons embedded
in it, keeping the atom electrically neutral. In 1911 Ernest Rutherford found that most
of the alpha particles (helium nuclei) fired onto foils with the thickness of a few atoms,
passed through them with a slight deflection. Surprisingly some were deflected in huge
angles, meaning that the positive charge was concentrated in a small but very dense “nu-
cleus”. Rutherford himself would found that nuclei consist of positively charged particles,
the “protons”. The fact that the charge of different nuclei does not increase linearly with
their mass, was explained by the presence of neutral particles in the nucleus, slightly heav-
ier than the proton: the “neutron”, discovered by James Chadwick in 1932 completing
the classic model: a solar-system-like atom, with “planetary” electrons turning around the

“solar” nucleus by the pull of the electromagnetic force.

Protons and neutrons existing bound in the nucleus, required the existence of a force
able to hold them together, overcoming the repulsive electric force protons exert on one
another. It was named the “strong force”. Its range had to be about the nuclear radius
(otherwise all atomic nuclei would stick together). In the late 1940s many different particles
were discovered in cosmic rays, increasing the number of apparent elementary particles,
without any obvious order. In 1961 Murray Gell-Mann did a successful classification of the
chaotic scenario, predicting with it new hadrons (particles like the proton and neutron),
which were later discovered with the exact properties foretold. He himself predicted that
all hadrons must be made of arrangements of three particles called “quarks”. Quarks are
never observed freely, but experiments similar to Rutherford’s indicate that nucleons have
internal structure, in great accordance with the quark model. Quarks are bound inside

the nucleons by the strong force.

The so called “beta decay”, discovered by Henri Becquerel in 1896, is the process
in which the atoms of some elements emit beta radiation (electrons), turning the original
nucleus into a nucleus of a different element. The detailed mechanism consists of the
spontaneous “mutation” of a nuclear neutron into a proton (captured by the nucleus),
which is ultimately explained by the change of a “down” to an “up” quark, and an electron
escaping the nucleus at high speed. This mechanism constitutes yet another elementary
force, “the weak force”, capable of changing the identity of fundamental particles. The
force range is about the diameter of a nucleon, basically a “point” interaction between the
initial particle and its decay products. The weak decay of a single particle is an stochastic

event, with a very low probability.
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When measuring the energy of the outgoing electrons in beta decays, it was com-
pletely baffling that a continuous energy distribution appeared, instead of the expected
well defined single energy due to the difference between the initial and final nuclear masses.
This meant that either energy conservation was an statistical process only, or that the elec-
tron was being accompanied by an unobserved chargeless particle of negligible mass that
carried away the missing energy. The ghostly particle was later named “neutrino” (little
neutral one in Italian), to differentiate it from the neutron. The neutrino was not discov-
ered until 1956 by Frederick Reines and Clyde Cowan near a nuclear reactor, in a similar
process called inverse beta decay. Two more kinds of neutrinos would later be found, one

associated to a muon and one to the tau lepton (two heavier versions of the electron).

The fundamental particles and forces involving the electromagnetic, strong, and
weak interactions are explained in a very precise theoretical framework called “the stan-
dard model” (SM), developed mostly during the second half of the twentieth century, that
summarizes most of the knowledge of theoretical and experimental particle physics at the
time. It includes two fundamental types of particles, Fermions and Bosons. The former are
particles that make up ordinary matter and obey Pauli’s exclusion principle, they include
quarks and leptons. Bosons, on the other hand don’t follow Pauli’s exclusion principle.
As currently understood, they are the mediators of the forces, they include the photons,
Z and Ws for the electroweak interaction, and gluons for the strong force.

Richard Feynman, Shin’ichiro Tomonaga and Julian Schwinger elaborated a “relativistic
quantum field theory of electrodynamics” (QED), based on previous work by Paul Dirac
and Hans Bethe. This was the first successful component of the SM.

In the 1970s, attempts to create a gauge theory for the weak force similar to QED, de-
manded the inclusion of the electromagnetic force in the same framework. Abdus Salam,
Steven Weinberg and Sheldon Glashow successfully developed the “electroweak theory”
in which the electromagnetic and weak forces are treated as a single kind of interaction.
This unification required the existence of a field responsible for giving mass to the neutral
Z and the two charged W bosons (the carriers of the weak force), the “Higgs field”.

The strong force was included in the SM also as a gauge field theory, called quantum
“chromodynamics” (QCD), using QED as its base. It was built by Harald Fritzsch, Hein-
rich Leutwyler, and Murray Gell-Mann. As opposed to the other two forces, the strength
of the strong interactions increases with the separation between quarks (this phenomenon
is called confinement, the fact that quarks can only exist inside hadrons), and it gets
reduced as the probing energy increases (asymptotic freedom). The carriers of the force,

the “gluons”, carry the strong charge themselves.

Despite its descriptive power and accuracy, the SM has failed in correctly describing
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important aspects of nature.

e It cannot include the most utterly common of the macroscopic forces, “gravity”.
For it to fit, a theory of quantum gravity is needed. In highly dense quantum
states, like in black holes or the early stages of the universe, gravity should be
the dominant force, warping space-time, but no quantum theory has managed to
successfully achieve the quantization of space-time itself. Different attempts such
as “string theory” or “quantum loop gravity” have been proposed, but the lack of

experimental evidence to their abstract concepts avoid their acceptance.

e It offers no answer to the baryon asymmetry (matter-antimatter asymmetry) of the
universe, which is naturally expected due to charge conservation. It requires that
mechanisms such as CP and C-symmetry violation, and baryon number violation

out of thermal equilibrium had occurred in the early universe.

e The anomalous rotation of the outer regions of some galaxies is believed to be caused
by “dark matter”, that is supposed to interact with “normal” (baryonic) matter only
through gravity. A possible candidate for dark matter are the so called “WIMP”
(Weakly Interacting Massive Particles), which are not contemplated by the SM.

e The accelerated expansion of the universe implies the existence of a force able to
overcome the gravitational attraction of all the matter in the universe, the so called
“dark energy”. It is not predicted by quantum mechanics, neither by general rela-

tivity.

e Strong and electroweak interactions (let alone gravity) have not been put under the

same unified theory “grand unified theory”.

e Massive neutrinos are not predicted. The SM considers them massless and therefore
moving at the speed of light, which has been proven wrong by the phenomenon of

neutrino oscillations, where neutrinos change flavor as they travel.

Besides this, many free parameters in the equations involved, come apparently out
of nowhere, and are ultimately established by experiment. As any successful theory, it
is waiting for a new and better one that can account for the lack of knowledge in the
unsolved questions above, and ultimately replace it. For this to happen, going beyond the
SM is needed.

Of the particles in the SM, neutrinos (and perhaps the Higgs boson) are the less

understood, and remain as a source of profound mystery, and as a source of active research.
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Perhaps one of the most intriguing results not accounted for in the SM, is the oscillation of
neutrinos. Their oscillation depends among other variables, on the distance the neutrino
travels, so if neutrinos can tell distance, they can also tell time, which means they do not
travel at the speed of light, and therefore, they do have mass.

Neutrino oscillations could shed light to the baryon asymmetry in the universe, and could
be a key to understanding matter and anti-matter imbalance by looking at oscillation

parameters of neutrinos and anti-neutrinos and seeing if they oscillate somehow different.

Two of the “biggest” experiments (both in physical size and collaborative effort)
ever designed, the DUNE and Hyper Kamiokande experiments, are meant to answer some

of the fundamental questions about neutrinos. They could allow us to:

e Understand whether neutrinos and anti-neutrinos oscillate identically.

e Do neutrino astrophysics with way higher statistics than current and previous ex-
periments, by studying neutrinos from supernovae around the Milky Way. Such

neutrinos are among the most energetic in the universe.

e Do a very detailed measurement of some decays, with the search for proton decay

being the most noticeable.

Neutrino oscillation experiments like DUNE will not be able to answer those im-
portant questions by themselves, they already use and will need data and results from
previous neutrino experiments, specially from the ones measuring interactions of neutri-
nos with nuclei and nucleons. These interactions are the biggest source of systematic
uncertainties in neutrino oscillation experiments, particularly in determining the energy
of the neutrinos at the points they interact with the detectors (before and after oscilla-
tion). Given that neutrinos cannot be detected directly, the way their energy is measured
is by measuring the energy of the detectable secondary particles produced in such inter-
actions. The energy miss-reconstruction comes from the inability of the detectors to fully
contain some produced particles, or detect neutral ones. Also, neutrinos in a given energy
range can undergo different interactions that have the same or similar observables. For
such reasons, neutrino interaction experiments must themselves rely on models and/or
data from other particle and nuclear physics experiments. Those helper models are fur-
ther constrained by performing better neutrino experiments, which in turn will be used to

guide new measurements.

This thesis is aimed to unveil how the coherent production of charged pions due

to the inelastic interaction of muon-neutrinos with nuclei (CC coherent pion production),
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depends on the nuclear media (material) the interaction takes place on. More specifically,
it compares the cross section also known as interaction probability, of coherent pion pro-
duction in Hydro-carbon with the cross section of the same reaction in graphite (pure
carbon), steel (mostly iron) and pure lead. It has been predicted that the cross section
scales as the number of nucleons to different powers: A'/3 or A2/3. There is also a model
that predicts an energy-dependent scaling. Knowing how the cross section scales with “A”
is very useful to extrapolate neutrino interaction measurements from one material where
the measurement has taken place to a material where it has not. The interaction also can
mimic the signature of the “muon-neutrino disappearance” in neutrino oscillation experi-
ments, where the pion can be mistaken as a proton. Thus by measuring the cross section
in carbon, iron and lead will allow to reduce the systematic uncertainties of oscillation

experiments using those materials.
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NEUTRINO PHYSICS

“We are ready now, turn on the sun” (Ray Davis during the first data taking at the Home-
stake mine). Neutrinos are nowadays one of the most active research topics in physics,
in diverse areas like astrophysics, cosmology and of course particle physics. They are the
second most abundant particles in the universe after photons (~ 10 billion per second

2 on earth), and yet the most elusive ones, as they basically just

pass through every cm
couple to the weak field (their coupling to the gravitational field is negligible). They have
a mean free path of around one light-year in lead, which gives an idea of its elusiveness.
This peculiarity makes them very useful, as they are the only source of study for some
otherwise inaccessible regions of the cosmos, like the core of stars, from where they travel
basically straight to the point of detection. They play a very important role in the en-
ergy production mechanism in medium size stars like the Sun, and carry ~ 99% of the
energy produced in supernovae. Despite their great importance, neutrinos are probably
the particle within the standard model with most unknowns. Seminal discoveries on the
field during the second half of the twenty century, have completely changed some aspects
of neutrino physics with respect to the SM view, and have opened a wide spectrum of new

physics beyond the SM.

2.1 The Standard Model of Particle Physics

The standard model is a gauge theory based on the U (1) x SU (2) x SU (3) local gauge
symmetry (the standard model symmetry group), from which the three “fundamental”
strong (SU (3)), weak (SU (2)) and electromagnetic (U (1)) interactions can be derived,

and furthermore, the electromagnetic and weak forces can be united in the same physical
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and mathematical description, “the electroweak force”. The SM is ultimately derived from
Quantum Field Theory (QFT), which explains all forces and elementary particles in terms
of quantized fields to which the particles are coupled. It is quite remarkable that despite
being one of the biggest scientific achievements of all times, it still cannot explain gravity.
Leaving gravity aside, the SM is capable to describe the majority of natural phenomena
with great precision.

The overall picture of the model consists of the interaction of matter particles (fermions),
by the emission and absorption of force carrier particles (bosons), plus the mechanism by
which particles acquire mass. As simple as the idea may seem, some fermions are only
affected by some of the forces and are completely immune to the others. These forces have
some quite different, and very peculiar features that at the end make the whole picture a

very complex one. Figure shows all the particles composing the standard model.

three generations of matter interactions / force carriers
(fermions) (bosons)
| 1l m
mass | =2.2 MeVic? =1.28 GeVic? =173.1 GeVic? 0 =124.97 GeV/c*
charge | 3 el % 0 0
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Figure 2.1: Fermions and bosons in the Standard Model. A dim line associated to each
force carrier boson surrounds the fermions each boson acts upon. There exists an equal

amount of fermions made of anti-mater (anti-fermions).

2.1.1 Fermion Generations

Fermions in the standard model exist as six quarks, six leptons and their corresponding
anti-particles (table [2.1]). All fermions are assigned “quantum numbers” that reflect their

internal symmetries, which determine their coupling to the force fields and how they

8



NEUTRINO PHYSICS

interact with them. Fermions can be arranged in three generations of pairs of particles
(doublets) where mass increases from the first to the third. All quarks and leptons have
spin of 1/2 and therefore obey the Fermi-Dirac statistics, and Pauli’s exclusion principle.

Each generation carries a different lepton and quark flavor.

Generation Leptons Mass Electric Charge | Quarks Mass Electric Charge
Ist Electron e 0.5 MeV -1 Up u 2.3 MeV +2/3
Electron Neutrino v <2eV 0 Down d 4.8 MeV -1/3
ond Muon g 105.6 MeV -1 Charm ¢ 1270 MeV +2/3
Muon Neutrino v, <0.17 MeV 0 Strange s 95 MeV -1/3
ard Tau 7 1776.9 MeV -1 Top ¢ 173200 MeV +2/3
Tau Neutrino v, <15 MeV 0 Bottom b | 4660 MeV -1/3

Table 2.1: Generations of leptons and quarks in the standard model. Masses are obtained
from the Particle Data Group (PDG) [20].

Charged particles from the third and second generation are unstable and decay into lighter
particles. The charged lepton in the first generation, the electron, is stable. While the
quarks in the first generation decay into each other (u <> d). Neutrinos in all generations

are stable.

Lepton Generations

Each lepton generation consists of a charged and a neutral particle. Charged leptons:
electrons, muons and taus, are coupled to the electromagnetic and weak fields; and neutral
leptons: electron neutrinos, muon neutrinos and tau neutrinos couple only to the weak
force. Leptons in different generations have a “flavor” or lepton number associated to that
generation, and in any lepton interaction, lepton numbers of the three generations before
and after the interaction are the same, which is known as lepton number conservation.
There is no explanation in the SM for why charged particles have mass and the neutral

particles are massless in each generation.

Quark Generations

Quark generations consist of two quarks, one with positive and one with negative electric
charge of 2/3 and 1/3 of the electron charge, respectively. All six quarks couple with the
strong, electromagnetic and weak fields, but unlike leptons, quarks of the same generation
do not share flavor, each of the six quarks has its own flavor and a flavor number attached

to it: up, down, charm, strange, top and bottom. These “flavor numbers” are conserved

9
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in strong but not in electroweak interactione{ﬂ Because of their coupling to the strong
force, quarks also carry “red”, “blue” and “green” charge. These “color” charges, are the
charge of the strong interaction. Quarks are always confined in the interior of baryons
such as protons and neutrons in groups of three quarks, and in mesons such as pions and
kaons in pairs of quark anti-quark. The color charge is needed to comply with Pauli’s
exclusion principle, as baryons can have more than one of the same quark flavor, but with
different color. All baryon and meson combinations are “colorless”, meaning that quark
combinations are always such, that bare color charge is never observed (red, blue and

green combinations in baryons and color anti-color combinations in mesons).

2.1.2 Force Carriers Bosons

Each of the three fundamental forces of the SM has a force carrier, these are called gauge
bosons, they all have a spin of 1 and therefore are ruled by the Bose-Einstein statistics
and do not follow Pauli’s exclusion principle. Each force acts on different particles, or said
other way, every kind of particle interacts through different forces. For instance, the weak
force acts on all fermions, the electromagnetic force acts on quarks and charged leptons,
and the strong force only on quarks (figrue .

Boson Mass
(GeV/c?) Electric Charge
(1.6x10719C) | Particles It Acts On
w+ 80.4 +1 | All fermions
91.2 0 | All fermions
0 0 | All quarks and charged leptons
g 0 0 | All quarks

Table 2.2: Gauge bosons, carriers of the fundamental forces in the standard model. There
are also quantum numbers for the charge equivalent for the strong and weak forces, but

are omitted here for simplicity.

Lin fact, by definition there is no flavor for the up and down, since the absence of all the other flavors

would indicate the presence of quarks from the first generation, up or down
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Electromagnetic Force

The electromagnetic force consists of the emission and absorptionﬂ of “virtual” photons
by particles carrying electric Chargeﬂ Its range of influence is infinite and decreases as the
inverse of the square of the distance (1 / 7'2). QED is the quantum field theory of the elec-
tromagnetic field that describes the interactions among all electrically charged particles,
and so, the interaction between electromagnetic waves and matter, at the fundamental
level [34], [35], [36]. It was built upon Dirac’s equation (which made the first relativistic
version of a quantum theory, which naturally included the spin of the particles), but ac-
counting for the infinites present at second and higher orders of perturbation theory, in
a process called “renormalization” [37]. All electromagnetic processes like Compton scat-
tering, pair annihilation, pair creation, etc., can be represented using Feynman diagrams

in figure these are a fair visualization of the process.

e

e

Figure 2.2: Visualization of the basic electromagnetic interactions in QED, using Feynman
diagrams. Feynman depicted fermions and bosons as straight and wavy lines, respectively.
The time flow goes from bottom to top, an electron comes in, exchanges a photon and

leaves.

Strong Force

The strong force consists of the exchange of virtual gluons between particles carrying
color (see figure . There are three color charges: blue, green and red. There exist
eight different gluons, each carries a unit of color and a unit of anti-color [37]. Its range
is restricted to about the size of the nuclei of the atoms (10_15m). Given that the gluon

mass is zero, as that of the photon, its range should also be infinite. The force between

Zthis is better explained in terms of “exchange” of virtual particles, since in QFT it is not clear which

of the particles emitted and which absorbed the virtual boson.
3virtual particles are temporary excitations of the gauge field, which time span is determined by the

Heisenberg uncertainty principle.
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quarks and gluons increases as their distance also increases, and the energy required to
separate them, will create new hadrons. Therefore quarks and gluons cannot exist freely
EL a phenomenon called confinement [38]. Because of confinement, the range of the gluons
is limited and so is the range of the strong force. The force between nucleons in the atomic
nucleus is just the residual force between quarks and gluons confined inside hadrons.

In high energy interactions, as the distance between quarks and gluons decreases, the
strong interaction decreases as well, at the point where the particles can be treated as
“free” particles (kinematically speaking), this phenomenon is called “asymptotic freedom”.
Unlike the electromagnetic force, the strong force does not have a classic counterpart, it
was developed in a quantum mechanical framework from the beginning, called quantum
chromodynamics (QCD). It is the quantum field theory of the color field describing the
interactions between quarks and gluons, mathematically based on quantum electrodynam-
ics (QED). However, the Feynman calculus of QED can only be applied in the asymptotic
freedom regime, it does not work in the long-range regime of quantum confinement. Lattice

QCD is a promising candidate to work in this regime [39].

q

q

Figure 2.3: Visualization of the fundamental interaction in QCD using Feynman diagrams.
Quarks and gluons are depicted as straight and curly lines, respectively. The time flow
goes from bottom to the top of the image, where a quark comes in, exchanges a gluon and

leaves.

The Weak Force

The weak interactions are governed by the exchange of virtual W and neutral Z bosons,
between particles carrying weak isospin, the “charge” in weak interactions. Since all
fermions carry isospin (+1/2 for all neutrinos and up-like quarks and —1/2 for all massive
leptons and down-like quarks), the weak force is the only elementary force that affects

all fermions. Its range is even smaller than that of the strong force, about the diameter

“not below the so called “Hagedorn” temperature of ~ 2 x 1012K

12



NEUTRINO PHYSICS

of a proton (~ 1.6 x 10_15m), and was actually considered a point interaction in the
first theory of beta decay [40]. Its short range is due to the fact that, unlike the other
forces, the mass of the force carrier bosons, not only is not zero, but it is remarkably big
(according to the Heisenberg’s uncertainty principle the larger the mass of the particle,
the shorter its lifetime, and the shorter its range). There is a theory of weak interactions
called “quantum flavor dynamics” (QFD), but it is not commonly used to explain the
weak interactions, as shown later in this section, the electroweak theory is preferred. By

3

means of the “weak” decay, the weak force is the only force that changes the identity of
the particles at the fundamental level, this implies that the quark flavor is not conserved
in charged current interactions (interactions mediated by W= bosons) [41], [42] (lepton
flavor is always conserved in weak interactions). In strong or electromagnetic decays, none
of the fundamental particles decay into another particle.

The weak force only couples to left-handed fermions and right-handed anti-fermions, which
means that it maximally violates parity. This was observed by Chien Wu in 1956 [43]. In
1964, James Cronin and Val Fitch showed that charge-parity (CP) symmetry was violated
by weak kaon decays [44]. CP violation is not maximal, and its limited occurrence is
associated to the dominance of matter over anti-matter (matter anti-matter asymmetry)

in the universe.

Figure 2.4: Visualization of the fundamental interaction of leptons and quarks by the
exchange of intermediate vector bosons. A quark or lepton comes in, exchanges a W= or

Z boson and leaves.

Because weak interactions maximally violate parity by only coupling to left-handed fermions
and right-handed anti-fermions, the weak current cannot have a vector structure as in
QED or QCD [37]. It needs a structure that can account for parity violation, while being
relativistic invariant. The only operators compliant with both, are the vector and axial-
vector (pseudovector) operators. This notation is useful in the process of unification of
the electromagnetic and weak forces, where both electromagnetic and weak currents can

be written in terms of “chiral spinors” [45]. The charged and neutral weak currents are

13



Chapter 2

expressed in equations 2.1 and

o — —WGw _, 5

= Ur—22 1— Us 2.1
Ju =T 57 (1=9") i (2.1)
. =1

jivc:u 7gZ7“ (CV—C’A'y5) U; (2.2)

where g,, and g, are the charged and neutral coupling constants, u; y are the Dirac spinors,

1,2,3,4 2,34

~* are the 4x4 matrices, 7° = iy'y2y3y%, Cy and C4 are coeficients depending on

the quark or lepton in the interaction.

Electroweak Unification and the Higgs Mechanism

It may seem weird and stubborn trying to unify the electromagnetic and weak forces
knowing their big differences, to say, the electromagnetic force boson is massless, with
infinite range and acts on particles with electric charge only, and it does not violate parity
nor CP symmetries; while the weak force gauge bosons, on the other hand, are heavy and
short-lived, whereby the force range is quite short, and acts on all fermions, furthermore it
violates both parity and CP symmetries. However some of these properties were unknown
at the moment, and when constructing the gauge theory for the weak force, including
the electromagnetic force seemed to fit naturally. Hints of unification first appeared when
Sheldon Glashow, Abdus Salam and Steve Weinberg were working on a renormalizable
gauge theory for the weak force. Glashow first found the need for a neutral massive particle.
Salam and Weinberg predicted three massive and one massless boson. The massive bosons
accounted for the very short range of the weak force. The electroweak theory predicts that
both forces are indistinguishable above energies ~ 250 GeV and a temperature ~ 10K
where the four gauge bosons are massless. This temperature was attained in the early
stages of the universe. As the universe cooled down, there was an spontaneous breaking
of symmetry where three of the bosons acquired mass by coupling to the “Higgs field”
below the temperature threshold, through the so called “Higgs mechanism” [46], [47]. The
photon remains massless because it does not interact with the Higgs field at all. All other
particles in the SM get their mass by interacting with this field. The different masses
depend on the strength of the interaction with the field.

2.2 Neutrinos in the Standard Model

Neutrinos are described in the SM practically as originally proposed by Wolfgang Pauli:

electrically neutral and very light particles (actually massless in the SM), that saved
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the conservation of energy and momentum in the process known as nuclear 5-decay (see
chapter [I). They were first put in theoretical ground by Enrico Fermi, in a theory that
tried to explain this decay [40], in which he treated it as a “point” interaction, where
the range is considered zero (figure . The theory describes the weak interactions with
good agreement at energies lower than ~ 100GeV, above which the predicted cross section

increased considerably and so did the disagreement with experimental data.

Figure 2.5: Fermi coupling for g — decay.

The neutrino (actually the anti-neutrino) was discovered in a similar process called inverse
p-decay (see figure in the Savannah River experiment performed by Frederick Reines
and Clyde Cowan in 1955 [48]. They used a tank of water with cadmium chloride dissolved.
In it, electron anti-neutrinos from a near nuclear reactor interacted with the quasi-free
hydrogen protons in the water, resulting in a positron and a neutron. The positrons
annihilated with electrons almost instantaneously creating a pair of gammas, the neutron
would be captured by a nucleus of cadmium some microseconds after (figure . The
signature was unmistakable and the measured cross section in close agreement with the

2

theoretical prediction, ~ 6.3 x 10™#*¢m? and ~ 6.0 x 10~*4em?, respectively

Figure 2.6: Detection signature for the electron anti-neutrino. An anti-neutrino from the
nuclear reactor hits a proton in the tank, producing a positron and a neutron (broken

line), in the process called inverse 3-decay (V. +p — n +e™).

Particle accelerators became capable of producing neutrinos in a more controllable envi-
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ronment thanks to the technique developed by Leon Lederman, Melvin Schwartz and Jack
Steinberger at Brookhaven, where a proton beam impacted a fixed target, from which
mesons (pions and kaons) are produced. The mesons later decay in flight into muons and
muon neutrinos. The neutrino energy and direction are correlated to the initial mesons
energy and direction. The muons accompanying the neutrinos were stopped by a dense
steel shield. Using this technique, they discovered there was a second type of neutrino, by
observing the reaction 7 + p — p + n and no events of the reaction 7 +p — e +n [49)].
This demonstrated the existence of a neutrino associated to muon interactions, the muon
neutrino v,,. In 2002, the DONUT collaboration at Fermilab would find the third neutrino,

the one associated to tau interactions, the tau neutrino v, [50], [51].

After parity violation was observed in weak processes by Chien Wu in 1956 [43],
Maurice Goldhaber designed an experiment to measure the helicity of the neutrinos by
measuring the circular polarization of gamma rays from the “orbital electron capture” by
Europium, with the neutrino helicity being the same as that of the gamma rays [52]. He
and his team found that all neutrinos had a negative helicity, confirming the maximum
violation of parity in weak interactions and strongly supporting the zero mass of the
neutrino, inasmuch as, had neutrinos been massive they would not have had definite

helicity.

With the experimental evidence until then, the SM showed neutrinos as the only
fermions with no mass and no charge. They came in three generations (flavors), and were

left-handed (maximal parity violation), interacting only through the weak force.

2.2.1 Neutrino Interactions

As neutrinos only interact through the weak force, their scattering off nuclei occurs only
through the exchange of W* in charged current (CC) interactions or through Z bosons
in neutral current (NC) interactions, making these interactions very rare, due to their
small cross sections. A neutrino can interact with the electrons surrounding the target
nucleus, with the nucleus as a whole, with correlated or individual nucleons bound inside
the nucleus, and with quarks inside nucleons. The probability that a given neutrino

undergoes any of these interactions depends on its incoming energy, figure 2.7

Going deeper into the atomic and nuclear structure, these are the important neutrino

interactions for this analysis

e Neutrino-Electron Scattering - It is a rare interaction, usually a background in

neutrino-nucleus or neutrino-nucleon scattering. It occurs via the CC or NC when
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Figure 2.7: Neutrino and anti-neutrino total cross section as a function of the neutrino
energy. Contributions from quasi-elastic scattering, resonance pion production and deep

inelastic scattering are shown. [Figure by G.P. Zeller, Fermilab.]

the incident neutrino is an electron neutrino, and through the NC channel when the
neutrino flavor is muon or tau. This is considered a point-like interaction as both
the electron and neutrino are point-like fermions. The signature of such interactions

is a forward going electromagnetic shower developed by the outgoing electron, figure

e Neutrino-Nucleus Coherent Scattering - In this process the wavelength of the four-
momentum transfer to the nucleus is larger than the radius of the nucleus, allowing
the nucleus to act as a bound state of nucleons, where all react in phase (coherently).
This is called neutrino coherent scattering, and can happen elastically (NC only) and
inelastically (NC and CC). The signature in both cases is the nucleus recoiling with
small energy and the creation of a forward-going lepton. The inelastic scattering
produces a forward charged (neutral) pion in CC (NC) interactions, which scatters

elastically off the entire nucleus, figure [2.9

e Scattering off Correlated Nucleons - This process is mediated by the so called meson
exchange current (MEC) [53], which is the exchange of mesons (pions) between
nucleons. Here the scattering is from two or more nucleons, in any of the possible

combinations of proton and neutron, or from the exchanged mason itself, figure 2.10]

e Neutrino-Nucleon Scattering - Momentum transfer is big enough to interact with
individual nucleons within the nucleus. This includes the well known quasi-elastic

scattering off neutrons and protons and resonant pion production, figure [2.11

e Neutrino-Quark Scattering - Upon increasing momentum transferred, smaller dis-

tances can be probed. When the wavelength of the interaction is smaller than the
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nucleons size, and the quark structure of the nucleus is observed. In these “deep
inelastic scattering” (DIS) interactions, nucleons are broken apart, and high number
of hadrons (high multiplicity) due to quark hadronization is observed, figure
It is important to remember that quarks are bound in the nucleon and interacting
with each other by gluon exchange, so quarks cannot just generally be considered

free particles inside the nucleus.

Figure 2.8: Neutrino-electron scattering. Either CC or NC.

MV
—€

Figure 2.9: Neutrino-nucleus scattering. The example is the CC coherent pion production,
where the wavelength of the momentum transferred to the nucleus is larger than the nuclear

radius.

A classification of the interactions can be done more conveniently in terms of the invariant

mass of the hadronic system W, defined as

W2 =pi = (p, +pn — ) (2.3)

where py, p,, py and p; are the hadronic, neutrino, target nucleon, and outgoing lepton,

four-momenta, respectively. Equation [2.3]is valid just for interactions with free nucleons.
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Figure 2.10: Scattering off correlated nucleons. The correlated nucleons are knocked out
off the nucleus, leaving “holes”, for what the interaction is called “npnh” (n-particles,

n-holes). The figure shows the example of two particles being knocked out.
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Figure 2.11: Scattering off single nucleons. The image shows a typical 7 charged current

quasi-elastic (CCQE) interaction.

The invariant mass of the hadronic system is related to its multiplicity (the number of
hadrons in the final state). The higher the invariant mass, the higher the multiplicity. As
it will be shown shortly, understanding these interaction mechanisms for neutrinos is very

important for neutrino oscillation experiments (see section [2.3.1)).

Quasi-elastic Scattering

The invariant mass of this interaction is just the mass of the final state nucleon (proton
or neutron mass ~ 1.0GeV), it is the process with the second smallest invariant mass,
after coherent pion production. In charged current quasi-elastic scattering, for instance,
a neutrino (anti-neutrino) scatters off a neutron (proton) creating a muon (anti-muon)
and a proton (neutron) (see figure . The scattering is always off a nucleon which is
considered at rest and “free” inside the nucleus. Oscillation experiments reconstruct the

neutrino energy for identified QE scattering using muon kinematics only

m2 — (mp — By)* —m2 + 2 (m, — ) E,
2(mp — Ey — E,, +pycosb,)

EQF — (2.4)
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Figure 2.12: Neutrino-quark scattering (DIS). In the picture, a neutrino interacts with
one of the u quarks inside a proton, turning it into a d quark. The d emits a gluon which
fluctuates into a u-u pair. The “new” wu couples with the spectator u and d (gray arrows),
while the @ couples with the “turned” d to create an anti-pion. The process is known as
re-hadronization. See Feynman diagram for this interaction in figure

where m,,, m,, and m,, are the masses of the muon, neutron and proton, £, is the binding
energy, E, and p, are the muon energy and momentum, and 6, is the muon angle with
regards to the neutrino beam. The Llewellyn-Smith model is used to get the predicted

cross section [54]. The expression is valid for both v and 7 interactions

do _ m%\,G% cos? fc
dQ? 8 E?2

2
(@) m@)tre@ ) e

N My

where my is the mass of the target nucleon, G is the Fermi constant, ¢ is the Cabibbo

angle [37), Q> = —¢> = —(p, —m)*, s = (p» +pn)>, u = (m—pNn)°, A(Q?), B(Q?),
and C (Q2) are functions of nucleon vector and axial form factors from electron scattering

measurements [55]

Resonance Pion Production

In resonance pion production, neutrinos scatter off a nucleon, producing an excited nu-

cleon resonance such as the A, which then decays into a pion and a nucleon (figure [2.14)).
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Vu(Pp) 1 (i)

Figure 2.13: Feynman diagram for neutrino and anti-neutrino induced CCQE scattering.
Particles between parentheses correspond to the particles produced by an anti-neutrino

interaction.

Resonance production happens at hadronic invariant mass less than about 2GeV. Reso-
nance production yielding a single pion, is best modeled by the Rein-Sehgal model [56],

where the cross section is calculated as

d20 _ G% Q2 K m?\f B MTQes
2mny

2 2
m —RW ) (u UL+U O'R‘I“Q’U/UO'O)(S(W*MTQS) (26)
where Q2 is the negative of the four-momentum square of the W boson, ¢ and v are the
three momentum of and the energy transferred to the W boson , u = (E,; + E; + |q]) /2E.,
v=(E, +E —|q]) /2E,1, o1, or and og are the left-handed, right-handed and zero he-
licity partial cross section of the target nucleon, W is the invariant mass of the hadronic

system, and M,.s is the mass of the resonance.

Deep Inelastic Scattering

DIS interactions have a momentum transfer larger than ~ 1 GeV and typically a hadronic
invariant mass larger than ~ 2 GeV. With increasing invariant mass, hadron (primary
pions) multiplicity also increases. In DIS processes the nucleon structure is probed. Al-
though the neutrino interaction happens at the quark level, quarks are always bound in
the nucleon and cannot be considered free (figure 2.15). The model used in neutrino
simulations is the one by Bodek and Yang [57], which uses the cross section from the

fundamental theory of v — ¢ scattering.
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p (n) p (n) A++(+) AOH

Figure 2.14: Feynman diagram for neutrino and anti-neutrino induced delta resonance pion
production. Coma separated particles are neutrino and anti-neutrino induced particles.
Particles within parentheses correspond to the particles produced when the nucleon target

is a neutron.

o _Ch (14 LN 2 (00 + (-0 B (00%) oy (1- V) B (2,022
dredy 27 My, ’ ’ 2 ’ '
where x = Q?/2py - q is the fraction of the target nucleon four-momentum (py) taken by
the quark that interacted with the W boson, and y = pN - ¢/pN - p,; is the fraction of the
neutrino energy transferred to the target nucleon, Fj (x, Q2) and F> (m, QZ) are nucleon

structure functions dependent on Q? [57].

There exist other processes whose cross sections and models are not shown for being of
little importance for the present analysis and because of their rareness. Examples of these,
are the neutrino-electron cross sections for CC and NC channels, or the elastic NC coherent
scattering. The theory of coherent pion production is treated in greater detail in chapter
as this interaction is the object of study in this thesis.

Nuclear Effects

The processes covered so far relate to the neutrino interaction itself, and the particles cre-
ated from that interaction. Such particles are the signature and means by which interac-
tions are defined. However, besides neutrino-electron scattering and neutrino interactions
(like coherent pion production), all particles produced in the neutrino interaction with
nucleons or with quarks within a nucleus are likely to be affected by the dense nuclear

environment. This is of great importance for neutrino oscillation experiments, as these
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v.(9) K (W)

Figure 2.15: Feynman diagram for neutrino and anti-neutrino induced deep inelastic scat-
tering. Particles within parentheses correspond to the particles produced by an anti-
neutrino interaction. Here, a particular DIS interaction is shown, where a proton and a

pion are created.

effects can completely change the original signature of events, or suppress the event rate
for a given interaction, having as major effect the miss-reconstruction of the neutrino en-
ergy, which is crucial for calculating oscillation probabilities. These effects can be divided
into “suppressing/enhancing” effects, mostly dependent on the Q2 of the interaction; and
in final state interactions (FSI) effects, due to the re-interaction of the neutrino-induced
particles inside the nucleus. The cross section of these processes are not obtained from
exact theoretical calculations, due to the fact that all nuclei are a many-body problem,

for which there are no exact solutions.

Suppressing/Enhancing Effects These kind of nuclear effects do not modify an initial
state interaction, they actually prevent them or make them happen, modifying the event

rate itself.

e Pauli Blocking - In events with low @2, knocked out nucleons need to have enough
energy to escape the nucleus, otherwise, due to the Pauli exclusion principle, its
creation may be suppressed, as there will be no available states for those low-energy
nucleons to occupy, so this effect reduces the event rate when the momentum transfer
(QQ) is sufficiently small. This is modeled sufficiently well by the relativistic Fermi
gas model (RFG) [58], [59].

e Short-Range Correlations - This happens when the wave functions of close nucleons

overlap. Its range is short, less than 3fm. This has an enhancing effect for QE
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scattering at low Q2. One or more nucleons can be knocked out. The effect is
modeled using the Bodek-Ritchie tail to the RFG and spectral functions [60].

e Medium-Range Correlations - In this process neutrinos also scatter from more than
one nucleon (proton-proton, neutron-neutron or proton-neutron, for instance) and
is referred to as “Meson Exchange Current” (MEC) where two or more nucleons
exchange mesons when they are close enough. At low @Q? this process enhances
the event rate, knocking out “n” nucleons and leaving “n” “holes” in the nucleus,
leading to the “npnh” classification. Such effects are characterized by the Valencia
model [61].

e Long-Range Correlations - The “random phase approximation” models the screening
effect of all the nucleons have over the nucleon the neutrino is scattering off, by
suppressing the coupling between the exchange W= or Z boson with the target
nucleon at low Q2. This screening is an analogy of the electromagnetic screening of

molecules in a dielectric. It is usually characterized by the Nieves model [62].

Final State Interactions (FSI) The probability of re-interactions inside the nucleus
is relatively high (the bigger the nucleus the larger the number of nucleons and the larger
the probability). The original particles created in the neutrino interaction, can undergo

different stochastic processes inside the nucleus:

e Elastic Scattering - Initial state particles can bounce off a nucleon, loosing some of
its initial momentum, and changing its initial angle. By the time the particle is

detected out of the nucleus its momentum and angle are changed.

e Hadron Absorption - This happens mainly for pions absorbed by proton-neutron
pairs, although it also occurs in more than two nucleons. Absorption by one nucleon

is kinematically forbidden by momentum and energy conservation.

e Pion Production - A pion or nucleon created in the first interaction can interact with

a nucleon, producing multiple particles, such as pions.

e Charge Exchange - It consists on the hadron conversion of p — n, n — p; and

+ 0 0 +

m*t — w7, 0 — 7 inside the nuclear medium.

All these effects are modeled using a mostly classical “hadronic cascade model” [63], it
carries the initial state interaction particles through steps inside the nucleus. The proba-

bility of any of the processes for happening depends on its cross section, usually obtained
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from previous data. When data is not available, extrapolations from different nuclei are
performed, this has high uncertainties, given that the A-dependence of the scaling is not
always well understood. More recently the GiBUU event generator has implemented a
more theoretical-oriented nuclear transport approach based on the Boltzmann-Uehling-
Uhlenback equation [64].

2.3 Neutrinos Beyond the Standard Model

In 1960, just a few years after the discovery of neutrinos, Raymond Davis Jr. and John
Bahcall proposed the famous Homestake experiment that aimed to measure the flux of neu-
trinos created by the Sun. Ray Davis took on the experimental design and construction,
while John Bahcall did the theoretical calculation based on the “standard solar model”
(SSM) which he also helped to develop, and for which they were trying to get experimen-
tal evidence [65]. The experiment consisted in filling a tank of ~ 380 m? at ~1500 m
underground with CoCly (tetrachloroethylene) and count the number of neutrinos coming
from the Sun, by looking at the reaction v, + 37Cl — 3" Ar 4+ e~ and counting the number
of chloride atoms that turned into argon inside the tank. Ray Davis counted only about
a third of the neutrinos predicted by John Bahcall’s calculation. Both the experimental
method and calculation shed doubts over the scientific community, who suspected that
at least one of them was wrong. Several attempts to find flaws in Bahcall’s calculation
were unfruitful, and later experiments like Kamiokande II [66] and Super-Kamiokande [67]
using ultra pure water, and GALLEX [68] and SAGE [69] using liquid gallium confirmed
the neutrino deficit, although not as low as in Davis’ experiment (figure . The deficit
seen by all experiments and the disagreement among them, came to be known as the “solar

neutrino problem” [70].

A proposal for solving the problem was given by Bruno Pontecorvo [71] where os-
cillations, similar to those of kaons, would be possible if neutrinos had mass. Neutrino
oscillations were latter observed by the Super-Kamiokande experiment, using muon neu-
trinos created in the atmosphere (atmospheric neutrinos), a difference between the muon
neutrino fluxes coming from above and below ground was observed [72]; and by the SNO
experiment that was able to observe the total flux of neutrinos by using heavy water |73],
see figure The SNO experiment showed that Bahcall’s predictions for the total solar
neutrino flux was correct, and that in accordance with neutrino oscillations, the v, rate
seen by experiments was also correct. Both Bahcall and Davis were vindicated. Neutrino
oscillations opened a new branch of physics beyond the standard model. Due to their

newly discovered properties, such as mass, lots of experiments trying to measure them,
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Figure 2.16: Comparison of the events predicted by the SSM and the events detected in
chlorine, ultra-pure water and gallium. Blue bars are the measurements in each material,
while the highest bar in each case, shows the contribution of different neutrino production

mechanisms that account to the total neutrino flux. [Figure from ]
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Figure 2.17: Extension to ﬁgure in which the SNO results are included. It can be seen
in the pair of columns at the far right that, the SNO measurement is in close agreement
with the solar model, once all neutrino flavors have been considered. The second column
from the right corresponds to the electron neutrino flux only, which is also in agreement
with the Ray Davis’ result. [Figure from [1].]
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2.3.1 Neutrino Oscillations

As seen in section CC weak interactions do not conserve quark flavor, this means
there is a “mixing” of flavors in the quark sector, shown in the Kobayashi-Maskawa matrix
[74]. Similarly there is a flavor mixing in the neutrino sector, where neutrinos are “allowed”
to change flavor. The neutrino flavor state is defined in terms of the neutrino mass state

and a mixing matrix as

va) = Uq;lvj) (2:8)

where o = e, pu, 7 are the neutrino flavors; U, ; is the PMNS mixing matrix [75]; and
j = 1,2,3 are the neutrino masses. Neutrinos travel as a superposition of all neutrino
mass states, but their interaction with matter is through flavor states. The mixing matrix
shows how a given flavor is related to all three masses, seemingly each neutrino mass state

can be represented as a superposition of neutrino flavor states

Uel Ue2 Ue3
U = Un Uux Uus
U’Tl UT2 U’T3
€13C12 C13512 s13e” %
= —C23512 — 3130125236+i6 C23C12 — 513512323€+i6 C13523
93812 — S13C12¢23e T —sa3c12 — s13s12¢03 T c13c03
1
X el (2.9)
e’ﬂ

where s;; = siné;; and ¢;; = cosb;;, 012, 623, and 013 are the mixing angles (rotations
between flavor and mass phases); § is the Dirac phase; and a and [ are the Majorana
phases |76]. The best estimates for these parameters are reported in the Particle Data
Group [20].

As neutrinos travel, there is a probability they will be detected as flavor S given they

started out as flavor «

P(vo = vg) = ‘ (vglva (1)) ‘2 = ‘ ZU;jUBje—iEjt 2 (2.10)
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where the time-dependent version of equation has been used

Vo (1)) = Usje™ "5 |v5) (2.11)

For ultra-relativistic neutrinos (E > m), t ~ L, and the energy can be approximated as
E~p+ ”21—; ~ F+ Z%, L being the distance traveled by the neutrino, letting equation
2.10l as

. 2
P (v — vg) = ‘ S Uz Uspe MIE2E (2.12)
J

The mixing matrix [2.9| can be approximated for the probability of oscillation between just

two neutrino flavors, like

U= C12 512 (2.13)
—S12 (€12

The equivalent of equation [2.12| considering also just two neutrino flavors, after some

algebra and trigonometric substitutions, is

Am?2L
4F

P (Vo — vg) = sin® 20sin? (2.14)

Am? is just the difference of the squared masses of neutrinos 1 and 2, it determines the
frequency of the oscillation, while the mixing angle # determines the amplitude of the
oscillation. This results shows that oscillations imply that neutrinos are massive, but
also that neutrino oscillation experiments are only sensitive to differences of the neutrino
masses and not to the absolute values. Because of that, there are two possibilities for the
“mass hierarchy” (which of the masses is the greatest) of neutrinos. Figure shows

these two possibilities.

There are still some important unknowns for neutrinos that current oscillation experiments
are trying to unveil: 1) is sind # 07, which is to say, is there CP violation in the neutrino
sector?; 2) is mg > my or is mj > mg, or what is the right mass hierarchy?; 3) what are
neutrinos absolute masses?; 4) are there more than three neutrinos?; 5) are neutrinos their
own anti-particles?

Last two questions are not going to be solved by neutrino oscillation experiments, because
as it was mentioned, they are not sensitive to absolute masses, neither to the Majorana

phases.

28



NEUTRINO PHYSICS
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Figure 2.18: Normal and inverted mass hierarchy of neutrinos. The normal hierarchy in
the left side considers the possibility when v3 is larger than vs. 15 has been determined to

be larger than v;. Colors show the flavor content in each mass eigenstate. [Figure taken

from [2].]

Neutrino Oscillation Experiments

Oscillation experiments seek for the collective precise measurement of all oscillation pa-
rameters present in the PMNS matrix, which will ultimately help answer questions about
the nature of neutrinos. They use a “near” (usually a few hundreds of meters from the
neutrino source) and a “far” detector (separated L km from the near one, as determined
from equation . No experiment is capable of measuring all by itself, each one is
sensitive to a given channel for which it was designed. Experiments are classified by its
baseline as short-baseline (from few meters to around 100 km) and long-baseline (on the
order of hundreds of km). The baseline in neutrino experiments is determined by the mass
splitting Am? and the energy of the neutrino beam. In any case L/F in equation is
adjusted to try to maximize the oscillation probability and event rate in the far detector.
Given the difficulty in creating v, beams, all experiments use neutrino or anti-neutrino
beams of one of the other two flavors, and either look at the disappearance of v, or v,

their survival probability) or at the appearance of v, (the v,, — v, oscillation probability).
o

The liquid scintillator neutrino detector (LSND) was one of the first short-baseline
experiments, it analyzed 7, — V. oscillations. An excess of 7, was found that suggested
the existence of an extra type of neutrino flavor [77]. Most of the following short-baseline
experiments focused on the LSND excess or on the search for “sterile neutrinos” (neutri-
nos that only interact through gravity and are immune to all other forces), which were

candidates to explain the extra neutrino suggested by LSND. The MiniBooNE experi-
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ment at Fermilab, using different detector technology, showed agreement with the LSND
excess 78], although without requiring the sterile neutrino as an explanation. Anomalies
found in gallium and reactor experiments also suggest the existence of an extra neutrino,

usually explained with sterile neutrinos.

The first generation of long-baseline oscillation experiments followed the result for
Am3; obtained by Super-Kamiokande from atmospheric neutrinos. K2K [79] and MI-
NOS [80] measured more precise values of Am3; and 3 by looking at the disappearance
of v,. The KamLAND experiment [81] measured the Am?, and the 615 parameters, using
U, disappearance. 613 was better measured and constrained by the Daya Bay collabo-
ration [82]. Current experiments like T2K and NOvA are aiming to measure dcp and
find the right mass hierarchy. New, more ambitious experiments, DUNE [83] and Hyper
Kamiokande [84] are under construction. With baselines of 1300 and 295 km, using liquid
argon and water, respectively, are the best candidates to make a meaningful measurement
of 0cp. Both are also suitable for improving the precision of some of the oscillation param-
eters (figure . v, appearance is expected to be covered by DUNE, as it will be able
to pass the 7 lepton rest mass threshold and have way more statistics than the OPERA
experiment, which recorded five of these events [85].

dcp =0° dop = 90°

— E neutrinos baseline = 810 km
0.09 50e-03 eV?

1 008 96-05 oV

neutrinos

9 1

'_j /

0 [ 3 3 3 5 0 i 3 3 7 5
neutrino energy (GeV) neutrino energy (GeV)

neutrinos

Figure 2.19: v, — v, or ¥, — U, oscillation probability as a function of the neutrino
energy for NOvA and DUNE, with two different dcp phases. It is clear how in both cases,
DUNE overcomes NOvA’s capability to separate neutrino and anti-neutrino probabilities.

[Figure taken from [3].]

The main source of systematic uncertainties in neutrino oscillation experiments is
the neutrino energy, which is ultimately reconstructed from the final state particles pro-

duced in neutrino interactions (see section [2.2.1)). Each of these particles have different
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detector response. Neutral and escaping particles, for instance, do not deposit all of their
energy. These particles often re-interact before exiting the nucleus with the possibility of
undergoing different interactions that disguise both the true topology and energy of the
original process. Theoretical calculations of these effects are not possible in most cases, for
which models are tuned to available data in order to make predictions and comparisons.
Performing more accurate, higher-statistics, and more model independent measurements
can help further constraint current models and perhaps, guide theorists towards an exact
calculation of the process.

Oscillation experiments mostly use charged current quasi-elastic (CCQE) interactions at
low E, (where it dominates) to perform their measurements. In muon-neutrino beams,
for instance, the signature of the process is a muon plus a proton (neutron) in neutrino
(anti-neutrino) interactions. There exist background events (events with signature similar
to the interaction searched for, that comes from a different process) with very different en-
ergy distributions, that if not constrained and subtracted correctly, make the true neutrino

energy be over or underestimated.

The MSW Effect - Determining the Neutrino Mass Hierarchy

The Mikheyev-Smirnov-Wolfenstein (MSW) effect introduces modifications to neutrino
oscillations when the beam propagates through matter [86]. When density changes, it
creates resonances that further modify the mixing of neutrinos. The effect is caused by
the electrons in the material, due to CC coherent scattering of the traveling neutrinos off
electrons in the medium, the effect is different for anti-neutrinos given the lack of positrons.
The effect is important for long-baseline experiments, since it modifies in a different way
the v, and 7, appearance probabilities depending on the mass hierarchy. For normal
hierarchy the neutrino probability increases while the anti-neutrino one gets reduced. If
the hierarchy was inverted, the opposite would be observed (figure . The MSW effect

is also important for the theoretical explanation of the solar neutrino problem.

2.3.2 Other Beyond-the-Standard-Model Consequences

A large variety of beyond-the-standard-model consequences have derived from the non-
zero neutrino masses, starting from the puzzling fact that their mass is several orders of
magnitude smaller than all other fundamental fermions. The “seesaw” mechanism [87]
explains the smallness of the neutrino masses without the need of the Higgs mechanism,
if neutrinos are their own anti-particle (“Majorana neutrinos”). If that is the case, neu-

trinoless double beta decay would be allowed. Experiments for neutrinoless double beta
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Figure 2.20: Event rate comparisons in the DUNE simulation for normal and inverted

hierarchy in neutrinos and anti-neutrinos, with 0°, 90° and —90° for dcp. [Figure from ]

decay are already operating .

CP violation in the quark sector is not enough to understand why there is a matter anti-
matter asymmetry in the universe (“leptogenesis”), new sources of CP violation are needed
to account for the asymmetry. CP violation in the neutrino sector could offer an explana-
tion or at least a guidance to this puzzle. In order to find dcp # 0, precise measurements
are needed, and the DUNE and Hyper-Kamiokande experiments are being designed for
that.

It is interesting that all neutrino data so far can be successfully explained by the existence
of only three neutrinos, besides the LSND anomaly that suggests the existence of a fourth
one, the sterile neutrino. Neither the number nor the mass of sterile neutrinos have been
theoretically determined.

Neutrino oscillations opened up the floor for exciting physics, whatever the answer to the

neutrino puzzles are, our understanding of particle physics will change dramatically.
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NEUTRINO-INDUCED
COHERENT PION
PRODUCTION

Neutrino-induced coherent pion production is a neutrino-nucleus inelastic interaction]]]
where a neutrino produces a forward-going lepton by exchanging a W+ or Z boson in
the proximity of a nucleus. In the PCAC approach [90], [91], the boson then fluctuates to
heavy meson states, which add up and act like a pi-meson, which scatters elastically off the
nucleus. The pi-meson transfers momentum to the nucleus by the exchange of a pomeron
P, which is interpreted in QCD as the exchange of two gluons [92]ﬂ The wavelength of
the momentum transferred by the meson to the nucleus is larger than the nucleus radius,
making the protons and neutrons in the nucleus react in phase (coherently) as a whole,
and leaving the nucleus in its initial state, with just a small recoil energy.

The interaction is allowed to occur in both charged and neutral weak currents, and can

be induced by a neutrino or anti-neutrino of any flavor

v+ Ao l+m+A (3.1)

where A is the nucleus, [ and 7 are the outgoing lepton and pion. All the allowed channels

for the interaction are depicted in the Feynman diagram for the coherent pion production.

!The elastic neutrino-induced coherent scattering can only happen through the exchange of a Z boson,
its final state is an outgoing neutrino and a recoil nucleus with energy on the order of keV. It was recently

observed by the “coherent” collaboration [89].
2The phenomenology of the interaction is not well understood, that is why PCAC is treated as a

hypothesis.
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Figure 3.1: Feynman diagram of the neutrino-induced inelastic coherent pion production.
Letters in black are particles, and the ones in blue are their four-momenta. Besides the
anti-neutrino top bar, those particles within parenthesis are from NC interactions. A is

the nucleus.

From the diagram in figure 3.1

Pv—DpP1 = pa —PATDPr
pv—p = k+pr
= (p—p—pr)
it = (v — 1 — pr)’| (3.2)

where k = pa — p4 is the four-momentum transferred to the nucleus, and by definition
t=—k2.

The magnitude [t| must be within a given range for the interaction to take place

and remain coherent. The minimum momentum is [93]

2 2\ 2
[t]min = @ty (3.3)
2F,

and the maximum momentum, after which the nucleus breaks up, is [10]

|t|max = hQ/RJQV (3-4)
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where Q? is the square of the four-momentum carried by the W+ or Z boson, m, and E,
are the mass and energy of the pion, & is the reduced Planck’s constant, and Ry is the

nuclear radius.

3.1 Experimental Signature

For the CC interaction, the final state particles are the charged lepton and charged pion,
plus the recoil nucleus. The observable characteristics are two charged forward particles,
with negligible energy around the interaction vertex, besides the energy deposited by the
charged lepton and pion, which are considered minimum ionizing particles. The nucleus

is not observed, due to its small recoil energy (~keV)

+A=IF4rt+ A (3.5)

The final state particles in the NC process, are the neutrino and the neutral pion in the
forward direction, plus the recoil nucleus. Given the small recoil energy of the nucleus,
the improbable detection of the neutrino, and the prompt decay of the 7° (~ 8.4 x 1017
s), the only observables are the products of the neutral pion decay, two gammas being the

dominant decay mode [20)]

v+A—=suy+r'+A
70 sy 4y (3.6)

When isolating events with the characteristics of a coherent pion interaction, |t| is the most
important signature. Unlike other parameters such as the energy around the interaction
point or the momentum transferred to the recoil system @2, |t| is a model-independent

parameter.

In the CC channel, the two outgoing charged particles allow the measurement of
their energy, momentum and angles (with regards to the beam or any other reference axis).
That enables a direct measurement of |t|. Considering that the nucleus remains at rest
and the energy transfer to it is then negligible, the neutrino energy can be approximated

as

E, ~ E + E, (3.7)
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Considering equation |t| in equation can be approximated as follows

2 2

it~ [ D> | + | D] (B =) (3.8)
i=l,m =l

where pr and py, are the transverse and longitudinal momenta of the pion or lepton, and

E the pion or lepton energy.

In the NC channel, the outgoing neutrino is not observed, and |¢| cannot be deter-
mined. The condition for isolating coherent candidate events has to be obtained from the

70 kinematics only [94]

E;(1—cosbr) S1/Ry (3.9)

where E; is the pion energy, 6, is the angle of the pion with regards to the neutrino beam,
and Ry = VA (1.12 4 0.02) fm ~ Ry is the Woods-Saxon radius [94], [95]. This condition
makes it a model-dependent analysis, given that imposing the above condition requires
imposing conditions on the lepton kinematics and Q? when using equation And given
that Q2 depends on the extrapolation from @2 = 0 to @ > 0 in the Rein-Sehgal model,
it becomes model dependent |18]. Furthermore, because the outgoing neutrino cannot be
observed, it is not possible to determine the energy of the incoming neutrino, which has

to be taken as the average of the beam energy [18].

3.2 Importance of Coherent Pion Production

3.2.1 Weak Currents Nature

Coherent pion production on its own, has the capability to test the nature of the weak
current, by providing a test of the partially conserved axial-vector current (PCAC) hy-
pothesis [90]. This hypothesis is important because it allows to relate the neutrino-nucleus
coherent scattering to the elastic pion-nucleus interaction. Per equation the maximum
momentum transferred to the nucleus before breaking coherence, depends on the nuclear
radius, and the cross section of the neutrino-nucleus interaction (equation depends
on the number of nucleons “A” present in the nucleus. As it will be shown in chapter
[6] this thesis provides valuable data that can help test the PCAC hypothesis in different
materials. It includes the first measurement of the coherent pion production from iron

and lead.
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3.2.2 Neutrino Oscillation Experiments

Neutrino oscillation experiments rely on the energy reconstruction of the neutrino to mea-
sure oscillation probabilities. The neutrino interaction used as signal in those experiments,
is the dominant interaction in the neutrino energy regime designed for the detector (figure
2.7). In any case, there are always backgrounds that mimic the signal. In low-energy
experiments (< 2 GeV), the dominant neutrino interaction is the CCQE scattering, which
has as signature a muon and a proton in v, beams, and an anti-muon and a neutron in 7,
beams. This process is used as the signal in v,-disappearance measurements, for which
the CC coherent pion production is a background. In neutrino beams the charged pion
can be misidentified as the proton, while in anti-neutrino beams the pion can have very
low energy and escape detection, also faking the signal.

The NC coherent pion production represents a background for v.-appearance measure-
ments in cases where the gammas from the 7% decay are mistaken as electrons from the
signal.

Although the inelastic coherent pion production is considered a rare process in comparison
to DIS, resonance production, or CCQE scattering, which dominate in different regions of
the neutrino energy spectrum (see figure , it still represents a significant percent of the
total event rate in neutrino and anti-neutrino interactions (in a previous measurement by
MINERVA in a hydrocarbon target, at 3 GeV neutrino energy, around 1% (3%) of the total

neutrino (anti-neutrino) event rate corresponded to CC coherent pion production [18]).

3.2.3 Cross Section Scaling

Although the neutrino-nucleus coherent scattering has already been observed in a variety
of materials (section at both low and high neutrino energies, in both NC and CC,
it has never been measured in different materials simultaneously. This thesis presents
the measurement of the CC channel in carbon, iron, lead and hydrocarbon in a muon-
neutrino beam. This first simultaneous measurement of different materials has the benefit
of spanning over quite different nuclei, which provides the chance to determine the scaling
of the cross section as a function of the number of nucleons “A”. Scalings of AY/3 and A2%/3,
as well as energy dependent are predicted [4], [93], [96]. This scaling gives the possibility
of extrapolating parameters like the cross section of the interaction, to materials where

measurements are not available.
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3.3 Theoretical Formalism

The neutrino energy region this analysis is focused on (2.0 < E, < 20.0 GeV), requires a
model that can make predictions in that region. There exist two different approaches that

models for coherent pion production by neutrinos are based on

e PCAC hypothesis [94], [97], [4], [98], [91], [93], [5], [6], [99], [L00]. PCAC relates the
weak charged and neutral currents to the pion through the divergence of the axial-
vector current. These models make use of Adler’s theorem (section [3.3.1)), which
allows them to get an expression for the neutrino-nucleus coherent pion production.

These models are valid for neutrino energies from ~ 1 GeV to hundreds of GeV.

e Microscopic models [101], [102], [103], [104], [105]. These models include different
neutrino-nucleon processes added in phase to produce a constructive interference of
all the nucleons in the nucleus, such that the net result is the nucleus interacting
as a whole, while leaving all the nucleons in their initial state. Below ~ 1 GeV,
the dominant neutrino-nucleon process involved in constructing the coherent pion
production process, is the production of a A resonance, which is modified along with
the pion wave function to account for the nuclear medium. Above ~ 1 GeV, other
processes, involving higher invariant mass, are also relevant, but for which no similar
modifications exist yet, making the models limited below that neutrino energy as of
now. They are currently undergoing the necessary modifications to give predictions

at higher neutrino energies.

Therefore this analysis and all others involving energies grater than ~ 1 GeV, use at least
one of the PCAC models. This analysis uses the PCAC model of Rein and Sehgal [5] to

perform all the model-dependent calculations and comparisons.

3.3.1 The Rein-Sehgal Model
Adler’s Theorem

All PCAC models are based on the Adler’s PCAC theorem. This theorem proposes the
case of a high-energy neutrino reaction v + o — [ + 3, where v is the incoming neutrino,
« the target nucleon or nucleus, [ the outgoing lepton, and f is a system of strongly
interacting particles. With the incoming neutrino and the outgoing lepton parallel to each

other (the so called “parallel configuration”, where @2 = 0), and the mass of the lepton is
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neglected. In that configuration the squared matrix element of the interaction, averaged
over lepton spin, only depends on the divergences of the vector and axial vector weak

currents [106]. The matrix element of the interaction is

G
M = TZHM (1=7%) u, (B VH + A" |a) (3.10)

where G is the Fermi constant, V' and A are the vector and axial currents, and the
spinors u and the Dirac matrices v were already explained in chapter 2] Averaging over
spin states, and requiring Adler’s conditions (parallel configuration and zero lepton mass),

the amplitude of the interaction is

2G2 .
(M) = —F B Egua (5] V* + A [a) (5| V" + A” |a)

2
= 2B (8]0, (VF + A%) o) (810, (VY + 4%) o)’

2
= 2 B B{B19, (4) ) (810, (A) )" (3.11)
where v and ¢, are the energy and four-momentum transferred to the recoil system, and
FE, and E; are the neutrino and lepton energies. The divergence of the vector current
vanishes using the conservation of the vector current (CVC) hypothesis [107], [106]. This
is only valid in the parallel configuration, when Q2 = 0. Because of PCAC, the divergence

of the axial-vector current is related to the pion decay

(018, A" |7} = famed (3.12)

where f; is the pion decay constant or pion form factor, m. is the pion mass, and ¢ is the
pion field, the |0) and |7) are the vacuum and pion states. The divergence of the vector
current has again vanished because of CVC. Based on PCAC, Adler’s theorem allows to
relate the reaction a — [ (neutrino coherent pion production) to 4+« — 3 (pion-nucleus

elastic scattering)

2

M(r+a— B) (3.13)

2
(8]0, A" o) |

= f2
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Substituting equation [3.13|into equation|3.11] and putting the amplitudes in terms of cross

sections

oS _Gyf2 By do™ 4 (3.14)
dQ*dvdlt||go—y  27% vE, dlt] )

where the triple differential cross section, is the cross section of the CC coherent pion
scattering with regards to the square of the four-momentum transferred to the W or Z
boson, the energy transferred to the recoil system, and the square of the four-momentum
transferred to the nucleus; and do™ A /d|t| is the differential cross section of the pion-

nucleus scattering, as a function of the four-momentum transferred to the nucleus squared.

This allows the models based on PCAC to get a cross section for the neutrino-nucleus
interaction based on the cross section of the elastic pion-nucleus scattering.
D. Rein and L. Sehgal [4] used this expression to model the coherent pion production of
neutral pions, adding a propagator term to the cross section obtained by Adler (equation
in order to include non-forward interactions (Q2 > O).

Extrapolation to Q? > 0

2

2
The extrapolation is done by adding a propagator term (ML:QQ) , where myg =~ 1 GeV,
A

is the axial vector mass.

The differential cross section of the elastic pion-nucleus interaction can be expressed

as

2 do.Tl'iN
d|t]

dawiA
d|t|

= 42| (t) | (3.15)

[t|=0

where A is the number of nucleons inside the nucleus, Fiy (|t|) the nuclear form factor, and
do™ N /d|t| is the differential cross section of the pion with the “nucleons”, in the forward

direction (|t| = 0). The nuclear form factor is expressed as

/3 _+
2 bt ??ﬂRQ Olnel’
[F ([t])]7 = e e 10770 (3.16)

where b = %R?V is the slope of the exponential in the |¢| distribution, Ry = RoAY3 is the
nucleus radius, and Ry = /A (1.12 £ 0.02) fm ~ Ry (see equation. Using the optical
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model [108], the differential cross section of the pion-nucleon cross section can be written

as

dojriN

| = 1 [UfiNr (1+72) (3.17)

167w Lt

[t|=0

where r = Refrn (0) /Imfrx (0) is the ratio of the real and imaginary parts of the 7= N
amplitude, UfofN is the pion-nucleon total cross section, for which two parametrizations

were used, obtaining similar results.

Inserting equations and into equation and then inserting equation
B.15] into equation and multiplying by the propagator term, the triple differential

cross section can be written as

2
Lown _ Gifi B pp( m)
dQ2dwvd]t] 2 vE,” \m+Q?
9A1/3 7riN
k T a-p2 Cine 1 2
% (eéRSAQ/ﬂte IGWR%U ! ) 16771' [Ung] (1+T2) (318)

Equation [3.18]is the one used by most of the experiments measuring cross sections of CC
coherent interactions before 2007, when new correction including the mass of the lepton
(muon) were added [5]. Experiments measuring the NC channel used a similar expression,
which is related to the CC cross section, valid in the parallel configuration, and for isoscalar

nuclei

d3O.NC 1 dSUCC
coh I coh (319)
dQRdvd|t]|ge_y 2 dQPdvd]t]|ge_

Rein-Sehgal calculation predicts a scaling of the total NC and CC coherent cross
sections with the number of nucleons, close to A'/3 (figure

Lepton Mass Inclusion

S. Adler proposed a correction to the cross section where the mass of the lepton is not

neglected [109]. The original reaction v + o — [ + [ receives a contribution from the
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Figure 3.2: Total NC coherent cross section as a function of the nuclear number A, using
neutrinos of 2 GeV. The same scaling is predicted for CC and anti-neutrino interactions.
The dashed line is the scaling pattern if the cross section scaled exactly as A'/3, while

the solid line is the scaling obtained using the calculation by Rein and Sehgal. [Figure
from [4].]

exchange of a charged pion between the lepton vertex v — [ and the hadron vertex a — (.
The amplitude of this contribution creates a destructive interference with the remaining
amplitude. This has a suppression of the cross section at Q2 values smaller than ~ 0.1
GeV, as shown in figure 3.3] The correction is

2
C = <1 - 1 72’m'n ) + ELQ?nzn (Q2 - gmn)
- 2
2@ tnt) VB (@ eud,)

x 0 (Q2 - Q72nm) 0 (y - ymm) 0 (ymax - y) (3.20)

where Q2. = m?ﬁ, Yy =V/Ey, Ymin = mx/E and ymaz = 1 —my/E

The cross section for the CC coherent interaction (equation|3.18)), with the correction
due to the lepton mass, reads
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1.75}C)
1.5
1.25

0.75
0.5
0.25

Q2
0.0250.050.075 0.1 0.1250.150.175 0.2 gev?

Figure 3.3: Suppression of the CC cross section on carbon for @* < 0.1GeV/c? and
E, = 2.0 GeV. The upper (lower) distribution corresponds to the cross section without

(with) the lepton mass correction. [Figure from [5].]

ol G,
dQ?dvd|t| 272 VE m? + QQ
41/3
% <G—§R3A2/3|t 1671'R2 mel ) Utot (1 + TQ)
X 1 1 szn 2 mzn Q QETLZ?’L)
) i (@ +m)’
X 0 (Q2 - gm,n) 0 (y - ymm) 0 (ymax - y) (3'21)

Berger-Sehgal Model

The original Rein-Sehgal model [4] and its later modification [5], modeled the pion-nucleus
elastic interaction in terms of pion-nucleon differential cross sections. The modeling of
nuclear effects for the pion (like absorption and nuclear scattering) results in high uncer-
tainties for pion energies less than about 1 GeV. The availability of pion-carbon scattering
data in that energy region, allowed the parametrization of the pion-nucleus cross section

using a simple ansatz

do.ﬂ'ic
d|t]

= Aje (3.22)

where the constants A; and b; are energy dependent (function of the pion energy) and

fit to the pion-carbon scattering data. For pion energies larger than about 0.7 GeV the
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Berger-Sehgal modification agrees with the original Rein-Sehgal model. But for energies

around 0.3 GeV, the Rein-Sehgal model over predicts the pion-carbon cross section as

shown in figures [3.4] and

1200
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Figure 3.4: Comparison of the Rein-Sehgal (dashed line) and Berger-Sehgal (solid line)
models for the elastic pion-carbon cross section, clearly overestimated by the former in the

A resonance region. Both agree at pion energies larger than ~ 0.7 GeV. [Figure from [6].]
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Figure 3.5: Measurements of the differential cross sections do/dFE; on carbon, by a pre-
vious MINERvVA measurement [7]. The data shows a better agreement with the Berger-
Sehgal model at 0.2 < E; < 1.5 GeV.

The Berger-Sehgal model is not used in this analysis. Further comparisons to it, are
expected. Even though this analysis uses data from carbon targets, iron and lead are also
used, in which case there are no pion-nuclei data. So it is not obvious the need to use the

Berger-Sehgal model.
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3.4 Previous Measurements

This section summarizes the measurements of the neutrino-induced coherent production of
pions in both “Neutral” and “Charged” currents up to date. Their importance regarding

the study of weak currents, and neutrino oscillation experiments, are included.

3.4.1 NC Measurements

Coherent pion production by neutrinos was first observed in the Neutrino-Electron Reac-
tions (NUE) spark chamber at CERN [110], |111]. It was reported by the Aachen-Padova
collaboration in 1983 [8], using a sample of forward going particles consistent with single
NC 7% produced by both muon neutrinos and muon anti-neutrinos scattering off 27 Al,

with an average neutrino energy close to 2 GeV (figure
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Figure 3.6: First observation of neutrino and anti-neutrino induced coherent pion pro-
duction. Neutrino and anti-neutrino angular distributions, where an excess of forward
particles due to 7° is shown. The solid and dashed histograms are the MC prediction
and the data sample, respectively, after the resonant pion production background has
been subtracted. The solid curves are the theoretical predictions from the Rein-Sehgal

model [4]. [Figure from [8].]

More experiments during that decade continued seeing coherent pions from NC, at different
targets (aluminum, Freon, marble and neon), with average neutrino energies 2 < E,, < 31
GeV (see table [3.1). Due to the impossibility of measuring |¢|, these experiments had

to rely on the condition in equation looking for electromagnetic showers from two
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gammas in the forward direction, with almost null activity around the vertex. Despite
their limited statistics and therefore huge cross section uncertainties, they were still able to
make meaningful comparisons of their results to PCAC models such as those of Lackner [94]
and Rein-Sehgal [4]. These comparisons allowed testing the PCAC hypothesis about the
nature of the recently discovered weak neutral current. Data were in good agreement with

the Rein-Sehgal model, but with huge uncertainties, specially at high neutrino energies.

After the discovery of neutrino oscillations, the interaction became significant once
more, due to the importance of the NC coherent pion production channel as a background
for v, appearance experiments. New experiments had to be designed to work at the
lower neutrino energy regime used by oscillation experiments, 1 < E, < 10 GeV. The
first NC low-energy experiment measuring coherent pions from neutrinos, was done by
MiniBooNE using the Booster beam (chapter |4) with energies < 2 GeV on a mineral oil
target (C'Hz). It increased the statistics by a factor ~ 100 compared to the early high
energy measurements. MiniBooNE then showed that the NC process exists in low energies,
although in a lower rate than predicted by the Rein-Sehgal model. This result reduced
the uncertainty on the 7V production in neutrino oscillation experiments from ~ 25% to
~ 5% [26].

Two more measurements by the NOMAD [27] and SciBooNE [12] collaborations also
observed this interaction, and had fairly good agreement with the Rein-Sehgal model.
It can be seen in table that the NC coherent pions were successfully observed in low

and high energies in both neutrino and anti-neutrino beams.

EXPERIMENT YEAR BEAM < E, 4 >, range [GeV] MATERIAL <A>

Aachen-Padova 1983 v/v 2 Al 27
Garmamelle 1984 v/v 2 CF3Br (Freon) 36
SKAT 1985 v/v 7 CF3Br (Freon) 36
CHARM 1985 v/v 31 (24) CaCO3 (Marble) 20
15 BC 1986 v 20 NeH, 20
MiniBooNE 2008 v 0.7 CH> 12
NOMAD 2009 v 24, 2.5-300 C 12.8
SciBooNE 2010 v 0.8 c 12

Table 3.1: Summary of NC coherent pion production experiments. The neutrino beam
energies go from less than 1 GeV to ~ 300 GeV. Materials used are: aluminum, Freon,
marble, neon and carbon. Information is from [8], [21], [22], [23], |24], [25], [26], [27], [12]
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3.4.2 CC Measurements

The first evidence of the CC interaction was obtained by the WA59 collaboration [9] using
an anti-neutrino beam of 40 GeV of average neutrino energy and the Big European Bubble
Chamber (BEBC) [112] at CERN, filled with NeHy as the target (see figure [3.7)).
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Figure 3.7: First observation of the CC neutrino induced coherent pion production. Anti-
neutrino |¢| distributions for Qr = 0,n" = 1; Qr = 1,n" = 2, and Qr = 0,n" = 3. Where
QF and n? are the electric charge and number of hadrons in the final state. The solid
(dashed) lines show events without (with) vertex activity. It is clear the high |¢t| peaks

near zero. The insert plot is a logarithmic zoom from 0.0 < |¢t| < 0.1. [Figure from [9].]

As the momentum transferred to the nucleus |¢| was available, more experiments were
able to observe the CC coherent interaction. Experiments in the 80’s and 90’s obtained the
cross section of the CC channel in a variety of materials (carbon, neon, glass and Freon),
with an average neutrino energy range of 7 < E, < 150 GeV (see table . In figure
all high energy CC, neutrino and anti-neutrino measurements are compared with the
Rein-Sehgal and the Bel’kov-Kopeliovich [96] models. The data is described fairly well by

both models at those energies.

K2K [11] and SciBooNE [30], searched for the CC interaction in the energy relevant
for neutrino oscillations, trying to constraint the uncertainties in v, disappearance experi-
ments due to charged coherent pions. Unlike MiniBooNE, NOMAD and SciBooNE in the

NC channel, they found NO evidence of the CC coherent 71 interactions. This interaction
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Figure 3.8: Neutrino and anti-neutrino cross sections of the CC and NC experiments
in a wide neutrino energy range (2 < F, < 150) GeV. All materials were scaled to the
glass used in the CHARM II experiment (number of nucleon (A) = 20.7) to make the
comparison. The solid (dashed) line corresponds to the Rein-Sehgal (Bel’kov-Kopeliovich)
model. [Figure from [10].]

was supposed to happen at this energy regimen according to the Rein-Sehgal model that
also predicted its occurrence at the higher energy levels where it was already observed.

Both K2K and SciBooNE could not fully contain the pions and therefore could not recon-
struct their energy. Because of that and per equation they could not reconstruct |t|
either. Instead they used the four-momentum transferred (qZ) as the criterion for isolat-
ing coherent candidate events. In doing so, both analyses became model-dependent, given
that ¢? is calculated using muon kinematics, which are obtained under a CCQE hypothesis
(equation . Looking at equation is clear that events with high ¢? can still have
low |t| values. In this case, the pion takes most of the momentum. So in rejecting events
with high ¢? they got rid of some high-momentum pions, which tend to propagate in the
forward direction. Because of these limitations, K2K and SciBooNE found NO evidence
of the CC coherent pion production at energies ~ 1 GeV. Figures and show the
reconstructed ¢? distribution reported by K2K and SciBooNE, where it can be seen that
the data and the model do not match in the region where most of the signal lays according
to the Rein-Sehgal model. The difference between the model and the data is almost equal

to the whole predicted coherent pion contribution to the model.

The puzzle was finally solved in 2014 by the MINERvA collaboration [31], |7] using
a carbon target, and neutrino and anti-neutrino beams with an average neutrino energy of
~ 3.5 GeV (known as the low energy “LE” beam), characteristics very similar to the K2K
and SciBooNE experiments. Because of the containment capabilities of the MINERvVA
detector (chapter , the energy of the pions could be successfully reconstructed. This
enabled |t| reconstruction and therefore a model-independent analysis. Figure shows

the MINERvVA |¢| distributions where at low values the data excess is consistent with the
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CC coherent prediction. With this result, coherent pions produced by muon neutrinos
were finally observed in both neutrino and anti-neutrino modes, at both low and high
neutrino energies, and at both neutral and charged currents.

The ArgoNeuT and T2K collaborations would later find evidence for the same
reaction at ~ 1 and ~ 3.6 GeV neutrino energies, in neutrino and anti-neutrino mode,

respectively, confirming the MINERvVA result.

This thesis shows the measurements of CC coherent pions from v, using the MIN-
ERvA detector in a more intense and energetic beam of E, = 6 GeV (known as the

medium-energy “ME” beam), where CC coherent interactions off iron and lead targets
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are shown for the first time. A carbon sample is also reported, with the highest statistics

sample from a CC interaction up to date. All CC measurements, including this analysis,

are summarized in table 3.2
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Figure 3.11: MINERvVA'’s reconstructed |t| distribution for neutrinos and anti-neutrinos,

where the contribution from CC coherent pions in the data is clearly observed. [Figure

from [7].]

EXPERIMENT YEAR BEAM < E,3 > or range [GeV] MATERIAL <A>
WA59 1984 v 40 NeH> 20
SKAT 1985 v/v 7 CF3Br (Freon) 36
BEBC WA59 1986 v 5-150 Ne 20
E632 1988 V)7 150 (110) Ne 20
BEBC WA59 1989 v 5-150 Ne 20
CHARM II 1993 v/v 20 Glass 20.7
E632 1993 V)7 80 (70) Ne 20
K2K 2005 v 1.3 C 12
SciBooNE 2009 v 1.1 C 12
MINERvA (LE) 2014 V)7 3.6 c 12
ArgoNeuT 2015 v/v 9.6 (3.6) Ar 40
T2K 2016 v <15 C 12
MINERvVA (ME) 2020 v 6 C, Fe, Pb 12, 56, 207

Table 3.2: Summary of CC coherent pion production experiments. The neutrino beam

energies go from ~1 GeV to ~150 GeV. Materials used are: carbon, glass, iron, neon,

Freon, argon, and lead. Information is from @], , , , , , , , ,
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The NuMI BEAM

The “Neutrinos at the Main Injector” (NuMI) beam is the world’s most intense neutrino
beam, located at the Fermi National Accelerator Laboratory “Fermilab”. It was designed
to serve the MINOS [114] oscillations experiment, but has also served other short and
long baseline, neutrino experiments such as NOvA [115], as well as neutrino-nucleus ex-
periments like ArgoNeuT [116] and MINERvVA [16]. It is ~ 99% made of muon neutrinos,
and the remaining 1% mostly of electron neutrinos.

Fermilab’s chain of accelerators is used to achieve the energy needed for neutrino pro-
duction, the process is described next. The MINERvA data taking covered two different
configurations of the NuMI beam, the low-energy (LE), and medium-energy (ME) or
NOvA configuration.

4.1 Fermilab Accelerator Complex

The Fermilab site hosts several particle physics experiments, including: neutrinos, dark
matter and dark energy, muons, protons, quantum gravity, and accelerator science [117].
Such diversity demands a variety of state-of-the-art accelerators and technology to support
the cutting-edge research carried at the lab. The majority of the budget of experiments
at Fermilab rely on protons delivered by the Main Injector accelerator, which depending
on the experiment, delivers protons at different energies and intensities. The beam starts
its journey from a negative hydrogen ion source where ions are extracted and sent to a
linear accelerator, which is connected to a circular accelerator, which ultimately feeds the

Main Injector, as shown in figure 4.1
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Figure 4.1: Fermilab accelerator complex. [Figure from ]

4.1.1 Radio Frequency Quadrupole Injection Line (RIL)

The protons that end up being fed to the different detectors and targets, start in the so
called “Ion Source” [118], [119]. It consists of two twin direct-extraction magnetron hy-
drogen ion sources (one active, one for spare), where a high-voltage ionizes hydrogen gas
creating a plasma. Electrons and negative ions in the plasma are drained, while the posi-
tive ones with an energy of 35 keV are transported towards a radio frequency quadrupole.
Each of the two sources are kept to a pressure of 6 — 8uTorr for vacuum purposes.

The connection between the source and the quadrupole is called the low-energy beam
transport (LEBT), and it consists of a series of magnets and vacuum devices in charge of
focusing the beam coming from the source, with the collimation and acceptance needed
by the quadrupole. The radio frequency quadrupole (RFQ) operates at 200 MHz, it
accelerates the protons increasing the beam energy from 35 keV to 750 keV, it also pro-
vides further longitudinal and transverse collimation to the beam. After the quadrupole,

the medium energy beam transport (MEBT) delivers the beam to the linear accelerator

(LINAC), figure El

4.1.2 Linear Accelerator (LINAC)

The beam enters the LINAC with an energy of 750 keV, where two radio frequency (RF)
systems increase the beam energy. The first is a set of resonant tubes (Alvarez tubes)
where its energy goes up to 116 MeV [120]. A set of high vacuum cavities additionally

When not specified, figures in this chapter come from the reference in the same section.
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Figure 4.2: Pre-accelerator complex, also known as RIL.

accelerates the protons to reach 400 MeV. The LINAC increases the beam’s momentum in
15-50 s pulses, one per cycle, where every cycle lasts 66 ms, with an accelerating gradient
of 7.5 MV /m. Its vacuum is ~ 10~ "Torr.

At the end of the line, a pulsed electrostatic deflector selects what portion of the line
goes to the Booster accelerator (see next section). The width and length of the deflector
determine the intensity of the beam [119]. There is a second LINAC under construction,
meant to be used as the linear accelerator for the DUNE experiment .

axial electric field in the gap

Figure 4.3: Components of a common Alvarez-type LINAC (not the one installed at
FNAL.)

4.1.3 Booster

The FNAL booster is a 15 Hz, 75 m radius synchrotron that takes protons at 400 MeV
from the LINAC. It delivers 8 GeV protons to either low-energy neutrino experiments or
to the Main Injector. Ideally, a linear accelerator would feed the Main Injector, given the
energy loss in synchrotrons due to synchrotron radiation, however such linear accelerator
would need to be about 4 miles long, making it too expensive.

The booster also increases the beam intensity by stacking successive LINAC cycles. The

extracted beam pulses from the booster are called “batches” (one batch per booster cycle),
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and the Main Injector was designed to take six of these booster batches, as shown in

figure [£.4]
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Figure 4.4: Protons on target per batch. The six Booster batches were increased their
intensity in pairs. In the image can be seen how the first 2, 4 and all 6 batches increased

their intensity.

4.1.4 Main Injector

The Main Injector (MI) was originally designed to replace the old “Main Ring” that
supplied the anti-proton beam for the Tevatron (anti-proton mode), plus fixed target and
collider injection modes. After the Tevatron shutdown, the MI is still the most committed
machine in the accelerator complex, as shown in figures [4.1] and It serves most of the
experiments on site.

The batches coming from the booster have a length of a booster circumference, but the
beam is not evenly spread, it is constrained in a region of the RF wave called a “bucket”.
The booster needs 84 buckets to fill its circumference, these buckets constitute a batch.
With the batches injected into the MI, the energy of the protons ramps up at a steady
pace to reach the 120 GeV. During 2012, the NOvVA experiment required a most intense
beam (4.9x10'3 protons per pulse (ppp), ~ 4 x 10%° protons delivered to the target per
year), for which the “Recycler”, a ring installed below the MI, which was the one that
actually supplied anti-protons to the Tevatron, was adapted to work as a “stacker” for the
MI [122]. Increasing the intensity was done in stages, first slip-stacking two, then four to
finish with all six batches (figure . The MINERvA data acquisition spanned during
all fours intensity periods (to be considered in following chapters).

The fixed-target mode is the only one currently in operation from the three the MI was
originally designed for. The beam is extracted from the MI in 10 ps “spills”, that is the
time structure in which the beam is sent towards the fixed target for the production of

neutrinos.
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Figure 4.5: Fermilab accelerators chain [Figure taken from [14].]

4.2 Neutrino Production

Protons extracted from a hydrogen source are sent through a series of accelerators that
increase the protons’ energy in steps until they reach 120 GeV inside the “Main Injector”,
the protons are then fired to a target where hadrons (pions and kaons) are produced. The
neutrinos come from the decay of the hadrons and muons, the latter coming from the
decay of pions. Remnant charged particles are stopped in the underground rock, while
neutrinos travel into the earth for around 1 km before reaching the near detectors “ND”
and the neutrino-nucleus detectors. Neutrinos keep traveling through earth for about 700
and 900 km for the MINOS a NOvA long baseline experiments.

4.2.1 Target

The primary beam (Protons from the MI) is directed into the Earth at 58 mrad (3.34 °)
downwards and focused onto a graphite production target ~ 40 m underground, 350 m
from the MI exit point, where the beam is approximately circular with a diameter of 1 mm
(1.3 mm in the ME run) It has a positioning accuracy of 1 cm longitudinally and 0.5
mm transversely. The target was originally designed to resist a power of 400 kW and after
the NOvA upgrade, 700 kW without disintegrating, where the temperature and stress can
reach 344 ° and 25.6M Pa. It is maintained in helium with a pressure above 1 atm, as
it is easier and cheaper than operating it in vacuum. Its dimensions are 6.4x15x953.8
mm [4.7] segmented longitudinally into 47 fins. Such small transverse dimension is needed

to minimize the number of undesired mesons and maximize the neutrino flux.
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Figure 4.6: Side view of the NuMI beamline.
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Figure 4.7: The NuMI target.

4.2.2 Focusing Horns

The mesons produced in the target are focused by two, 3-m long, aluminum magnetic
“horns” [£.8] Their main purposes are to select the desired particles by their charge and
energy, this is done by changing the relative placement of the two horns and the target,
thereby the neutrino beam energy is also changed. Specifically, the second horn was moved
further downstream from horn 1, and they are separated by 19.2 m now. Figure shows
how particles are focused depending on the angle at which they are produced. Particles
along the beam axis are barely affected by the horns, the ones not focused in the first one
can be focused in the second horn downstream.

The polarity of the applied voltage to the horns can be reversed to set them in anti-neutrino

mode.
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Figure 4.9: Side view of the NuMI horns.

4.2.3 Downstream Line

46 m downstream the target, starts a 675 m long, 2 m diameter steel decay pipe. The pipe
was initially evacuated to ~1 torr, but later filled with helium at a 13.2 PSTA to avoid
corrosion at the entrance of the pipe. The focused particles leaving the horns (Pions and
Kaons) decay inside the pipe, mostly into muons and muon neutrinos, it is there where
the neutrino beam is born. The pipe length is approximately the decay length of a 10
GeV pion. The decay volume is surrounded by 2.5-3.5m of concrete, getting even thicker

at the upstream end as it is closer to the surface.
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At the end of the decay volume there are ionization chambers to count and characterize
the remnant particles leaving the pipe, known as the hadron monitor. After the monitor,
there is a beam absorber that consists of a 1.3m x 1.3m X 4.75m water-cooled aluminum
core, a 1lm layer of steel blocks surrounding the core, followed by a 1.5m layer of concrete
blocks, to stop the charge particles that make it out of the pipe, this structure is known
as the “absorber”, where around a sixth of the initial beam particles surviving the decay
pipe are stopped, most of it are protons that did not interact, mesons that did not decay
and a small fraction of neutrons, gammas and electrons.

Three more ionization chambers, “the muon pits” are used to monitor the muons that
escape the back of the hadron absorber, they are installed in between layers of dolomite
rock where the muons are absorbed. To a good degree, the muon profile in the rock gives
a good estimate of the neutrino profile, since both are created at the same hadron decay

point. Figure shows all the NuMI components, including the so called downstream

line.
To MINERVA —p Muon Monitors
Absorber
Decay Pipe

Target Horns .

| / > ﬂ:__ qim . 5

> ‘u+

10m 30m " Hadron 5m Rock 12m m
675m Monitor
Figure 4.10: The NuMI beamline components.

4.2.4 Flux

All neutrino cross section measurements need a fairly good knowledge of the neutrino flux.
The cross section formula: 0 = n/T'®, where n is the number of events, 7' the number of
targets (nuclei in this analysis), and ® is the neutrino flux; depends on the flux, which is
defined as the number of neutrinos per unit area (em? in this analysis). The flux is usually
normalized to exposure (POT normalized) In order to get a very precise measurement
of the flux, a large amount of secondary hadron interaction measurements would have to
be carried in all parts where such particles interact with components of the beam line,
plus a precise knowledge of all the parameters in the line. In complex systems like NuMI,
this is not practical, instead, simulations for all those interactions have to be performed.
There are extra cases when the lack of theoretical predictions make it harder to even get a
good simulation. The best available approach is to tune those interactions in a simulation

to existing data. Such data have been usually obtained under different circumstances, for
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which corrections need to be done. The majority of interactions (~ 85%) per v, produced

in the beam are due to protons in the carbon target, followed by pions and kaons also

in the target. Interactions in other materials have considerably low contributions [15].

Figure shows the average number of interactions of the main interaction channels in

the beamline per muon neutrino created, where the dominance of protons on target can

be seen.
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Figure 4.11: MINERvA’s LE and ME simulated fluxes, along with NOvA’s.
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Figure 4.12: Average number of interactions in main channels, per muon neutrino created

(LE configuration example).

For the MINERvA flux, two external datasets where used, one for constraining proton-
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Carbon scattering, and one more for meson production. In the former, each hadron

interaction producing neutrinos was weighted by

w ( MC) _ fdata (xFapTap(C)lata)

TF,PT,D
0 fuce (zr,pr, po)

x g(xF,pr,p) (4.1)

Where p, and pr are the incident proton’s momentum and proton’s transverse mo-
mentum, zp the “Feynman” number (a scaling factor describing hadron production in
p + p interactions equals to 2py/+/s, where s is the momentum center squared), and g
further scales the weight, based on Feynman scaling [123]. The main contribution to the
MINERvA ME flux comes from the high precision region in figure from the pion
production from the “NA49” data [124].
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Figure 4.13: Hadron production data from the NA49 experiment. Filled data points
show the high precision region (uncertainty < 2.5%), the contour represents increasing
contribution (from outer to inner contour) of the pion production to the creation of v, in
the MINERvVA LE flux, while the upper energies are of the v,s from pions at the xr value
above [figure gotten from [15]].

There was no data to constraint meson interactions in the beam, for them an uncertainty
of 40% was applied. This value comes from other uncertainties assigned based on the
agreement of the data with the hadron models used in the simulation. The simulation of

the beamline, starting from protons hitting the target until the creation of neutrinos, was
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done using the Monte Carlo (MC) based simulation software, GEANT4 [125] and a full
geometrical simulation of all beam components.

Additional constraint on the neutrino flux could be done by measuring the flux of muons,
pions and kaons in the beamline, but the scarce knowledge of their backgrounds gives pour
results. As a result of the constraint, it can be seen in figure that the main peak of
the flux gets weighted down, and the high energy tail is strengthened.
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Figure 4.14: Comparison of the “hadron production” tuned and untuned ME flux predic-

tions.

Flux Constraint With Neutrino-Electron Scattering

The MINERvA detector was able to collect 810 neutrino-electron scattering events (v +
e~ — v+ e, mostly muon neutrinos through the NC channel) [126]. This interaction is
a well known one, measured multiple times in different materials and with high precision.
The ME measurement by MINERvA, however, is the most precise so far. It is used to
further constraint the ME flux used in all MINERvA’s ME cross section analyses. The
technique consists on obtaining a probability distribution of the neutrino flux by weighting
the initial flux probability distribution from the simulation with the likelihood of the data
from the electron-neutrino sample, based on the Bayes’ theorem. A series of simulations
(universes) are generated by varying parameters of the neutrino flux (usually between
some o around their central value (CV)). The probability distribution is constructed by

weighting the simulation in each universe with a x? likelihood weight
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where K is the number of bins, N a vector of the data content in the bins, M a vector of

the content of the simulation in each universe, and ) 5 a covariance matrix with all data

uncertainties in N. Figure shows the fractional uncertainty of the neutrino flux with

the constraint compared against the unconstrained flux. The normalization uncertainty
from 2-20 GeV gets reduced from 7.5% to 3.9%.
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The MINERvA EXPERIMENT

MINERvVA is a cross section experiment, focused on the interactions of neutrinos with
electrons, nucleons and nuclei. Its name stands for “Main Injector ExpeRiment for v-A”.
It was designed and proposed in the early 2000’s to better understand such interactions,
as the data collected so far was statistically limited and mostly available in heavy (high
“A”) nuclei. It is also designed to help neutrino oscillation experiments reduce their
uncertainties on different neutrino reactions, both by testing and improving the models of
such interactions, and by constraining the beam’s flux-related systematic uncertainties.
It is noteworthy that even though the major source of systematic uncertainties in neutrino
oscillation experiments comes from neutrino-nucleus and neutrino-nucleon scattering, a
major undertaking had not been pushed in order to reduce it.

The MINERvVA detector has targets with six different materials (chemical elements), and it
was placed in the high intensity NuMI beam line at Fermilab, the man-made world’s most
intense neutrino beam, which allows for both nuclear effects probing, and high statistics

even in rare processes.

5.1 The MINERVA Detector

The detector was composed of the following subdetectors: the passive target subdetector
also known as the “target region”; the fully active inner detector (ID); side and downstream
electromagnetic calorimeters; and the side and downstream hadronic calorimeters (figure
5.1). It was located at the NuMI hall, 105 m underground in the Fermilab site, 2 m
upstream the MINOS near detector. Detectors were placed deep underground to reduced

cosmic ray interactions as much as possible. MINERVA was 5 m long (from the front of
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the nuclear target region to the back end of the hadronic calorimeter), 3.45 m tall, and
weighted ~175 tons adding the mass of all subdetectors.

Building of the planes began off-site in 2006, mounting of the first plane in 2007, and
commissioning in 2009. It started taking data in November 2009 (with just a few of
the back planes installed), running for more than two years in the NuMI low-energy
(LE) configuration ((E,) ~3.5 GeV), and almost six more in the medium-energy (ME)
configuration ((E,) ~6.0 GeV). It recorded its last neutrino event in February 2019,
reaching a total of ~ 3 x 10? protons on target in both neutrino and anti-neutrino mode.
It was finally decommissioned and dismantled by the end of that year and the first few of
2020.
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Figure 5.1: Isometric and side view of the MINERvVA detector. [Figure from ]
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5.1.1 Coordinate System and System of Units

All data analyses in MINERvVA use a right-handed Cartesian Coordinate system with
origin (x = 0,y = 0) located at the center of gravity of the ID, 3.294+0.01 m above the
floor, with the y axis pointing upwards and the z axis pointing into the detector parallel
to the floor; the origin (z = 0) is at the front end of the detector (front face of the detector
stand). The neutrino beam points downwards approximately at 3.34 ° with regards to the
z axis. More details and info about MINOS coordinate system can be found here [127].
The unit system used, is the same one used by the Gaudi framework [128], and it is broken
down in table 51l
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Figure 5.2: MINERVA’s coordinate system. [Figure from [?].]

Quantity Unit

Length millimeter
Time nanosecond
Energy MeV

Plane Angle radian

Electric Charge positron charge
Temperature Kelvin
Amount of Substance | mole

Table 5.1: System of units used in this analysis.
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5.1.2 The Inner Tracker Detector

Also known just as the “tracker”, it is a fully active region, with 8.3 tons of fine-grained
plastic scintillator, designed for detailed tracking and vertexing. It is made of polystyrene
strips with 92% Carbon, 7.6% Hydrogen, and smaller amounts of other elements (see
table . It was arranged in 62 modules with two planes each. 127 pyramidal strips
were stacked as in figure in each plane. The base of the strips are perpendicular to
the beam, and half of the base’s length determines the vertexing resolution due to the
stacking arrangement. The planes are aligned in the “X”, “U” and “V” views to enable
3-D tracking reconstruction, the first one with the strips axes perpendicular to the x-axis
allows to determine position along the x-axis, the other two are rotated 60° clockwise
and counterclockwise with respect to the first one, respectively. The planes followed the
sequence “XUXV” and so on, in which each plane had an X-plane downstream one of the
other two. The hexagonal shape of the detector symmetrically accommodates the three
views.

It was in the ID where most of the analyses published by the collaboration took place,

because of its high statistics and good energy, timing and position resolution.

5.1.3 The Inner Passive-Targets Detector

The upstream region of the ID included passive material for A-dependence measurements.
Five hexagonal modules (with the same transverse dimensions of the inner tracker detec-
tor) with carbon (C), iron (Fe) and lead (Pb) in different configurations; a water (H20)
target; and a liquid helium (He) target. They covered a pretty large range of the “mass
number” or nucleon number (A) scale. The positioning and mass of the materials under

analysis were chosen taking into account the following aspects:
e Statistics - The bigger the amount of mass the bigger the probability of neutrinos
interacting with the passive material.

e Containment - Particles created in the passive material should have a similar con-

tainment as particles created in the tracker, in order to have good energy resolution.

e Mass Equalizing - Each material should have the same amount of mass installed to

try to get the same number of neutrino events from each.

e Energy Threshold - The thinner the target the more low-energy particles can get

out of the passive material and get tracked.
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e Vertex Resolution - The thinner the target the better the interaction vertex position

resolution.

e Track Resolution - The region needed enough active material for the tracking algo-

rithm to be able to reconstruct multiple charged particle events.

e Space - Ideally there would have been as much planes as possible in between passive
materials for better tracking, but the underground hall dimensions limitations, put

a maximum limit of nine modules.

It is obvious that some of the requirements are mutually exclusive. The perfect config-
uration would have been a long passive-target region with several targets with different
thicknesses of the same material for each of the materials installed and separated by sev-
eral scintillator planes for a highly efficient tracking. Given the space and cost limitations,
a final design was agreed trying to fulfill the requirements in order of importance. Fig-
ures and [5.4] show a side view of the passive-target region showing the final thickness
and position of all five targets, and the front view (beam pointing into the page) with
the areal separation of the materials in the targets. Thinner targets were put downstream
close to the tracker so that low-energy events produced inside them would benefit from all
the active region in the tracker. Thicker targets located upstream would have the highest
neutrino-energy events and the highest statistics (higher mass) utilizing the downstream

targets as calorimeters.

Configuration of C/Fe/Pb Targets

Targets 1 and 2 were made of Fe and Pb in almost equal masses, iron occupying 60%
of the area due to its lower density. Target 2 was rotated 60° counterclockwise so both
materials had similar acceptance in the tracker and MINOS detector.

Target 3 allowed for comparison of the three materials at the same “z” coordinate. Al-
though the hydrocarbon target already contained enough neutrino-carbon interactions, a
region of pure carbon in target 3 was installed to extract hydrogen contribution in DIS,
resonant pions and 7, quasi-elastic interactions. Carbon in target 3 had a dominant area
(50%), mass (~40%) and thickness of ~76 mm. The lead portion of that target, occupied
the lowest sixth of the hexagon area, as lead in other targets was mostly in the upper half.
The remaining third was occupied by iron. Both iron and lead had a thickness of ~25
mm.

Target 4 served both as an EM calorimeter for 7° (photon) detection, and as the thinnest

lead target for low-energy lead neutrino interactions.
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Finally, target 5 included a thinner version of target 1, to also include iron and lead low
energy events. Their areal distribution was such that allowed uniform areal presence of
each material. Table[5.2]shows a detailed summary of the masses, thicknesses and location

of the passive targets (besides helium), extracted from [16], with updated values.

Tracking Modules

! | l |
]2 13 ] ﬂ?ﬁ

Water

Pb/Fe Pb/Fe C/Pb/Fe Pb/Fe Pb/Fe
125cm

Figure 5.3: Positioning of targets in the passive targets region. [Figure from [16].]

90900

Figure 5.4: Configuration (front view) of each of the passive targets. Blue=Lead,

Red=Iron, Orange=Carbon [Figure from [16].]

The Helium Target & Veto Wall

The target consisted of a vessel filled with 2300 1 of cryogenic helium. It was placed
upstream the scintillator planes at the beginning of the target region. Its design criteria
were similar to the ones for the five targets downstream: maximize the probability of
interaction with the incoming neutrinos, minimize the material with which the secondary
particles could interact before reaching the tracking planes, and a good acceptance. The
vessel was a cylinder 100 cm long, and 152 cm of radius which was surrounded by a vacuum

for thermal isolation. This target presents the biggest reconstruction challenges because of
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z-Location . Fiducial | Fiducial
Thickness Total Mass

Target | of Center Area Mass
(cm) 2 (kg)

(cm) (@m?) | (kg)
1-Fe 448.2 2.567 £ 0.006 15999 322 492
1-Pb 448.2 2.578 £ 0.012 9029 263 437
2-Fe 470.2 2.563 £ 0.006 15999 321 492
2-Pb 470.2 2.581 £ 0.016 9029 263 437
3-C 494.6 7.620 £ 0.005 12027 158 238
3-Fe 492.1 2.573 £ 0.004 7858 107 170
3-Pb 492.1 2.563 £ 0.004 3694 160 258
H>O 528.4 17-24 25028 452 627
4-Pb 564.5 0.795 £+ 0.005 25028 225 340
5-Fe 577.8 1.289 + 0.006 15999 162 227
5-Pb 577.8 1.317 + 0.007 9029 134 204

Table 5.2: Position, mass, thickness and areas of the passive targets.

its poor acceptance, and being the only one with no tracking planes upstream. It greatly
relied in the veto wall to discard background events.

In order to differentiate events coming from the rock from actual neutrino events happening
in the first module in the target region, a veto wall was installed in front of the detector
to identify the incoming muons The veto wall had two steel shield plates (5 cm and
2.5 cm thick) that helped stopping some of the incoming muons, interspersed with two

scintillator planes (1.9 cm thick) that recorded their trajectory and timing.

The Water Target

Figure [5.5] shows a lateral and frontal view of the water target, it was installed in between
targets 3 and 4, with four scintillator modules of separation between targets. Its composi-
tion was ~88.5% oxygen, ~11.5% hydrogen, plus carbon and nitrogen in small amounts.
When filled with water, the targets expanded more at the bottom, but given the not easy
access to it, its shape and mass were determined using a finite analysis and weighting
the water when emptied. It was centered in the axis joining the geometrical center of
the hexagonal modules, and had a radius slightly larger than the hexagons’ apothem. Its

dimensions and mass are included in table 5.2

5.1.4 Calorimeters

The electromagnetic calorimeter (ECAL) served the purpose of electromagnetic showers

containment. It surrounded the sides and back of the hexagonal inner tracker detector as
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Figure 5.5: Water Target, front and side view. [Figure from ]

shown in figure 5.6 The side ECAL consisted of a 0.2 ¢cm thick, 15 cm wide collar of lead,
with the purpose of containment, and electron and photo conversion in the transverse
direction. The downstream ECAL was a region ~42.2 cm long after the tracker, with
ten modules made of a plane with a standard scintillator, followed by a 0.2 cm thick
downstream plane made of only lead [5.1]

Installed in the most outer (outer detector or OD) and downstream region of the detector,
was the hadron calorimeter (HCAL). The side region was sectioned in six parts (towers)
26 cm wide extending outwards, ~10 cm from the edge of the tracker. It counted with
four 15mm x 19mm squared scintillator strips inserted in the steel in each tower, for
tracking particles moving transverse to the direction of the beam. The downstream HCAL
was made of twenty modules of 2.54 cm steel planes with a standard scintillator plane
downstream. Both side and downstream HCAL served as the container of hadronic showers

and more energetic particles escaping the inner and ECAL detectors.
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Figure 5.6: Front view of a MINERvA module. The inner part shows the fiducial ac-

tive region. Next two layers are the side electromagnetic and side hadronic calorimeters.

[Figure from ]
5.1.5 Optical System

All reconstructed quantities in the MINERvA detector were obtained through the process-
ing of the light that charged particles yielded in the plastic scintillator. Plastic scintillator
absorbs part of the particle’s energy and re-emits it in the form of photons (usually a
few nanoseconds after absorption) giving information about the timing and energy of the
particles. In order to have an accurate reconstruction, the optical system had to deliver
the greatest possible amount of photons created by the charged particles traveling in the
plastic, to the electronic system.

Considering all subdetectors, there were 32000 scintillator strips, they constituted the
first element in the optical system. They were made of extruded plastic scintillator (CgHg
polystyrene) doped with small amounts of other substances for maximizing light yield,
and covered with a white reflective coating of Ti0Oy. Strips in the ID had a triangu-
lar cross section with a base of 33+£0.5 mm, a height of 174+0.5 mm, and a varying

length depending on their position in the planes. Strips in the side OD where rectan-
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gular (19 + .5mm x 16.6 £ .5mm , and a few millimeter thicker in the downstream OD to
fit the thicker steel). For very energetic particles there is a saturation in the light output of
the plastic, the proper correction implemented by MINERvVA was included in a MINERvA
publication [129]

9mm

Il

Figure 5.7: Cross section of the plastic scintillator strips in the ID (left) and OD (right).

[Figure from [16].]

<

At 8.54+0.25mm from the base of the ID strips there is a 2.64+0.2mm radius hole along
the length of every ID strip; and a similar (3.5~0.2 mm) hole in the OD strips. Inside
the wholes there is a 1.2 mm diameter, 32 cm long wavelength shifting fiber (WLS) that
collects the light created by the scintillator and carries it to a set of “optical connectors”
where the WLS met clear fibers (from 1.08 m up to 6 m long) that ultimately carry the
light into the photomultiplier tubes (PMT). Due to cost constraints just one end of the
fiber was read, while the other was mirrored by polishing and adding an aluminum coating
to help gathering more light (see ﬁgure. The purpose of shifting the light’s wavelength
is to deliver the light at the PMT’s most efficient wavelength. The clear fibers are used
for lowering operation costs, since the WLS is not needed once the wavelength has been
shifted. The WLS absorption and emission peaks are 430 nm and 476 nm (see figure .

Scintillator (TiO2 coating)

L WLS Fiber
Mirrored End

Figure 5.8: Path of light produced in scintillators to the PMTs. [Figure from ]
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Figure 5.9: Absorption (bottom wave) and emission (top wave) peaks for the wavelength
shifting fiber.

5.1.6 Electronics & DAQ System

Timing and energy information of the physics events in the detector was obtained by the
processing of the light delivered by the optical system and processed by the electronic and
DAQ system, which created the raw data that would latter go into the calibration and

reconstruction stages.

Photomultiplier Tubes

The system begins with the 507 installed PMTs by Hamamatsu, model H8804MOD-2
with 64 channels each. These were mounted on top of the two upper towers of the OD.
The input light hitting the photocathode of the PMTs produced photoelectrons (electrons
release by means of the photoelectric effect), the number of photoelectrons is multiplied in
the PMT by means of a high voltage. The electron multiplication factor is called the “gain”
of the PMT. Each tube is inside a box for mechanical protection, ease of installation, and
magnetic shielding (specially for the ones closest to MINOS), see figure Inside the
box, the tube gets connected to the fibers at one end and to a “front end board” (FEB)
at the other.
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Figure 5.10: PMT box with all internal components. [Figure from ]

Front End Boards

The FEB performed three tasks, it controlled a Cockcroft-Walton generator at the base
of the box to produce the high voltage needed by the PMT. It also had four 16-channel
and two 32-channel chips (TriP chips) that recorded the electronic pulses from the anode.
The former took care of the medium and high gain events and the latter processed low
gain events (see figure . When the discriminator of any channel was triggered (time
To) all channels in the chip start digitizing and recording the charge from the incoming
hits (even the channels that got no hits at all) during 150 ns, and stay off (in reset state)

for 18.8 ns. During the “reset state”, charge can still be recorded but with a wrong timing

information (see figure |5.12)).

The chips kept repeating that process and collecting several hits for 16us, time during
which the integration “gate” of the analog-to-digital converters (ADC) modules stayed
open. The gate opened 0.5us after the start of the spill sent by the accelerator division
(AD) to make sure no neutrino events were missed, the spill lasted 10us but the gate

remained opened 5.5us more to record activity of delayed interactions, such as Michel
electrons [130]. See figures and

Lastly, each FEB was the interface communicating with the readout controller. Groups of
ten FEBs were connected in series (for cable handling issues) in a chain, and four of these
chains were connected in a “CROCE” (Chain Readout Controller); Eight CROCEs were
controlled by a “CROCE Interface Module” (CRIM) that fed the CROCES with trigger
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High/Medium-Gain
Chips 2

TriP-t TriP-t

Low-Gain Chips

......

Figure 5.11: Front End Board. Four top chips are the medium/high gain chips, and
bottom chips are the low-gain chips. [Figure from ]

First Hit, Second Hit, Push Reset
Trip 0 Trip 1 “ Complete
| | | ”Dead"
TO T1 TO + 16 ticks T1+ 16 ticks TO + ~36 ticks
I tick=94ns

Figure 5.12: Digitizing and reset (dead) time of the TriP chips. [Taken from ]

and timing commands. Finally the CRIMs received commands from the MINOS timing
system for event matching, and to receive the status of the MI neutrino pulse through
a MINERvVA timing module. Further and detailed information about MINERvA’s and
MINOS’ DAQ can be found at .

5.2 Simulation

Every serious experiment needs to have, to some degree, predictions on the expected out-
come(s) of the measurement(s) to be performed. Previous knowledge of related parameters

or similar experiments help to constraint and focus the effort, optimize resources, skip triv-
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Figure 5.13: MI spill duration. The gate remains open the last 5.5us to record late activity

such as Michel electrons.

Every 1.67/1.33 seconds the Minerva
detector receives 10 us of neutrinos. Close the FEB gate 5.5 us

after the neutrino pulse.

Start Signal
v
20 us 16 us

HV settling time ¢ Integration gate ¢

Open the FEB gate 500 ns | Data Acquisition (DAQ) starts at
before neutrinos arrive. the end of the integration gate.

Figure 5.14: Integration gate structure. [Figure by Geoff Savage, FNAL.]

ial parts of the measurement and to even obtain any useful result(s). Whenever is possible
and reliable to use, simulation is a powerful tool, specially in low-statistics and complex
fields like neutrino physics. Simulation also helps in the comparison of new results against
theoretical models. In some cases it is the only source and best estimate of parameters
that are unavailable at the moment and without which is impossible to make any predic-
tion. MINERvVA compares its data to theoretical models by constructing a Monte Carlo
(MC) simulation of the physics of the interactions under study including backgrounds, and

all the detector components. A different MC is generated to incorporate the conditions
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of each data set, like variations in the beam intensity or hardware replacements. The

simulation is divided in three main branches.

5.2.1 Simulation of Neutrino Interactions

MINERvVA uses the GENIE neutrino Monte Carlo generator [131], [132] as its base gener-
ator to simulate the interaction of neutrinos with nuclei and nucleons in different nuclear
environments (different materials), as well as the interaction of neutrinos with electrons.
Final cross section results are also usually compared against generators like NuWro [133],
NEUT [134], and GiBUU [64]. Simulation of neutrino interactions in MINERvVA starts by
using the neutrinos from the GEANT4 and FLUKA [135] simulation of the NuMI beam,
which delivers a neutrino energy distribution of the ME flux (see section , that to-
gether with the information about the geometry of the detector are used as the input
information in GENIE. The probability that a neutrino interacts with a given scattering
process is determined by the neutrino’s incoming energy, the target material and from
probabilities of existing cross sections.

All dominant scattering channels in the MINERvA’s ME regime are built into GENIE
and are explained in more detail in section Quasi-Elastic Scattering, the dominant
interaction at E, <2.0 GeV, is implemented using the Llewellyn-Smith model. Resonance
Pion Production is slightly dominant in the 2 < E), <10GeV region, and uses the Rein-
Sehgal model. Shallow and Deep Inelastic Scattering greatly overcomes all other chan-
nels after 10GeV, and it is implemented using the model of Bodek and Yang. Coherent
pion production is built into GENIE through the model of Rein and Sehgal. Neutrino-
electron cross sections are calculated using the Marciano-Parsa theory [136]. As can be
seen in figure there exist overlap regions where two or more kind of interactions

are present, GENIE approximates the total cross section of the overlapping zones as
O.total —_ O'QE D O.RES D O.DIS I137l

It is not possible to obtain realistic data-MC comparisons if nuclear effects are not
taken into account. The modeling of the nucleus plays an important role, specially in
heavier nuclei. Previous versions of GENIE modeled the nucleus as a relativistic Fermi
gas (RFG) of protons and neutrons in the nucleus (including Fermi motion and Pauli
blocking), where the average energy (e) is used to get the binding effects [58], but lacking
a proper treatment of nucleon correlations. This analysis uses GENIE version 2.12.6 that
already includes processes like the long range correlations of nucleons inside the nucleus,
present in the random phase approximation model (RPA) [62], short-range correlations

of nucleons, where the scattering is from correlated pairs of nucleons (proton-neutron,
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proton-proton or neutron-neutron pairs), treated by one of the “two-particle two-hole”
(2p2h) models available in the field [61]. These modifications have the effect (among oth-
ers) of suppressing and enhancing the event rate in different Q? regions.

The particles created in the neutrino interaction, usually re-interact with the nucleons
within the nucleus with the possibility of undergoing different processes, like pion ab-
sorption and pion production, elastic or inelastic scattering, or charge exchange. The
reconstruction in MINERvVA is done by looking at the particles after these final state in-
teractions (FSI), which disguise the original interaction (see figure[5.15). GENIE simulates
final state interactions with the “Intranuclear Cascade Model” [63], the model propagates
particles inside the nucleus in steps, for each step a probability of no-interaction is cal-
culated, which depends on the nuclear density and in the cross section of the particular
interaction (charge exchange, pion absorption, and so on), such cross sections are obtained

from previous data or by extrapolation from different nuclei.

Charge Exchange °®

Elastic
Scattering

Pion Production

Figure 5.15: Possible final state interactions (FSI) undergone inside the nucleus by the
primary interaction particles. [Figure by Tomasz Golan, MINERVA collaboration.|

GENIE'’s final state particles have all the initial kinematic information that will be used

when particles are propagated through the detector.

5.2.2 Simulation of Particles Through Mater

All materials and geometry of the MINERvA subdetectors are included in a very detailed
GEANT4 simulation Particles exiting the nucleus (from the GENIE simulation)
are propagated through the detector. GEANT4 basically decides the fate of the outgoing

particles, based on probabilities of the different possible interactions, like particle decays,
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Figure 5.16: Dominant v, (left) and 7,, (right) scattering channels in MINERvVA interac-
tion particles. [Figure by G.P. Zeller, Fermilab.]

scattering and absorption, these probabilities are provided by the GEANT4’s physics
list [138]. The list includes interactions of hadrons, ions, standard electromagnetic pro-
cesses, stopping particles and decays. Given the amount of particles created and due to
the big number of possible interactions, it is basically impossible (or at least unpractical)
to get a full theoretical prediction of the energy loss by all the particles involved in an
interaction. GEANT4 simulates an interaction in 1 mm steps where the interaction is
modeled depending on its momentum, if it is below 10 GeV/c, the Bertini cascade model
is used [139], and for higher momenta the QSGP model [140]. However it is not practical,
in terms of computing resources, to save all the 1-mm step information for every particle
in the detector. Instead, MINERvVA saves “trajectories”, where a trajectory represents a
particle. Each trajectory has trajectory points, where each of these points corresponds to
the steps mentioned above. Only the initial and final points of the primary particles (par-
ticles from the main neutrino interaction) are saved. Additional points are saved whenever
the particle goes into a different material, energy loss changed more than 5%, the path
length is larger than 20 c¢cm or an elastic interaction happens. If required, special samples
can be generated saving either all points of the primary trajectories, all trajectories, or

even all trajectories with all points.

5.2.3 Readout Simulation

The optical, electronic and DAQ systems are included in the readout simulation. The
readout is simulated with only one neutrino interaction happening in each gate (no pile-
up). The light yielded in the plastic scintillator simulated by GEANT4 is translated to
photoelectrons (PE) in the PMTs using an optical model, by means of the Birk’s law [129].
The gain of the photoelectrons as they travel through the dynodes in the PMT, is simulated
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Rendered by OpenGL driver

Figure 5.17: Detailed simulation of the detector geometry. Simulation was done using
OpenGL and written in XML. [Figure by Jaewon Park, MINERvA collaboration.]

using a statistical model. Neighbor fibers getting into the PMT usually leak light to each
other, this feature is known as “cross talk”, and is also simulated using information from
cross talk created by “rock muons” (muons created by the interaction of neutrinos in the
rock upstream the detector, see section . The gain and cross talk simulated charge
coming out of the PMTs is treated by a model of the FEBs, that simulates the low, medium
and high gain chips, taking care of the amplification and integration of the charge that
then is passed to and ADC for digitization at the end of the gate. Reset time (also known
as dead time) in the TriP chips is also simulated in the FEB model.

5.2.4 Data Driven Simulation

Even though MINERvVA is a neutrino experiment, it had to deal with pile-up due to the
NUMT’s high intensity. This means that more than one neutrino event got into the same
readout gate. The pile-up is simulated by overlaying a random data gate in a MC gate
(see figure . All dead time hits are hidden, whether they are data or simulated hits.

The time distribution for MC hits is much narrower than that of the data, this means
that pile-up and dead time have a more significant contribution in data than in MC.
MINERvVA simulates this effect by looking at “rock muons” in the data and data-driven

particle simulation for the MC, then a fit is done to get a random smearing that will be
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Figure 5.18: Data readout gate overlaid with a MC gate for pile-up simulation. [Figure
by Trung Le, MINERvVA collaboration.]

used to correct the hits timing. Then a random number is added to the raw hit time to

account for timing calibration corrections.

5.3 Calibration

MINERvVA uses the raw digits from ADCs and TDCs (time-to-digital conversion), pro-
cesses them through a series of steps to ultimately get calibrated energy and time that is
later used for reconstruction purposes. Figure [5.19 shows the overall calibration process

(some steps are omitted in this section).

5.3.1 Energy Calibration

The process of energy calibration involves taking the ADC counts and taking them all the
way to energy expressed in MeV, available for doing physics analysis. The expression to

get the calibrated energy is as follows

E = PE(c,t) x Att (s) x S28 (s,t) x Farpu (t) (5.1)
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Figure 5.19: Overall calibration flow diagram [Figure by Dan Ruterbories (U. of
Rochester).]

where PE, Att, S2S and F)y;gy, are the number of photoelectrons, the attenuation, the
“strip to strip” correction, and the “muon energy unit”, respectively. They are explained

next.

Photoelectrons

The first step in getting the calibrated energy is to convert ADC counts to number of
photoelectrons, these are calculated as follows

PE (¢,t) = ADC x FEB (c) /Gain (c,t) (5.2)

“ADC” are the ADC counts obtained when the beam is present but subtracting the
electronic noise always present in the ADC module, this noise is known as pedestals and
it was determined by measuring the ADC counts in mixed beam/no-beam runs. After

removing outliers, the pedestal subtracted is the mean of the distribution in the channel,
see figure

the “FEB (c)” gives the low, medium and high response of each of the ADC channels
(TriP chips) in the FEBs. The response curve for each is obtained by comparing a known
input charge against the output charge of the channels (see figure [5.21]).
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Figure 5.20: Pedestal distribution in a channel, for the duration of a readout gate. [Figure

from [18].]
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Figure 5.21: Response of the low, medium and high gain ADC channels (TriP chips) in
FEBs. [Figure from ]

The “Gain (c,t)” term is the ratio of the output (anode) over the input (photocathode)
charge in the PMT. It is gotten by doing light injection into the PMTs, this was done
through special runs, or once after each beam spill, using ~30 ns long pulses of blue light
from LEDs, a diffuser is used to spread the light evenly through the photocathode. The
gain is time dependent due to factors like aging of the PMTs, voltages variations (sags),

or FEB swaps. The data from the light injection (LI) is combined with a photostatistics
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model of the PMTs to extract the final gain (see figure |5.22]).
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Figure 5.22: Gain distribution off all PMTs installed in the MINERvA ME run. [Figure
from [19].]

Attenuation

The “Att” term is the attenuation of the scintillation light in each channel. The total
attenuation in a channel is determined as the product of the attenuation in the fibers
times the attenuation of the strip in that channel, and Att (s) is the inverse of the total
attenuation. Before installation, each module was scanned with a C's — 137 source, and
the light response of all the strips as a function of transverse and longitudinal position
was measured. Figure [5.23]shows the longitudinal measurement versus the attenuation in

one of the strips.

S2S Correction

The S2S factor consists of the alignment correction plus the strip to strip correction and
has the purpose of uniforming the detector response. The firs step is the alignment of the
strips to have a good estimate of the path length. Strips can be misaligned basically in
each direction but the more significant are the transverse shift of the strips on the XY
plane, and the rotation planes around the Z axis, other displacements are relatively small.
The transverse misalignment is measured using the reconstructed tracks of rock muons
(see section [5.4)), the track makes an angle (6) at the point where it intersects the base
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Figure 5.23: Longitudinal attenuation of the plastic scintillator in one of the strips.

of the strip, with the normal to the base of the strip, the hit energy is multiplied by the
cos @, and this way the energy is corrected to normal incidence. The average energy from
all the rock muon hits in a strip is plotted against the hits base position and fitted with
the strip shape. The position of the fit’s maximum shows the transverse displacement of
that strip (see figure [5.24)).

The rotation of the planes is measured by selecting the transverse displacement of all
the strips in the plane in bins and plotting them against longitudinal position along the
strips, where the longitudinal position is determined also by the rock muon track. The
transverse displacement is fit again, but now as a function of the longitudinal position.
The rotation of the plane is taken as the slope of the line from the fit (see figure .
Displacements and rotations are measured in every plane, and corrections are applied

during the reconstruction stage.

After the alignment, strip response across all planes is measured, the variation comes
mainly from aging effects in the scintillator and from different amounts of leakage across
all optical connectors, imperfections in the sealing epoxy, etc. Using rock muons’ peak
energy deposition along their track, a first iteration of the channel energy is obtained by
considering the S2S corrections as unity and using a truncated mean energy deposition
(%), using a truncated mean reduces the number of rock muons required which in turns
reduces the time interval between samples (given that rock muons are statistically limited).
For the next iterations (up to four are used before converging), events with £50% of the
initial mean are used to calculate the new mean. When a hardware swap takes place, the
process must start over. The constant in each strip is normalized to 1.0 to preserve the

detector energy scale (later in this section) and is calculated as
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Figure 5.24: Transverse displacement of a strip. Module 50, plane 2 in the CH target, are
used as an example.
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Figure 5.25: Fit for plane rotation around the Z axis (module 50, plane 2 in the CH target
is used as an example). [Figure from ]

1

strip __

X
ST (5.3)
Z Nk

where x; is the truncated mean of the strip, N is the number of good channels, and k is

the sum over all good channels.

A similar correction factor (/") is obtained for each plane, and the overall correction
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is lane cftrip . Finally a second iteration of both the alignment procedure and strip to

strip calibration is done, improving the results from the first iteration.

Detector Energy Scale

The last term in equation is the detector energy scale or “muon energy unit” (MEU).
This calibration comes after the corrections for uniforming strips and planes have been
applied, therefore an overall M EU correction is calculated for all the strips in all planes.
The position and momentum of a data sample of rock muons matched in the MINOS
detector is used to guide a simulated sample of rock muons (data-driven simulation). An
energy of the rock muon clusters (see section is obtained using a preliminary M EU
value in both data and MC. The peak reconstructed energy is used as the expected muon
energy deposition per plane. The MC reconstructed cluster energy is corrected to the true
cluster energy, using the slope of the reconstructed versus true cluster energy in the MC.
The MEU is calculated as

MC
MEU = MEU,timinary Eetk L (5.4)
= preliminary EData .
Peak

where E%gk and Eggjg are the MC and data “peak” reconstructed cluster energy; and a
is the slope of the reconstructed vs true cluster energy in the MC. The light yield Ly is
calculated in a similar fashion, but in this case, clusters PE along the rock muon tracks
in the MC are match to data to be sure statistical fluctuations on the photocathode for
both data and MC are identical. The calibrated light yield factors is calculated as

PEData
LY = LYpreliminaryigfk (55)
PEljyeak

Figures and show the peak cluster PE and the peak cluster calibrated energy
(MEU) for all the time the MINERVA detector took data.

5.3.2 Time Calibration

Raw TDC counts are calibrated by correcting for time slewing T's;e,,, channel-to-channel
time offset Ty and transport time in the optical fiber Tpy.q,s. The calibrated time Ty

is calculated as
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Data Peak PE in Low and Medium Energy Runs as a Function of Time
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Figure 5.26: Peak cluster PE during all MINERVA data taking for both the LE (left side of
the transition period gap) and ME (right side of the transition period gap) configurations.
[Figure from [16].]
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Figure 5.27: Peak cluster MEU during all MINERvA data taking for both the LE (left
side of the transition period gap) and ME (right side of the transition period gap) config-

urations. [Figure from [16].]

TCal = TRaw - TTrans (C) - TCtC (C) - TSlew (PE) (56)

Trrans () is the transport time of the light in the optical fiber to the PMT’s photocathode,
it is measured as the distance from the center of the strip to the photocathode divided
by the speed of light in the fibers (156 mm/ns). When the hit position is known during
the reconstruction, the time is recalculated using the updated distance. Ty (¢) includes
cable delays between individual FEBs and FEB chains, and time offsets between chains.
Tsiew (PE) is caused by scintillator decay times and is a function of the number of pho-
toelectrons yielded in a strip (see figure . Both channel-to-channel and time slew are
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measured simultaneously in an iterative process that uses rock muon tracks, both times
for each hit in a muon track are corrected for muon time-of-flight, transport time in the
optical fiber, time slewing and channel-to-channel offsets from the previous iteration (up
to eight iterations are performed).

All channels read by the same TriP chip get the same measured time offset. Timing cali-
bration needs to be done after each hardware swap since it changes the channel-to-channel

time offset.
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Figure 5.28: Time slew as a function of the PE yield in the muon track.

Before the first iteration Tsie,, and Teoge are set to 0, in the it iteration a time corrected,

Toorr and a time average, 14,4 are calculated as

TCorr = TRaw - TTrans - TSlew - TCtC - TTOF (5'7)

=8
i—1 1 orr;
TAvg — 22—180 (58)

And the final expressions for the channel-to-channel and time slew are

TCtC = TRaw - TTrans - TCtC - TTOF - TAvg (59)

TSlew = TRaw - TTrans - TCtC - TTOF - TAvg (510)
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5.4 Reconstruction

Reconstruction begins after hit times and hit energies have been calibrated. Hits close
in time in the same strip are grouped into digits, a digit per strip. Digits are grouped
into different kinds of “clusters”, one or more clusters per plane. Clusters are the basis
of most of the reconstructed objects. Examples of which, are vertices, tracks and blobs
which determine the start and end points of the particles, the trajectories they followed,
and how they interacted in the detector. With them, other reconstructed quantities can
be derived, such as angles, ranges, etc. These object together with their energy and timing
information will be later used to determine the physical quantities used to extract physics

results from the detector.

5.4.1 Time Slicing

Time slicing separates neutrino events within the same readout gate using hit timing in-
formation, by grouping hits close in time that fired the discriminator. Slices are formed if
they contain enough energy. The slicing is done by an algorithm called “chronobuncher”,
which considers a window backward and forward in time from the hit under study where
other hits are gathered. It is crucial in separating events from different neutrino interac-
tions that are very close in time, specially in the ME beam, where the intensity increased
and so did the pile-up compared to the LE beam, and a more aggressive slicing had to be
performed where the window time was varied to optimize event separation. During the
16us of the readout gate, hits from different events accumulate. The new slicing algorithm
groups interactions as shown in figure[5.29] where a random data gate is shown as example

to visualize the slicing of neutrino events. The piled-up events in that same gate are shown

in figure E|

l”lh“lltﬂ”l YIIIlILl 1L L “I llllll I 111 Lll Ih T
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 B0 6500 7000 7500 8000 8500 ©000 9500 10000 10500 11000 11500 12000 12500 13000 13500 14800 14300 15000 15500 16300 16300 17000 17500
Time (ns)

Figure 5.29: Hits grouped in time slices within a readout gate for real data.

After slicing, different interactions are available for analysis. Figures and show
a zoom and event display of only slice 3 in the gate shown above. This particular slice has
a width of ~100 ns.

levent comes from the MINERvA event display software, Arachne [141].
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Hits

Figure 5.31: Zoom of slice number 3 in the readout gate shown in figure
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Figure 5.32: Event display corresponding to slice number 3, isolated from the readout gate

shown in figure W

5.4.2 Cluster Formation

From now on, reconstructed objects are supposed to be in the same time slice, unless

otherwise stated. All the hits in a strip are grouped to form a “digit”. There are “ID

Digits” and “OD Digits” for strips located in the inner and outer detector. Neighbors

strips in the same plane form “clusters”, which are categorized depending on their energy

and size (see figure |5.31)).

e Low activity - Clusters with low total energy.

e Cross Talk - The ones that include activity identified as cross talk by the cross talk

algorithm (light leaked between neighbor fibers in the PMT).

e Trackable - Energy in the range 1-8 MeV per hit and less than 12 MeV in total.

These clusters are compatible with minimum ionizing particles.
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e Heavy Ionizing - Very energetic clusters, with energies larger than 12 MeV (usually
way larger than that). No limits in the upper energy bound. These clusters are

typically narrow in their energy distribution.
e Super Clusters - Show a broader energy distribution. Usually present in electromag-

netic and hadronic showers.

It is during the cluster formation that cross talk as well as low activity hits are removed

and not considered to be part of clusters.

LN ZaN

ZE = 0.9 MeV; LowActivity ZE = 5 MeV; SuperCluster
/ :; N\ /W
3E = 10 MeV, Trackable 2E = 6 MeV; SuperCluster
Wy VANV
= 10 MeV; Heavylonizing = 17 MeV; Heavylonizing
NVAV AN
2E = 10 MeV; SuperCluster ZE = 5 MeV, Trackable

Figure 5.33: Types of clusters in the MINERVA detector. [Figure by Gabriel Perdue,
Fermilab.]

Each cluster has a five-vector associated to it which includes the calibrated time (of the
most energetic hit), energy and the three spatial coordinates. The Z coordinate is the

plane’s center, while the X,Y position is the energy weighted average transverse position.

5.4.3 Track Formation

Two main tracking algorithms are used in MINERvVA, the long and short tracking algo-
rithms. The former is relatively easier to work with, as it has more planes to form. It uses
the heavy-ionizing and trackable clusters. 2-D seeds are formed in each view (X, U and V)
which requires a minimum of eleven planes to then form 3-D tracks. Finally a Kalman Fil-

ter technique [142], considers the multiple scattering of the entire track, multiple Coulomb
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scattering makes peculiar curved tracks. The algorithm searches clusters starting from
the back end of the detector and going in the direction opposite to the beam. Going in
that direction, makes it easier for the algorithm to tell between tracks, as they have larger
opening angles than when they are closer to their common vertex upstream. Tracks can
have planes with no clusters, this often happens in planes with dead channels or in planes
affected by dead time. Each plane in the track is called a “node” of the track, even if
there are no clusters in that plane. Tracks are constrained to angles less than 70° with
regards to the Z axis, angle above which, the number of planes is not enough to construct
the track.

Short tracks are very important for short-lived and low energy particles which usually
travel just a few planes in MINERvVA, even when their angle with regards to the z axis is
small (forward particles). At least four planes are needed in order to have a short track
(an XUXV-view configuration). It uses two different algorithms: one that looks for short
segments overlapping (similar to the long-tracking algorithm), and another one that looks

for peaks around a point in order to find a track candidate.

A sample of rock muons is selected to measure the tracking angle and tracking
position resolution. Their track is divided into an upstream and downstream section,
a track is reconstructed in both sections and the angle and position are compared in
the boundary between sections, the differences in their angle and 3-D positions are the
reported resolution: ~0.02 rad and ~3 mm, respectively.

Muon tracks are passed through a “cleaning” algorithm that removes energy assigned to
them that is not likely due to a minimum ionizing particle (MIP), that energy is freed and

made available for further hadronic energy reconstruction.

The track efficiency is defined as the number of reconstructed target over the number
of “trackable” true simulated particles. Particles are considered trackable when they span
more than the number of required planes to form a short or a long track, and their angle is
less than 70° with regards to the Z axis. Figures[5.34 and show the tracking efficiency
obtained with a MC sample of CC coherent pion events, in C, CH, Fe and Pb targets.

The former uses “long tracks” only, while the latter also includes “short tracks”.

Although using short tracks increases the efficiency in CC coherent pion events (signal
events), it also increases the number of background events. Therefore events with recon-

structed short tracks are rejected in this analysis.

5.4.4 Vertex Reconstruction

Vertices are also categorized depending on the tracks associated to them
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Figure 5.34: Track efficiency for a ME sample with more than 1 track in the main neutrino
interaction vertex, using long tracks only. The same data set was used to select and
compare events from the plastic scintillator, carbon (graphite), all iron and all lead targets.

Pion energy refers to the hadronic (non-muon energy).

Starter - No incoming tracks. More than one outgoing track.

Kinked - One incoming and one outgoing track.

Forked - One incoming track and more than one outgoing tracks.

Stopper - One incoming and no outgoing tracks.

Exceptional - More than one incoming and any number of outgoing tracks.

The primary vertex (anchor vertex) is usually chosen as the muon most upstream node
(the muon upstream vertex), and is actually the primary vertex used in this analysis (see
chapter @ Vertices close to the primary vertex are added to it depending on the result
of the fit procedure. When the extra vertices are added to the primary, the vertex is
redefined as the point of closest approach of the tracks. This method works acceptably
well for events with opening angles between the tracks considerably large. For events with
small opening angles the fit delivers a poor resolution, where the vertex is predicted way
upstream or way downstream the truth vertex in the simulation. Most recent analyses in

the ME era of the experiment have used “machine learning” (ML) techniques to better
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Figure 5.35: Track efficiency for a ME sample with more than 1 track in the main neutrino
interaction vertex, using long and short tracks. The same data set was used to select and
compare events from the plastic scintillator, carbon (graphite), all iron and all lead targets.

Pion energy refers to the hadronic (non-muon energy).

predict the interaction or primary vertex [143].

Whether the fiducial volume of interest of a particular analysis is in the tracker or in the
passive targets region, affects the definition of the vertex for analyses not using ML. For
instance one-track analyses like CCQE in the passive target region, where there is a muon
and a neutron as the observables, there is only one tracked particle, the muon. In those
events the primary vertex is also selected as the first node of the muon track. In the target

region, the muon vertex is always in the first plane downstream the passive material.

5.4.5 Energy Reconstruction

This is divided in muon energy and hadron energy reconstruction. Since all analyses in
MINERvVA so far use only one muon, the muon energy reconstruction involves just one
particle. Besides that, in the majority of the analyses the muon is required to enter the
MINOS detector EL meaning that in those cases the muon traverses the detector from
the point of the neutrino interaction until the back end of MINERvA, and looses energy

basically only through ionization, a well understood mechanism.

2the CC kaon analyses were the exception due to statistical limitations [144], [145).
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There is a big difference with the recoil or hadronic energy, where frequently, multiple
particles are present, these particles deposit their energy in many different ways, creating
secondary particles with different detector response. Neutral particles are also created
and their energy deposition has to be inferred from models. When the hadrons escape the
detector their energy is also lost and cannot be measured.

Particles originated outside the detector continuously entered the OD and ID, depositing
energy in both. Particles like muons from cosmic ray origin, or other non-beam related
particles are hard to predict, and very little is done to get rid of them. Rock muons as
useful as a tool they are, can enter the detector during the same time the readout gate is
open, depositing energy along the main neutrino interaction originated inside MINERvVA.
These events make the reconstruction algorithms to overestimate the energy of the events
under study or misidentify the topology of the interaction. Rock muons have the signature
of starting in the first module of the detector. A “rock-muon-removal” algorithm subtracts
their energy from the overestimated energy of the neutrino event without getting rid of

the event.

Muon Energy Reconstruction

The total energy of the muon is the sum of the energy lost in the MINERvA detector
plus the energy lost or calculated in the MINOS detector. The energy lost in MINERvA
is calculated using the Bethe-Bloch equation [20] (equation , updating the energy in
each possible layer of the detector, as the energy deposited depends on the energy of the

incoming particle.

]

. — 3 (5.11)

dE ngi lln2m602ﬂ272Tmax
dz ApB% |2 I2

The energy in MINOS is obtained by either one of two methods, by range or by curvature.
To count a muon in MINOS as a valid muon that was created in MINERvA, a matching
procedure is done where the downstream end of the MINERvVA track is compared to the
upstream end of the MINOS track, they have to be less than 200 ns apart and less than 40
cm separated from each other. After a good match, if the muon stops inside the MINOS
detector, its momentum is determine by range, which is a more precise and certain method
(momentum resolution ~ 5%, compared to ~ 10% for the curvature method). When
the muon also escapes the MINOS detector, the by-curvature method is used, and the
momentum P is calculated using the radius of curvature of the particle R in cm, and the
MINOS magnetic field B in kGauss, as follows:
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1 03xB
= 5.12
I 2 (5.12)

Recoil Energy Reconstruction

The recoil energy is defined as all the energy deposited in the detector and not used by the
muon track, or electron in neutrino-electron scattering. The first step in the procedure
consists in correcting the “visible” energy in the active material by the energy lost in

passive materials, where a calorimetric scale factor is obtained for each subdetector

Evis 4 EPGSS

SF dul dul
c~" = m} ieE”is module (5.13)
module
where Efrfg Jule 15 the visible energy deposited in the plastic scintillator of a module, Ef;f OS ;ul .

is the energy deposited in passive materials in the module, and f ~ 0.8127 is the active
fraction of the scintillator plane. The energy lost in the passive materials is supposed to be
due to a minimum ionizing particle, which is a good estimate for sufficiently high energy
but not for low-energy particles (see energy loss curve in figure . After the passive
material correction, the energy is compared with the truth energy from the model, and
an additional scale factor is applied to the sample to match it to the truth energy. This
correction factor is meant to compensate for all the neutral and escaping particles that
do not show up as visible energy in the detector, as well as for the extra energy lost by

low-energy particles in the passive material.

Erecoil = @0 X Z cPt pyis (5.14)

)

where « is the “calorimetric” scale factor, obtained by matching the passive material
corrected to the true energy; CZ-SF and E,Z’is are the passive material scale factor and the

visible energy in subdetector i.

The performance of the calorimetric energy reconstruction and an extra energy dependent

correction are detailed in section (6.4)).
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Figure 5.36: Mean energy loss rate by different particles in different materials, from the
Bethe-Bloch equation || [Figure from ]
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CC COHERENT 7+
PRODUCTION Off C, CH, Fe
And Pb At MINERVA

In this chapter, the v, beam described in chapter , is used to search for the CC coherent
production of positive-charge pions from C (graphite), CH (hydrocarbon), Fe and Pb
targets, in the MINERvA detector described in chapter This work represents the
largest statistical sample from carbon, and the first reported measurement from iron and

lead. It is also the first simultaneous measurement of the interaction in different materials.

The experimental signature consists of a forward muon (™) and a forward charged
pion (71) originated from a common vertex. The energy of the vertex is consistent with
the energy deposited by only the muon and the pion, both considered minimum-ionizing
particles. These are all detector-independent and model-independent topologies. A sub
sample of the MINERvVA v, dataset with these characteristics has been isolated. Measure-
ments of the total cross section o (E, ), and differential cross sections do/dEy, do/df, and
do/dQ?, were obtained from C, CH, Fe and Pb targets. All results are compared against
the Rein-Sehgal model [5].

Unlike the previous MINERVA low-energy (LE) measurement [31], [7], this analysis
does not use anti-neutrino data. Besides just recently becoming available, the statistics of
the medium-energy (ME) 7, dataset are a small fraction of the v, sample, making the 7,

analysis in C, Fe and Pb, statistically limited.

The NC process is not pursued, because as mentioned in chapter |3 it is model-

dependent.
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6.1 Dataset

All results shown in this chapter correspond to the “neutrino”data taken in the so called
“medium-energy” (ME) era of the MINERVA full run. It spanned for almost three and a
half years, from September 2013 to February 2017, reaching ~ 10.6 x 102 protons on target
(POT) (figure[6.1). POT is a parameter that allows neutrino experiments to have an idea
on the number of neutrinos that were sent to the detector, since most of them do not
interact with it. The data was separated into “playlists”, according to important changes
in accelerator, beamline and detector configuration, like changes in intensity, resuming
data taking after long accelerator shutdown periods, or after filling or emptying the water
and helium targets (see table . The water target does have an impact in this analysis,
since it is downstream three of the targets used (see section . The helium target is

upstream all the regions analyzed, and therefore it has not been included in table

Monte Carlo (MC) samples were generated, simulating the beamline and detector
configuration in each playlist. A sample 4 times the data POT was simulated for events in
the tracker (CH target), while for the passive target region (C, Fe and Pb target) 10 times
the number of data POT was needed due to the reduced statistics. The size of the MC
samples is increased until the statistical uncertainty in the simulation is not significant

compared to the other sources of errors. It is typically maintained below a few percent.

A special MC sample of CC coherent 7" events was generated to measure the selec-
tion efficiency, resolution of reconstructed variables and migration matrices (see sections
and . Because CC coherent 7+ events represent ~ 1% of the overall neutrino
events [18], the sample was made 100 times the data POT.

All events in the MC samples were generated inside the inner detector (ID). Events were
allowed to develop and interact in all the detector, but none was generated in the outer

detector (OD) calorimeters.

The beam intensity was increased in three different occasions while MINERvVA was
running in the ME neutrino mode. The four intensity configurations shown in table
reflect these changes, which correspond to the changes in the proton stacking patterns of
the booster batches (see figure [4.4)).
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Data POT Me POT Period H>0O

Playlist 20 CH - C/Fe/Pb - Signal Only Intensity
(x10%%) 20 (approx. days) Target
(x10%%)

ME1A 0.896 3.935 9.992 93.534 6+0 124 Empty
ME1B 0.186 1.084 2.011 18.306 640 23 Empty
ME1C 0.429 1.931 4.358 42.320 6+0 61 Empty
ME1D 1.433 5.749 14.327  136.510 640 150 Empty
MEIE 1.026 4.997 10.951 141.278 6+0 105 Empty
ME1F 1.660 6.739 17.011 160.473 6-+2 124 Empty
ME1G 1.371 5.423 14.266  131.369 6-+2 122 Empty
ME1L 0.132 0.572 1.470 11.601 6+4 8 Filled
ME1IM 1.567 8.445 21.105 644 118 Filled
MEIN 1.063 4.993 11.253  49.146 6+4 66 Filled
ME10O 0.297 1.542 3.285 28.530 6-+6 12 Filled
ME1P 0.462 1.976 4.749 42.715 6-+6 20 Filled
TOTAL 10.521 45.998 114.778 855.782 933

Table 6.1: All ME v, data samples (known as playlists). The MC simulation in the passive
materials (C, Fe and Pb) needs more protons on target (POT) due to their reduced mass
compared to the tracker region (CH). Intensity is shown in terms of the slip stacking of
the batches in the booster (see chapter . The water target was filled just for the last 5
playlists.
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Figure 6.1: Number of protons on target (POT) vs time for the MINERvA ME data
taking. The plateaus correspond to beam downtime. The loss in efficiency in MINOS and
MINERvVA, is due to issues with the data acquisition system DAQ, and due to hardware

failures and replacements. [Figure by Nuruzzaman, MINERvA collaboration.]
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6.1.1 MC Samples Reweighing

Most of the neutrino interactions in the MINERvA MC are built into the GENIE MC gen-
erator version 2.8.4. [132]. The MINERvVA collaboration has made modifications to some
of this interactions in the standard GENIE MC, based on data from previous MINERvA
analysis or from other experiments. Based on new available models, the collaboration has
also added other interactions previously not considered by generators. Such changes make
the MC prediction better agree with the data.

Further corrections to the MC were applied to the flux prediction and the tracking effi-
ciency of muons in the MINOS detector.

CCQE

MINERvA’s definition of CCQE-like scattering includes low energy protons and any num-
ber of neutrons in the final state [146]. Since the scattering of neutrinos off correlated pairs
of nucleons, in medium (2p2h) and long range (RPA) (section fall in this definition,
corrections to the CCQE event rate due to 2p2h and RPA processes are included in the MC
simulation. The magnitude of the correction depends on the energy and three-momentum

transferred.

Non-Resonant Single Pion Production

Re-analyzed data from the ANL and BNL neutrino-deuterium interactions [147], [148]
allowed to make constraints to the production of non-resonant pions. A scale factor of
0.43 £ 0.04 was applied to all non-resonant single pion events in GENIE, based on a fit

obtained from the deuterium data in those experiments.

Resonant Single Pion Production

From the same neutrino-deuterium data fit, an overall normalization of 1.15 4+ 0.07 was
obtained for single resonant pion events. A correction to the axial vector mass for resonant
pion production (similar parameter to the one used in section , changed its best esti-
mate and reduced its fractional uncertainty from ~ 20% to ~ 5% (1.12 £ 0.22 — 0.94 £ 0.05).
A recent analysis [149] has been used to simultaneously tune GENIE to the neutrino-
deuterium data and to the CC pion production data from hydrocarbon at MINERvA
[130] |150] [151]. From this analysis a further “ad hoc” correction for resonant pion events
with Q% < 0.7 GeV is obtained. The correction tries to match the MC prediction to the
data suppressed in this region, due to collective nuclear effects (figure

102



CC COHERENT ©+ PRODUCTION Off C, CH, Fe And Pb At MINERvA

= = T T T T
8 L
o 1 o 1
(35} [g°]
= [27R
= =
g L
Rt -
o |9}
& &
S S
0.5 0.5
[ Joint Frabs Fit [ Joint Frabs Fit i
v, CCIx* FrAbs Fit 2 v, CCI FrAbs Fit |
E= v, coN* Frabs Fit = v, CCI® FrAbs Fit |
i == MINOS Parametrisation 7 I -=-- MINOS Parametrisation T
G s s | 1 | | | | | | ! | ! G ! ! L | L L L 1 " L L 1 L
0 0.2 0.4 0.6 0 0.2 0.4 0.6
2 2 2 2
Q" (GeV?) Q" (GeV?)

Figure 6.2: Correction to resonant pions with Q? < 0.7 GeV. The data in that region
is believed to be suppressed due to collective nuclear effects. The “joint” correction was
obtained by tuning GENIE using all the CC pion production data in MINERvA. The
CC1n™ and CCNr™ corrections were obtained by tuning GENIE using the CC single
and N pion production data in MINERvA. The v, CC17° and v, CC17Y corrections

were obtained in a similar fashion.

Flux

The flux prediction by FLUKA [135] and GEANT4 [125] has large uncertainties specially
due to some of the secondary hadron interactions in the beamline. A recent measurement
by MINERVA of neutrino-electron scattering [126] and data from hadron interactions from
other experiments [152] have helped constraining the flux prediction. A correction factor

is applied to account for the difference between the original and constrained predictions.

MINOS Tracking Efficiency

A correction factor is applied to the MC to account for the difference in the efficiency
of tracking muons in the MINOS detector, compared to the data. The efficiency in the
MC is a few percent larger than the efficiency seen in real data events. The difference is
due to the non-simulation of pileup events in the MINOS detector. When more than two
muons enter the MINOS detector in the same time slice (see section, the data event
is rejected. Since no multiple events are considered in the MINOS simulation, the MC
efficiency is larger. The difference in efficiency and therefore the correction factor depend
on the muon momentum, as seen in figure A curve is fitted to the data to correct
events with momentum in between measured values. There is a curve for low and one for

high intensity playlists.
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Figure 6.3: Momentum dependent tracking efficiency (left) and correction factor (right) of

the muons entering the MINOS detector. Black and red (green and blue) curves correspond

to the data and MC efficiencies in the low (high) intensity playlists. The right plot shows

the correction functions for the low (green) and high (black) intensity playlists. [Figure
by Anushree Gosh (MINERvVA collaboration).]

6.2 Signal

A proper signal definition is needed in order to isolate CC coherent-pion candidates from

the dataset. The signal definition is the same used in the LE analysis [18], the only

difference being the addition of three more targets. CC coherent-pion events are defined

as those with the following features:
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e A CC coherent interaction induced by a muon neutrino scattering off a C, CH,

Fe or Pb nucleus. Creating a positive pion and a negative muon from a common

interaction vertex.

The interaction vertex must be inside an hexagonal prism centered in the MINERvA
detector with an apothem of 850 mm and a height dependent on the material under

study.

The neutrino energy must be 2.0 < E, << 20.0 GeV. Neutrinos with energy below
that range do not create muons energetic enough to enter the MINOS detector, so
their energy cannot be reconstructed. Events from neutrinos with more than 20 GeV

have large systematic errors associated to the flux.

Events happening on other nuclei, but inside the fiducial volume, are considered
signal, to avoid a dependence of the background on the signal model. This basi-
cally concerns only events in hydrocarbon and iron, where the percentage of events

scattering from other a different material is ~ 4% and ~ 2%, respectively.
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6.2.1 CH Fiducial Volume

The fiducial volume for the hydrocarbon (CH) target is defined as an hexagonal prism
centered in the MINERvA detector with an apothem of 850 mm and a height of 108
planes (~ 2.42 m), being contained completely in the ID, plastic scintillator region. The
reconstructed interaction vertex is defined as the vertex of the muon track. This is due
to the poor resolution of the standard algorithm in signal events, which uses the point
of closest approach between the pion and muon tracks (see sections and . The

vertex of the muon track then must be inside the fiducial volume, to select the event]T]

Elevation View
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Figure 6.4: Side view of the MINERvVA detector, showing the fiducial volume of the CH

target (in green). The passive targets region (in red) does not represent the fiducial volume

for those materials.

Figure 6.5: Front view of the fiducial volume for the CH target.

From now on the expressions “muon vertex” and “reconstructed vertex” will be used interchangeably.
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6.2.2 C/Fe/Pb Fiducial Volume

The passive targets region in the MINERvVA detector is somewhat complicated. But as
explained in chapter |5 the material distribution through it, was meant to maximize the
statistics of some interactions, and equalize the acceptance and mass of iron and lead. The
installed iron and lead mass, were distributed in 4 iron and 5 lead targets across the passive
targets region. The overall fiducial volume for iron and lead consists then in the addition
of four and five independent fiducial volumes, respectively. As carbon was already present
in the tracker region, just a single pure carbon target was installed to extract hydrogen
contributions from CH interactions. A guiding drawing is shown in figure depicting

the position and configuration of the passive targets.

target 3 A4

target2

target 1 -
_~ Beam direction

P
c
P
CH
H20

.Fe
.Pb

Figure 6.6: Isometric drawing of the passive targets configuration and arrangement in

the passive material region. In reality there are plastic scintillator planes in between the

passive targets, used for tracking. Targets 1 and 5 have the same material configuration.

Unlike the CH target, the passive targets only span one module, and have all different
thicknesses, as shown in table[6.2] And because no light is deposited in them by the passage
of a charged particle, the fiducial volume for each of the targets, is defined as the area of
the plane immediately downstream and in front of each material times the thickness of

the plane (figures and . Figures and show a simulated signal event in the
CH and Fe target 1 fiducial volumes.
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Figure 6.7: Side view of the target region, with the fiducial volume of each target in green.

This figure is a zoom of the red target region in figure @

/

—
< \%

Target 4

Target 3

Figure 6.8: Front view of the fiducial volume in the passive targets. All have an apothem

of 850 mm. The buffer region separation between fiducial volumes is 25 mm.
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. Fiducial . Fiducial Fiducial No. of Fiducial
Target/Material 5. Thickness (cm) 3 .
Area (m?) Volume (¢m?®) Mass (kg) Nuclei (E27)

Fe target 1 1.557 2.567 3.998E4 313.193 3.38

Fe target 2 1.557 2.563 3.992E4 312.705 3.37

Fe target 3 0.786 2.873 2.258E4 158.397 1.71

Fe target 5 1.557 1.289 2.008E4 157.267 1.70

Pb target 1 0.860 2.578 2.218E4 250.427 0.73

Pb target 2 0.860 2.581 2.221E4 250.718 0.73

Pb target 3 0.369 2.563 9.467E4 106.879 0.31

Pb target 4 2.503 0.795 1.990E4 224.641 0.65

Pb target 5 0.860 1.317 1.133E4 127.933 0.37

C Total 1.203 7.62 9.165E4 159.371 7.99

Fe Total 12.256E4 941.562 10.16

Pb Total 17.029E4 960.598 2.79

CH Total 2.503 242.0 605.681E4 4754.3 238.38

Table 6.2: Characteristics of the fiducial regions in all targets used in this analysis. Indi-

vidual and total contributions from iron and lead targets are shown.

CH Target

o I .
) ?Jé 2 zl| 64 1'(1 1214 16 18 #‘o 29 24 26 25 30 32 34 36 3B 40 42 44 4b 458 50 52 54 56 55 60 62 64 66 68 70 72 74 76 78 80 82 84 86 85 90 92 94 96 98 10018218a1061081 0112114

Target1 Target2 Target3 Target4 Target5

Fe/Pb Fe/Pb C/Fe/Pb Pb Fe/Pb

Figure 6.9: Top view of a simulated signal event in the CH target. A scale version of the
inner part of the detector can be observed. The muon and the pion tracks go close to each
other and then separate. The pion is seen interacting in the ECAL, while the muon leaves
the back of MINERvVA to enter MINOS. The red region is the fiducial volume of the CH
target. Each colored triangle corresponds to a scintillator strip, and the color indicates

the energy deposited in the strip according to the scale in the right-hand side of the plot.
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Figure 6.10: Top view of a simulated signal event in Fe target 1. A scale version of the
inner part of the detector can be observed. The muon and the pion tracks go close to each
other and then separate. The pion is seen interacting in the ECAL, while the muon leaves
the back of MINERVA to enter MINOS. The red region is the fiducial volume of Fe in
target 1. Each colored triangle corresponds to a scintillator strip, and the color indicates

the energy deposited in the strip according to the scale in the right-hand side of the plot.
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6.3 Background

The background consists of events that mimic the topology of the signal. Different inter-

actions can have the same final state of a muon (u~) plus a pion (71) and no apparent

activity near the vertex. A correct understanding of the backgrounds is as important as

understanding the signal. They have a direct impact on the final cross section results. The

background classification for this analysis also uses the classification from the LE anal-

ysis |18], plus the addition of the “plastic background” for the passive material targets.

All background events come from the same fiducial volumes defined in section [6.2] The

background classification goes as follows:

110

CH (Plastic Background) - Because of the location of the fiducial volume of the
passive targets, there are selected events that actually occurred in the plastic scin-
tillator planes in between. Most of these plastic interactions occurred in the fiducial
volume. Some others, because of the small opening angle between the muon and
the pion, happened in the plastic upstream or downstream the fiducial volume. All

“plastic” events are considered background.

vy+n — p~+p* (CCQE) - In a CC quasi-elastic scattering, the final state proton can
be mistaken as a positive pion. Although the proton and pion usually have different
energy deposition patterns, they often are very similar and hard to distinguish. The
small contribution from the scattering off correlated pairs (2p2h) described in chapter
is included here.

vy+N — p-+ a*+ N (W<1.4 GeV)- This includes all single pion production from
resonant (the #* may be produced by a delta resonance) or non-resonant origin.
These events are limited by the invariant mass of the hadronic system (W < 1.4
GeV). The signature of these events is the same as the signal when there is small

activity near the vertex.

vy+ N = p+ X (14 < W < 2.0 GeV) - The multiplicity of final state hadrons
increases. This is known as the transition region or “shallow” inelastic scattering
(SIS). Usually the most energetic of the final state hadrons mimics the pion, while

the rest might escape detection.

vy+N — p=+ X (W > 2.0 GeV) - This is the deep inelastic scattering (DIS) region,
with higher multiplicity. Pions from the re-hadronization from the neutrino-quark

interaction can look like signal-like events.
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e Other - Events not coming from a CC v, interaction. Including NC, wrong neutrino
flavor and muon anti-neutrinos. Any of these could create a lepton and a hadron

imitating the signal.

6.4 Analysis-Specific Reconstruction

The reconstructed objects obtained from the general reconstruction of the data and MC,
with improvements and specifics for the ME sample (section , such as muon energy,
vertices and tracks, are used in this analysis. Further reconstruction stages are needed in
order to isolate the desired sample. All variables in this analysis follow basically the same
reconstruction procedure as in the LE era, with adjustments to the CH sample in order

to be consistent with the passive targets which demand new considerations.

The MC samples include the simulation of most of the processes involved, based
on the most accepted physics models available (section . This is called the truth
Monte Carlo, or “MC truth”. The MC, is also taken through the same reconstruction
steps as the data, in order to validate the reconstruction of the latter. This is called
the reconstructed Monte Carlo, or “MC reco”. Every analysis in MINERvVA validates its
reconstructed variables by looking at the comparison of the reco against the truth. This
gives a “resolution” for each of the reconstructed variables, which is an indicator of how

good the real data is being reconstructed.

In summary, this analysis searches for: events with only two tracks originated from
a common neutrino interaction vertex; energy near the vertex consistent with the energy
deposited by those two tracks only; and a low squared four-momentum transfer to the

nucleus, |t| (chapter [3)). Expressing equation explicitly

1= | = 2B+ Br) (B — Pucosbuy) +m

-2 (Eg — (B, + Ex) Py cosbyr + P, Py cos 9;471') +m?

™

(6.1)

It is clear that the fundamental reconstructed variables needed to isolate signal events
are: VitTreco, By, Er, 0y, and 0,., which are the interaction vertex, muon and pion total
energy, and the angle of the muon and pion with regards to the neutrino. E| The vertex

energy FEyy, is just the contribution of the muon and pion energy in the vertex region.

2 All neutrinos are considered to travel in the direction of the simulated neutrino beam (see section .

111



Chapter 6

6.4.1 Vertex Reconstruction

As mentioned in section the reconstructed interaction vertex is the first node of the
muon track candidate, which is always placed at the center of the plane where the vertex
happens to be. This implies an uncertainty on the Z coordinate of half the width of the
plane (~8.5 mm) for events happening in the CH target.

For the passive materials, the uncertainty is larger in all three coordinates (X,Y
and 7). Figure shows the already explained separation between the Z position of the
truth and reconstructed vertices. It can also be seen how the muon track is projected into

the center of the passive material to assigned the reconstructed X and Y positions.

Scintillator Planes X

Y@]_) z

Muon Track

V Beam

Reconstructed Z Vertex

Reconstructed X,Y Vertex

Fiducial Volume

Figure 6.11: View from above the detector, showing the passive material to the left and
the first active plane downstream to the right. The muon vertex is located at the center of
the downstream plane. The muon track is projected into the passive material to assign the
X and Y coordinates of the reconstructed vertex. This last part is important to determine

the material in targets having more than one.

Figures to show the resolution of the X, Y and Z vertices for the CH, C and all
Fe and Pb targets. The resolution is defined as the reconstructed minus the truth vertices

in mm.
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Figure 6.12: Vertex resolution in all coordinates in the CH target. The gap in the Z vertex
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Figure 6.13: Vertex resolution in all coordinates in the C target. The shifted and wider

range in the Z vertex resolution, correspond to the distance between any point inside the

passive material (true vertex) and the center of the downstream plane (reco vertex).
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Figure 6.14: Vertex resolution in all coordinates in Fe target 1. The shifted and wider
range in the Z vertex resolution, correspond to the distance between any point inside the

passive material (true vertex) and the center of the downstream plane (reco vertex).
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Figure 6.15: Vertex resolution in all coordinates in Fe target 2. The shifted and wider
range in the Z vertex resolution, correspond to the distance between any point inside the

passive material (true vertex) and the center of the downstream plane (reco vertex).
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Figure 6.16: Vertex resolution in all coordinates in Fe target 3. The shifted and wider
range in the Z vertex resolution, correspond to the distance between any point inside the

passive material (true vertex) and the center of the downstream plane (reco vertex).
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Figure 6.17: Vertex resolution in all coordinates in Fe target 5. The shifted and wider
range in the Z vertex resolution, correspond to the distance between any point inside the

passive material (true vertex) and the center of the downstream plane (reco vertex).

114



CC COHERENT ©+ PRODUCTION Off C, CH, Fe And Pb At MINERvA

vitx Z Resolution - T1_Nuc82

- VixXMu T1-Pb - - VixYMu T1-Pb -
0.051 T oo iz 0.05¢ T oot e [
L B0 57060.0547066-03 F B0 90200052 350%-03 012
L o1 —oatets 1oz L Pl ocorsees vatezt .
r w2 0:14 F w2 0=14 r
0.04— @ o0ai0es003020 0.04— @ ocessooz o1
IR P4 -03282=5.0141 IR pé 0.003296 = 4.927489 .
< w amsamer s I v sazr c f
'9 = P6  4.0150-00 = 3.08%e-02 '9 = 15310-08 £ 1.6406-02 '9 r
S 0.031— I 03329 = 14156 S 0.031— 2155249369 5 0.08[~
[ r w —a149: 313694 [ r 21512140 [ C
[ r [ r [ L
2 r 2 r £0.06[
a r a r 3 n
£0.02— £0.02— £ L
© I © I © .
@ r @ r ®0.04- b,
001 001 r
r r 0.02[~
ol i I I ! o 1 I 1 L Lot | I I 1 !
=30 —20 -10 0 10 20 30 =30 —20 -10 0 10 20 30 7q00 -80 -60 40 -20 0 20 40 60 80 100
Vix X Resolution [mm] Vitx Y Resolution [mm] Vix Z Resolution [mm]

Figure 6.18: Vertex resolution in all coordinates in Pb target 1. The shifted and wider
range in the Z vertex resolution, correspond to the distance between any point inside the

passive material (true vertex) and the center of the downstream plane (reco vertex).
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Figure 6.19: Vertex resolution in all coordinates in Pb target 2. The shifted and wider
range in the Z vertex resolution, correspond to the distance between any point inside the

passive material (true vertex) and the center of the downstream plane (reco vertex).
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Figure 6.20: Vertex resolution in all coordinates in Pb target 3. The shifted and wider
range in the Z vertex resolution, correspond to the distance between any point inside the

passive material (true vertex) and the center of the downstream plane (reco vertex).
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Figure 6.21: Vertex resolution in all coordinates in Pb target 4. The shifted and wider
range in the Z vertex resolution, correspond to the distance between any point inside the

passive material (true vertex) and the center of the downstream plane (reco vertex).
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Figure 6.22: Vertex resolution in all coordinates in Pb target 5. The shifted and wider
range in the Z vertex resolution, correspond to the distance between any point inside the

passive material (true vertex) and the center of the downstream plane (reco vertex).
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6.4.2 0, Reconstruction

The direction of the muon is determined by the long-tracking algorithm. The direction

vector of the first node in the track determines the reconstructed muon direction. It is
reconstructed during the general MINERvVA reconstruction . The resolution of the
muon angle with regards to the neutrino beam for the CH, C and all Fe and Pb targets,
is shown from figures to The resolution is defined as the reconstructed minus

the truth angle, in degrees.
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Figure 6.23: Absolute, XZ-Plane and YZ-Plane muon angle resolution in the CH target.

ThetaMu T3-C - Resolution, Bin1

100| Findl 7306/125 E e PYTTEY
= PO 83.08+7.06 oo 1 P 81152586
r P 0044300168 E B o00z0E 001672
r i P2 0.3414 £ 0.0303 E P2 0.356320.0295
80— | 5 11545751 80 w0 asss+6zs
r Pt 01502400892 E o 00123200885
r 5 0.7375 + 0.1241 70 5 08255 0.1438
60— 60F-
50~ 1
40— 40f
L E |
= 301
20— 20F
L 10F-
oL L L L L oE I | | |
2 45 4 05 0 05 1 15 2 2 45 4 05 0 05 1 15 2

ThetaMuXZ T3-C - Resolution, Bin1

90

80

70

6

3

5

=)

4

S

3

S

2

=3

=)

O PTTTT] CIT T[T [T IO T[T CTTr T OeT

ThetaMuYZ T3-C - Resolution, Bin1

7 nat
P
ot
2
s
o4
3

56761127
82952593
0008257 0016508
03533200271
957a= 5889
0007208 0071230
079630135

1=

Figure 6.24: Absolute, XZ-Plane and YZ-Plane muon angle resolution in the C target.
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Figure 6.25: Absolute, XZ-Plane and YZ-Plane muon angle resolution in Fe target 1.
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Figure 6.26: Absolute, XZ-Plane and YZ-Plane muon angle resolution in Fe target 2.
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Figure 6.27: Absolute, XZ-Plane and YZ-Plane muon angle resolution in Fe target 3.
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Figure 6.28:
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Figure 6.29: Absolute, XZ-Plane and YZ-Plane muon angle resolution in Pb target 1.
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Figure 6.30: Absolute, XZ-Plane and YZ-Plane muon angle resolution in Pb target 2.
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Figure 6.31: Absolute, XZ-Plane and YZ-Plane muon angle resolution in Pb target 3.
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Figure 6.32: Absolute, XZ-Plane and YZ-Plane muon angle resolution in Pb target 4.
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6.4.3 6, Reconstruction

The pion direction is also determined by the long-tracking algorithm. It can be recon-
structed by the short-tracking algorithm when it spans from 4 to ~ 11 planes. The
short-tracking algorithm is successful in reconstructing signal events where the pion has
low-energy. Unfortunately it reconstructs more low-energy resonant pions, reason why
events reconstructed by the short-tracking algorithm are not used in this analysis. Pion
tracks with angles larger than 70° are not reconstructed, as the number of planes is not
enough to form a track. Like the muon track, the direction vector of the first node in
the track determines the reconstructed pion direction. It is also reconstructed during the
general MINERvVA reconstruction . The resolution of the pion angle with regards
to the neutrino beam for the CH, C and all Fe and Pb targets, is shown from figures
to The resolution is defined as the reconstructed minus the truth angle, in degrees.
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Figure 6.34: Absolute, XZ-Plane and YZ-Plane pion angle resolution in the CH target.
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Figure 6.35: Absolute, XZ-Plane and YZ-Plane pion angle resolution in the C target.
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Figure 6.36: Absolute, XZ-Plane
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and YZ-Plane pion angle resolution in Fe target 1.
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Figure 6.37: Absolute, XZ-Plane
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Figure 6.40: Absolute, XZ-Plane and YZ-Plane pion angle resolution in Pb target 1.
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6.4.4 I, Reconstruction

The reconstructed total energy of the muon is measured in both MINERvA and MINOS
detectors. The energy measured by ionization inside MINERvA is added to the energy
measured by either range or curvature in the MINOS detector (section. It is manda-
tory in this analysis to have the muons entering the MINOS detector, given that the energy
measured inside MINERvVA is not enough to assess the muons’ total energy, nor the signal
of their electric charge (to know whether it is a muon or an anti-muon). An additional
correction is added to muons created inside and traversing passive materials. Muons with
vertex immediately downstream a passive material, are considered to come from the center

of the passive target (projected vertex in figure [6.11]). The passive material correction is

mat
1

> (M; x dEdz;) (6.2)

C; =
’ factive * Mo *x dEdx s

where dE/dx; and dFE/dxs. are the energy loss in the passive materials and in the plastic

Lem?; factive = 0.8127 is the fraction of active material in a scintil-

scintillator in MeV ¢~
lator strip; My, is the number of MEU per g/em? (section [5.3.1)); and M; is the mass of
the ith material in gem 2. Table shows the value of C; in equation for a strip in

different subdetectors.

Sub-detector Correction Factor (C;)

Tracker (CH) 1.197

Side ECAL (X-view strips) 2.696

Side ECAL (U and V-view strips) 4.339

Downstream ECAL 1.998

Downstream HCAL 10.441

OD (stories 1-3) 24.232

OD (story 4) 42.660

Passive Targets Region Depends on target near the strip

Table 6.3: Passive material correction factor (C) in all sub-detectors.

The calibrated energy of each strip (section , also called “visible energy” or
FEyis, is then multiplied by the appropriate C'. The total muon energy, without the passive
material correction, is also reconstructed during the general MINERvA reconstruction
stage. The energy resolution, unlike for the other variables, is a fractional resolution,

defined as

125



Chapter 6

Erecostructed _ Etruth
© [

lution __
E;eso ution __ Eﬁyuth (63)

This definition is used for variables where the absolute resolution is meaningless, as the
truth value at which the resolution is obtained, is important. From figures to [6.55]
the fractional resolution as a function of the truth muon energy is shown. The fit of each of
the one-dimensional muon energy fractional resolution histograms in the right-hand side

plots, are shown in appendix [A]
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Figure 6.45: Fractional muon energy resolution vs true muon energy (left). The Y-axis in
the left is projected into three 1-D histograms corresponding to three energy ranges in the
X-axis, to see the difference in energy resolution at different muon energies in more detail
(right). CH target.
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Figure 6.46: Fractional muon energy resolution vs true muon energy (left). The Y-axis in
the left is projected into three 1-D histograms corresponding to three energy ranges in the
X-axis, to see the difference in energy resolution at different muon energies in more detail
(right). C target.
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Figure 6.47: Fractional muon energy resolution vs true muon energy (left). The Y-axis in
the left is projected into three 1-D histograms corresponding to three energy ranges in the
X-axis, to see the difference in energy resolution at different muon energies in more detail
(right). Fe in target 1.
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Figure 6.48: Fractional muon energy resolution vs true muon energy (left). The Y-axis in
the left is projected into three 1-D histograms corresponding to three energy ranges in the
X-axis, to see the difference in energy resolution at different muon energies in more detail
(right). Fe in target 2.
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Figure 6.49: Fractional muon energy resolution vs true muon energy (left). The Y-axis in
the left is projected into three 1-D histograms corresponding to three energy ranges in the
X-axis, to see the difference in energy resolution at different muon energies in more detail
(right). Fe in target 3.
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Figure 6.50: Fractional muon energy resolution vs true muon energy (left). The Y-axis in
the left is projected into three 1-D histograms corresponding to three energy ranges in the
X-axis, to see the difference in energy resolution at different muon energies in more detail
(right). Fe in target 5.
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Figure 6.51: Fractional muon energy resolution vs true muon energy (left). The Y-axis in
the left is projected into three 1-D histograms corresponding to three energy ranges in the
X-axis, to see the difference in energy resolution at different muon energies in more detail
(right). Pb in target 1.
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Figure 6.52: Fractional muon energy resolution vs true muon energy (left). The Y-axis in
the left is projected into three 1-D histograms corresponding to three energy ranges in the
X-axis, to see the difference in energy resolution at different muon energies in more detail
(right). Pb in target 2.
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Figure 6.53: Fractional muon energy resolution vs true muon energy (left). The Y-axis in
the left is projected into three 1-D histograms corresponding to three energy ranges in the
X-axis, to see the difference in energy resolution at different muon energies in more detail
(right). Pb in target 3.
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Figure 6.54: Fractional muon energy resolution vs true muon energy (left). The Y-axis in
the left is projected into three 1-D histograms corresponding to three energy ranges in the
X-axis, to see the difference in energy resolution at different muon energies in more detail
(right). Pb in target 4.
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Figure 6.55: Fractional muon energy resolution vs true muon energy (left). The Y-axis in
the left is projected into three 1-D histograms corresponding to three energy ranges in the
X-axis, to see the difference in energy resolution at different muon energies in more detail
(right). Pb in target 5.
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6.4.5 FE, Reconstruction

In signal events, the pion energy is defined as all energy deposited in the MINERvA
detector during the neutrino interaction, that is not associated to the muon. All the
clusters not used by the algorithm when reconstructing the muon track are included in
the pion energy reconstruction. The pion visible energy FE,;s, is first corrected by passive

material loss using equation [6.2

pass E;)rls =
EPass — > (M; + dEda;) (6.4)

T - factive * Mge x dEdx .

where EX**® is the pion energy with the passive material correction. However, after this
correction, the reconstructed energy is still systematically lower than the true pion energy.

The missing energy can be due to some of the following:

e The pion candidate develops hadronic interaction in its passage through the detector,
and it often creates secondary neutral and charged particles below the detection
threshold which do not create light in the scintillator.

e The passive material correction factors assume minimum-ionizing particles, but if

the particles have low energy, the energy loss is larger (figure |5.36)).

e When the opening angle between the pion and muon is small enough, the tracking

algorithm will assign some of the shared clusters to the muon energy only.

To compensate for the energy lost and achieve a good energy resolution, an overall
scale factor called “a” is obtained by calorimetry depending on the subdetector where
the interaction takes place, and applied to the passive material corrected energy. These
calorimetric corrections were obtained using the “signal-only” MC described in section
0. 1

Ecal = Qax Epass (65)

The set of calorimetric corrections for every detector is shown in table

An energy-dependent correction is applied to the calorimetry-corrected energy Fq;.
By looking at the residuals of F,y ([E:fc" — Etrue]/ Efrme) in bins of EY“¢ and applying

a different correction to each bin.
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Calorimetric Correction, «
Sub-detector

(error ~ 0.03 in all cases).

Fe target 1 1.74
Fe target 2 1.75
Fe target 3 1.80
Fe target 5 1.69
Pb target 1 1.68
Pb target 2 1.63
Pb target 3 1.81
Pb target 4 1.61
Pb target 5 1.62
C target 1.69
CH target 1.72

Table 6.4: Calorimetric scale factors «, in all sub-detectors. The error in determining «

is similar in all cases (~ 0.03)

When applying the series of corrections to the pion visible energy, all clusters inside
a 10 cm radius sphere centered at the vertex are excluded and replaced by the energy
deposited by a minimum-ionizing pion. This is done because the vertex activity is not
well understood in the background models. The same procedure was adopted in the LE
analysis [18] in the CH target. In order to validate the same procedure in the passive
targets, a special MC sample of pions created inside each of the passive materials was
generated with different initial pion momenta. Figures to[6.59] show the energy loss
in iron and lead compared to the particles path length, where it can be seen how the

energy loss pattern deviates from a MIP depending on the particle’s initial momentum.

It is evident that from ~ 200 MeV the hypothesis of using the energy loss patern inside

iron and lead is justified.

After the passive material, calorimetric and the energy-dependent corrections are
applied, the pion energy fractional resolution as defined in equation [6.2], in all targets
is shown from figure to The fit of each of the one-dimensional pion energy

fractional resolution histograms are shown in appendix [A]
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Figure 6.56: Path length of pions created inside one of the Fe targets versus the energy
loss. Pions with different initial momenta were generated from 50 to 1500 MeV. The
dashed line corresponds to the energy deposited by a minimum-ionizing pion of initial

momentum in the range shown, simulated inside iron of target 1 .
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Figure 6.57: Path length of pions created inside one of the Fe targets versus the energy
loss. Pions with different initial momenta were generated from 1000 to 5000 MeV. The
dashed line corresponds to the energy deposited by a minimum-ionizing pion of initial

momentum in the range shown, simulated inside iron of target 1 .
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Figure 6.58: Path length of pions created inside one of the Fe targets versus the energy
loss. Pions with different initial momenta were generated from 50 to 1500 MeV. The
dashed line corresponds to the energy deposited by a minimum-ionizing pion of initial

momentum in the range shown, simulated inside lead of target 1 [20].

136



CC COHERENT ©+ PRODUCTION Off C, CH, Fe And Pb At MINERvA

1000 MeV < p0 < 1500 MeV, Pb 1500 MV < p0 < 2000 MeV, Pb

= - =
H - i %
i e g #_&il:'r
o
W . n n " . * *
o Fp— Jop—_t
2000 Mo < 0 < 2500 i, P _ 2500 i < p < 3000 M, b ,
= =
2 3
g gl i o
u . e
E .
=
: + . + : + = : + : + : +
Path Length [mm] Path Length [mm]
3000 Mev <50 < TNV, P , 5500 Wi <50 < 4000 Y, P ,
3 - 3 -
i e -3 H '
: M E - i
W . n ’ n % " . * * *
o Fp— Jop—_t
4000 Mo < 0 < 4500 i, P _ 450 M < < 5000 M, b ,
= =
2 o o 3 =
g s i o e F
E wE-
= Il 1 I I L + - = 1 I 1 I L -+ -

Path Length (mm] Path Length (mm]

Figure 6.59: Path length of pions created inside one of the Fe targets versus the energy
loss. Pions with different initial momenta were generated from 1000 to 5000 MeV. The
dashed line corresponds to the energy deposited by a minimum-ionizing pion of initial

momentum in the range shown, simulated inside lead of target 1 .
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Figure 6.60: Fractional pion energy resolution vs true pion energy (left). Three energy
ranges are chosen to see the difference in energy resolution at different pion energies in
more detail (right). CH target.
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Figure 6.61: Fractional pion energy resolution vs true pion energy (left). Three energy
ranges are chosen to see the difference in energy resolution at different pion energies in

more detail (right). C target.
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Figure 6.62: Fractional pion energy resolution vs true pion energy (left). Three energy
ranges are chosen to see the difference in energy resolution at different pion energies in

more detail (right). Fe in target 1.
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Figure 6.63: Fractional pion energy resolution vs true pion energy (left). Three energy
ranges are chosen to see the difference in energy resolution at different pion energies in

more detail (right). Fe in target 2.
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Figure 6.64: Fractional pion energy resolution vs true pion energy (left). Three energy
ranges are chosen to see the difference in energy resolution at different pion energies in

more detail (right). Fe in target 3.
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Figure 6.65: Fractional pion energy resolution vs true pion energy (left). Three energy
ranges are chosen to see the difference in energy resolution at different pion energies in

more detail (right). Fe in target 5.
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Figure 6.66: Fractional pion energy resolution vs true pion energy (left). Three energy
ranges are chosen to see the difference in energy resolution at different pion energies in
more detail (right). Pb in target 1.
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Figure 6.67: Fractional pion energy resolution vs true pion energy (left). Three energy
ranges are chosen to see the difference in energy resolution at different pion energies in
more detail (right). Pb in target 2.
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Figure 6.68: Fractional pion energy resolution vs true pion energy (left). Three energy
ranges are chosen to see the difference in energy resolution at different pion energies in
more detail (right). Pb in target 3.

En Truth vs Exn Frac. Resolution - T4_Nuc82 En Frac. Resolution - T4_Nuc82
0.15 — 0.0 <E, <0.5GeV
—05<E, <1.5GeV
—— 1.5<E,<5.0 GeV
0.12

E, Fractional Resolution

Sample Fraction
(=]
o
S
L B R

L Il L
—01 5 -1 -0.5 0 0.5 1 15
E, Fractional Resolution

Figure 6.69: Fractional pion energy resolution vs true pion energy (left). Three energy
ranges are chosen to see the difference in energy resolution at different pion energies in
more detail (right). Pb in target 4.
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Figure 6.70: Fractional pion energy resolution vs true pion energy (left). Three energy
ranges are chosen to see the difference in energy resolution at different pion energies in

more detail (right). Pb in target 5.
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6.4.6 FE, Reconstruction

The reconstructed neutrino energy FE,, is affected by both the muon and pion energy
(see equation . No special treatment is given to reconstruct this variable, other than
adding the reconstructed E, and E;. The fractional neutrino energy resolution is shown
from figure to for each of the targets under study. The fit of each of the one-

dimensional neutrino energy fractional resolution histograms are shown in appendix [A]
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Figure 6.71: Fractional neutrino energy resolution vs true neutrino energy (left). Three
energy ranges are chosen to see the difference in energy resolution at different neutrino

energies in more detail (right). CH target.

Ev Truth vs Ev Frac. Resolution - T3_Nuc6 Ev Frac. Resolution - T3_Nuc6

—20<E, <40GeV
——40<E, <7.0GeV
—— 7.0<E, <200 Ge!

E, Fractional Resolution

=)
T[T T[T [T [ I TT T T[T [Tt

Sample Fraction
o
o
©
L B

0 ! I | L
-1.5 -1 -0.5 0 0.5 1 1.5

E, Fractional Resolution

£
Figure 6.72: Fractional neutrino energy resolution vs true neutrino energy (left). Three

energy ranges are chosen to see the difference in energy resolution at different neutrino

energies in more detail (right). C target.
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Figure 6.73: Fractional neutrino energy resolution vs true neutrino energy (left). Three

energy ranges are chosen to see the difference in energy resolution at different neutrino

energies in more detail (right). Fe in target 1.
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Figure 6.74: Fractional neutrino energy resolution vs true neutrino energy (left). Three

energy ranges are chosen to see the difference in energy resolution at different neutrino

energies in more detail (right). Fe in target 2.
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Figure 6.75: Fractional neutrino energy resolution vs true neutrino energy (left). Three

energy ranges are chosen to see the difference in energy resolution at different neutrino

energies in more detail (right). Fe in target 3.
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Figure 6.76: Fractional neutrino energy resolution vs true neutrino energy (left). Three

energy ranges are chosen to see the difference in energy resolution at different neutrino

energies in more detail (right). Fe in target 5.
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Figure 6.77: Fractional neutrino energy resolution vs true neutrino energy (left). Three

energy ranges are chosen to see the difference in energy resolution at different neutrino

energies in more detail (right). Pb in target 1.
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Figure 6.78: Fractional neutrino energy resolution vs true neutrino energy (left). Three

energy ranges are chosen to see the difference in energy resolution at different neutrino

energies in more detail (right). Pb in target 2.
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Figure 6.79: Fractional neutrino energy resolution vs true neutrino energy (left). Three
energy ranges are chosen to see the difference in energy resolution at different neutrino

energies in more detail (right). Pb in target 3.
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Figure 6.80: Fractional neutrino energy resolution vs true neutrino energy (left). Three
energy ranges are chosen to see the difference in energy resolution at different neutrino

energies in more detail (right). Pb in target 4.
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Figure 6.81: Fractional neutrino energy resolution vs true neutrino energy (left). Three
energy ranges are chosen to see the difference in energy resolution at different neutrino

energies in more detail (right). Pb in target 5.
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6.4.7 (? Reconstruction

An expression for Q? can be derived from equation as follows

Q*> =2E, (E, — Pycosf,,) —m, (6.6)

And so the reconstructed Q? is obtained from those variables and the measured value of
the muon mass . Figures m to m show the fractional Q2 resolution. The fits for
the one-dimensional histograms of Q2 fractional resolution are shown in appendix [Al Q2

completes the reconstruction of the kinematic variables used in this analysis.
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Figure 6.82: Fractional Q? resolution vs true Q? (left). Three momentum ranges are
chosen to see the difference in Q2 resolution at different momentum transfer in more
detail (right). CH target.
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Figure 6.83: Fractional Q? resolution vs true Q? (left). Three momentum ranges are
chosen to see the difference in Q? resolution at different momentum transfer in more
detail (right). C target.
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Q* Truth vs Q” Resolution - T1_Nuc26 Q” Resolution - T1_Nuc26
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Figure 6.84: Fractional Q? resolution vs true Q? (left). Three momentum ranges are
chosen to see the difference in Q? resolution at different momentum transfer in more
detail (right). Fe in target 1.
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Figure 6.85: Fractional Q? resolution vs true @? (left). Three momentum ranges are
chosen to see the difference in Q? resolution at different momentum transfer in more
detail (right). Fe in target 2.
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Figure 6.86: Fractional Q? resolution vs true @? (left). Three momentum ranges are
chosen to see the difference in Q2 resolution at different momentum transfer in more
detail (right). Fe in target 3.
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Q? Truth vs G? Resolution - T5_Nuc26
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Figure 6.87: Fractional Q? resolution vs true Q? (left). Three momentum ranges are

chosen to see the difference in Q? resolution at different momentum transfer in more

detail (right). Fe in target 5.
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Figure 6.88: Fractional Q? resolution vs true Q? (left). Three momentum ranges are

chosen to see the difference in Q? resolution at different momentum transfer in more

detail (right). Pb in target 1.
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Figure 6.89: Fractional Q? resolution vs true Q? (left). Three momentum ranges are

chosen to see the difference in Q2 resolution at different momentum transfer in more

detail (right). Pb in target 2.
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Q* Truth vs Q” Resolution - T3_Nuc82 Q” Resolution - T3_Nuc82
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Figure 6.90: Fractional Q? resolution vs true Q? (left). Three momentum ranges are

chosen to see the difference in Q? resolution at different momentum transfer in more
detail (right). Pb in target 3.
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Figure 6.91: Fractional Q? resolution vs true @? (left). Three momentum ranges are
chosen to see the difference in Q? resolution at different momentum transfer in more
detail (right). Pb in target 4.
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Figure 6.92: Fractional Q? resolution vs true @? (left). Three momentum ranges are
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6.4.8 |t| Resolution

The resolution in |t| depends on the resolution of all the variables involved in the expression
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Figure 6.93: Resolution in |¢| in the C, CH and Fe targets. Resolution is defined as
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6.5 Event Selection

After the successful reconstruction of the variables of interest for the analysis, events with
the topology of neutrino-induced coherent pion are isolated from the rest of events in the
MINERvVA data set. The separation of events is performed in steps, where a particular
characteristic of the interaction is looked for. These steps are called “cuts”, and are applied
to both the data and MC samples. There is not a particular order in which the cuts have
to be applied. A total of 12 (13) cuts are used in events originated at the CH (C, Fe, Pb)
target(s). However they are presented in groups of similar cuts.

Most of the cuts are determined by the MC predictions of the signal and background,
trying to maximize the efficiency and purity of the sample after each cut. Arrows in the

relevant plots show the parts of the distribution kept and rejected after the cut.

No. of signal events after cut

Ef ficiency = (6.7)

Total number of signal events

No. of signal events

Purity = (6.8)

Total No. of events (signal + background)
The set of cuts is essentially the same used in the LE analysis, with just a few additions or
modifications, specially for the passive material sample. The full set of cuts is explained

next

6.5.1 Fiducial Volume and MINOS Acceptance Selection

It is important to define a fiducial volume for each of the materials of interest. They
are all located in the inner detector (any calorimeter region is excluded from the fiducial
volume). The edge of the hexagonal prism defining each fiducial volume (shown in section
is 20 mm separated from the edge of the inner detector in all six faces of the prism.
Such separation allows a larger containment of the pion candidates, as well as certainty
that the event comes from the material of interest.

Most of the energy loss and charge of the muon candidate are measured in the MINOS
detector, that is why every event is required to have one and just one muon matched
inside the MINOS detector. The muon track originated in MINERvVA is matched if it gets
a reconstructed track inside MINOS, and both are within the same time slice (chapter [5)).

Two more cuts are performed in this first set, trying to eliminate events happening outside
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the fiducial volume. Some events occur during the reset time of the electronics (section
, this causes that part of the event is not seen, and in some cases the events might
seem to be originated inside the fiducial volume, even though they were not. These kind
of events and those with particles whose vertex starts at the very front of the detector,

are rejected.

6.5.2 Neutrino Mode Selection

With the use of the MINOS detector, it is possible to assign a sign to the muon charge,
which allows identifying whether the event comes from a v, or from a 7,,. The cut is applied
by looking at the quantity ¢/p divided by the error on that quantity, called the significance
of q/p, where ¢ and p are the charge and momentum of the muon track originated in
MINERvVA and measured in MINOS. Figures[6.95] to[6.97] show the significance ratio in all
targets. The MC contribution called “other” includes events coming from NC processes,

other neutrino flavor and anti-neutrinos. The cut rejects most of those events.
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Figure 6.95: MINOS QP significance in the CH target.
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Figure 6.96: MINOS QP significance in the C and Fe targets.
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6.5.3 Hadron Containment Selection

To achieve a better pion energy reconstruction it is necessary to contain the pions inside
the inner detector (ID). Escaping pions will deposit energy in the OD, where passive
material corrections represent a large fraction, and given that these corrections considered
a minimum-ionizing pion, the energy resolution is generally worse. A set of cuts are applied
to avoid those escaping pions.

The pion track candidate must not be matched in the MINOS detector. The pion track
candidate must not enter the outer detector (OD), and not even leave the ID. Pion tracks
candidates going backward in the detector are also rejected in this set of cuts. Although
pions in signal events can hit a particle and change its trajectory to even travel backwards,
these events are rejected as the purity of the sample increases significantly without a big

loss in efficiency.

6.5.4 Neutrino Energy Selection

Figures [6.98] to [6.100] show the neutrino energy distributions in all targets, after the neu-

trino mode selection cut. As explained before, only muons from events with neutrino
energies larger than ~ 2 GeV make it into MINOS. Events getting matched in MINOS

with reconstructed energy less than ~ 2 GeV indicate reconstruction failure.

The upper cut rejects events where the neutrino was originated from a kaon decay (K* — p* + 1)
or (K — 7t 4+ uF + v,). These events have usually large uncertainties related to the flux

(process poorly understood due to the lack of data).
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Figure 6.98: E, distribution after applying the neutrino mode cut, in the CH target.
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6.5.5 Particle ID Selection

Pions and protons have usually similar energy pattern depositions. However, based on the
Bethe-Bloch formula [20], an energy deposition (dE/dx) hypothesis can be built for each
(one for pions, one for protons), in order to reject proton events, coming from CCQE and

resonant interactions. Equation shows the pion and proton hypotheses

£7r = H P(Enode|7r)

nodes

‘CP* = H P(Enode’er) (69)

nodes

where L is the likelihood that the track is due to a pion or a proton, P (E,u4e|a) is the
probability the energy deposition in a given track’s node, is due to particle a (pion or

proton)

The hypotheses are built as follows. From each node in figure a histogram
of the energy deposition is obtained. The pion and proton histograms in each node, are
fit to a Landau distribution (figure . A pion and a proton hypothesis is assigned to
each node, based on the energy deposited by an event. The likelihood for each particle is

finally the product of all node hypothesis in the track

30

x 30 x
2 o
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=] ©
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20 20} ]
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Figure 6.101: Energy loss (dE/dx) in each of the nodes of pions and proton tracks, from
a simulation based on the Bethe-Bloch equation [20], of events in the CH target. [Figure
by Phil Rodrigues (MINERVA collaboration).]

The Neyman-Pearson lemma [153] says that the most efficient way to test a hypothesis
is by looking at the likelihood ratio. And using the properties of logarithms, the ratio
between the pion and proton likelihood in equation [6.9] can be written like
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P(Elp)

P(E|r) “'//

Figure 6.102: Pion (blue) and proton (red) probability distributions in a given node. The

Enode E

probability for each is assigned according to the energy in that node in a given event.
[Figure by Phil Rodrigues (MINERvA collaboration).]

LLR = Z [lOgP (Enode|p+) _ZOQP <Enode’77)] (610)

nodes

where LLR is the log likelihood ratio. Data and MC distributions can be constructed
using the LLR. Such distributions are shown from figure [6.103] to [6.105] for all targets,
after the neutrino energy cut. A clear separation of pions from protons can be observed

around LLR = 0, where the cut is applied, getting rid of a large fraction of the protons
(in blue).
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6.5.6 Vertex Energy Selection

It is not obvious how to delimit the vertex region. A very large region would include
signal events where the pion interacts creating hadronic showers, this mimics the behavior
of some background events (like DIS). A very small region would not allow the pion to
propagate enough to measure its energy deposition (specially in the passive targets). The
vertex region is defined as a cylinder surrounding the muon vertex. This cylinder has
radius of 200 mm and a height of seven planes (three downstream, three upstream and the
vertex plane). The number of planes is limited by the separation between targets in the
passive targets region (figures and . The width or transverse span of the vertex
region (200 mm), is the distance between the edge of the fiducial volume to the end of the
inner detector (edge of plastic scintillator) in order to still have room for the development
of hadronic showers for events occurring near the edge of the fiducial volume. In figure

6.106] the top view of the vertex region in one of the passive materials is shown.

HRN

7

. —_—
Vertex Region Passive Plastic Scintillator
Target Planes

Figure 6.106: Delimitation of the vertex region (in green). It consists of a cylinder of 200
mm radius and seven planes of height, centered at the muon vertex in both the longitudinal

and transverse direction.

To select events with vertex energy FEyy, consistent with minimum-ionizing muon and
pion, the reconstructed signal-only sample was used. Figures [6.107] and [6.108] show the

distributions of the energy deposited by signal events in the vertex region. The cut is

defined as the mean of the fit to the distribution + 1 sigma from the mean.
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Figure 6.107: Fits to the distributions of the energy deposited by signal events in the
vertex region (C, CH and Fe targets).
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Figure 6.108: Fits to the distributions of the energy deposited by signal events in the

vertex region (Pb targets).

The upper cut obviously gets rid of events with nuclear breakup, while the lower cut
removes events where one of the gammas from the decay of a 7° gets tracked. These
have less energy than track pions. Unlike previous cuts, this one does not have the
same lower and upper limits in all targets, due to the different widths of the passive
materials. Different amounts of energy is deposited in different materials, and more energy
is deposited in thicker targets of the same material. Figures to show the

reconstructed vertex energy distributions for all the targets, after the PID cut.
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Figure 6.109: Vertex energy distribution after the PID cut including background events,

in the CH target.
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Figure 6.110: Vertex energy distribution after the PID cut including background events,
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Figure 6.111: Vertex energy distribution after the PID cut including background events,

in the Pb targets.
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6.5.7 |t| Selection

The |t| cut removes events with nuclear breakup that survived the vertex energy cut. Some
of these events correspond to single pions that happen to not interact inside the vertex
region. The value for the cut in the CH was determined in the LE analysis. Events with
|t| > 0.125 (GeV/c)? were rejected, since > 99% of the true coherent events fall below that
value. A similar cut is used in the C (graphite) target.

In section a dependence of the CC coherent pion cross section on |¢| is introduced
from the elastic pion-nucleus interaction, which depends on || through the expression
(e_b‘ﬂ). b is the slope of the exponential, the larger its value the faster the reduction of
the pion-nucleus cross section. From equation [3.16] it can be shown that b is larger for
bigger nuclei (~ 40,~ 110, ~ 270) (GeV/ 0)2 for C, Fe and Pb, respectively. This means
that the |¢| distributions for Fe and Pb fall faster than in C. This is evident in the |¢|

distributions in figures[6.112|to0[6.114] Iron (lead) events are required to be less than 0.075
(0.05) (GeV/c)?.
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Figure 6.112: |t| distribution after the vertex energy cut, in the CH target.
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Figure 6.113: [t| distribution after the vertex energy cut, in the C and Fe targets.

200-MINERvA Work in Progress
160F1-05E+21 POT
<[ Untuned Plastic
160[-Untuned Background

Events / 0.025 [GeV/c]?
T

03 04 05 06 07 0.8 09

0 01 02 03 04 05 06 07 08 09

Reconstructed |t| = (q-p,)* [GeV/c]

T3-Pb

4 05 06 07 08

—+— Data
I coherent
QE
I Non-QE, W < 1.4
B 14<w<20
ws20
[ Other
[ True US Plastic
[ | True DS Plastic
Other Material
777 Other Target

Figure 6.114: |t| distribution after the vertex energy cut, in the Pb targets.
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6.5.8 Final Event Rates, Efficiency and Purity

The event rates in the MC and data samples after the |¢| cut, are shown in tables
and for all targets and per material (respectively). Final efficiency and purity of the

sample (after the |¢| cut) are also included.

C CH Fe 1 Fe 2

Fe 3 Fe 5 Pbl Pb2 Pb3 Pb4 Pbb
Total
ot 11610 89592 10026 9695 4650 5636 3870 4064 1355 2611 2101
MC Events
Efficiency (%) 33.34 29.01 30.94 34.99 31.51 36.11 31.15 32.65 30.36 33.41 33.52
Purity 38.92 65.88 36.77 3890 37.94 4537 34.24 33.81 3210 44.16 37.55
Total 807 15542 597 604 291 406 229 253 87 238 160

Data Events

Table 6.5: MC and Data events after the || cut, per target. Efficiency and purity are also
shown, in each target. Background not subtracted yet.

C CH Fe Pb
Total
11610 89592 30007 14001
MC Events
Efficiency (%) 33.34 29.01 33.30 32.33
Purity 38.92 65.88 39.25  36.26
Total
807 15542 1898 967

Data Events

Table 6.6: MC and Data events after the |t| cut, per material. Efficiency and purity are

also shown. Background not subtracted yet.
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6.6 Plastic Background Tuning

Up to now, all distributions in the passive targets have a contribution from the events being
originated truly in plastic scintillator. A small contribution is from the plastic upstream
the passive material, where the tracking and vertex algorithms fail to reconstruct the most
upstream part of the track. The majority of the plastic background is located downstream
the passive material, mostly from the fiducial volume (first plane downstream the passive
target) (see figure . The plastic background needs to be subtracted from the passive
material contribution, in order to extract physics information from the latter.

To subtract the “plastic background”, it has to be tuned first. The tuning consists in
adjusting the plastic scintillator prediction in the MC, according to the data event rate
in a region dominated by plastic background. This region is called a “sideband”. And it
comprises all the planes in between passive targets, excluding the two planes closest to
each passive target (figure . A sideband is constructed for each of the three passive
materials (C, Fe and Pb), using the plastic in front of each target material (figures

and .

A x? hypothesis is constructed (equation for each passive material, and minimized by
applying scaling parameters to the “upstream” and “downstream” plastic MC contribu-
tion, while keeping constant the signal (carbon, iron or lead) and the “other” (interactions
from other targets and materials) MC contributions. These MC contributions are kept
constant since their contribution in the sideband is negligible. During the minimization
procedure for the obtainment of the upstream plastic scale factor, the downstream plastic
contribution remains constant, and vice versa (figures to are the sidebands in

each material, before and after tuning the “us” and “ds” plastic background).

. . . . -9
= 5 [Vt My + MOl + 00}, Date
, v Data?

)

(6.11)

where M Cyignat, MCys, MCqs and M Copper are the signal (carbon, iron or lead), upstream
plastic, downstream plastic, and other MC contribution to the total MC in the sideband.
Data is the data in the sideband. The sum is over all the bins in the sideband.
and «gs are the upstream and downstream scale factors obtained during the minimization
routine. Pairs of oy and ags scale factors are gotten for each passive material, and are
summarized in table After tuning the plastic, most of the data/MC ratios from
to[6.121} are close to 1, which means there is a reasonable good agreement between the data

and the tuned simulation. The only region with a huge disagreement is the downstream
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Figure 6.115: Zoomed out view of the passive target region. The histogram represents the
reconstructed muon vertex in that region. The bins in between the green lines represent
the sidebands for the tuning of the plastic background. The dashed lines are the passive
targets. The plastic upstream target 1 is not used, due to the high rock muon contribution
(section . The number of events in this plot is just a small sample of the total used.

It was generated just to illustrate the passive target region.

sidebands for all materials in target 3. This is believed to be caused by the presence of the
water target, which is installed downstream target 3. The water target somehow causes a
reduction of data events in the upstream bins close to it, perhaps due to the absorption

of a fraction of the events.

Material e e X X
us ds Tdfu T(ifd
C 1.152 £0.009 1.111 4 0.008 1.70 11.83
Fe 1.170 £0.004 1.039 4 0.005 4.62 6.10
Pb 1.16 £ 0.005 1.165 £ 0.005 7.88 3.49

Table 6.7: Upstream and downstream scale factors obtained during the minimization of
the x? functions. The x?/ndf value after the minimization, is also shown for all materials,
for the US and DS sidebands.

The a,s and ag4s scale factors are applied to the plastic background in the fiducial volume
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Figure 6.116: The top left (right) plot is the C sideband before (after) tuning the DS plastic
background. The bottom left (right) plot is the data/MC ratio before (after) tuning the
DS plastic background. The error bands in pink-like color are related to the systematic

uncertainties, explained in section

for each of the passive targets. The tuned MC plastic is the best estimate for the plastic
contamination in the data in the fiducial volume. The tuned MC plastic is then subtracted
from both the MC and data samples.

After this, the targets with the same material (Fe and Pb) are merged to gather
more statistics for each. Figures to show the [¢| distribution in each passive
material with the plastic background before and after the tuning, and with the plastic
background subtracted.

It is important to highlight the importance of the |¢| distributions above. The CH sample
represents the largest statistical sample of CC neutrino-induced coherent pion production
until now. The Fe and Pb samples are the first evidence of the same interaction in these
materials, Pb being the largest nuclei from which the interaction has been observed. The

signal contribution is evident at low |¢| in all materials.
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Figure 6.117: The top left (right) plot is the C sideband before (after) tuning the US plastic
background. The bottom left (right) plot is the data/MC ratio before (after) tuning the

US plastic background. The error bands in pink-like color are related to the systematic

uncertainties, explained in section
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Figure 6.118: The top left (right) plot is the Fe sideband before (after) tuning the DS
plastic background. The bottom left (right) plot is the data/MC ratio before (after)
tuning the DS plastic background. The error bands in pink-like color are related to the

systematic uncertainties, explained in section
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Figure 6.119: The top left (right) plot is the Fe sideband before (after) tuning the US
plastic background. The bottom left (right) plot is the data/MC ratio before (after)
tuning the US plastic background. The error bands in pink-like color are related to the

systematic uncertainties, explained in section
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Figure 6.120: The top left (right) plot is the Pb sideband before (after) tuning the DS
plastic background. The bottom left (right) plot is the data/MC ratio before (after) tuning

the DS plastic background. The error bands in pink-like color are related to the systematic

uncertainties, explained in section
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Figure 6.121: The top left (right) plot is the Pb sideband before (after) tuning the US
plastic background. The bottom left (right) plot is the data/MC ratio before (after) tuning
the US plastic background. The error bands in pink-like color are related to the systematic

uncertainties, explained in section
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Figure 6.122: Carbon |t| distribution before tuning (top), after tuning (middle), and after
subtracting the plastic background (bottom). The larger arrow is the cut applied to the

|t| distribution. The shorter arrows in the bottom plot are explained in the next section.
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Figure 6.123: Iron [¢| distribution before tuning (top), after tuning (middle), and after

subtracting the plastic background (bottom). The larger arrow is the cut applied to the

[t| distribution. The shorter arrows in the bottom plot are explained in the next section.
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Figure 6.124: Lead |t| distribution before tuning (top), after tuning (middle), and after
subtracting the plastic background (bottom). The larger arrow is the cut applied to the

|t| distribution. The shorter arrows in the bottom plot are explained in the next section.
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6.7 Non-Coherent Background Tuning

The event rates in the models used by GENIE [131,132] are usually over or underestimated,
due to large uncertainties in some of the models used by the generator and in the flux
itself. And therefore, the overall normalization of the kinematic distributions is neither
reliable nor quite meaningful. The normalization of each background needs to be tuned so
the correct amount from each background can be subtracted from the data. The tuning is
done in a fashion similar to the plastic background tuning. A sideband that is background
dominated, with appreciable separation between backgrounds and with negligible signal
contribution is used in the tuning procedure. The tuning is done after applying the vertex
energy cut because of the poor performance of the background models predicting the
activity near the interaction vertex. During the tuning the signal and the “other” MC,
remain constant as their contribution is negligible. Each physics background gets a scale
factor during the tuning.

The bottom plot in figures to includes the sideband region from 0.2 < |t] <
0.7 (GeV/c)? (region in between the shorter arrows). The E, and Q? distributions of
events inside the sideband provide the needed separation between the QE and resonant,
and between the DIS/transition regions from the resonant backgrounds, respectively. The

E. and Q? samples in the sideband for each material before tuning the background, are
presented in figures [6.125] and [6.128]

A x? is also minimized during the tuning procedure, where the tuning is performed simul-

taneously in both variables and it is built as follows:

2
Data MC
N~ -> k;ak‘Nijk: }

V2 = ZZ [ ij e (6.12)

j ijk

NMC is the number of MC events

where NP is the number of data events in the ij bin;
from the k background, in the ij bin; and «ay is the scale factor for each background.
From the tuning procedure, the « scale factors are obtained for all backgrounds. Table

[6.8 shows the scale factors in all four materials.
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Figure 6.125: E, and Q2 distribution in the 0.2 < |t| < 0.7 (GeV/c)? sideband before
tuning the background in C. The right-hand side plot is the data/MC ratio. The pink-like
error band includes the systematic errors, explained in section

Target agE QRES QINE aprs X2 /ndf
C 1.4474+0.139 1.3398 +0.165 0.66 £ 0.098 1.518 £0.224 2.32
CH 1.146 +0.015 1.344 4+ 0.045 0.733 £0.019 0.877 4+ 0.035 10.66
Fe 1.300 £ 0.063  1.181 +0.087  0.563 £0.059 1.092 + 0.137 2.99
Pb 1.021 £0.052  0.752+0.073  0.540 £0.057 1.036 + 0.153 3.84

Table 6.8: Scale Factors for each of the non-coherent backgrounds in each target.
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Figure 6.126: E, and Q? distribution in the 0.2 < [t| < 0.7(GeV/c)* sideband before
tuning the background in CH. The right-hand side plot is the data/MC ratio. The pink-

like error band includes the systematic errors, explained in section @
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Figure 6.127: E, and Q? distribution in the 0.2 < |t| < 0.7(GeV/c)* sideband before
tuning the background in Fe. The right-hand side plot is the data/MC ratio. The pink-

like error band includes the systematic errors, explained in section @
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Figure 6.128: E, and Q? distribution in the 0.2 < [t| < 0.7(GeV/c)* sideband before
tuning the background in Pb. The right-hand side plot is the data/MC ratio. The pink-

like error band includes the systematic errors, explained in section @
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After applying the appropriate scale factor to each background, the E, and Q? distribu-
tions in the sideband show a better agreement between the MC and data. Figures
and are the sideband samples after tuning the background. It is worth noting that
the Q? distribution in the sideband in the CH target a very good match is achieved be-
tween data and MC, at Q% < 0.7GeV/c?, region where the suppression to resonant pions
is applied (see figure . For the Fe and Pb targets, it can be seen the data is more
suppresed compared to the suppression provided by the MC in the same Q? < 0.7GeV/c?

region. This suggest an A-dependent suppression in that region.
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Figure 6.129: E, and Q2 distribution in the 0.2 < |¢| < 0.7 (GeV/c)? sideband after tuning
the background in C. The right-hand side plot is the data/MC ratio. The pink-like error

band includes the systematic errors, explained in section @

After tuning the non-coherent background, the |¢| distributions in all targets, are shown

in figures [6.133] to [6.136
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Figure 6.130: E, and Q2 distribution in the 0.2 < |¢| < 0.7 (GeV/c)? sideband after tuning
the background in CH. The right-hand side plot is the data/MC ratio. The pink-like error

band includes the systematic errors, explained in section @
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Figure 6.131: E, and Q2 distribution in the 0.2 < |¢| < 0.7 (GeV/c)? sideband after tuning
the background in Fe. The right-hand side plot is the data/MC ratio. The pink-like error

band includes the systematic errors, explained in section @
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Figure 6.132: E, and Q2 distribution in the 0.2 < |¢| < 0.7 (GeV/c)? sideband after tuning
the background in Pb. The right-hand side plot is the data/MC ratio. The pink-like error

band includes the systematic errors, explained in section @
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Figure 6.133: Hydrocarbon |¢t| distribution after tuning the non-coherent background. The
shorter arrows in the bottom plot delimit the used |¢| sideband.
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Figure 6.134: Carbon |¢| distribution after tuning the plastic and non-coherent background
(top), after subtracting the tuned plastic background from both data and MC(bottom).
The shorter arrows in the bottom plot delimit the used |¢| sideband.
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Figure 6.135: Iron |t| distribution after tuning the plastic and non-coherent background
(top), after subtracting the tuned plastic background from both data and MC(bottom).
The shorter arrows in the bottom plot delimit the used |¢| sideband.
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Figure 6.136: Lead |¢| distribution after tuning the plastic and non-coherent background
(top), after subtracting the tuned plastic background from both data and MC(bottom).
The shorter arrows in the bottom plot delimit the used |¢| sideband.
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6.8 Systematic Errors

To give any meaningful result from any measurement, it is important to understand the
errors associated to it. Measurements can be statistical or systematic limited, or even
both. This chapter defines the sources of errors reported in the cross section for each of
the four variables: E,, E, 6, and Q?, for all the materials under study: C, CH, Fe and
Pb. The errors are obtained by applying a variation to all the error sources affecting the
cross section uncertainty (see section|6.9)). The variation is equal to a number of standard
deviations from the best estimate (also known as central value or “cv”). In each of these
variations, called “universes”, the cross section and all intermediate steps involving the
propagation of errors, are re-calculated (in other words, there is a cross section calculation
per universe). In some universes, the overall normalization of the distributions is weighted
up and down around the central value, which means that there is an uncertainty on the
normalization of a distribution around the best estimate. Other universes make some
events migrate to neighbor bins in the distribution, shifting the distribution left and right.
All errors presented are added in quadrature, where the total fractional uncertainty ¢ is

expressed as

ox

’xbest| -

(6.13)

where dx is the uncertainty in the x quantity, and |zpes| is the best estimate for the
measured quantity; u; are the independent sources of error contributing to the total.
The systematic uncertainties are estimated from the MC, and propagated to data when
subtracting the background from it, based on the MC prediction of the background.

The errors are calculated from an error matrix called covariance matrix, defined as

Cov;, j =

N
Z (.CE]W — TZ) (.Cli‘kj — fj) (6.14)
k

2=

where IV is the number of universes, x is the variation from the central value in bin 4, j

due to the variation k. The error is expressed as

g = \/COV; ; (6.15)
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The error can be interpreted as the average difference between each universe prediction

and the central value.

To show the errors contributing to this measurement, the error summary of the Pb distri-

bution in the |¢| sideband, is shown (figures|6.137| and [6.138)). The error summary for all

the variables in the cross sections for all materials under study, are presented in section
0.9
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Figure 6.137: Total and fractional error summary of the FE, distribution in the 0.2 <
t| < 0.7 (GeV/c)? sideband in Pb, before tuning the background. The upper plot shows
(pink-like) error band, which corresponds to the total error in each bin. Dividing the error
over the best estimate (red line) in each bin, one obtains the total fractional error in the

bottom plot.
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Figure 6.138: Total and fractional error summary of the Q? distribution in the 0.2 <
lt| < 0.7(GeV/c)? sideband in Pb, after tuning the background. The upper plot shows
(pink-like) error band, which corresponds to the total error in each bin. Dividing the error
over the best estimate (red line) in each bin, one obtains the total fractional error in the

bottom plot.

Figure[6.139| summarizes the classification of errors relevant to this analysis. Some of them

are further classified. All are explained in the next section.
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Figure 6.139: Classification of systematic errors relevant to this thesis.

6.8.1 Flux

The uncertainty on the flux of neutrinos comes from the uncertainty on the beamline
parameters, which comes primarily from the uncertainty on the position of the magnets
focusing the hadrons produced in the beam target, and other components of the down-
stream beamline (section . The other important source of uncertainty corresponds
to the hadron interactions happening in the beamline, from the hadrons produced in the
proton-target collision to the decay of particles producing the neutrinos. Some of those
hadronic interactions have large uncertainties, and data for constraining them are scarce.
The flux uncertainty is obtained using the covariance matrix in equations and
using 100 universes. In each universe, all parameters adding up to the flux uncertainty

are varied randomly and simultaneously.

6.8.2 Interaction Model

The systematic uncertainties in this group correspond to the uncertainties in the models
built into GENIE version 2.12.6 [132]. The errors in this case are obtained by weighting
some of the parameters used in calculating the cross section of the neutrino interactions,
like the axial vector mass in QE and resonance pion production (see sections and ,
and the overall normalization of the interaction. The parameters are varied also randomly

410 around the best estimate of the parameter.
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6.8.3 Detector Model

The detector model uncertainty group includes errors dependent on the detector geometry
and on the interaction of the particles with the detector. These include the following

uncertainties.

Muon Energy

Muon Energy. It corresponds to the uncertainty on the energy deposition by the muon
track, in both MINERvA and MINOS. The uncertainty is defined as the addition in
quadrature of the MINOS momentum by range uncertainty, MINOS momentum by cur-

vature uncertainty, and the uncertainty in the energy loss inside MINERvVA.

Hadron Response

Hadron Response. A test beam experiment using a downscale replica of the MINERvA
detector, was used to evaluate the response to protons, pions, kaons and electrons. The
hadron beamline allowed the use of particles of the desired energy, which in turn allowed
to measure the response, defined like the visible energy measured in the detector divided
by the energy of the incoming particle [129]. This analysis uses the uncertainty in the
response to pions and protons. The error is defined as the fractional difference between
the response measured and the response obtained from a GEANT4 simulation (5% for

pions, 3% for protons).

Pion Inel o, Proton Inel o, and Neutron PathLength

These systematic uncertainties are related to the uncertainty on the interaction rate in
each of the particles. It was evaluated by varying the interaction rate for each particle. For
neutrons, their mean free path was varied according to their kinetic energy. The variations
were determined by comparing the model predictions to hadron scattering data. For pions
and protons the variations depend on the material where the interaction takes place, the
particle’s total path length, and the energy of the particle. The elastic part of the pion

and proton cross section was not modeled.

Muon Tracking Efficiency

Muon Tracking Efficiency. This error is associated to the correction applied to account

for the difference in the data and MC efliciency of the muon tracks being reconstructed
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into MINOS. The correction applied is a function of the muon momentum, for which a
function was obtained by fitting the ratio of the data efficiency over the MC efficiency to
a 5 degree polynomial. This systematic is evaluated by adding in quadrature the error on

the parameters of that function (see section [6.1]).

Beam Direction

The “nominal” direction of the NuMI beam as predicted by the simulation, is going down-
wards at an angle of 3.4 degrees (59 mrad) with respect to the detector Z' axis. Given that
the direction of the neutrinos cannot be directly measured, the direction of high energy
muons (> 30 GeV) with low v (E, — E,,) and low Q? is taken as a good approximation, as
in those events, the muon created are assumed to travel almost parallel to the incoming
neutrino direction.

Using a sample with those characteristics, with a maximum muon energy of 120 GeV, the
deviation from the nominal angle is obtained for both data and Monte Carlo. The sample
is additionally divided in regions of v, for each of these regions the mean and the sigma of
the residuals are obtained. A linear fit is obtained for data and MC, and the uncertainty
is defined as the difference between the data and MC fits, which is around 3 mrad [126].

6.8.4 Mass & Plastic Tuning Errors

The error due to the detector mass comes from the discrepancy between the weighted
mass and the mass obtained from the model (section . The model overestimates the
mass by ~ 1%.

A systematic error is obtained for the tuning of the background. It is evaluated as the
error on the plastic scale factors. From table[6.7} it can be seen that the errors in all three

materials are below 1%.

6.8.5 Low Recoil & RPA

The systematic errors due to these weights are estimated by accounting for the difference
between the central value of best estimate and one of the alternative cases where the
interaction can take place, like proton and neutron combination in 2p2h processes or RPA

at low or high Q? values.
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6.8.6 Res Pi Low Q?

The error on the suppression applied to resonant pion interactions with Q% < 0.7 (GeV/ 6)2,
is defined as the difference between the best estimate for the CC1ln* weight and its error,
divided by the best estimate (see green error band in the left-hand side of figure [6.2]).

6.9 Cross Section Extraction

After tuning the background, the sample is ready to start the cross section extraction. The
cross section of a process, although is given in units of area, it represents the probability
for the interaction to happen. This chapter presents the steps the background-tuned data
sample is taken through, to obtain the total cross section of the CC v,-induced coher-
ent s+ production, and differential cross sections for the pion energy, pion angle and the
squared of the four-momentum transferred to the hadronic system (Q?); using carbon,
hydrocarbon, iron and lead targets.

The tuned background is subtracted from the selected sample; the remaining signal can-
didate events are unfolded (events reconstructed in the wrong bin are moved back to their
true bin according to the model); the unfolded distributions are then corrected for effi-
ciency, flux and by number of target nuclei in each material.

The total cross section is calculated as

. DATA _ nyBKGD
>, Ui (N NBKGD)
€ipi T

(6.16)

oi=p

where [ is a correction factor for interactions happening on other nuclei, different than the

N jD ATA {5 the number

NBKGD
J

material under study; U;; is the ij element of the unfolding matrix;
of data events in the reconstructed bin j, after applying all the selection cuts;
is the number of tuned background events in the reconstructed bin j after applying all
the selection cuts; € is the efficiency in the true bin i after applying all the cuts; ¢; is the
neutrino flux (number of neutrinos per em?) in bin 4; and T is the number of target nuclei

in the fiducial volume.

The differential cross section is calculated like

DATA BKGD
(dJ) 225 Uij (Nj N )

dr ).~ P 6®T (Ax), (6.17)

where @ is the flux integrated (from 2-20 GeV), and (Az), is the width of the i'* bin.
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6.9.1 Background-Tuned Selected Sample

The selected sample in the four variables, and four materials of interest, is shown after
all background has been tuned (plastic and non-coherent in the passive targets, and non-
coherent only in the hydrocarbon target).

In some bins, in some distributions, the predicted tuned background is higher than the
data. This happens in the 6, distribution in all four materials, which points to a defect in
the Rein-Sehgal model, in the prediction of 0, larger than ~ 40°. In other variables, this
issue seems to be material-dependent. This is very likely due to the fact that eve though
some of the weights applied during the MC reweighing process (section are based in
v—C interactions, are also applied to v — Fe and v — Pb interactions. Unfortunately, there
are no similar studies available for Fe and Pb. The possibility of using ad-hoc weights for

this materials, using an extrapolation process, has been considered (see chapter @
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Figure 6.144: 6, distribution in all four targets with all backgrounds tuned.
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6.9.2 Background-Subtracted Sample

All the tuned background in section [6.9.1] is subtracted from the selected sample. The
non-coherent background is subtracted from the CH target, while both the plastic and
non-coherent backgrounds are subtracted from the C, Fe and Pb targets. Using equation
the background is subtracted bin by bin using the expression N]-DATA — NJBKGD .

Where N jBK GD includes plastic and non-coherent, as the case may be
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Figure 6.148: FE, background-subtracted distribution in all four targets. The inner error
bands are the statistical errors, and the outer, are the total (statistical + systematic)
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Figure 6.151: Q? background-subtracted distribution in all four targets.
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6.9.3 Unfolding

During the reconstruction process, some events get reconstructed into the wrong bin. The
reconstructed sample is said to be “smeared” because of this. The sample then needs
to be “unsmeared” or “unfolded” (which are equivalent terms) to recover the underlying
“true” distributionlﬂ An unfolding matrix (see odd-number figures in this section) is built
with the reconstructed and true quantities in the X and Y axes, respectively. Events off
the main diagonal are the ones that where reconstructed into the wrong bin. The matrix

is normalized by the number of events in a row

sel
Nij

Uij = SN
J 1]

(6.18)

where i and j are the true and reco bins, respectively; N*¢ are the number of events
passing all the cuts in a given 45 bin.

The unfolding matrix is then obtained by using Bayes’ theorem as implemented by D’Agostini
[154]. The unfolded data is then given by

- -

dunfold = dsubtracted x U (619)

where J;m fold and J;ubtmcted are vectors formed with the bins of the background-subtracted
and unfolded data distributions; and U is the unfolding matrix. The unfolding matrix
depends on the true distribution of the variable predicted by the model as the initial prob-
ability. The unfolded data obtained is used as the initial probability in further iterations,
until the shape of a mock data used in an unfolding study, agrees with its true distribution
by less than 1o (appendix . From that same study, the optimal number of iterations is
obtained for each variable in each material. Table[6.9] shows the number of iterations used

to unfold all four variables in all four materials.

Figures [6.153| to [6.159| (even numbers) show the unfolded data after taking it through the
number of iterations indicated in table

3The underlying true distribution is obtained from the model, which is the best estimate available.
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Material/Variable E,
C

CH

Fe

Pb

N
S
D

3

NN N
NW W N
NN W
MM[\DM‘Q

Table 6.9: Number of iterations obtained from the unfolding study in appendix for each

variable, for each material.
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Figure 6.152: E), Normalized migration matrix in all four targets.
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6.9.4 Efficiency and Acceptance Correction

The efficiency distributions in figures [6.160| to [6.166 (odd numbers) where obtained after
applying all the selection cuts, defined as

¢ = Ni</NI" (6.20)
where Nfel and N7 are the events selected after all the cuts and the true generated
signal events within the fiducial volumes, and with 2 < E, < 20 GeV.

The passive targets are clearly more affected by the MINOS acceptance, due to the fact
that they are farther away from it. Signal events where the pion gets absorbed inside
the passive material also present a reduction in their efficiency. The tracking algorithm
restricts the pion angle to be smaller than 70° in all materials. The muon track is con-

strained to smaller angles (< 20°).
Figures[6.161] to show the unfolded distributions after being corrected by their effi-

ciency distribution, according to equations and
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Figure 6.160: FE, Efficiency distribution after the |¢| cut, in all four targets.
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Figure 6.161: E, Efficiency-corrected distribution in all four targets.
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6.9.5 Target and Flux Normalization

Finally, in the cross section expressions and the efficiency-corrected samples are
divided by the flux and the integrated flux, respectively. The flux is expressed in number
of neutrinos per unit area, per protons delivered to the beam target (I/ /m?/ POT). Figure
shows the ME neutrino flux used by MINERvVA.
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Figure 6.168: v, flux after being constrained using the v + e scattering sample (see section

i3,

This analysis uses a re-binned version of the flux (figure [6.169)), to match it with the bin

pattern in the neutrino energy distribution.

The o (E,) is normalized by the flux integrated in every bin. All differential cross sections
in E,, 0, and Q? are normalized by the flux integrated from 2 to 20 GeV. The flux is then
multiplied by the number of protons on target to obtain the total number of neutrinos

2

during the whole data taking period. m? are changed to c¢m?, and finally the flux is

expressed as number of v/cm?.

Given that in a CC coherent interaction, the neutrino scatters off the whole nucleus,
one also needs to divide by the number of nuclei present in the fiducial volume, to obtain
a final cross section per nuclei. The number of targets 7" in equations and were
already given for each material in table The C and Pb target have less than 1%
contribution from other materials. The contribution from other materials to the CH and
Fe targets is specified in table (|6.10)).
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1oz Integrated Flux per Bin
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Figure 6.169: Re-binned version of the constrained flux. The bins have been re-arranged

to match the neutrino energy distribution bin pattern.

Nucleus in CH target % of Total Mass A T

tH 7.4 1.008  2.425 x 10%°

12¢ 87.6 12.011  2.404 x 10%*°

160 3.2 15.999  6.548 x 10%7

27 Al 0.26 26.982  3.175 x 10%°

2834 0.27 28.085 3.167 x 10%°

35¢1 0.55 35.453 5.511 x 10%°

487 0.69 47.867 4.749 x 10%°
Nucleus in Fe targets % of Total Mass A T

2 0.13 12.011  6.137 x 10%°

Mpe 98.7 55.845 1.016 x 10%®

2854 0.2 28.085 4.038 x 10%°

55Mn 1.0 54.938 1.032 x 10%°

Table 6.10: Mass fraction, mass number A, and number of nuclei from all materials present

in the CH and Fe targets. included for every material.

The § factor in the cross section expressions is defined as the number of coherent interac-
tions in the material under study in the fiducial volume of a given target, over the total

number of interactions in the same fiducial volume of that target

1/3
_ coh jnrcoh\ __ pepon g ~ AM Ty
= (NM & ) Y daoiTi AV (621)
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where ¢y, €rr, o and Ty are the flux, efficiency, cross section and number of nuclei in
each material due to C in the CH target, and due to Fe in the Fe targets; M is either C of
Fe. The same quantities with the ¢ sub index, correspond to the remaining materials in
the same target. The assumption of equal efficiency in all materials has been made. Also
the cross section has been supposed to scale as A3 for the sake of consistency with the
previous MINERvA LE analysis of CC coherent pion production [7]. Using table
Ber = 0.962 and Bpe = 0.983 are obtained. The cross sections in the pure C and Pb

targets are not scaled.
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6.10 Cross Section Results

Having tuned and subtracted the plastic and non-coherent background; unfolding the
non-background sample to correct for events reconstructed in the wrong bin; correcting
for efficiency (to account for all signal events removed in each of the selection cuts);
normalizing by the flux and number of nuclei in the proper target and material; the
measured total cross sections o (E,) and differential cross sections do/dEr, do/df, and
do/dQ? from C, CH, Fe and Pb are presented in figures [6.170| to

The measurement in the C target represents the first measurement made on a target
purely made of this material. Previous cross section measurements off carbon were made
on targets having some non-negligible fraction of other elements (see chapter[3). The cross
sections in the CH target represent the highest statistical sample of this interaction until
now. While the cross sections from Fe and Pb are the first measured cross sections of CC

coherent pion production by neutrinos in these materials.

6.10.1 Visual Comparison of the CH Cross Sections to the LE Results

The cross section results in this thesis (ME measurement) out of the CH target and
those obtained previously by the MINERvVA collaboration in a lower energy beam (LE
measurement) from the same target, are compared in this section. Although different
fluxes were used, the flux integration regions overlap, and both measurements were flux-
normalized, and they are expected to be very similar. This analysis used a slightly different
binning to the one used in the LE analysis. During the ME run, the number of protons on
target was more than 3 times higher, and the number of signal candidate events increased
almost 8 times. Figures to give a visual comparison of the four cross section
variables in the CH target.

The cross sections in the ME analysis are slightly larger, but besides the 0, distribution,

most of the bins total errors overlap.
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Figure 6.170: E, total cross section o (E,) in the C, CH, Fe and Pb targets. The inner

and outer error bars are the statistical and total (statistical + systematic) errors.
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Figure 6.171: E; differential cross section do/dE, in the C, CH, Fe and Pb targets. The

inner and outer error bars are the statistical and total (statistical 4+ systematic) errors.
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Figure 6.172: 0, differential cross section do/df, in the C, CH, Fe and Pb target. The

inner and outer error bars are the statistical and total (statistical 4+ systematic) errors.
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Figure 6.173: Q? differential cross section do/dQ?

inner and outer error bars are the statistical and total (statistical 4+ systematic) errors.

in the C, CH, Fe and Pb targets.
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225



Chapter 6

Ve+tA > W+ A v,+A o> W+ T+ A
25: MINERvA -4-DATA 20; :ﬂ:‘hsliﬁgfx;k in Progress —+— Data
3.04E+20 POT — GENIE Rein-Sehgal 18—  CHitarget —MC
20 - — Berger-Sehgal 16;
L - o 4
>~ 151 12k
o - F
r T OF
E - a"’ 10—
3 r > =
o 10_ = 8
: I I = 6
o i E
5 ac
C 2k
OLE L e b e b L G:"‘ I S S I S I
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 & 10 12 14 16 18 20

E, (GeV) E. [GeV]

Figure 6.174: o (F,) in the CH target. The left-hand side plot is the LE cross section.
The blue histogram corresponding to the Rein-Sehgal model, is the same model used in

this analysis (right plot).
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Figure 6.175: do/dE, in the CH target. The left-hand side plot is the LE cross section.
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this analysis (right plot).
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Figure 6.176: do/df, in the CH target. The left-hand side plot is the LE cross section.
The blue histogram corresponding to the Rein-Sehgal model, is the same model used in

this analysis (right plot).
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6.11 Cross Section Error Summary

This section summarizes the errors in measuring the total o (E,) cross section and Er, 0
and Q? differential cross sections, in the C, CH, Fe and Pb targets. The error breakdown
in the following plots corresponds to the same introduced in section but propagated
to the cross section. The measurement in the passive material have larger errors because
of smaller statistics, and the use of C data to apply weights to the MC model, in iron and
lead targets, due to the non-availability of Fe or Pb data.

The dominant error in the F, cross sections is the detector model uncertainty, which is
dominated by the hadron response uncertainty E| and the flux, at low and high neutrino
energies, respectively.

In the do/dE; cross section, the dominant error is again the detector model, with impor-
tant contributions from the interaction model (GENIE systematic errors).

The do/df, cross section has the flux as its larger error at low angles. It is hard to tell at
higher angles, given that as the cross section approaches zero, the fractional uncertainty
becomes meaningless.

The do/dQ? differential cross section is dominated almost equally by the flux, detector
model and interaction model uncertainties.

In all passive targets, the error summary is always statistical dominated. This is under-
stood, given the difference in fiducial mass compared with the hydrocarbon target. Also,
as the nuclear radius gets bigger for heavier elements (like those in the passive targets),
the number of nuclei targets available for the neutrinos to scatter off, gets reduced. The
background events also increase due to the higher number of nucleons at which background

interactions can take place.

Figures [6.178] to [6.185] present the fractional and absolute error summary for the

cross sections in all four variables, in all four targets.

4the breakdown of some of the systematic uncertainties shown in this section, is available in appendix

&
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Figure 6.183: Absolute error Summary on the jﬂ% in the C, CH, Fe and Pb targets.

231



Chapter 6

vw+A > p+

+A

VutA o w+ T+ A

. — 0.3 -
[ MINERVA Work in Progress — ;:":‘.' E“Cf"“'"‘y MINERVA Work in Progress — ;"".' lf""f"“'"‘y
r 1.05E+21 POT atistical 1.05E421 POT E tatistical
[ Ctarget —— Flux CH target — Flux
oL —— Interaction Model 0.25 —— Interaction Model
> Detector Model > Detector Model
E s —— Mass Error E r Mass Error
s O5p —— Plastic Tuning Errorl & of —— Low Recoil
5 E — Low Recoll s 02 RPA
K F RPA 2 . —— Res. ©Low Q2 Supp.
S —— Res. nLow Q2Supp. D
E S 015
2 S
£ gotly, L T
] g% |
— 0.05F=—
+ . P i | , ,
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
Q? [GeVic] Q@ [GeV/ic]
VWA pw+mt+A VWwtA s+ T+ A
07¢ —— Total Uncentaint 0.7¢ —— Total Uncertaint
MINERvA Work in Progress Statistios) Y MINERvA Work in Progress statlstical Y
F 1.05E+21 POT atistical r 1.05E+21 POT - lcal
0.6| Fe target — Flux 0.6 Pb target — Flux
oL —— Interaction Model -oL —— Interaction Model
> F Detector Model > Detector Model
< F A EFST E r —— Mass Error
s 05 — Plastic Tuning Eror, & 0-57 —— Plastic Tuning Error
3 r —— Low Recoil 8 r —— Low Recoil
e RPA H E RPA
=1 —— Res. tLowQ2Supp. > 04— —— Res. © Low Q2 Supg.
® ® E
£ £
S 5
ki o
s £
w w
#e 33
e -
0 01 02 03 04 05 06 07 08 09 1 1

Q’ [GeVic] Q° [GeVic]

Figure 6.184: Fractional error Summary on the % in the C, CH, Fe and Pb targets.
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Figure 6.185: Absolute error Summary on the d“% in the C, CH, Fe and Pb targets.
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Chapter 7

CONCLUSIONS

The signature of the coherent production of pions induced by neutrinos, is the creation of
a pion and a lepton in the forward direction, and the absence of nuclear breakup due to a
small four-momentum transfer to the target nucleus. The energy transferred to the pion
can still be relatively large (up to a few GeV). This makes it a rare interaction, as more
energy is needed to create the pion than to break up the nucleus. Despite being a rare
neutrino interaction, it has already been observed in both the charged and neutral weak
currents, at low (~2 GeV) and high neutrino energies (~300 GeV), in materials as light
as Carbon (A =~ 12), and before this analysis, as heavy as Argon (A = 40).

This work has measured the CC coherent production of pions, induced by muon
neutrinos (v,), isolating a sample with the characteristics of the signal, using model-
independent criteria. The measurement was performed simultaneously in four different
materials. Using the NuMI beamline at Fermilab, it was possible to obtain the cross
section of the interaction, from Carbon (C), Hydrocarbon (CH), Iron (Fe) and Lead (Pb)
nuclei. This is the first experiment that achieves a measurement of this process from more
than one material at the same time. It is also the first experiment observing the interaction
in a pure Carbon target (Graphite, with carbon > 99.5% of the target composition). All
previous measurements of Carbon were done using compounds like CH or CHj. It is also
the first observation of the interaction in Iron (A = 56) and Lead (A ~ 207) at all. And
with the sample obtained using the CH target, this work has also achieved the largest

statistical sample of the process in any material, at any neutrino energy.

The cross sections measured in the C target may be useful to compare with exper-
iments using C mixed with other elements, to extract the contribution from those other

elements.

233



Chapter 7

The results extracted from Iron (Lead) can be used to extrapolate to middle (large)
size nuclei, for which until now, assumptions of AY/3, A%/3 or energy-dependent A-scaling
of the cross section, are made to perform such extrapolations to nuclei where the interaction
has not been measured. This is specially important for Lead. With A ~ 207, it can serve

as a standard candle to do extrapolations to rather heavy nuclei.

The hydrocarbon (CH) sample, and the results extracted from it, are highly valuable
to perform higher precision studies, and to test models in regions where statistical and

systematic dominated experiments, did not allow before.

One of the prospects of this work, is to get an estimate of the scaling of the o (E,)
cross section as a function of the number of nucleons in the nucleus (A). This will be
done by looking at the ratios o (EVF E’Pb> /o (EVC H) (see appendix EI) In performing these
ratios, the total uncertainties associated to the Fe and Pb cross sections will play a crucial
role in determining any scaling pattern at all. If the uncertainties end up being too large,
any possible scaling would be hard or impossible to obtain. Extracting the cross sections
simultaneously, from the different targets involved, means that all targets experienced the
changes in energies, intensities, and any other variations in the beamline, in the same
manner. This will allow to constraint uncertainties, associated primarily to the neutrino

flux.

All cross sections from all materials in this analysis were extracted using, and com-
pared to the Rein-Sehgal model. Which it basically extrapolates Adler’s theorem based
on the PCAC hypothesis to interactions with @2 > 0. This model, and any other with
predictions about the CC or NC (because of the relation between both, section co-
herent production of pions, can benefit from this new set of data with improved statistics,
and from the cross sections in a variety of materials, to make new predictions. Future ex-
periments can also take advantage, even from the hypothetical improved models or from
the data itself.

Among such experiments, perhaps the ones where this process will have must impact,
are the neutrino oscillation experiments. Coherent pion production plays a crucial role in
identifying some of the important backgrounds to those experiments. In electron neutrino
appearance experiments, the forward neutral coherent pion can mimic the electron shower
of the v, signal, if one of the gammas from the decay of the pion is not observed. The CC
coherent interaction can mimic the signal of muon neutrino disappearance experiments, if
the pion is mistaken as the proton (v, disappearance experiments use the v,-CC quasi-
elastic process, where a muon and a proton are created, as their signal), or if the pion
is not observed (7, disappearance experiments use 7,-CC quasi-elastic process, where

an anti-muon and a neutron are created, as their signal). Ambitious experiments like
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DUNE and Hyper Kamiokande, already under construction, will measure these neutrino
oscillation channels, in liquid Argon and water, respectively, in a neutrino energy regime
that overlaps with the one used in this analysis. If a more appropriate cross section scaling
is available, both experiments can make a better extrapolation of the coherent pion cross

section to the material of their needs, reducing their uncertainties.

An A-dependence is observed in the suppression of resonant pions at low Q? transfer,
where collective nuclear effects are believed to play an important role [149]. This was
observed in a hight |¢|, low Q2 sideband of background events in this analysis, where
the suppression extracted from pions produced in the CH targets, perfectly match the

suppression of the data, while in the Fe and Pb targets, a much stronger suppression is
observed (section [6.7)).

The results shown in this thesis confirms the results previously obtained by the MIN-
ERvVA collaboration [31], [7], ArgoNeuT [32] and T2K [33], at similar neutrino energies,
where the SciBooNE [30] and K2K [11] experiments were not able to observe, due to the
not-fully contained pions and due to the muon mass correction factor not being available
by then in the Rein-Sehgal model.

The MINERvVA collaboration has been able to manage all the technical difficulties
involved in reconstructing the CC coherent interaction (specially the pion kinematic vari-
ables) out of 11 different passive targets, where the 4 materials (C, CH, Fe and Pb) were
located, to successfully observe the process in all of them, with a reasonable statistical
sample. A sample of anti-neutrinos is being calibrated and reconstructed by the collabo-
ration. It is possible in principle, to make neutrino vs anti-neutrinos comparisons, at least
in the CH target, once the sample is ready. It will be complicated to do the same in the

passive materials, because of the smaller statistics of the anti-neutrino sample.
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Appendix A

Fit Resolution Distributions

This chapter shows the fits to all the three distributions from the fractional muon, pion,
neutrino energy, and Q2 resolution, from sections to m
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Figure A.1: Fit of each of the three energy regions in the muon fractional energy resolution.

CH target.
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Figure A.2: Fit of each of the three energy regions in the muon fractional energy resolution.
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Figure A.3: Fit of each of the three energy regions in the muon fractional energy resolution.
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Figure A.4: Fit of each of the three energy regions in the muon fractional energy resolution.
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Figure A.5: Fit of each of the three energy regions in the muon fractional energy resolution.
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Figure A.6: Fit of each of the three energy regions in the muon fractional energy resolution.
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Figure A.7: Fit of each of the three energy regions in the muon fractional energy resolution.
Pb in target 1.
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Figure A.8: Fit of each of the three energy regions in the muon fractional energy resolution.
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Figure A.9: Fit of each of the three energy regions in the muon fractional energy resolution.
Pb in target 3.
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Figure A.10: Fit of each of the three energy regions in the muon fractional energy resolu-
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Figure A.12: Fit of each of the three energy regions in the pion fractional energy resolution.
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Figure A.13: Fit of each of the three energy regions in the pion fractional energy resolution.
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Figure A.14: Fit of each of the three energy regions in the pion fractional energy resolution.

Fe in target 1.
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Figure A.16: Fit of each of the three energy regions in the pion fractional energy resolution.
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Figure A.17: Fit of each of the three energy regions in the pion fractional energy resolution.
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Epi T1-Pb - Fracc. Resolution, Bin1
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Figure A.18: Fit of each of the three energy regions in the pion fractional energy resolution.
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Figure A.19: Fit of each of the three energy regions in the pion fractional energy resolution.

Pb in target 2.
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Figure A.20: Fit of each of the three energy regions in the pion fractional energy resolution.

Pb in target 3.
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Figure A.21: Fit of each of the three energy regions in the pion fractional energy resolution.
Pb in target 4.
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Figure A.22: Fit of each of the three energy regions in the pion fractional energy resolution.
Pb in target 5.
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Figure A.23: Fit of each of the three energy regions in

resolution. CH target.
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Figure A.24: Fit of each of the three energy regions in

resolution. C target.

Enu T1-Fe - Fracc. Resolution, Bin1

| 2/ ndl 4812/208
£ i P 316520878
3.5 1 P 0006425+ 0008796
F N @ ooerrzoosee
E W ooerzo0ws
E o 0625305080
2.5
2
1.5
1=
0.5
P L At i
-1 08 06 04 02 0 02 04 06 08

1

Enu T1-Fe - Fracc. Resolution, Bin2

02 04

the neutrino fractional energy

Enu T1-Fe - Fracc. Resolution, Bin3

F ot Tawiaa F It s027/225
22 [IH I os212 0204 r p0 1084 2089
E Pl 0.3461+ 0.0935 N p1 ~0.011 0.007
20:’ Al w2 02455 £ 00834 10f P2 0091292000708
18F pe tesss1a1 L " 05630310
= P4 -0.0008812+ 00045645 - P4 0.1833 £ 0.0806
16F oese 000478 8l s 02629 20,0551
14 r
121 6
10 [
8- 4
6 r
45 2
2 r
O: ! ! ! 1 Oi ! ! 1 | L L
-1 08 06 04 02 0 02 04 06 08 -1 08 06 04 02 0 02 04 06 08 1

Figure A.25: Fit of each of the three energy regions in the neutrino fractional energy

resolution. Fe in target 1.
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Figure A.26: Fit of each of the three energy regions in the neutrino fractional energy

resolution. Fe in target 2.
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Figure A.27: Fit of each of the three energy regions in the neutrino fractional energy

resolution. Fe in target 3.
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Figure A.28: Fit of each of the three energy regions in the neutrino fractional energy

resolution. Fe in target 5.
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Figure A.29: Fit of each of the three energy regions in the neutrino fractional energy

resolution. Pb in target 1.
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Figure A.30: Fit of each of the three energy regions in the neutrino fractional energy

resolution. Pb in target 2.
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Figure A.31: Fit of each of the three energy regions in the neutrino fractional energy

resolution. Pb in target 3.
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Figure A.32: Fit of each of the three energy regions in the neutrino fractional energy

resolution. Pb in target 4.
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Figure A.33: Fit of each of the three energy regions in the neutrino fractional energy

resolution. Pb in target 5.
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Figure A.34: Fit of each of the four energy regions in the Q? fractional energy resolution.

CH target.
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Figure A.35: Fit of each of the four energy regions in the Q2 fractional energy resolution.

C target.

Figure A.36: Fit of each of the four energy regions in the Q>

Fe in target 1.
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Figure A.37: Fit of each of the four energy regions in the Q? fractional energy resolution.

Fe in target 2.
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Figure A.38: Fit of each of the four energy regions in the Q? fractional energy resolution.

Fe in target 3.
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Figure A.40: Fit of each of the four energy regions in the Q2 fractional energy resolution.

Pb in target 1.
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Figure A.41: Fit of each of the four energy regions in the Q? fractional energy resolution.

Pb in target 2.

Figure A.42: Fit of each of the four energy regions in the Q2 fractional energy resolution.

Pb in target 3.
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Figure A.43: Fit of each of the four energy regions in the Q2 fractional energy resolution.

Pb in target 4.
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Figure A.44: Fit of each of the four energy regions in the Q? fractional energy resolution.
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Appendix B

Unfolding Study

To determine the appropriate number of iterations for unfolding the data, the background
subtracted data was used in a data-driven unfolding technique. The ratio of the data and
the MC from the signal-only sample is used as a weight to warp the signal-only MC. The
shape of the MC warped then becomes similar to the background-subtracted data. The
reconstructed warped MC is unfolded in successive iterations, until the difference with the
true warped MC is less or equal to the 1o statistical error of the reconstructed warped
MC.

In the figures below, it can be seen how the original signal-only reconstructed MC in red,
becomes closer to the shape of the background-subtracted data (green histogram), after
applying the data/MC ratio (top right) weight. After a given number of iterations, the
difference in the plots in the middle reduces as the number of iterations increases. Increas-
ing the number of iterations causes that events migrate from some bins to others. Because
of this, some bins end up with fewer events and therefore, larger statistical errors.

In bins where the background is higher than the data (specially in the passive materials),
the unfolding may struggle with high statistical errors. New MC weights are being de-
veloped by the MINERvA collaboration. These should help getting a better agreement
between data and MC in the non-coherent background tuning. This might also positively
affect the unfolding-related errors in those bins (see chapters @] and . In all cases, the
unfolding process is shown up to the second iteration. The number of iterations at which

the process converges, is shown in table for each variable in each material.
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B.1 E, Unfolding Study
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Figure B.1: Unfolding study for the F, in the carbon target. Top left: reconstructed
MC and reconstructed MC warped compared to the background subtracted data; top
right: background-subtracted data/reconstructed MC used as warping function; middle
left: warped reconstructed and true MC before unfolding; middle right: reconstructed-true
before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.
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Figure B.2: Unfolding study for the E), in the hydrocarbon target. Top left: reconstructed
MC and reconstructed MC warped compared to the background subtracted data; top
right: background-subtracted data/reconstructed MC used as warping function; middle
left: warped reconstructed and true MC before unfolding; middle right: reconstructed-true
before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.
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Figure B.3: Unfolding study for the E, in the iron target. Top left: reconstructed MC
and reconstructed MC warped compared to the background subtracted data; top right:
background-subtracted data/reconstructed MC used as warping function; middle left:
warped reconstructed and true MC before unfolding; middle right: reconstructed-true
before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.
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Figure B.4: Unfolding study for the F, in the lead target. Top left: reconstructed MC
and reconstructed MC warped compared to the background subtracted data; top right:
background-subtracted data/reconstructed MC used as warping function; middle left:
warped reconstructed and true MC before unfolding; middle right: reconstructed-true
before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.
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B.2 FE, Unfolding Study
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Figure B.5: Unfolding study for the E, in the carbon target. Top left: reconstructed
MC and reconstructed MC warped compared to the background subtracted data; top
right: background-subtracted data/reconstructed MC used as warping function; middle
left: warped reconstructed and true MC before unfolding; middle right: reconstructed-true
before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.
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Figure B.6: Unfolding study for the E; in the hydrocarbon target. Top left: reconstructed
MC and reconstructed MC warped compared to the background subtracted data; top
right: background-subtracted data/reconstructed MC used as warping function; middle
left: warped reconstructed and true MC before unfolding; middle right: reconstructed-true
before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.
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Figure B.7: Unfolding study for the F; in the iron target. Top left: reconstructed MC
and reconstructed MC warped compared to the background subtracted data; top right:

background-subtracted data/reconstructed MC used as warping function; middle left:

warped reconstructed and true MC before unfolding; middle right: reconstructed-true

before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.
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Figure B.8: Unfolding study for the E in the lead target. Top left: reconstructed MC
and reconstructed MC warped compared to the background subtracted data; top right:
background-subtracted data/reconstructed MC used as warping function; middle left:
warped reconstructed and true MC before unfolding; middle right: reconstructed-true
before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.
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Figure B.9: Unfolding study for the 6, in the carbon target. Top left: reconstructed
MC and reconstructed MC warped compared to the background subtracted data; top
right: background-subtracted data/reconstructed MC used as warping function; middle
left: warped reconstructed and true MC before unfolding; middle right: reconstructed-true
before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.
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Figure B.10: Unfolding study for the 6, in the hydrocarbon target. Top left: reconstructed
MC and reconstructed MC warped compared to the background subtracted data; top
right: background-subtracted data/reconstructed MC used as warping function; middle
left: warped reconstructed and true MC before unfolding; middle right: reconstructed-true
before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.

269



APPENDIX B

Vp+A S s+ A

25
[ MINERVA Work in Progress—+— Data No Bkgd. g 2= 4
F Reco MC Té F
200/ —— Reco MC Warped e 0; ﬁ_\_‘—L
o H e
F g F
8§ 150 -I- =
= F S F
8 t & -6F
o (<] -
b 100: Z b
o F F
§ 50 —10-
> r E
w F —12f
%+t + L 1af
N —— _1ef
-50[ | | | | il il 1 ol Bl | | | 1 il il |
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
6, [Degrees]
6, [Degrees]
Vp+A > W+ T+ A Vp+A > W+ T+ A
250 m
[ MINERvVA Work in Progress—+— Reco MC Warped [ | MINERvA Work in Progress
C True MC Warped » 80— Reconstructed
200— o £
s 5 60
o C 8 C
@ 150/ o ‘O
> = 0 | |
S st b
S 100 g o | 1
3 1 2 Tt
2 I & 20
§ sof- sl
& | 400
of- - 8 —60f"
I Q c
F [ =
I -80
-50} 1 1 1 1 1 1 L 1 E 1 1 1 1 L 1 | 1
0O 10 20 30 40 50 60 70 80 90 0O 10 20 30 40 50 60 70 80 90
0, [Degrees] 0, [Degrees]
Wgt. MC Unfold Iter. 3 Vp+tA S+ +A
250 =
r —+— Unfolded MC £ | MINERvA Work in Progress
r True @ 80[—| Unfolded Iter. 3
2001~ £ r
o §’ 60f
"] C E
8 1501 g 40f
§’ F @ 20f
r £ S
2 100 2 0;%—__ =T _i_++"*L
F w =
2 r 8 —20f |
g 5o £ °F
- 3 o
r ] =
of- ——t— 2 -60F
b 5 _sof
-50F Il Il Il Il Il Lo 1 Il E Il Il Il Il 1 ol s Il
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
6, [Degrees] 6, [Degrees]

Figure B.11: Unfolding study for the 6, in the iron target. Top left: reconstructed
MC and reconstructed MC warped compared to the background subtracted data; top
right: background-subtracted data/reconstructed MC used as warping function; middle
left: warped reconstructed and true MC before unfolding; middle right: reconstructed-true
before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.
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Figure B.12: Unfolding study for the 6, in the lead target. Top left: reconstructed
MC and reconstructed MC warped compared to the background subtracted data; top
right: background-subtracted data/reconstructed MC used as warping function; middle
left: warped reconstructed and true MC before unfolding; middle right: reconstructed-true
before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.
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Figure B.13: Unfolding study for the Q2 in the carbon target. Top left: reconstructed
MC and reconstructed MC warped compared to the background subtracted data; top
right: background-subtracted data/reconstructed MC used as warping function; middle
left: warped reconstructed and true MC before unfolding; middle right: reconstructed-true
before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.
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Figure B.14: Unfolding study for the Q2 in the hydrocarbon target. Top left: reconstructed
MC and reconstructed MC warped compared to the background subtracted data; top
right: background-subtracted data/reconstructed MC used as warping function; middle
left: warped reconstructed and true MC before unfolding; middle right: reconstructed-true
before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.
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Figure B.15: Unfolding study for the Q2 in the
MC and reconstructed MC warped compared to the background subtracted data; top
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reconstructed

right: background-subtracted data/reconstructed MC used as warping function; middle

left: warped reconstructed and true MC before unfolding; middle right: reconstructed-true

before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.
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Figure B.16: Unfolding study for the @2 in the
MC and reconstructed MC warped compared to the background subtracted data; top

Q? [GeV/c]

lead target.

1

Top left: reconstructed

right: background-subtracted data/reconstructed MC used as warping function; middle

left: warped reconstructed and true MC before unfolding; middle right: reconstructed-true

before unfolding; bottom left: unfolded warped MC after the second iteration; bottom

right: unfolded-true after the second iteration.
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Appendix C

Breakdown of the Cross Section

Systematic Errors

The systematic error summary of the measured cross sections in section is broken

down for the “interaction model” and “detector model” systematic error groups as follows

e Interaction Model

CCQE & NCEL (charged current quasi-elastic and neutral current elastic)
— CC Resonance

— Non-Resonant m Production

— Deep Inelastic Scattering

— Final State Interactions

— Hadronization & Resonant Decay
e Detector Model

— Muon Energy

— Hadron Response

Pion Inelastic o

— Proton Inelastic o

Neutron Path length

— Muon Tracking Efficiency

Beam Angle
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The uncertainties on the “Interaction Model” group, correspond to the uncertainty in each
of the neutrino interaction listed, as built in the GENIE generator version 2.8.4 [132].
Figures to show the breakdown of the two groups above, in the o (E, ), do/dE,,

do/df, and do/dQ? cross sections in all four materials under study.
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Figure C.1: Fractional uncertainties in the interaction model systematic group, in the
o (E,) cross section, in the C, CH, Fe and Pb targets.
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Figure C.2: Fractional uncertainties in the interaction model systematic group, in the
do/dE; cross section, in the C, CH, Fe and Pb targets.
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Figure C.3: Fractional uncertainties in the interaction model systematic group, in the
do /df, cross section, in the C, CH, Fe and Pb targets.
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Figure C.4: Fractional uncertainties in the interaction model systematic group, in the
do /dQ? cross section, in the C, CH, Fe and Pb targets.
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Appendix D

Preliminary Cross Section Ratios

This chapter shows a prelimiary look of the ratios of the total cros sections in the Fe and
Pb targets with respect to the total cross section in the CH target, which is used as the

reference.

The errors in the cross sections need a further treatment of the error propagation. The
tuned background in the passive targets is also expected to change due to ongoing im-
provements of some of the weights applied to the MC predictions (see section . When
not available to the passive materials used, an extra systematic could be applied to cover

discrepancies.

The most popular scaling patterns are the A'/3 used in the Rein-Sehgal model [4],
A?/3 ysed in the Berger-Sehgal model [6]. If the data were close to any of these predictions,

one would expect the following ratios

o (Ef'e) 561/3

S ECT) a7 = 1671 (D.1)
o (Ellljb) 2071/3
e~ g = 2 (D.2)
o (Efe) 562/3
O~ 12 = 2T (D.3)
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o (EL®)  207%/3
o (ECH) ™ 122/3

= 6.676 (D.4)

for the A1/3 and A2/3, respectively. An energy-dependent prediction has also been pub-
lished [96]. Figures and show the preliminary cross section ratios.

It is clear that none of the ratios follow one of the 2 suggested scaling patterns. Of course
it might well be that the scaling is a completely different function. In order to obtain a

reliable ratio, the adjustments mentioned above need to be applied.
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Preliminary Cross Section Ratios

Pb/CH Ratio

wn

+a
(%]
I LI I LI I LI I LI I

-+ Data RaLio

[9)]

Events/ 1.0 Ge&{

w
wn

4 5 6 7 8 9 10
E, Energy [MeV]

w LI

Pb
Figure D.2: % preliminary ratio.

285



286



Appendix E

Importance of the Analysis

For practical purposes, neutrinos interact only through the weak force, that is, by ex-
changing a W+ or Z boson. Whether a neutrino interacts with massive leptons, quarks,
nucleons (neutrons and protons) or even entire nuclei, depends on the momentum trans-
ferred by the neutrino, the larger the wavelength of the momentum transferred, the larger
the target the neutrino can interact with.

The coherent neutrino-production of pions happens when the neutrino scatters off the
entire nucleus. The wavelength of the momentum transferred to the nucleus is larger
than the nuclear radius, and because of this, the nucleons in the nucleus react in phase
(coherently) producing a constructive interference. The phenomenology that leads to the
production of a pion during the neutrino-nucleus interaction is not well understood.
Analogous to the electric current, there exists a “weak” current for weak interactions,
which has a vector and an axial component. The vector component is conserved in
hadronic interactions, while the axial part is not. The non-conservation of the “axial”
current is used to build a hypothesis for the creation of the pion, in neutrino-nucleus

coherent interactions.

The coherent production of pions by neutrinos can occur through the exchange of
a W* (Charged Current, or “CC” channel) or through a Z boson (Neutral Current, or
“NC” channel). Experiments in the 80s and 90s looked for both channels, to test the
models that included the non-conservation of the axial current. These models were not
just a test of the hypothesis of the phenomenology of the process, but an extra proof and
confirmation of the neutral-current processes, recently discovered by then.
Although these models predicted the process could occur in nuclei of any size, those
experiments used nuclei ranging from carbon (number of nucleons “A”= 12) to Bromine
(A = 35). They measured the cross section of both the NC and CC channels of the
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interaction, at relatively large neutrino energies (~ 150 GeV) ; and the NC channel at low

energies (~ 2 GeV).

After the discovery of neutrino oscillations (neutrinos changing flavor as they travel),
the coherent neutrino-production of pions regained interest because both the CC and NC
channels mimic the signal in neutrino oscillation experiments. Considering a beam of
muon neutrinos, the interaction’s charged current channel (CC, exchange of a W= boson)
produces a charged pion and a muon; while the neutral current channel (NC, exchange of
a Z boson) produces a muon neutrino and a neutral pion, which promptly decays to two
gammas. These particles, under some circumstances look the same as those produced in
a neutrino interaction used to identify the oscillation of neutrinos.

These experiments work with neutrino energies in between ~ 1 and ~ 10 GeV, and
therefore, new experiments were designed to find the CC coherent interaction at those
energies. The first two attempts (2005 and 2009) were unsuccessful because of detector
limitations and deficiencies in the model.

In 2014 the MINERvVA experiment was the first to measure the CC coherent neutrino
production of pions, thanks to its detector capabilities to fully contain the produced pions
and measure their energy, and due to improvements on the model, which included the

effect of the muon mass (neglected in the previous version of the model).

Given that the interaction had not been observed in heavy nuclei like steel or lead,
neutrino oscillation experiments using those materials, extrapolated the cross section of
the coherent production of pions from nuclei where the interaction was already measured,
to those heavy nuclei, assuming a scaling of the cross section dependent on the number of
nucleons in the nucleus. The proposed scalings went as A3, A2/3.

This analysis has been able to measure the cross section of the coherent pions produced
by neutrinos, in steel and lead for the first time, which will allow a better estimate of their
cross sections to be used by neutrino oscillation experiments. It has also achieved the
measurement with the highest statistical sample until now, using a hydrocarbon target,
which will allow to make more precise measurements of the process (like looking at a sub-
sample of low energy neutrino-produced coherent pions for the first time). Finally, the
measurement was done simultaneously in all materials, this will enable a measurement of

the scaling of the cross section dependent on A, for the first time.
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